Perceptron,
1981.
WWW Link.
Vendor, Laser Scanner. Industrial laser Scanners. General non-contact vision and metrology.
3shape,
2000.
WWW Link.
Vendor, Range Sensor. Denmark.
3-D scanners and CAD Sortware. Dental models, tools for hearing aid shells,
3d printing.
Faro Technologies,
2001.
WWW Link.
Vendor, Laser Scanner. Industrial laser Scanners.
GKS Inspection Services,
Laser Design, Inc. 2007
Laser mensuration systems.
WWW Link.
Vendor, Laser Scanner.
Polehemus, Laser Scanner,
2005.
WWW Link.
Vendor, Laser Scanner. Also does eye and motion tracking.
3D Digital Corp,
2007.
WWW Link.
Vendor, Laser Scanner. Laser scanner systems. Dental models, shoes.
3D Shape GmbH,
2007.
WWW Link.
Vendor, Laser Scanner. Face scanner, creation of 3D models.
Acuity Laser Measurement,
2005.
WWW Link.
Vendor, Laser Scanner. Laser rangefinders and scanners.
Advanced Simulation Technologies Ltd.,
Advanced SimTech, 2007.
WWW Link.
Vendor, Laser Scanner.
Vendor, Laser Scan Data.
Forensic Analysis. Laser scanning and analysis services, especially accident investigations.
Leica GeoSystems HDS,
2003.
HTML Version.
Vendor, Laser Scanner. Several laser scanner products.
Konica Minolta 3-D,
1997.
WWW Link.
Vendor, Laser Scanner. Scanners and models.
Neptec,
1990.
WWW Link.
Vendor, Laser Scanner. Space based systems (Space Shuttle).
Direct Dimensions,
1995.
HTML Version.
Vendor, Laser Scanner.
Vendor, 3D Models. Scanners. Architectural models. Object models.
Virtek Vision International Inc.,
2007.
WWW Link.
Vendor, Laser Scanner. Scanners. 3-D models. Object models.
Veoldyne LiDAR,
1983.
WWW Link.
Vendor, Laser Scanner. 360 degree high frame rate laser sensor.
Used in a lot of vehicle programs.
Company Primarily involved in acoustics.
NVision, Inc.,
2005.
WWW Link.
Vendor, Range Sensor.
Vendor, CAD. Laser scanners, including hand held scanner.
Reverse engineering and inspection software.
Advanced Seientific Concepts,
1987.
WWW Link.
Vendor, Laser Scanner. Small, real-time sensor, small area covered
ISPRS Terrestrial laser scanning and 3D imaging Datasets,
2008.
HTML Version.
Dataset, 3-D Data. 3-D datasets for large scale objects.
Sanmarina Byzantine church and Golden Buddha.
Jarvis, R.A.,
A Laser Time-of-Flight Range Scanner for Robotic Vision,
PAMI(5), No. 5, September 1983, pp. 505-512.
Implementation and results of a laser scanner.
BibRef
8309
Mallinson, R.B.[Richard B.],
Laser altimeter and probe height sensor,
US_Patent4,373,805, Feb 15, 1983
WWW Link.
BibRef
8302
Bohlander, P.[Peter],
Hippler, H.P.[Heinz-Peter],
Apparatus for the determination of the position of a surface,
US_Patent4,453,083, Jun 5, 1984
WWW Link.
BibRef
8406
Rioux, M.,
Laser Range Finder Based on Synchronized Scanners,
AppOpt(23), No. 21, November 1984, pp. 3837-3855
BibRef
8411
Rioux, M.[Marc],
Three dimensional imaging device,
US_Patent5,018,854, May 28, 1991
WWW Link.
BibRef
9105
Baribeau, R.,
Rioux, M.,
Influence of Speckle on Laser Range Finders,
AppOpt(30), No. 20, 1991, pp. 2873-2878.
BibRef
9100
Carrihill, B.[Brian],
Hummel, R.A.[Robert A.],
Experiments with the Intensity Ratio Data Sensor,
CVGIP(32), No. 3, December 1985, pp. 337-358.
Elsevier DOI Depth with a plane of light illumination using the ratio of intensity.
BibRef
8512
Lambeth, D.N.[David N.],
Rangefinder device with focused elongated light source,
US_Patent4,494,868, Jan 22, 1985
WWW Link.
BibRef
8501
Bastuscheck, C.M.,
Schwartz, J.T.,
Experimental Implementation of a Ratio Image Depth Sensor,
T3DMP86(1-12).
BibRef
8600
Bastuscheck, C.M.,
Techniques for Real-Time Generation of Range Images,
CVPR89(262-268).
IEEE DOI
BibRef
8900
Corby, Jr., N.R.[Nelson R.],
Integrated range and luminance camera,
US_Patent4,687,326, Aug 18, 1987
WWW Link.
BibRef
8708
Kobayashi, T.[Takao],
Method and apparatus for measuring distance by laser beam,
US_Patent4,729,653, Mar 8, 1988
WWW Link.
BibRef
8803
Case, S.K.[Steven K.],
Keil, R.E.[Robert E.],
Konicek, J.[John],
Laser probe for determining distance,
US_Patent4,733,969, Mar 29, 1988
WWW Link.
BibRef
8803
Case, S.K.[Steven K.],
Keil, R.E.[Robert E.],
Jalkio, J.A.[Jeffrey A.],
Point and line range sensors,
US_Patent4,891,772, Jan 2, 1990
WWW Link.
BibRef
9001
Scott, M.W.,
Range Imaging Laser Radar,
US_Patent4,935,616, 1990.
WWW Link.
BibRef
9000
Tsikos, C.J.[Constantine J.],
Laser range imaging system based on projective geometry,
US_Patent4,979,815, Dec 25, 1990
WWW Link.
BibRef
9012
Saint-Marc, P.,
Jezouin, J.L.,
Medioni, G.,
A Versatile PC-Based Range Finding System,
RA(7), No. 2, April 1991, pp. 250-256.
BibRef
9104
USC Computer Vision
BibRef
Earlier: A2, A1, A3:
Building an Accurate Range Finder with off the Shelf Components,
CVPR88(195-200).
IEEE DOI Computation required with one camera and plane of light.
BibRef
Hebert, M.[Martial],
Krotkov, E.[Eric],
3D Measurements from Imaging Laser Radars: How Good Are They?,
IVC(10), No. 3, April 1992, pp. 170-178.
Elsevier DOI
BibRef
9204
Earlier:
IROS91(359-364).
Amplitude-modulated continuous-wave laser radars.
BibRef
Kaman, C.H.[Charles H.],
Ulich, B.L.[Bobby L.],
Mayerjak, R.[Robert],
Schafer, G.[George],
Imaging lidar system,
US_Patent5,231,401, Jul 27, 1993
WWW Link. Pulsed laser
BibRef
9307
Carmer, D.C., and
Peterson, L.M.,
Laser Radar in Robotics,
PIEEE(84), 1996, pp. 299-320.
BibRef
9600
Jones, P.R.M.,
Rioux, M.,
Three-Dimensional Surface Anthropometry:
Applications to the Human-Body,
OptLas(28), No. 2, 1997, pp. 89-117.
9708
BibRef
Rioux, M.,
Color 3-D Electronic Imaging of the Surface of the Human-Body,
OptLas(28), No. 2, 1997, pp. 119-135.
9708
BibRef
Jelalian, A.V.,
Special Issue on Laser-Radar,
PIEEE(84), No. 2, February 1996, pp. 99-102.
BibRef
9602
Osche, G.R.,
Young, D.S.,
Imaging Laser-Radar in the Near and Far-Infrared,
PIEEE(84), No. 2, February 1996, pp. 103-125.
BibRef
9602
Babbitt, W.R.[W. Randall],
Bell, J.A.[John A.],
Capron, B.A.[Barbara A.],
de Groot, P.J.[Peter J.],
Hagman, R.L.[Ronald L.],
McGarvey, J.A.[John A.],
Sherman, W.D.[William D.],
Sjoholm, P.F.[Paul F.],
Method and apparatus for measuring distance to a target,
US_Patent5,589,928, Dec 31, 1996
WWW Link.
BibRef
9612
Greer, D.R.,
Fung, I.,
Shapiro, J.H.,
Maximum-Likelihood Multiresolution Laser-Radar Range Imaging,
IP(6), No. 1, January 1997, pp. 36-46.
IEEE DOI
9703
BibRef
Linney, A.D.,
Campos, J.,
Richards, R.,
Noncontact Anthropometry Using Projected Laser Line Distortion:
Three-Dimensional Graphic Visualization and Applications,
OptLas(28), No. 2, 1997, pp. 137-155.
9708
BibRef
Pargas, R.P.,
Staples, N.J.,
Davis, J.S.,
Automatic-Measurement Extraction for Apparel from a
Three-Dimensional Body Scan,
OptLas(28), No. 2, 1997, pp. 157-172.
9708
BibRef
Ackermann, F.[Friedrich],
Airborne laser scanning: Present status and future expectations,
PandRS(54), No. 2-3, July 1999, pp. 64-67.
Issue Overview.
BibRef
9907
Wehr, A.[Aloysius],
Lohr, U.[Uwe],
Airborne laser scanning: An introduction and overview,
PandRS(54), No. 2-3, July 1999, pp. 68-82.
BibRef
9907
Baltsavias, E.P.[Emmanuel P.],
A comparison between photogrammetry and laser scanning,
PandRS(54), No. 2-3, July 1999, pp. 83-94.
BibRef
9907
Albamont, J.[James],
Goshtasby, A.[Ardeshir],
A range scanner with a virtual laser,
IVC(21), No. 3, March 2003, pp. 271-284.
Elsevier DOI
0301
BibRef
Koh, I.S.[Il-Suek],
Wang, F.N.[Fei-Nian],
Sarabandi, K.,
Estimation of coherent field attenuation through dense foliage
including multiple scattering,
GeoRS(41), No. 5, May 2003, pp. 1132-1135.
IEEE Abstract.
0307
BibRef
Zagorchev, L.[Lyubomir],
Goshtasby, A.[Ardeshir],
A paintbrush laser range scanner,
CVIU(101), No. 2, February 2005, pp. 65-86.
Elsevier DOI
0512
BibRef
Goren, D.P.[David P.],
Katz, J.[Joseph],
Bergstein, L.[Leonard],
Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam
Expansions,
JASP(2005), No. 10, 2005, pp. 1617-1623.
WWW Link.
0603
BibRef
Wallace, A.M.,
Sung, R.C.W.,
Buller, G.S.,
Harkins, R.D.,
Warburton, R.E.,
Lamb, R.A.,
Detecting and characterising returns in a pulsed ladar system,
VISP(153), No. 2, April 2006, pp. 160-172.
DOI Link
0604
BibRef
Medina, A.[Antonio],
Gayá, F.[Francisco],
del Pozo, F.[Francisco],
Compact laser radar and three-dimensional camera,
JOSA-A(23), No. 4, April 2006, pp. 800-805.
WWW Link.
0610
BibRef
Jutzi, B.[Boris],
Stilla, U.[Uwe],
Range determination with waveform recording laser systems using a
Wiener Filter,
PandRS(61), No. 2, November 2006, pp. 95-107.
Elsevier DOI
0703
Award, ISPRS. Laser scanning, Waveform analysis, Signal processing, Feature extraction
BibRef
Hernandez-Marin, S.[Sergio],
Wallace, A.M.[Andrew M.],
Gibson, G.J.[Gavin J.],
Bayesian Analysis of Lidar Signals with Multiple Returns,
PAMI(29), No. 12, December 2007, pp. 2170-2180.
IEEE DOI
0711
BibRef
Earlier:
Spatial modelling of multi-layered LiDAR images using reversible jump
MCMC,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Earlier:
Creating Multi-layered 3D Images Using Reversible Jump MCMC Algorithms,
ISVC06(II: 405-416).
Springer DOI
0611
Multiple returns from laser scanner to get multiple layers.
Markov chain Monte Carlo.
BibRef
Hernandez-Marin, S.[Sergio],
Wallace, A.M.[Andrew M.],
Gibson, G.J.[Gavin J.],
Multilayered 3D LiDAR Image Construction Using Spatial Models in a
Bayesian Framework,
PAMI(30), No. 6, June 2008, pp. 1028-1040.
IEEE DOI
0804
BibRef
Froehlich, C.[Christoph],
Mettenleiter, M.[Markus],
Zebandt, M.[Martin],
Laser measurement system,
US_Patent7,190,465, Mar 13, 2007
WWW Link.
BibRef
0703
Kirchhof, M.[Michael],
Jutzi, B.[Boris],
Stilla, U.[Uwe],
Iterative processing of laser scanning data by full waveform analysis,
PandRS(63), No. 1, January 2008, pp. 99-114.
Elsevier DOI
0711
Laser scanning, Waveform analysis, Feature extraction
BibRef
Banno, A.[Atsuhiko],
Masuda, T.,
Oishi, T.,
Ikeuchi, K.[Katsushi],
Flying Laser Range Sensor for Large-Scale Site-Modeling and Its
Applications in Bayon Digital Archival Project,
IJCV(78), No. 2-3, July 2008, pp. 207-222.
Springer DOI
0803
BibRef
Banno, A.[Atsuhiko],
Ikeuchi, K.[Katsushi],
Determination of motion parameters of a moving range sensor
approximated by polynomials for rectification of distorted 3D data,
MVA(22), No. 6, November 2011, pp. 889-897.
WWW Link.
1110
BibRef
Banno, A.[Atsuhiko],
Ikeuchi, K.[Katsushi],
Shape Rectification of 3D Data Obtained by a Moving Range Sensor by
using Image Sequences,
DACO08(13-32).
0812
BibRef
Earlier:
Shape Recovery of 3D Data Obtained from a Moving Range Sensor by Using
Image Sequences,
ICCV05(I: 792-799).
IEEE DOI
0510
BibRef
Banno, A.[Atsuhiko],
Hasegawa, K.[Kazuhide],
Ikeuchi, K.[Katsushi],
Recovery of Distorted Shapes Obtained from the Flying Laser Range
Sensor for Large-Scale Cultural Heritages,
CREST05(50-57).
WWW Link.
0505
BibRef
Masuda, T.[Tomohito],
Hirota, Y.[Yuichiro],
Nishino, K.[Ko],
Ikeuchi, K.[Katsushi],
Distortion Correction of Range Data Obtained from Floating Laser Range
Sensor using Parameterized Deformation Registration,
CREST05(73-78).
WWW Link.
0505
BibRef
Hasegawa, K.[Kazuhide],
Hirota, Y.[Yuichiro],
Ogawara, K.[Koichi],
Kurazume, R.[Ryo],
Ikeuchi, K.[Katsuhsi],
Flying Laser Range Sensor: A Novel Aerial Sensing System for
Large-scale Heritage,
CREST05(28-33).
WWW Link.
0505
BibRef
Shao, Y.C.[Yi-Chen],
Chen, L.C.[Liang-Chien],
Automated Searching of Ground Points from Airborne Lidar Data Using a
Climbing and Sliding Method,
PhEngRS(74), No. 5, May 2008, pp. 625-636.
WWW Link.
0804
A new slope-based filtering method, climbing-and-sliding, to select
ground points from lidar point clouds for terrain modeling.
BibRef
Ono, S.[Shintaro],
Matsui, K.[Ken],
Ikeuchi, K.[Katsushi],
The Climbing Sensor: 3D Modeling of Narrow Areas by Using Space-Time
Analysis,
DACO08(33-48).
0812
BibRef
Mallet, C.[Clement],
Bretar, F.[Frederic],
Full-waveform topographic lidar: State-of-the-art,
PandRS(64), No. 1, January 2009, pp. 1-16.
Elsevier DOI
0804
Lidar systems, Full-waveform data, Literature survey, Waveform
analysis, Signal processing
BibRef
Wang, Y.F.[Yan-Fei],
Zhang, J.Z.[Jian-Zhong],
Roncat, A.[Andreas],
Künzer, C.[Claudia],
Wagner, W.[Wolfgang],
Regularizing method for the determination of the backscatter cross
section in lidar data,
JOSA-A(26), No. 5, May 2009, pp. 1071-1079.
WWW Link.
0905
BibRef
Roncat, A.[Andreas],
Bergauer, G.[Gunther],
Pfeifer, N.[Norbert],
B-spline deconvolution for differential target cross-section
determination in full-waveform laser scanning data,
PandRS(66), No. 4, July 2011, pp. 418-428.
Elsevier DOI
1107
BibRef
Earlier:
Retrieval of the Backscatter Cross-Section in Full-Waveform Lidar Data
using B-Splines,
PCVIA10(B:137).
PDF File.
1009
Laser scanning, Full-waveform, Deconvolution, Linear estimation
BibRef
Wagner, W.,
Roncat, A.,
Melzer, T.,
Ullrich, A.,
Waveform Analysis Techniques in Airborne Laser Scanning,
Laser07(413).
PDF File.
0709
Keynote Talk
BibRef
Yao, W.,
Stilla, U.,
Mutual Enhancement of Weak Laser Pulses for Point Cloud Enrichment
Based on Full-Waveform Analysis,
GeoRS(48), No. 9, September 2010, pp. 3571-3579.
IEEE DOI
1008
BibRef
Bohme, M.[Martin],
Haker, M.[Martin],
Martinetz, T.[Thomas],
Barth, E.[Erhardt],
Shading constraint improves accuracy of time-of-flight measurements,
CVIU(114), No. 12, December 2010, pp. 1329-1335.
Elsevier DOI
1011
BibRef
Earlier:
TOF-CV08(1-6).
IEEE DOI
0806
Time-of-flight camera, Range map, Range sensor, Shading constraint;
Shape from shading, Probabilistic image model
BibRef
Kolb, A.[Andreas],
Barth, E.[Erhardt],
Koch, R.[Reinhard],
ToF-sensors: New dimensions for realism and interactivity,
TOF-CV08(1-6).
IEEE DOI
0806
BibRef
Glastre, W.[Wilfried],
Jacquin, O.[Olivier],
Hugon, O.[Olivier],
de Chatellus, H.G.[Hugues Guillet],
Lacot, E.[Eric],
Synthetic aperture laser optical feedback imaging using a translational
scanning with galvanometric mirrors,
JOSA-A(29), No. 8, August 2012, pp. 1639-1647.
WWW Link.
1208
BibRef
Guilleme, P.[Pierre],
Lacot, E.[Eric],
Jacquin, O.[Olivier],
Glastre, W.[Wilfried],
Hugon, O.[Olivier],
de Chatellus, H.G.[Hugues Guillet],
Laser optical feedback imaging controlled by an electronic feedback
loop,
JOSA-A(30), No. 11, November 2013, pp. 2205-2215.
DOI Link
1311
Laser sensors, Interferometric imaging
BibRef
Ussyshkin, V.,
Theriault, L.,
Airborne Lidar:
Advances in Discrete Return Technology for 3D Vegetation Mapping,
RS(3), No. 3, March 2011, pp. 416-434.
DOI Link
1203
BibRef
Ussyshkin, V.[Valerie],
Enhanced discrete return technology for 3D vegetation mapping,
SPIE(Newsroom), June 13, 2011
DOI Link
1106
New airborne light detection and ranging sensors may bridge the niche
applications of discrete return and full waveform technologies.
Multiple discrete returns for forest mapping.
BibRef
Mao, X.,
Inoue, D.,
Kato, S.,
Kagami, M.,
Amplitude-Modulated Laser Radar for Range and Speed Measurement in Car
Applications,
ITS(13), No. 1, March 2012, pp. 408-413.
IEEE DOI
1203
BibRef
Mao, X.,
Inoue, D.,
Matsubara, H.,
Kagami, M.,
Demonstration of In-Car Doppler Laser Radar at 1.55 mu-m
for Range and Speed Measurement,
ITS(14), No. 2, 2013, pp. 599-607.
IEEE DOI
1307
Doppler effect, Laser radar, Amplitude modulation
BibRef
Adams, T.,
Beets, P.,
Parrish, C.,
Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform
Shape,
RS(4), No. 3, March 2012, pp. 682-702;.
DOI Link
1204
BibRef
Dal Mutto, C.[Carlo],
Zanuttigh, P.[Pietro],
Cortelazzo, G.M.[Guido M.],
Time-of-Flight Cameras and Microsoft Kinect™,
Springer2012, ISBN: 978-1-4614-3806-9
WWW Link.
Zhang, Z.Y.[Zheng-You],
Microsoft Kinect Sensor and Its Effect,
MultMedMag(19), No. 1, January-March 2012, pp. 4-10.
IEEE DOI
1202
Award, Best Department Article, 2015.
BibRef
Piatti, D.,
Rinaudo, F.,
SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras:
Tests and Comparison,
RS(4), No. 4, April 2012, pp. 1069-1089.
DOI Link
1202
BibRef
Osorio, M.F.,
Salazar, A.,
Prieto, F.,
Boulanger, P.,
Figueroa, P.,
Three-dimensional digitization of highly reflective and transparent
objects using multi-wavelength range sensing,
MVA(23), No. 4, July 2012, pp. 761-772.
WWW Link.
1206
BibRef
Schwartz, S.[Shimon],
Wong, A.[Alexander],
Clausi, D.A.[David A.],
Saliency-guided compressive sensing approach to efficient laser range
measurement,
JVCIR(24), No. 2, February 2013, pp. 160-170.
Elsevier DOI
1302
BibRef
Earlier:
Multi-Scale Saliency-Guided Compressive Sensing Approach to Efficient
Robotic Laser Range Measurements,
CRV12(1-8).
IEEE DOI
1207
Range measurement, Range data acquisition, Compressed sampling;
Compressive sensing, 3-D data reconstruction, Laser measurements;
Saliency, Sparse measurements model
BibRef
Duong, H.V.,
Lefsky, M.A.,
Ramond, T.,
Weimer, C.,
The Electronically Steerable Flash Lidar: A Full Waveform Scanning
System for Topographic and Ecosystem Structure Applications,
GeoRS(50), No. 11, November 2012, pp. 4809-4820.
IEEE DOI
1210
BibRef
Hansard, M.,
Lee, S.,
Choi, O.,
Horaud, R.,
Time-of-Flight Cameras:
Principles, Methods and Applications,
Springer2013.
ISBN: 978-1-4471-4657-5
Lapchuk, A.[Anatoliy],
Kryuchyn, A.[Andriy],
Petrov, V.[Vyacheslav],
Yurlov, V.[Victor],
Klymenko, V.[Volodymyr],
Full speckle suppression in laser projectors using two Barker code-type
diffractive optical elements,
JOSA-A(30), No. 1, January 2013, pp. 22-31.
WWW Link.
1211
BibRef
Lapchuk, A.,
Kryuchyn, A.,
Petrov, V.,
Shyhovets, O.V.,
Pashkevich, G.A.,
Bogdan, O.V.,
Kononov, A.,
Klymenko, A.,
Optical schemes for speckle suppression by Barker code diffractive
optical elements,
JOSA-A(30), No. 9, September 2013, pp. 1760-1767.
WWW Link.
1309
BibRef
Remondino, F.[Fabio],
Stoppa, D.[David], (Eds.)
TOF Range-Imaging Cameras,
Springer2013.
ISBN 978-3-642-27522-7.
Traïche, M.[Mohammed],
Kedadra, A.[Abdelkrim],
A dual lidar system for environmental studies,
SPIE(Newsroom), June 21, 2013
DOI Link
1308
A remote sensing system will help detect forest fires in northern
Algeria, and monitor sand aerosols from the Sahara and cement plants
in the Algiers metropolitan area.
BibRef
Wu, S.H.[Song-Hua],
Song, X.Q.[Xiao-Quan],
Liu, B.Y.[Bing-Yi],
Fraunhofer Lidar Prototype in the Green Spectral Region for
Atmospheric Boundary Layer Observations,
RS(5), No. 11, 2013, pp. 6079-6095.
DOI Link
1312
BibRef
Lange, D.,
Tiana-Alsina, J.,
Saeed, U.,
Tomas, S.,
Rocadenbosch, F.,
Atmospheric Boundary Layer Height Monitoring Using a Kalman Filter
and Backscatter Lidar Returns,
GeoRS(52), No. 8, August 2014, pp. 4717-4728.
IEEE DOI
1403
Aerosols
BibRef
Lange, D.,
Rocadenbosch, F.,
Tiana-Alsina, J.,
Frasier, S.,
Atmospheric Boundary Layer Height Estimation Using a Kalman Filter
and a Frequency-Modulated Continuous-Wave Radar,
GeoRS(53), No. 6, June 2015, pp. 3338-3349.
IEEE DOI
1503
atmospheric boundary layer
BibRef
Apartsin, A.,
Cooper, L.N.,
Intrator, N.,
Time-of-Flight Estimation in the Presence of Outliers Part I: Single
Echo Processing,
GeoRS(52), No. 6, June 2014, pp. 3382-3392.
IEEE DOI
1403
Bandwidth
BibRef
Apartsin, A.,
Cooper, L.N.,
Intrator, N.,
Time-of-Flight Estimation in the Presence of Outliers. Part II:
Multiple Echo Processing,
GeoRS(52), No. 7, July 2014, pp. 3843-3850.
IEEE DOI
1403
Correlation
BibRef
Guaitiao, C.O.,
Hafner, M.,
Sobarzo, S.K.,
Riepl, S.,
Torres, S.N.,
Pedreros, F.,
Arias, L.,
Two-Color Satellite Laser Ranging Measurements at 10 Hz and 100 Hz at
TIGO,
GeoRS(52), No. 8, August 2014, pp. 4707-4716.
IEEE DOI
1403
Crystals
BibRef
Langmann, B.,
Weihs, W.,
Hartmann, K.,
Loffeld, O.,
Development and Investigation of a Long-Range Time-of-Flight and
Color Imaging System,
Cyber(44), No. 8, August 2014, pp. 1372-1382.
IEEE DOI
1407
Cameras
BibRef
Conte, G.[Gianpaolo],
Rudol, P.[Piotr],
Doherty, P.[Patrick],
Evaluation of a Light-weight Lidar and a Photogrammetric System for
Unmanned Airborne Mapping Applications,
PFG(2014), No. 4, 2014, pp. 287-298.
DOI Link
1410
BibRef
Droeschel, D.[David],
Holz, D.[Dirk],
Behnke, S.[Sven],
Omnidirectional Perception for Lightweight MAVs using a Continuously
Rotating 3D Laser,
PFG(2014), No. 5, 2014, pp. 451-464.
DOI Link
1411
BibRef
Droeschel, D.,
Schreiber, M.,
Behnke, S.,
Omnidirectional Perception for Lightweight UAVS Using a Continuously
Rotating 3D Laser Scanner,
UAV-g13(107-112).
DOI Link
1311
BibRef
Castorena, J.[Juan],
Creusere, C.D.[Charles D.],
Sampling of Time-Resolved Full-Waveform LIDAR Signals at Sub-Nyquist
Rates,
GeoRS(53), No. 7, July 2015, pp. 3791-3802.
IEEE DOI
1503
BibRef
Earlier:
Random impulsive scan for lidar sampling,
ICIP12(365-368).
IEEE DOI
1302
Approximation methods
BibRef
Eixmann, R.,
Gerding, M.,
Hoffner, J.,
Kopp, M.,
Lidars With Narrow FOV for Daylight Measurements,
GeoRS(53), No. 8, August 2015, pp. 4548-4553.
IEEE DOI
1506
atmospheric optics
BibRef
Al-Temeemy, A.A.[Ali A.],
Spencer, J.W.[Joseph W.],
Invariant chromatic descriptor for LADAR data processing,
MVA(26), No. 5, July 2015, pp. 649-660.
WWW Link.
1506
BibRef
Wang, C.,
Tseng, Y.,
Wang, C.,
A Wavelet-Based Echo Detector for Waveform LiDAR Data,
GeoRS(54), No. 2, February 2016, pp. 757-769.
IEEE DOI
1601
Detectors
BibRef
Azadbakht, M.[Mohsen],
Fraser, C.S.[Clive S.],
Khoshelham, K.[Kourosh],
A Sparsity-Based Regularization Approach for Deconvolution of
Full-Waveform Airborne Lidar Data,
RS(8), No. 8, 2016, pp. 648.
DOI Link
1609
BibRef
Bhandari, A.,
Raskar, R.,
Signal Processing for Time-of-Flight Imaging Sensors:
An introduction to inverse problems in computational 3-D imaging,
SPMag(33), No. 5, September 2016, pp. 45-58.
IEEE DOI
1610
frequency-domain analysis
BibRef
Gong, W.L.[Wen-Lin],
Yu, H.[Hong],
Zhao, C.Q.[Cheng-Qiang],
Bo, Z.W.[Zun-Wang],
Chen, M.L.[Ming-Liang],
Xu, W.D.[Wen-Dong],
Improving the Imaging Quality of Ghost Imaging Lidar via Sparsity
Constraint by Time-Resolved Technique,
RS(8), No. 12, 2016, pp. 991.
DOI Link
1612
obtain both the range information and spatial distribution of a remote
target with the use of the measurements below the Nyquist limit
BibRef
Church, P.[Philip],
Matheson, J.[Justin],
Roy, G.[Gilles],
Steerable LiDAR platform based on a 3D laser scanner using prisms,
SPIE(Newsroom), January 19, 2017
DOI Link
1703
Optical components move a high-resolution laser-scan pattern contained
in a small field of view across a larger area, eliminating the need
for heavy steering mechanisms on platforms such as helicopters.
BibRef
Adam, A.[Amit],
Dann, C.[Christoph],
Yair, O.[Omer],
Mazor, S.[Shai],
Nowozin, S.[Sebastian],
Bayesian Time-of-Flight for Realtime Shape, Illumination and Albedo,
PAMI(39), No. 5, May 2017, pp. 851-864.
IEEE DOI
1704
Bayes methods.
BibRef
Schober, M.,
Adam, A.[Amit],
Yair, O.[Omer],
Mazor, S.[Shai],
Nowozin, S.[Sebastian],
Dynamic Time-of-Flight,
CVPR17(170-179)
IEEE DOI
1711
Bayes methods, Cameras, Computational modeling,
Hidden Markov models, Mathematical model, Robustness
BibRef
Shen, X.[Xiang],
Li, Q.Q.[Qing-Quan],
Wu, G.F.[Guo-Feng],
Zhu, J.S.[Jia-Song],
Decomposition of LiDAR waveforms by B-spline-based modeling,
PandRS(128), No. 1, 2017, pp. 182-191.
Elsevier DOI
1706
Full waveform
BibRef
Zhou, T.[Tan],
Popescu, S.C.[Sorin C.],
Krause, K.[Keith],
Sheridan, R.D.[Ryan D.],
Putman, E.[Eric],
Gold: A novel deconvolution algorithm with optimization for waveform
LiDAR processing,
PandRS(129), No. 1, 2017, pp. 131-150.
Elsevier DOI
1706
Waveform LiDAR
BibRef
Mountrakis, G.[Giorgos],
Li, Y.G.[Yu-Guang],
A linearly approximated iterative Gaussian decomposition method for
waveform LiDAR processing,
PandRS(129), No. 1, 2017, pp. 200-211.
Elsevier DOI
1706
Full-waveform
BibRef
Eldada, L.[Louay],
LiDAR for Autonomous Vehicles: The future of 3D Sensing and Perception,
SPIE(Newsroom), May 2, 2017
DOI Link
1706
Survey of techniques.
BibRef
Riquelme, A.J.[Adrián J.],
Ferrer, B.[Belén],
Mas, D.[David],
Use of High-Quality and Common Commercial Mirrors for Scanning
Close-Range Surfaces Using 3D Laser Scanners: A Laboratory Experiment,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Wang, C.L.[Cheng-Long],
Mei, X.D.[Xiao-Dong],
Pan, L.[Long],
Wang, P.W.[Peng-Wei],
Li, W.[Wang],
Gao, X.[Xin],
Bo, Z.W.[Zun-Wang],
Chen, M.L.[Ming-Liang],
Gong, W.L.[Wen-Lin],
Han, S.S.[Shen-Sheng],
Airborne Near Infrared Three-Dimensional Ghost Imaging LiDAR via
Sparsity Constraint,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhou, T.[Tan],
Popescu, S.[Sorin],
Malambo, L.[Lonesome],
Zhao, K.G.[Kai-Guang],
Krause, K.[Keith],
From LiDAR Waveforms to Hyper Point Clouds:
A Novel Data Product to Characterize Vegetation Structure,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Song, S.[Shalei],
Wang, B.[Binhui],
Gong, W.[Wei],
Chen, Z.W.[Zhen-Wei],
Lin, X.[Xin],
Sun, J.[Jia],
Shi, S.[Shuo],
A new waveform decomposition method for multispectral LiDAR,
PandRS(149), 2019, pp. 40-49.
Elsevier DOI
1903
Full waveform, Multispectral LiDAR, Gaussian decomposition,
Parameters extraction
BibRef
Keyser, C.K.,
Martin, R.K.,
Nguyen, P.K.,
Adams, A.M.,
Single-Pulse Mueller Matrix LiDAR Polarimeter:
Modeling and Demonstration,
GeoRS(57), No. 6, June 2019, pp. 3296-3307.
IEEE DOI
1906
Laser radar, Receivers, Detectors, Measurement by laser beam,
Electrooptic modulators, Optical transmitters, Laser beams,
target detection
BibRef
Chen, B.[Bowen],
Shi, S.[Shuo],
Gong, W.[Wei],
Sun, J.[Jia],
Chen, B.[Biwu],
Du, L.[Lin],
Yang, J.[Jian],
Guo, K.[Kuanghui],
Zhao, X.[Xingmin],
True-Color Three-Dimensional Imaging and Target Classification BASED
on Hyperspectral LiDAR,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Greeley, A.P.,
Neumann, T.A.,
Kurtz, N.T.,
Markus, T.,
Martino, A.J.,
Characterizing the System Impulse Response Function From
Photon-Counting LiDAR Data,
GeoRS(57), No. 9, September 2019, pp. 6542-6551.
IEEE DOI
1909
Photonics, Measurement by laser beam, Shape, Histograms,
Surface emitting lasers, Rough surfaces, Surface roughness,
photoncounting
BibRef
Roberts, K.C.[Kevin C.],
Lindsay, J.B.[John B.],
Berg, A.A.[Aaron A.],
An Analysis of Ground-Point Classifiers for Terrestrial LiDAR,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Nan, Y.M.[Ya-Ming],
Feng, Z.H.[Zhi-Hui],
Liu, E.[Enhai],
Li, B.C.[Bin-Cheng],
Iterative Pointing Angle Calibration Method for the Spaceborne
Photon-Counting Laser Altimeter Based on Small-Range Terrain Matching,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhou, T.[Tan],
Popescu, S.[Sorin],
waveformlidar: An R Package for Waveform LiDAR Processing and
Analysis,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
Code, LIDAR Processing.
BibRef
Alsolami, I.,
Heidrich, W.,
Imaging With SPADs and DMDs: Seeing Through Diffraction-Photons,
IP(29), No. , 2020, pp. 1440-1449.
IEEE DOI
1911
Photonics, Lighting, Imaging, Mirrors, Spatial resolution, Logic gates,
Time-of-flight, SPAD, DMD, computational imaging
BibRef
Hofer, L.R.,
Jones, L.W.,
Goedert, J.L.,
Dragone, R.V.,
Hermite-Gaussian mode detection via convolution neural networks,
JOSA-A(36), No. 6, June 2019, pp. 936-943.
DOI Link
1912
Diode lasers, Free space optics, Laser beams, Optical networks,
Stochastic gradient descent, Tunable diode lasers
BibRef
Alsadik, B.[Bashar],
Ideal Angular Orientation of Selected 64-Channel Multi Beam Lidars
for Mobile Mapping Systems,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Noraky, J.,
Sze, V.,
Low Power Depth Estimation of Rigid Objects for Time-of-Flight
Imaging,
CirSysVideo(30), No. 6, June 2020, pp. 1524-1534.
IEEE DOI
2006
BibRef
Earlier:
Depth Estimation of Non-Rigid Objects for Time-Of-Flight Imaging,
ICIP18(2925-2929)
IEEE DOI
1809
BibRef
Earlier:
Low power depth estimation for time-of-flight imaging,
ICIP17(2114-2118)
IEEE DOI
1803
Cameras, Optical imaging, Optical sensors, Robot sensing systems,
Estimation, Time-of-flight camera,
RGB-D.
Estimation, Robot sensing systems,
Approximation algorithms, 3D motion estimation.
augmented reality, image colour analysis, image sensors,
low-power electronics, robots, battery life,
time-of-flight camera
BibRef
Noraky, J.,
Algorithms and Systems for Low Power Time-of-Flight Imaging,
ICIP19(3023-3024)
IEEE DOI
1910
BibRef
Chen, Y.,
Ren, J.,
Cheng, X.,
Qian, K.,
Wang, L.,
Gu, J.,
Very Power Efficient Neural Time-of-Flight,
WACV20(2246-2255)
IEEE DOI
2006
Cameras, Lighting, Pipelines, Noise measurement,
Robot sensing systems, Signal to noise ratio
BibRef
Sterenczak, K.[Krzysztof],
Laurin, G.V.[Gaia Vaglio],
Chirici, G.[Gherardo],
Coomes, D.A.[David A.],
Dalponte, M.[Michele],
Latifi, H.[Hooman],
Puletti, N.[Nicola],
Global Airborne Laser Scanning Data Providers Database (GlobALS): A
New Tool for Monitoring Ecosystems and Biodiversity,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Li, Y.,
Ibanez-Guzman, J.,
Lidar for Autonomous Driving: The Principles, Challenges, and Trends
for Automotive Lidar and Perception Systems,
SPMag(37), No. 4, July 2020, pp. 50-61.
IEEE DOI
2007
Laser radar, Measurement by laser beam,
Vertical cavity surface emitting lasers, Laser beams, Autonomous vehicles
BibRef
Rueda-Chacon, H.,
Florez-Ospina, J.F.,
Lau, D.L.,
Arce, G.R.,
Snapshot Compressive ToF+Spectral Imaging via Optimized Color-Coded
Apertures,
PAMI(42), No. 10, October 2020, pp. 2346-2360.
IEEE DOI
2009
Apertures, Cameras, Lenses, Image coding,
Optical imaging, Compressive spectral imaging,
MS+D
BibRef
Nguyen, X.T.,
Kim, H.,
Lee, H.J.,
An Efficient Sampling Algorithm With a K-NN Expanding Operator for
Depth Data Acquisition in a LiDAR System,
CirSysVideo(30), No. 12, December 2020, pp. 4700-4714.
IEEE DOI
2012
Compressive and non-uniform sampling, compressive sensing,
depth data acquisition, light detection and ranging (LiDAR),
sparse representation
BibRef
Yan, S.Y.[Shi-Yu],
Yang, G.H.[Guo-Hui],
Li, Q.Y.[Qing-Yan],
Zhang, B.[Bin],
Wang, Y.[Yu],
Zhang, Y.[Yu],
Wang, C.H.[Chun-Hui],
Distance-Intensity Image Strategy for Pulsed LiDAR Based on the
Double-Scale Intensity-Weighted Centroid Algorithm,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Tian, B.[Bokun],
Zhang, X.L.[Xiao-Ling],
Li, L.[Liang],
Pu, L.[Ling],
Pu, L.M.[Li-Ming],
Shi, J.[Jun],
Wei, S.J.[Shun-Jun],
Fast Bayesian Compressed Sensing Algorithm via Relevance Vector
Machine for LASAR 3D Imaging,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Kim, G.Z.[Gun-Zung],
Ashraf, I.[Imran],
Eom, J.[Jeongsook],
Park, Y.[Yongwan],
Concurrent Firing Light Detection and Ranging System for Autonomous
Vehicles,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
Lidar with 128 channels.
BibRef
Li, F.Q.[Feng-Qiang],
Willomitzer, F.[Florian],
Balaji, M.M.[Muralidhar Madabhushi],
Rangarajan, P.[Prasanna],
Cossairt, O.[Oliver],
Exploiting Wavelength Diversity for High Resolution Time-of-Flight 3D
Imaging,
PAMI(43), No. 7, July 2021, pp. 2193-2205.
IEEE DOI
2106
Sensors, Optical interferometry,
Image resolution, Frequency measurement, Wavelength measurement,
optical interferometry
BibRef
Zhao, Y.Y.[Yong-Yi],
Raghuram, A.[Ankit],
Kim, H.K.[Hyun K.],
Hielscher, A.H.[Andreas H.],
Robinson, J.T.[Jacob T.],
Veeraraghavan, A.[Ashok],
High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse
Optical Tomography,
PAMI(43), No. 7, July 2021, pp. 2206-2219.
IEEE DOI
2106
US Department of Transportation, Imaging, Photonics,
Spatial resolution, Scattering, Detectors, Optical imaging,
fluorescence imaging
BibRef
Cremons, D.R.[Daniel R.],
Sun, X.L.[Xiao-Li],
Abshire, J.B.[James B.],
Mazarico, E.[Erwan],
Small PN-Code Lidar for Asteroid and Comet Missions: Receiver
Processing and Performance Simulations,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chen, P.[Peng],
Jamet, C.[Cédric],
Mao, Z.H.[Zhi-Hua],
Pan, D.[Delu],
OLE: A Novel Oceanic Lidar Emulator,
GeoRS(59), No. 11, November 2021, pp. 9730-9744.
IEEE DOI
2111
Laser radar, Scattering, Photonics, Receivers, Mathematical model,
Analytical models, Indexes, Light detection and ranging (lidar),
stratified water
BibRef
Liu, C.[Chang],
Xu, L.J.[Li-Jun],
Si, L.[Lin],
Li, X.L.[Xiao-Lu],
Li, D.[Duan],
Huang, J.B.[Jian-Bin],
He, Y.T.[Yun-Tao],
A Robust Deconvolution Method of Airborne LiDAR Waveforms for Dense
Point Clouds Generation in Forest,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Deconvolution, Laser radar, Forestry,
Lasers, Vegetation, Splines (mathematics),
full waveform light detection and ranging (LiDAR)
BibRef
Qian, L.Y.[Li-Yong],
Wu, D.C.[De-Cheng],
Liu, D.[Dong],
Song, S.L.[Sha-Lei],
Shi, S.[Shuo],
Gong, W.[Wei],
Wang, L.[Le],
Parameter Simulation and Design of an Airborne Hyperspectral Imaging
LiDAR System,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yan, S.Y.[Shi-Yu],
Yang, G.H.[Guo-Hui],
Li, Q.Y.[Qing-Yan],
Wang, Y.[Yue],
Wang, C.H.[Chun-Hui],
Research of Distance-Intensity Imaging Algorithm for Pulsed LiDAR
Based on Pulse Width Correction,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Kim, G.[Gunzung],
Eom, J.[Jeongsook],
Park, Y.[Yongwan],
Alien Pulse Rejection in Concurrent Firing LIDAR,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Vacek, P.[Patrik],
Jašek, O.[Otakar],
Zimmermann, K.[Karel],
Svoboda, T.[Tomáš],
Learning to Predict Lidar Intensities,
ITS(23), No. 4, April 2022, pp. 3556-3564.
IEEE DOI
2204
Simulate LiDAR data.
Laser radar, Cameras, Sensors, Games, Computational modeling,
Automobiles, Robotics, simulation, sensor development,
intelligent transportation systems
BibRef
Zhang, Z.H.[Zhen-Hua],
Chen, P.[Peng],
Mao, Z.H.[Zhi-Hua],
SOLS: An Open-Source Spaceborne Oceanic Lidar Simulator,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hansen, J.N.[Johannes N.],
Hancock, S.[Steven],
Prade, L.[Ludwig],
Bonner, G.M.[Gerald M.],
Chen, H.[Haochang],
Davenport, I.[Ian],
Jones, B.E.[Brynmor E.],
Purslow, M.[Matthew],
Assessing Novel Lidar Modalities for Maximizing Coverage of a
Spaceborne System through the Use of Diode Lasers,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Xue, J.[Jiyu],
Cao, Y.[Yunhua],
Qu, T.[Tan],
Wu, Z.[Zhensen],
Li, Y.H.[Yan-Hui],
Zhang, G.[Geng],
Yang, K.[Kai],
Inverse Synthetic Aperture LiDAR Imaging of Rough Targets under Small
Rotation Angles,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Tan, C.S.[Chang-Sheng],
Kong, W.[Wei],
Huang, G.[Genghua],
Hou, J.[Jia],
Jia, S.L.[Shao-Lei],
Chen, T.[Tao],
Shu, R.[Rong],
Design and Demonstration of a Novel Long-Range Photon-Counting 3D
Imaging LiDAR with 32X32 Transceivers,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Yan, Z.Q.[Zhi-Qiang],
Wang, H.Y.[Hong-Yuan],
Liu, X.[Xiang],
Ning, Q.H.[Qian-Hao],
Lu, Y.[Yinxi],
Physics-Based TOF Imaging Simulation for Space Targets Based on
Improved Path Tracing,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ning, Q.[Qianhao],
Wang, H.Y.[Hong-Yuan],
Yan, Z.Q.[Zhi-Qiang],
Liu, X.[Xiang],
Lu, Y.[Yinxi],
Space-Based THz Radar Fly-Around Imaging Simulation for Space Targets
Based on Improved Path Tracing,
RS(15), No. 16, 2023, pp. 4010.
DOI Link
2309
BibRef
Roriz, R.[Ricardo],
Cabral, J.[Jorge],
Gomes, T.[Tiago],
Automotive LiDAR Technology: A Survey,
ITS(23), No. 7, July 2022, pp. 6282-6297.
IEEE DOI
2207
Laser radar, Sensors, Automotive engineering, Autonomous vehicles,
Automobiles, Wavelength measurement, Autonomous vehicles, LiDAR, ToF
BibRef
Li, P.[Peng],
Zhang, Y.T.[Ya-Ting],
Yao, J.Q.[Jian-Quan],
Rapid Linear Frequency Swept Frequency-Modulated Continuous Wave
Laser Source Using Iterative Pre-Distortion Algorithm,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Singer, N.[Nina],
Asari, V.K.[Vijayan K.],
View-Agnostic Point Cloud Generation for Occlusion Reduction in
Aerial Lidar,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Guo, R.[Rui],
Jiang, Z.[Zheyi],
Jin, Z.H.[Zhi-Han],
Zhang, Z.[Zhao],
Zhang, X.Y.[Xin-Yuan],
Guo, L.[Liang],
Hu, Y.H.[Yi-Hua],
Reflective Tomography Lidar Image Reconstruction for Long Distance
Non-Cooperative Target,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Jin, L.Q.[Li-Qin],
Mann, J.[Jakob],
Sjöholm, M.[Mikael],
Investigating Suppression of Cloud Return with a Novel Optical
Configuration of a Doppler Lidar,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Qi, B.L.[Bao-Ling],
Wang, L.J.[Li-Jun],
Guo, D.B.[Dong-Bin],
Wang, C.H.[Chun-Hui],
Energy-Barycenter Based Waveform Centroid Algorithm for Pulse Lidar
Ranging System,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shu, D.W.[Dong Wook],
Park, S.W.[Sung Woo],
Kwon, J.[Junseok],
Wasserstein distributional harvesting for highly dense 3D point
clouds,
PR(132), 2022, pp. 108978.
Elsevier DOI
2209
Sampled 3D points from a surface.
3D point cloud harvesting, Progressive sampling,
Stochastic instance normalization
BibRef
Xia, Y.H.[Yu-Hao],
Xu, S.L.[Shi-Long],
Fang, J.J.[Jia-Jie],
Hou, A.[Ahui],
Chen, Y.L.[You-Long],
Zhang, X.Y.[Xin-Yuan],
Hu, Y.H.[Yi-Hua],
A Novel Waveform Decomposition and Spectral Extraction Method for
101-Channel Hyperspectral LiDAR,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Bartoccioni, F.[Florent],
Zablocki, É.[Éloi],
Pérez, P.[Patrick],
Cord, M.[Matthieu],
Alahari, K.[Karteek],
LiDARTouch: Monocular metric depth estimation with a few-beam LiDAR,
CVIU(227), 2023, pp. 103601.
Elsevier DOI
2301
Depth estimation, Self-supervised, Minimal LiDAR, 3D scene understanding
BibRef
Yan, L.[Li],
Dai, J.C.[Ji-Cheng],
Zhao, Y.H.[Ying-Hao],
Chen, C.J.[Chang-Jun],
Real-Time 3D Mapping in Complex Environments Using a Spinning
Actuated LiDAR System,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Qiao, X.[Xin],
Ge, C.Y.[Chen-Yang],
Deng, P.[Pengchao],
Wei, H.[Hao],
Poggi, M.[Matteo],
Mattoccia, S.[Stefano],
Depth Restoration in Under-Display Time-of-Flight Imaging,
PAMI(45), No. 5, May 2023, pp. 5668-5683.
IEEE DOI
2304
Cameras, Image restoration, Noise reduction, Task analysis,
Noise measurement, Imaging, Sensors, Time-of-flight, CNN
BibRef
Wang, S.Y.[Shu-Yi],
Mao, C.Y.[Cheng-Yang],
Ma, Y.[Yang],
Liu, J.Z.[Jin-Zhou],
Yu, B.[Bin],
Examining the feasibility of current spiral curve design controls for
LiDAR-based automated vehicles,
IET-ITS(17), No. 5, 2023, pp. 848-866.
DOI Link
2305
automated vehicle, available sight distance, LiDAR,
spiral curve, virtual simulation
BibRef
Agishev, R.[Ravil],
Wang, Z.Z.[Zhen-Zhu],
Liu, D.[Dong],
Designing CW Range-Resolved Environmental S-Lidars for Various Range
Scales: From a Tabletop Test Bench to a 10 km Path,
RS(15), No. 13, 2023, pp. 3426.
DOI Link
2307
BibRef
Chen, Y.Q.[Yong-Qiang],
Guo, S.[Shouchuan],
He, Y.[Yan],
Luo, Y.[Yuan],
Chen, W.[Weibiao],
Hu, S.[Shanjiang],
Huang, Y.F.[Yi-Fan],
Hou, C.H.[Chun-He],
Su, S.[Sheng],
Simulation and Design of an Underwater Lidar System Using Non-Coaxial
Optics and Multiple Detection Channels,
RS(15), No. 14, 2023, pp. 3618.
DOI Link
2307
BibRef
Wu, K.L.[Kai-Lan],
Wu, J.G.[Jin-Gui],
Peng, B.[Bo],
Jia, J.J.[Jian-Jun],
Luo, H.G.[Hong-Gang],
Wang, Y.[Yun],
Zheng, Y.C.[Yong-Chao],
Yang, Y.C.[Yi-Chao],
Lin, X.L.[Xu-Ling],
Lau, Y.K.[Yun-Kau],
Tilt-to-Length Coupling Analysis of an Off-Axis Optical Bench Design
for NGGM,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
Sensor design for GRACE follor-on mission.
BibRef
Luo, Y.[Yaotao],
Xie, D.H.[Dong-Hui],
Qi, J.B.[Jian-Bo],
Zhou, K.[Kun],
Yan, G.J.[Guang-Jian],
Mu, X.[Xihan],
LESS LiDAR: A Full-Waveform and Discrete-Return Multispectral LiDAR
Simulator Based on Ray Tracing Algorithm,
RS(15), No. 18, 2023, pp. 4529.
DOI Link
2310
BibRef
Du, L.F.[Li-Fang],
Zheng, H.R.[Hao-Ran],
Xiao, C.L.[Chun-Lei],
Cheng, X.[Xuewu],
Wu, F.[Fang],
Jiao, J.[Jing],
Xun, Y.C.[Yu-Chang],
Chen, Z.S.[Zhi-Shan],
Wang, J.Q.[Ji-Qin],
Yang, G.[Guotao],
The All-Solid-State Narrowband Lidar Developed by Optical Parametric
Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection
of the Ca and Ca+ Layers,
RS(15), No. 18, 2023, pp. 4566.
DOI Link
2310
BibRef
Watts, M.R.[Michael R.],
Poulton, C.[Christopher],
Byrd, M.[Matthew],
Smolka, G.[Greg],
Lidar on a Chip Enters the Fast Lane: Sensors for Self-Driving Cars
and Robots will be Tiny, Reliable, and Affordable,
Spectrum(60), No. 9, September 2023, pp. 38-43.
IEEE DOI
2310
BibRef
Liao, Y.P.[Yu-Peng],
Shangguan, M.J.[Ming-Jia],
Yang, Z.F.[Zhi-Feng],
Lin, Z.[Zaifa],
Wang, Y.L.[Yuan-Lun],
Li, S.[Sihui],
GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater
Lidar,
RS(15), No. 21, 2023, pp. 5245.
DOI Link
2311
BibRef
Lee, J.[Jongho],
Gupta, M.[Mohit],
Mitigating AC and DC Interference in Multi-ToF-Camera Environments,
PAMI(45), No. 12, December 2023, pp. 15005-15017.
IEEE DOI
2311
BibRef
Wei, J.F.[Jun-Feng],
Liu, L.[Linmei],
Cheng, X.[Xuewu],
Fan, Y.[Yi],
Zhan, W.Q.[Wei-Qiang],
Du, L.F.[Li-Fang],
Xiong, W.[Wei],
Lin, Z.X.[Zhao-Xiang],
Yang, G.[Guotao],
Automation in Middle- and Upper-Atmosphere LIDAR Operations:
A Maximum Rayleigh Altitude Prediction System Based on Night Sky Imagery,
RS(16), No. 3, 2024, pp. 536.
DOI Link
2402
BibRef
Sun, H.B.[Hai-Bin],
Wang, Y.C.[Yi-Cheng],
Sun, Z.P.[Zhi-Pei],
Wang, S.W.[Shao-Wei],
Sun, S.L.[Sheng-Li],
Jia, J.X.[Jian-Xin],
Jiang, C.H.[Chang-Hui],
Hu, P.[Peilun],
Yang, H.[Haima],
Yang, X.[Xing],
Karjalnen, M.[Mika],
Hyyppä, J.[Juha],
Chen, Y.W.[Yu-Wei],
Miniaturizing Hyperspectral Lidar System Employing Integrated Optical
Filters,
RS(16), No. 9, 2024, pp. 1642.
DOI Link
2405
BibRef
Xue, M.[Min],
Xing, M.D.[Meng-Dao],
Gao, Y.X.[Yue-Xin],
Fu, J.X.[Ji-Xiang],
Wu, Z.X.[Zhi-Xin],
Tang, W.[Wangshuo],
High Resolution Ranging with Small Sample Number under Low SNR
Utilizing RIP-OMCS Strategy and AHRC l1 Minimization for Laser Radar,
RS(16), No. 9, 2024, pp. 1647.
DOI Link
2405
BibRef
Zha, B.T.[Bing-Ting],
Xu, G.B.[Guang-Bo],
Chen, Z.[Zhuo],
Tan, Y.[Yayun],
Qin, J.X.[Jian-Xin],
Zhang, H.[He],
Design of Scanning Units for the Underwater Circumferential-Scanning
LiDAR Based on Pyramidal-Shaped Reflectors and a Rapid Detection
Method for Target Orientation,
RS(16), No. 12, 2024, pp. 2131.
DOI Link
2406
BibRef
Goudreault, F.[Félix],
Scheuble, D.[Dominik],
Bijelic, M.[Mario],
Robidoux, N.[Nicolas],
Heide, F.[Felix],
LiDAR-in-the-Loop Hyperparameter Optimization,
CVPR23(13404-13414)
IEEE DOI
2309
BibRef
Jeon, D.S.[Daniel S.],
Meuleman, A.[Andréas],
Baek, S.H.[Seung-Hwan],
Kim, M.H.[Min H.],
Polarimetric iToF: Measuring High-Fidelity Depth Through Scattering
Media,
CVPR23(12353-12362)
IEEE DOI
2309
BibRef
Yu, H.X.[Hong-Xing],
Agarwala, S.[Samir],
Herrmann, C.[Charles],
Szeliski, R.[Richard],
Snavely, N.[Noah],
Wu, J.J.[Jia-Jun],
Sun, D.Q.[De-Qing],
Accidental Light Probes,
CVPR23(12521-12530)
IEEE DOI
2309
BibRef
Kotwal, A.[Alankar],
Levin, A.[Anat],
Gkioulekas, I.[Ioannis],
Passive Micron-Scale Time-of-Flight with Sunlight Interferometry,
CVPR23(4139-4149)
IEEE DOI
2309
BibRef
Pediredla, A.[Adithya],
Narasimhan, S.G.[Srinivasa G.],
Chamanzar, M.[Maysamreza],
Gkioulekas, I.[Ioannis],
Megahertz Light Steering Without Moving Parts,
CVPR23(1-12)
IEEE DOI
2309
BibRef
Li, J.[Jiaqu],
Yue, T.[Tao],
Zhao, S.[Sijie],
Hu, X.M.[Xue-Mei],
Fisher Information Guidance for Learned Time-of-Flight Imaging,
CVPR22(16313-16322)
IEEE DOI
2210
Training, Photography, Neural networks, Imaging, Prototypes, Encoding,
Pattern recognition, Computational photography, Low-level vision
BibRef
Baek, S.H.[Seung-Hwan],
Heide, F.[Felix],
All-photon Polarimetric Time-of-Flight Imaging,
CVPR22(17855-17864)
IEEE DOI
2210
Geometry, Surface reconstruction, Imaging, Modulation, Reflection,
Sensor systems, Scattering parameters, Computational photography,
Physics-based vision and shape-from-X
BibRef
Spreafico, A.,
Chiabrando, F.,
Losè, L.T.[L. Teppati],
Tonolo, F.G.[F. Giulio],
The iPad Pro Built-in Lidar Sensor:
3D Rapid Mapping Tests and Quality Assessment,
ISPRS21(B1-2021: 63-69).
DOI Link
2201
BibRef
Sasaya, T.[Tenta],
Watanabe, W.[Wataru],
Ono, T.[Toshiyuki],
Depth Correction for Time-Of-Flight Camera Using Depth Distortion
Dependency on Pulse Width of Irradiated Light,
ICIP21(329-333)
IEEE DOI
2201
Radiation effects, Systematics, Pulse measurements,
Image color analysis, Measurement uncertainty, Training data, neural network
BibRef
Huang, Y.K.[Yu-Kai],
Liu, Y.C.[Yueh-Cheng],
Wu, T.H.[Tsung-Han],
Su, H.T.[Hung-Ting],
Chang, Y.C.[Yu-Cheng],
Tsou, T.L.[Tsung-Lin],
Wang, Y.A.[Yu-An],
Hsu, W.H.[Winston H.],
S3: Learnable Sparse Signal Superdensity for Guided Depth Estimation,
CVPR21(16701-16711)
IEEE DOI
2111
Laser radar, Costs, Estimation, Robustness, Pattern recognition
BibRef
Chugunov, I.[Ilya],
Baek, S.H.[Seung-Hwan],
Fu, Q.[Qiang],
Heidrich, W.[Wolfgang],
Heide, F.[Felix],
Mask-ToF: Learning Microlens Masks for Flying Pixel Correction in
Time-of-Flight Imaging,
CVPR21(9112-9122)
IEEE DOI
2111
Optical imaging, Cameras, Throughput,
Adaptive optics, Optical sensors, Relays
BibRef
Pittaluga, F.,
Tasneem, Z.,
Folden, J.,
Tilmon, B.,
Chakrabarti, A.,
Koppal, S.J.,
Towards a MEMS-based Adaptive LIDAR,
3DV20(1216-1226)
IEEE DOI
2102
Laser radar, Mirrors, Receivers, Micromechanical devices, Optics,
Laser beams, Robot sensing systems, LIDAR, Adaptive, Deep Learning
BibRef
Jameela, M.,
Chen, L.,
Sit, A.,
Yoo, J.,
Verheggen, C.,
Sohn, G.,
Simulation-based Data Augmentation Using Physical Priors for Noise
Filtering Deep Neural Network,
ISPRS20(B2:247-254).
DOI Link
2012
Noise filtering for improved LiDAR system.
BibRef
Wang, B.,
Song, S.,
Gong, W.,
Shi, S.,
Chen, B.,
Yang, J.,
Du, L.,
Sun, J.,
High-precision Ranging Based on Multispectral Full-waveform Lidar,
ISPRS20(B3:547-551).
DOI Link
2012
BibRef
Guiotte, F.,
Rao, M.B.,
Lefèvre, S.,
Tang, P.,
Corpetti, T.,
Relation Network for Full-waveforms Lidar Classification,
ISPRS20(B3:515-520).
DOI Link
2012
BibRef
Vallet, J.,
Gressin, A.,
Clausen, P.,
Skaloud, J.,
Airborne and Mobile Lidar, Which Sensors for Which Application?,
ISPRS20(B1:397-405).
DOI Link
2012
BibRef
Maebashi, N.,
Kato, T.,
Abe, R.,
Wang, Y.,
Tachi, T.,
Kishimoto, N.,
Development of New Airborne Laser Scanning Method By Meandering Flight,
ISPRS20(B1:51-56).
DOI Link
2012
BibRef
Manivasagam, S.,
Wang, S.,
Wong, K.,
Zeng, W.,
Sazanovich, M.,
Tan, S.,
Yang, B.,
Ma, W.,
Urtasun, R.,
LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World,
CVPR20(11164-11173)
IEEE DOI
2008
Robot sensing systems, Laser radar,
Solid modeling, Data models, Physics, Vehicle dynamics
BibRef
Yang, Z.,
Chai, Y.,
Anguelov, D.,
Zhou, Y.,
Sun, P.,
Erhan, D.,
Rafferty, S.,
Kretzschmar, H.,
SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving,
CVPR20(11115-11124)
IEEE DOI
2008
Image reconstruction, Cameras,
Laser radar, Autonomous vehicles, Training, Rendering (computer graphics)
BibRef
Alqassab, A.N.,
Streeter, L.,
Cree, M.J.,
Lickfold, C.A.,
Farrow, V.,
Lim, S.H.,
Adaptation of Bidirectional Kalman Filter to Multi-Frequency
Time-of-Flight Range Imaging,
IVCNZ19(1-6)
IEEE DOI
2004
cameras, discrete Fourier transforms, image capture, image sensors,
Kalman filters, range measurements, bidirectional Kalman filter,
multi-frequency
BibRef
Lickfold, C.A.,
Streeter, L.,
Cree, M.J.,
Scott, J.B.,
Frequency Based Radial Velocity Estimation in Time-of-Flight Range
Imaging,
IVCNZ19(1-6)
IEEE DOI
2004
Time-of-flight, range imaging, phase stepping, frequency stepping,
radial motion, axial motion, velocity imaging, velocity measurement
BibRef
Gruber, T.,
Julca-Aguilar, F.,
Bijelic, M.,
Heide, F.,
Gated2Depth: Real-Time Dense Lidar From Gated Images,
ICCV19(1506-1516)
IEEE DOI
2004
Code, LIDAR.
WWW Link. cameras, image resolution, image sampling, image sensors,
optical radar, dense depth camera, learning depth, gated images,
Real-time systems
BibRef
Gutierrez-Barragan, F.[Felipe],
Reza, S.A.[Syed Azer],
Velten, A.[Andreas],
Gupta, M.[Mohit],
Practical Coding Function Design for Time-Of-Flight Imaging,
CVPR19(1566-1574).
IEEE DOI
2002
BibRef
Teri, S.S.,
Musliman, I.A.,
Machine Learning in Big Lidar Data: a Review,
GGT19(641-644).
DOI Link
1912
BibRef
Fouladinejad, F.,
Matkan, A.,
Hajeb, M.,
Brakhasi, F.,
History and Applications of Space-borne Lidars,
SMPR19(407-414).
DOI Link
1912
BibRef
Salido-Monzú, D.,
Wieser, A.,
An Instrumental Basis for Multispectral Lidar With Spectrally-resolved
Distance Measurements,
Laser19(1121-1126).
DOI Link
1912
BibRef
Bremer, M.,
Wichmann, V.,
Rutzinger, M.,
Zieher, T.,
Pfeiffer, J.,
Simulating Unmanned-aerial-vehicle Based Laser Scanning Data For
Efficient Mission Planning in Complex Terrain,
Laser19(943-950).
DOI Link
1912
BibRef
Ortiz Arteaga, A.,
Scott, D.,
Boehm, J.,
Initial Investigation of a Low-cost Automotive Lidar System,
LC3D19(233-240).
DOI Link
1912
BibRef
Yang, J.Y.[Jing-Yu],
Xu, W.Q.[Wen-Qiang],
Ye, X.C.[Xin-Chen],
Frossard, P.[Pascal],
Li, K.[Kun],
Graph Based Non-Uniform Sampling and Reconstruction of Depth Maps,
ICIP19(2324-2328)
IEEE DOI
1910
Depth reconstruction, graph theory, nonuniform sampling
BibRef
Noraky, J.,
Mathy, C.,
Cheng, A.,
Sze, V.,
Low Power Adaptive Time-of-Flight Imaging for Multiple Rigid Objects,
ICIP19(3517-3521)
IEEE DOI
1910
time-of-flight cameras, shot noise, depth estimation,
motion estimation, low power
BibRef
Streeter, L.,
Towards generalised time-of-flight range imaging at the edge of
moving objects,
IVCNZ17(1-6)
IEEE DOI
1902
distance measurement, error correction, image coding,
image sensors, motion measurement, multiframe process,
error correction
BibRef
Su, S.,
Heide, F.,
Wetzstein, G.,
Heidrich, W.,
Deep End-to-End Time-of-Flight Imaging,
CVPR18(6383-6392)
IEEE DOI
1812
Cameras, Phase measurement, Correlation, Image reconstruction,
Frequency measurement, Pipelines
BibRef
Xu, R.,
Nayar, S.K.,
Gupta, M.,
Trapping Light for Time of Flight,
CVPR18(6219-6227)
IEEE DOI
1812
Shape, Mirrors, Lattices, Cameras, Shape measurement
BibRef
Boufounos, P.T.,
High-Resolution Lidar Using Random Demodulation,
ICIP18(36-40)
IEEE DOI
1809
Apertures, Modulation, Image reconstruction,
Hardware, Optical sensors, Depth sensing, random demodulation,
compressive LIDAR
BibRef
Balaguer-Puig, M.,
Molada-Tebar, A.,
Marqués-Mateu, A.,
Lerma, J.L.,
Characterisation of Intensity Values On Terrestrial Laser Scanning For
Recording Enhancement,
CIPA17(49-55).
DOI Link
1805
BibRef
Zimmermann, K.[Karel],
Petrícek, T.[Tomáš],
Šalanský, V.[Vojtech],
Svoboda, T.[Thomáš],
Learning for Active 3D Mapping,
ICCV17(1548-1556)
IEEE DOI
1802
Individual control of depth-measurements, e.g. sloid state lidar.
greedy algorithms, image reconstruction,
learning (artificial intelligence), optical radar, optimisation,
BibRef
Guidi, G.,
Gonizzi, S.,
Micoli, L.,
3d Capturing Performances Of Low-cost Range Sensors For Mass-market
Applications,
ISPRS16(B5: 33-40).
DOI Link
1610
3D Metrology from Kinect and similar devices.
BibRef
Honnungar, S.,
Holloway, J.,
Pediredla, A.K.,
Veeraraghavan, A.,
Mitra, K.,
Focal-sweep for large aperture time-of-flight cameras,
ICIP16(953-957)
IEEE DOI
1610
Apertures
BibRef
Tommaselli, A.M.G.,
Torres, F.M.,
A Light-weight Laser Scanner For UAV Applications,
ISPRS16(B1: 711-715).
DOI Link
1610
BibRef
Wang, Y.[Yu],
Ai, Y.[Yu],
Hu, Y.[Yu],
Wang, R.[RenLi],
Horizontal Position Optimal Solution Determination For The Satellite
Laser Ranging Slope Model,
ISPRS16(B1: 127-131).
DOI Link
1610
BibRef
Lv, Y.,
Tong, X.H.,
Liu, S.J.,
Xie, H.,
Luan, K.F.,
Liu, J.,
Simulation Of Full-waveform Laser Altimeter Echowaveform,
ISPRS16(B1: 47-51).
DOI Link
1610
BibRef
Mitteta, M.A.,
Nouira, H.,
Roynard, X.,
Goulette, F.,
Deschaud, J.E.,
Experimental Assessment Of The Quanergy M8 Lidar Sensor,
ISPRS16(B5: 527-531).
DOI Link
1610
BibRef
Xuan, V.N.[Vinh Nguyen],
Weihs, W.,
Loffeld, O.,
Illumination, phase step optimization and improvements in
simultaneous multiple frequency measurement for Time-of-Flight
sensors,
IC3D15(1-6)
IEEE DOI
1603
frequency measurement
BibRef
Crabb, R.[Ryan],
Manduchi, R.[Roberto],
Fast single-frequency time-of-flight range imaging,
CCD15(58-65)
IEEE DOI
1510
Approximation methods
BibRef
Song, S.[Shuran],
Lichtenberg, S.P.[Samuel P.],
Xiao, J.X.[Jian-Xiong],
SUN RGB-D: A RGB-D scene understanding benchmark suite,
CVPR15(567-576)
IEEE DOI
1510
BibRef
Dou, M.S.[Ming-Song],
Taylor, J.[Jonathan],
Fuchs, H.[Henry],
Fitzgibbon, A.W.[Andrew W.],
Izadi, S.[Shahram],
3D scanning deformable objects with a single RGBD sensor,
CVPR15(493-501)
IEEE DOI
1510
Kinect.
BibRef
Reshetouski, I.[Ilya],
Manakov, A.[Alkhazur],
Bandhari, A.[Ayush],
Raskar, R.[Ramesh],
Seidel, H.P.[Hans-Peter],
Ihrke, I.[Ivo],
Discovering the Structure of a Planar Mirror System from Multiple
Observations of a Single Point,
CVPR13(89-96)
IEEE DOI
1309
analysis, geometry reconstruction, mirrors, time-of-flight
BibRef
Djuricic, A.,
Jutzi, B.,
Supporting UAVS in Low Visibility Conditions by Multiple-Pulse Laser
Scanning Devices,
Hannover13(93-98).
DOI Link
1308
BibRef
Choi, O.[Ouk],
Lee, S.K.[Seung-Kyu],
Wide range stereo time-of-flight camera,
ICIP12(557-560).
IEEE DOI
1302
BibRef
Hakala, T.,
Suomalainen, J.,
Kaasalainen, S.,
Full Waveform Active Hyperspectral Lidar,
ISPRS12(XXXIX-B7:459-462).
DOI Link
1209
BibRef
Kukko, A.,
Kaartinen, H.,
Hyyppä, J.,
Chen, Y.,
Multiplatform Approach To Mobile Laser Scanning,
ISPRS12(XXXIX-B5:483-488).
DOI Link
1209
BibRef
Amini, A.S.,
Mozaffar, M.H.,
Producing A Linear Laser System for 3d Modelimg of Small Objects,
ISPRS12(XXXIX-B5:315-319).
DOI Link
1209
BibRef
Yang, R.,
Hua, X.,
Liu, J.,
Wu, H.,
Research on the Three Angular Resolution of Terrestrial Laser Scanning,
ISPRS12(XXXIX-B3:187-192).
DOI Link
1209
BibRef
Zhou, G.,
Yang, J.,
Li, X.,
Yang, X.,
Advances of Flash Lidar Development Onboard UAV,
ISPRS12(XXXIX-B3:193-198).
DOI Link
1209
BibRef
Yang, J.Z.[Jia-Zhi],
Zhou, G.Q.[Guo-Qing],
Yu, X.C.[Xin-Chen],
Zhu, W.[Wei],
Design and Implementation of Power Supply of High-Power Diode Laser of
LiDAR Onboard UAV,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Lenzen, F.[Frank],
Schäfer, H.[Henrik],
Garbe, C.[Christoph],
Denoising Time-Of-Flight Data with Adaptive Total Variation,
ISVC11(I: 337-346).
Springer DOI
1109
BibRef
Vock, D.[Dominik],
Jungmichel, M.[Markus],
A Low Budget Mobile Laser Scanning Solution Using on Board Sensors and
Field Bus Systems of Today's Consumer Automobiles,
Laser11(191-196).
DOI Link
1109
BibRef
Zhu, J.F.[Jun-Feng],
Zhang, Z.X.[Zu-Xun],
Hu, X.Y.[Xiang-Yun],
Analysis And Application Of Lidar Waveform Data Using A Progressive
Waveform Decomposition Method,
Laser11(31-26).
DOI Link
1109
BibRef
Reynolds, M.[Malcolm],
Dobos, J.[Jozef],
Peel, L.[Leto],
Weyrich, T.[Tim],
Brostow, G.J.[Gabriel J.],
Capturing Time-of-Flight data with confidence,
CVPR11(945-952).
IEEE DOI
1106
BibRef
Breivik, G.M.[Goril M.],
Thielemann, J.T.[Jens T.],
Berge, A.[Asbjorn],
Skotheim, O.[Oystein],
A motion based real-time foveation control loop for rapid and relevant
3D laser scanning,
ECVW11(28-35).
IEEE DOI
1106
BibRef
Kang, Y.S.[Yun-Suk],
Ho, Y.S.[Yo-Sung],
Disparity map generation for color image using TOF depth camera,
3DTV11(1-4).
IEEE DOI
1105
BibRef
Godbaz, J.P.[John P.],
Cree, M.J.[Michael J.],
Dorrington, A.A.[Adrian A.],
Extending AMCW Lidar Depth-of-Field Using a Coded Aperture,
ACCV10(IV: 397-409).
Springer DOI
1011
BibRef
Stal, C.[Cornelis],
de Maeyer, P.[Philippe],
de Wulf, A.[Alain],
Nuttens, T.[Timothy],
Vanclooster, A.[Ann],
van de Weghe, N.[Nico],
An Optimized Workflow for Processing Airborne Laserscan Data in a
GIS-Based Environment,
GeoInfo10(xx-yy).
PDF File.
1011
BibRef
Kim, S.Y.[Sung-Yeol],
Cho, J.H.[Ji-Ho],
Koschan, A.F.[Andreas F.],
Abidi, M.A.[Mongi A.],
Spatial and Temporal Enhancement of Depth Images Captured by a
Time-of-Flight Depth Sensor,
ICPR10(2358-2361).
IEEE DOI
1008
BibRef
Tilch, S.,
Mautz, R.,
Development of a New Laser-based, Optical Indoor Positioning System,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Hegna, T.,
Pettersson, H.,
Grujic, K.,
Inexpensive 3-d Laser Scanner System Based On A Galvanometer Scan Head,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Ussyshkin, V.[Valerie],
Theriault, L.[Livia],
Sitar, M.[Michael],
Pantovic, T.[Tatijana],
Altm ORION establishes a new standard in LiDAR data quality, accuracy
and precision,
CGC10(90).
1006
BibRef
Chiabrando, F.,
Piatta, D.,
Rinaudo, F.,
Sr-4000 Tof Camera: Further Experimental Tests And First Applications
To Metric Surveys,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Godbaz, J.P.,
Cree, M.J.,
Dorrington, A.A.,
Undue influence: Mitigating range-intensity coupling in AMCW 'flash'
lidar using scene texture,
IVCNZ09(304-309).
IEEE DOI
0911
BibRef
Gong, F.Y.[Fa-Yun],
Yu, Y.Z.[Yong-Zhi],
Wang, X.Z.[Xuan-Ze],
System of a Probe for Two-Dimensional Micro-Angle Based on Invariant
Light-Distance,
CISP09(1-4).
IEEE DOI
0910
Photoelectric detector.
Laser detector, not so much range.
BibRef
Dammann, J.,
Redman, B.,
Ruff, W.,
3D Image Reconstruction and Range-Doppler Tracking with Chirped AM
Ladar Data,
AIPR06(4-4).
IEEE DOI
0610
BibRef
Cho, P.,
Anderson, H.,
Hatch, R.,
Ramaswami, P.,
Real-Time 3D Ladar Imaging,
AIPR06(5-5).
IEEE DOI
0610
BibRef
Linden, K.J.,
Neal, W.R.,
Waldman, J.,
Gatesman, A.J.,
Danylov, A.,
Terahertz laser based standoff imaging system,
AIPR05(7-14).
IEEE DOI
0510
BibRef
Lin, Y.C.[Yu-Ching],
Mills, J.[Jon],
Integration of full-waveform information into the airborne laser
scanning data filtering process,
Laser09(224).
0909
BibRef
Mallet, C.[Clément],
Lafarge, F.[Florent],
Bretar, F.[Frédéric],
Roux, M.[Michel],
Soergel, U.[Uwe],
Heipke, C.[Christian],
A stochastic approach for modelling airborne lidar waveforms,
Laser09(201).
0909
BibRef
Mandlburger, G.[Gottfried],
Otepka, J.[Johannes],
Karel, W.[Wilfried],
Wagner, W.[Wolfgang],
Pfeifer, N.[Norbert],
Orientation and Processing of Airborne Laser Scanning data (OPALS):
Concept and first results of a comprehensive ALS software,
Laser09(55).
0909
BibRef
Dong, H.[Hao],
Sun, Y.Y.[Yi Yi],
Bi, Z.H.[Zhao Hui],
Atmospheric ultraviolet transmission and Lidar returns,
IASP09(342-345).
IEEE DOI
0904
BibRef
Larkins, R.L.,
Cree, M.J.,
Dorrington, A.A.,
Godbaz, J.P.,
Surface projection for mixed pixel restoration,
IVCNZ09(431-436).
IEEE DOI
0911
BibRef
Godbaz, J.P.,
Cree, M.J.,
Dorrington, A.A.,
Mixed pixel return separation for a full-field ranger,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Walkowski, F.,
Johnston, R.A.,
Price, N.B.,
Texture Mapping for the FastSCAN™ hand-held laser scanner,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Haubner, N.,
Johnston, R.A.,
Price, N.B.,
Investigation of profile registration with application to the FastSCAN™
range of laser scanners,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Zhang, A.W.[Ai-Wu],
Hu, S.X.[Shao-Xing],
Chen, Y.L.[Yu-Lin],
Liu, H.Y.[Hai-Yun],
Yang, F.[Fan],
Liu, J.[Jia],
Fast Continuous 360 Degree Color 3D Laser Scanner,
ISPRS08(B1: 409 ff).
PDF File.
0807
BibRef
Li, Q.[Qi],
Decomposition of Airborne Laser Scanning Waveform Data Based on EM
Algorithm,
ISPRS08(B1: 211 ff).
PDF File.
0807
BibRef
Roth, R.B.,
Thompson, J.,
Practial Application of Multiple Pulse in Air (MPiA) LIDAR in Large
Area Surveys,
ISPRS08(B1: 183 ff).
PDF File.
0807
BibRef
Chan, D.[Derek],
Buisman, H.[Hylke],
Theobalt, C.[Christian],
Thrun, S.[Sebastian],
A Noise-Aware Filter for Real-Time Depth Upsampling,
M2SFA208(xx-yy).
0810
BibRef
Schuon, S.[Sebastian],
Theobalt, C.[Christian],
Davis, J.[James],
Thrun, S.[Sebastian],
LidarBoost: Depth superresolution for ToF 3D shape scanning,
CVPR09(343-350).
IEEE DOI
0906
BibRef
Earlier:
High-quality scanning using time-of-flight depth superresolution,
TOF-CV08(1-7).
IEEE DOI
0806
BibRef
Sturmer, M.[Michael],
Penne, J.[Jochen],
Hornegger, J.[Joachim],
Standardization of intensity-values acquired by Time-of-Flight-cameras,
TOF-CV08(1-6).
IEEE DOI
0806
BibRef
Stilla, U.,
Yao, W.,
Jutzi, B.,
Detection of Weak Laser Pulses by Full Waveform Stacking,
PIA07(25).
PDF File.
0711
BibRef
Fan, H.[Hua],
Reading, I.,
Fang, Z.P.[Zhong-Ping],
Novel Optical Sensor for Precise Tilt Angle Measurement,
ICARCV06(1-4).
IEEE DOI
0612
Based on laser interference.
BibRef
Jutzi, B.[Boris],
Gross, H.[Hermann],
Normalization of Lidar Intensity Data Based on Range and Surface
Incidence Angle,
Laser09(213).
0909
BibRef
Bretar, F.,
Chauve, A.,
Mallet, C.,
Jutzi, B.,
Managing Full Waveform LIDAR Data:
A Challenging Task for the Forthcoming Years,
ISPRS08(B1: 415 ff).
PDF File.
0807
BibRef
Chauve, A.,
Mallet, C.,
Bretar, F.,
Durrieu, S.,
Deseilligny, M.P.,
Puech, W.,
Processing Full-Waveform Lidar Data: Modelling Raw signals,
Laser07(102).
PDF File.
0709
BibRef
Duong, H.,
Lindenbergh, R.,
Pfeifer, N.,
Vosselman, G.,
Icesat Fullwaveform Altimetry Compared to Airborne Laser Altimetry over
the Netherlands,
Laser07(108).
PDF File.
0709
BibRef
Lohani, B.,
Mishra, R.K.,
Generating Lidar Data in Laboratory: Lidar Simulator,
Laser07(264).
PDF File.
0709
BibRef
Pfeifer, N.,
Briese, C.,
Geometrical Aspects of Airborne and Terrestrial Laser Scanning,
Laser07(311).
WWW Link.
0709
BibRef
Wehr, A.,
Laser Scanning and Its Potential to Support 3D Panoramic Recording,
PanoPhot05(xx-yy).
PDF File.
0502
BibRef
Ahokas, E.,
Yu, X.,
Oksanen, J.,
Hyyppä, J.,
Kaartinen, H.,
Hyyppä, H.,
Optimization of the scanning angle for countrywide laser scanning,
Laser05(xx-yy).
PDF File.
0509
BibRef
Barber, D.M.,
Mills, J.P.,
Bryan, P.G.,
Maintaining momentum in terrestrial laser scanning: A UK case study,
Laser05(xx-yy).
PDF File.
0509
See also Geometric validation of a ground-based mobile laser scanning system.
BibRef
Weise, T.[Thibaut],
Leibe, B.[Bastian],
Van Gool, L.J.[Luc J.],
Fast 3D Scanning with Automatic Motion Compensation,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Furukawa, R.[Ryo],
Kawasaki, H.[Hiroshi],
Self-Calibration of Multiple Laser Planes for 3D Scene Reconstruction,
3DPVT06(200-207).
IEEE DOI
0606
See also Shape Reconstruction and Camera Self-Calibration Using Cast Shadows and Scene Geometries.
See also Dense 3D Reconstruction with an Uncalibrated Stereo System using Coded Structured Light.
BibRef
Lachat, E.,
Macher, H.,
Mittet, M.A.,
Landes, T.,
Grussenmeyer, P.,
First Experiences with Kinect V2 Sensor for Close Range 3D Modelling,
3D-Arch15(93-100).
DOI Link
1504
BibRef
Hanke, K.,
Grussenmeyer, P.,
Grimm-Pitzinger, A.,
Weinold, T.,
First experiences with the Trimble GX scanner,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Gokturk, S.B.[S. Burak],
Yalcin, H.[Hakan],
Bamji, C.[Cyrus],
A Time-of-Flight Depth Sensor:
System Description, Issues and Solutions,
Sensor3D04(35).
IEEE DOI
0406
BibRef
Colombo, C.,
Comanducci, D.,
del Bimbo, A.,
A Desktop 3D Scanner Exploiting Rotation and Visual Rectification of
Laser Profiles,
CVS06(49).
IEEE DOI
0602
BibRef
Franca, J.G.D.M.,
Gazziro, M.A.,
Ide, A.N.,
Saito, J.H.,
A 3D Scanning System Based on Laser Triangulation and Variable Field of
View,
ICIP05(I: 425-428).
IEEE DOI
0512
BibRef
Saito, T.,
Komatsu, T.,
Sunaga, S.I.,
Hashiguchi, M.,
Defect repair for range data observed with a laser range scanner,
ICIP03(III: 1037-1040).
IEEE DOI
0312
BibRef
Ullrich, A.,
Studnicka, N.,
Riegl, J.,
Orlandini, S.,
Long-range high-performance time-of-flight-based 3D imaging sensors,
3DPVT02(852-855).
IEEE DOI
0206
BibRef
Bornaz, L.[Leandro],
Lingua, A.[Andrea],
Rinaudo, F.[Fulvio],
Engineering and Environmental Applications of Laser Scanner Techniques,
PCV02(B: 40).
0305
BibRef
Elmqvist, M.[Magnus],
Ground Surface Estimation from Airborne Laser Scanner Data Using Active
Shape Models,
PCV02(A: 114).
0305
BibRef
Stiene, S.[Stefan],
Lingemann, K.[Kai],
Nuchter, A.[Andreas],
Hertzberg, J.[Joachim],
Contour-Based Object Detection in Range Images,
3DPVT06(168-175).
IEEE DOI
0606
BibRef
Surmann, H.,
Lingemann, K.[Kai],
Nüchter, A.[Andreas],
Hertzberg, J.[Joachim],
Fast Acquiring and Analysis of 3-D Laser Range Data,
VMV01(xx-yy).
PDF File.
0209
BibRef
Klinger, P.,
Spellenberg, B.,
Hermann, J.M.,
Hausler, G.,
In process 3D-sensing for laser material processing,
3DIM01(38-41).
IEEE DOI
0106
BibRef
Davis, J.,
Chen, X.,
A laser range scanner designed for minimum calibration complexity,
3DIM01(91-98).
IEEE DOI
0106
BibRef
Arana-Arejolaleiba, N.,
Briot, M.,
Ganibal, C.,
Nketsa, A.,
Prajoux, R.,
A 3D laser micro-sensor integrating control and data processing in an
FPGA-based calculator,
3DIM01(107-114).
IEEE DOI
0106
BibRef
Lang, J.,
Pai, D.K.,
Bayesian estimation of distance and surface normal with a
time-of-flight laser rangefinder,
3DIM99(109-117).
IEEE DOI
9910
BibRef
Zheng, J.Y.,
A Flexible Laser Range Sensor Based on Spatial-temporal Analysis,
ICPR00(Vol IV: 740-743).
IEEE DOI
0009
BibRef
Lamb, D.G.,
Baird, D.L.,
Greenspan, M.A.,
An automation system for industrial 3-D laser digitizing,
3DIM99(148-157).
IEEE DOI
9910
BibRef
Sato, Y.[Yukio],
Ishikawa, T.[Tomoyuki],
Otsuki, M.[Masaki],
Reconstruction of 3-D shape and texture by active rangefinding,
CIAP97(II: 270-275).
Springer DOI
9709
BibRef
Axelsson, P.,
Willen, E.,
Geometric Evaluation of Airborne Laser Scanner Data,
SSAB97(Photogrammetry)
9703
BibRef
Sato, Y., and
Otsuki, M.,
Three-Dimensional Shape Reconstruction by Active Rangefinder,
CVPR93(142-147).
IEEE DOI Small laser range finder mounted on a robot arm.
BibRef
9300
Sato, Y.[Yukio], and
Otsuki, M.[Masaki],
3-D Model Reconstruction with Shape and Color by Active Rangefinding,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Gadagkar, H.P.,
Trivedi, M.M., and
Lassiter, T.N.,
Versatile Multi-Modal System for Surface Profile Measurements Using
a Wrist-Mounted Laser Device,
SPIE(1828), 1992, pp. 466-474.
Sensor Fusion.
BibRef
9200
Faugeras, O.D., and
Pauchon, E.,
Measuring the Shape of 3-D Objects,
CVPR83(2-7).
BibRef
8300
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Single-Photon Imaging, Single Photon .