Yachida, M.[Masahiko],
Determining Velocity Maps by Spatio-Temporal Neighborhoods from
Image Sequences,
CVGIP(21), No. 2, February 1983, pp. 262-279.
Elsevier DOI
BibRef
8302
Earlier:
Determining Velocity Map by 3-D Iterative Estimation,
IJCAI81(716-718).
From the sequence, use first 2 to guide the rest.
BibRef
Zucker, S.W.[Steven W.],
Iverson, L.[Lee],
From Orientation Selection to Optical Flow,
CVGIP(37), No. 2, February 1987, pp. 196-220.
Elsevier DOI
BibRef
8702
Earlier: A2, A1:
Orientation Selection to Optical Flow: A Computational Perspective,
CVWS87(184-189).
BibRef
Iverson, L.[Lee],
Toward Discrete Geometric Models for Early Vision,
Ph.D.Thesis, June, 1994. McGill University.
Relaxation. Texture flow.
Postscript:
PS File. or
Tar file with separate chapters:
WWW Link.
BibRef
9406
Lee, D.N.,
The Optical Flow Field: The Foundation of Vision,
Royal(B-290), 1980, pp. 169-179.
BibRef
8000
And:
No title available, but it is different.
Perception(5), 1976, pp. 437-xx.
BibRef
Labuz, J.,
Schalkoff, R.J.,
New Results Using an Integrated Model and Recursive Algorithm for
Image Motion Estimation,
PRL(2), 1984, pp. 179-183.
BibRef
8400
Schalkoff, R.J.,
Labuz, J.,
An Integrated Spatio-Temporal Model and Recursive Algorithm for
Image Motion Estimation,
ICPR84(530-533).
BibRef
8400
Aisbett, J.[Janet],
Optical Flow with an Intensity-Weighted Smoothing,
PAMI(11), No. 5, May 1989, pp. 512-522.
IEEE DOI Gradient based approach with only the intensity gradient as a
derivative. Performs better when images have NO strong texture.
BibRef
8905
Driessen, J.N.,
Boroczky, L.,
Biemond, J.,
Pel-Recursive Motion Field Estimation from Image Sequences,
JVCIR(2), 1991, pp. 259-280.
BibRef
9100
Fogel, S.V.[Sergei V.],
The Estimation of Velocity Vector Fields from
Time-Varying Image Sequences,
CVGIP(53), No. 3, May 1991, pp. 253-287.
Elsevier DOI
BibRef
9105
And:
Erratum:
CVGIP(54), No. 3, November 1991, pp. 431-432.
Elsevier DOI
BibRef
Earlier:
Implementation of a Nonlinear Approach to the
Motion Correspondence Problem,
Motion89(87-98). Implementation issues for the earlier:
BibRef
A Nonlinear Approach to the Motion Correspondence Problem,
ICCV88(619-628).
IEEE DOI Combining the optical flow constraints (relating image
values) and directional smoothness constraints to get better estimates. There
is a lot of derivation of the technique.
BibRef
Shvaytser, H.[Haim],
Occam Algorithms for Computing Visual-Motion,
PAMI(17), No. 11, November 1995, pp. 1033-1042.
IEEE DOI
BibRef
9511
Earlier:
ICCV93(551-555).
IEEE DOI The best predictor is the simplest, defined in terms of encoding length.
BibRef
Vaidya, V.G.,
Haralick, R.M.,
Wigner Distribution for 2D Motion Estimation from Noisy Images,
JVCIR(4), 1993, pp. 281-297.
BibRef
9300
Huang, C.L.[Chung-Lin],
Chen, Y.T.[Ying-Tsang],
Motion Estimation Method Using a 3D Steerable Filter,
IVC(13), No. 1, February 1995, pp. 21-32.
Elsevier DOI
BibRef
9502
Sayrol, E.,
Gasull, A.,
Fonollosa, J.R.,
Motion Estimation Using Higher-Order Statistics,
IP(5), No. 6, June 1996, pp. 1077-1084.
IEEE DOI
9607
BibRef
Anderson, J.M.M.,
Giannakis, G.B.,
Image Motion Estimation Algorithms Using Cumulants,
IP(4), No. 3, March 1995, pp. 346-357.
IEEE DOI
BibRef
9503
Kirchner, H.,
Niemann, H.,
Finite Element Method for Determination of Optical Flow,
PRL(13), 1992, pp. 131-141.
BibRef
9200
Strintzis, M.G.,
Kokkinidis, I.,
Maximum-Likelihood Motion Estimation in Ultrasound Image Sequences,
SPLetters(4), No. 6, June 1997, pp. 156-157.
IEEE Top Reference.
9706
BibRef
Rakshit, S.,
Anderson, C.H.,
Computation of Optical-Flow Using Basis Functions,
IP(6), No. 9, September 1997, pp. 1246-1254.
IEEE DOI
9709
BibRef
Spinei, A.,
Pellerin, D.,
Herault, J.,
Spatiotemporal Energy-Based Method for Velocity Estimation,
SP(65), No. 3, March 1998, pp. 347-362.
9806
BibRef
Vernon, D.[David],
Computation of instantaneous optical flow using the phase of Fourier
components,
IVC(17), No. 3/4, March 1999, pp. 189-199.
Elsevier DOI
BibRef
9903
Earlier:
Decoupling Fourier Components of Dynamic Image Sequences:
A Theory of Signal Separation, Image Segmentation, and
Optical Flow Estimation,
ECCV98(II: 69).
Springer DOI Hough approach.
BibRef
Li, H.D.[Hong-Dong],
Liu, J.L.[Ji-Lin],
Gu, W.[Weikang],
A new and fast approach for DPIV using an incompressible affine flow
model,
MVA(11), No. 5, 2000, pp. 252-256.
Springer DOI
0004
BibRef
Yang, J.L.[Jiao-Long],
Li, H.D.[Hong-Dong],
Dense, accurate optical flow estimation with piecewise parametric
model,
CVPR15(1019-1027)
IEEE DOI
1510
BibRef
Yao, J.C.[Jian-Chao],
Estimation of 2D Displacement Field Based on Affine Geometric
Invariance and Scene Constraints,
IJCV(46), No. 1, January 2002, pp. 25-50.
DOI Link
0201
BibRef
Earlier:
Estimation of 2D Motion Field Based on Affine Geometric Invariance,
ICPR00(Vol III: 1037-1040).
IEEE DOI
0009
BibRef
Earlier:
Motion Blur Identification Based on Phase Change Experienced After
Trial Restorations,
ICIP99(I:180-184).
IEEE Abstract.
BibRef
Yao, J.C.[Jian-Chao],
Dynamic Vision in the Dynamic Scene: An Algebraic Approach,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Chen, L.F.[Li-Fen],
Liao, H.Y.M.[Hong-Yuan Mark],
Lin, J.C.[Ja-Chen],
Wavelet-based Optical Flow Estimation,
CirSysVideo(12), No. 1, January 2002, pp. 1-12.
IEEE Top Reference.
0202
BibRef
Earlier: A1, A3, A2:
ICPR00(Vol III: 1056-1059).
IEEE DOI
IEEE DOI
0009
BibRef
Foroosh, H.[Hassan], and
Hoge, W.S.[W. Scott],
Motion Information in the Phase Domain,
VideoRegister03(Chapter 3).
BibRef
0300
Barcelos, C.A.Z.,
Boaventura, M.,
Silva, Jr., E.C.,
A well-balanced flow equation for noise removal and edge detection,
IP(12), No. 7, July 2003, pp. 751-763.
IEEE DOI
0308
BibRef
Lai, S.H.[Shang-Hong],
Computation of optical flow under non-uniform brightness variations,
PRL(25), No. 8, June 2004, pp. 885-892.
Elsevier DOI
0405
BibRef
Teng, C.H.[Chin-Hung],
Lai, S.H.[Shang-Hong],
Chen, Y.S.[Yung-Sheng],
Hsu, W.H.[Wen-Hsing],
Accurate optical flow computation under non-uniform brightness
variations,
CVIU(97), No. 3, March 2005, pp. 315-346.
Elsevier DOI
0412
BibRef
Earlier:
Robust computation of optical flow under non-uniform illumination
variations,
ICPR02(I: 327-330).
IEEE DOI
0211
BibRef
Condell, J.V.[Joan V.],
Scotney, B.W.[Bryan W.],
Morrow, P.J.[Philip J.],
Adaptive Grid Refinement Procedures for Efficient Optical Flow
Computation,
IJCV(61), No. 1, January 2005, pp. 31-54.
DOI Link
0410
BibRef
Earlier:
Evaluation of Uniform and Non-uniform Optical Flow Techniques Using
Finite Element Methods,
DAGM03(116-123).
Springer DOI
0310
BibRef
Earlier:
Estimation of Motion through Inverse Finite Element Methods with
Triangular Meshes,
CAIP01(333 ff.).
Springer DOI
0210
BibRef
Condell, J.V.[Joan V.],
Scotney, B.W.[Bryan W.],
Morrow, P.J.[Philip J.],
Adaptive vs. non-adaptive strategies for the computation of optical
flow,
IJIST(16), No. 2, 2006, pp. 35-50.
DOI Link
0703
BibRef
And:
The Effect of Presmoothing Image Sequences on the Computation of
Optical Flow,
ICIAR06(I: 780-791).
Springer DOI
0610
BibRef
Foroosh, H.[Hassan],
Pixelwise-Adaptive Blind Optical Flow Assuming Nonstationary Statistics,
IP(14), No. 2, February 2005, pp. 222-230.
IEEE DOI
0501
BibRef
Earlier:
An adaptive scheme for estimating motion,
ICIP04(III: 1831-1834).
IEEE DOI
0505
BibRef
Foroosh, H.,
A Closed-form Solution for Optical Flow by Imposing Temporal
Constraints,
ICIP01(III: 656-659).
IEEE DOI
0108
BibRef
Coimbra, M.T.,
Davies, M.,
Approximating Optical Flow Within the MPEG-2 Compressed Domain,
CirSysVideo(15), No. 1, January 2005, pp. 103-107.
IEEE Abstract.
0501
BibRef
Trucco, E.,
Tommasini, T.,
Roberto, V.,
Near-recursive optical flow from weighted image differences,
SMC-B(35), No. 1, February 2005, pp. 124-129.
IEEE Abstract.
0501
BibRef
Trucco, E.,
Viel, F.,
Roberto, V.,
Near-recursive optical flow from disturbance fields,
BMVC02(Poster Session).
0208
BibRef
Papenberg, N.[Nils],
Bruhn, A.[Andrés],
Brox, T.[Thomas],
Didas, S.[Stephan],
Weickert, J.[Joachim],
Highly Accurate Optic Flow Computation with Theoretically Justified
Warping,
IJCV(67), No. 2, April 2006, pp. 141-158.
Springer DOI
0605
Grey value constancy, and gradient constancy, and the constancy of
the Hessian and the Laplacian.
BibRef
Brox, T.[Thomas],
Bruhn, A.[Andrés],
Papenberg, N.[Nils],
Weickert, J.[Joachim],
High Accuracy Optical Flow Estimation Based on a Theory for Warping,
ECCV04(Vol IV: 25-36).
Springer DOI
Award, ECCV.
Award, Koenderink Prize.
0405
BibRef
Zimmer, H.[Henning],
Bruhn, A.[Andrés],
Weickert, J.[Joachim],
Optic Flow in Harmony,
IJCV(93), No. 3, July 2011, pp. 368-388.
WWW Link.
1104
BibRef
Volz, S.[Sebastian],
Bruhn, A.[Andres],
Valgaerts, L.[Levi],
Zimmer, H.[Henning],
Modeling temporal coherence for optical flow,
ICCV11(1116-1123).
IEEE DOI
1201
BibRef
Hafner, D.[David],
Demetz, O.[Oliver],
Weickert, J.[Joachim],
Mathematical Foundations and Generalisations of the Census Transform
for Robust Optic Flow Computation,
JMIV(52), No. 1, May 2015, pp. 71-86.
Springer DOI
1505
BibRef
Earlier:
Simultaneous HDR and Optic Flow Computation,
ICPR14(2065-2070)
IEEE DOI
1412
BibRef
Earlier:
Why Is the Census Transform Good for Robust Optic Flow Computation?,
SSVM13(210-221).
Springer DOI
1305
Adaptive optics
BibRef
Demetz, O.[Oliver],
Weickert, J.[Joachim],
Bruhn, A.[Andrés],
Zimmer, H.[Henning],
Optic Flow Scale Space,
SSVM11(713-724).
Springer DOI
1201
BibRef
Zimmer, H.[Henning],
Bruhn, A.[Andrés],
Weickert, J.[Joachim],
Valgaerts, L.[Levi],
Salgado, A.[Agustín],
Rosenhahn, B.[Bodo],
Seidel, H.P.[Hans-Peter],
Complementary Optic Flow,
EMMCVPR09(207-220).
Springer DOI
0908
BibRef
Valgaerts, L.[Levi],
Bruhn, A.[Andrés],
Mainberger, M.[Markus],
Weickert, J.[Joachim],
Dense versus Sparse Approaches for Estimating the Fundamental Matrix,
IJCV(96), No. 2, February 2012, pp. 212-234.
WWW Link.
1201
BibRef
Earlier: A3, A2, A4, Only:
Is Dense Optic Flow Useful to Compute the Fundamental Matrix?,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Valgaerts, L.[Levi],
Bruhn, A.[Andrés],
Weickert, J.[Joachim],
A Variational Model for the Joint Recovery of the Fundamental Matrix
and the Optical Flow,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Brox, T.[Thomas],
Rosenhahn, B.[Bodo],
Cremers, D.[Daniel],
Seidel, H.P.[Hans-Peter],
High Accuracy Optical Flow Serves 3-D Pose Tracking:
Exploiting Contour and Flow Based Constraints,
ECCV06(II: 98-111).
Springer DOI
0608
BibRef
Rosenhahn, B.[Bodo],
Brox, T.[Thomas],
Cremers, D.[Daniel],
Seidel, H.P.[Hans-Peter],
A Comparison of Shape Matching Methods for Contour Based Pose
Estimation,
IWCIA06(263-276).
Springer DOI
0606
BibRef
Brox, T.[Thomas],
Rosenhahn, B.[Bodo],
Cremers, D.[Daniel],
Seidel, H.P.[Hans-Peter],
Nonparametric Density Estimation with Adaptive, Anisotropic Kernels for
Human Motion Tracking,
HUMO07(152-165).
Springer DOI
0710
BibRef
Brox, T.[Thomas],
Rosenhahn, B.[Bodo],
Kersting, U.G.[Uwe G.],
Cremers, D.[Daniel],
Nonparametric Density Estimation for Human Pose Tracking,
DAGM06(546-555).
Springer DOI
0610
See also Optimization and Filtering for Human Motion Capture: A Multi-Layer Framework.
BibRef
Rosenhahn, B.,
Kersting, U.G.,
Smith, A.W.,
Gurney, J.K.,
Brox, T.,
Klette, R.,
A System for Marker-Less Human Motion Estimation,
DAGM05(230).
Springer DOI
0509
Award, GCPR.
See also Optimization and Filtering for Human Motion Capture: A Multi-Layer Framework.
BibRef
Brox, T.,
Weickert, J.,
Nonlinear Matrix Diffusion for Optic Flow Estimation,
DAGM02(446 ff.).
Springer DOI
0303
BibRef
Makadia, A.[Ameesh],
Daniilidis, K.[Kostas],
Rotation Recovery from Spherical Images without Correspondences,
PAMI(28), No. 7, July 2006, pp. 1170-1175.
IEEE DOI
0606
BibRef
Earlier:
Direct 3D-rotation estimation from spherical images via a generalized
shift theorem,
CVPR03(II: 217-224).
IEEE DOI
0307
Mapping of omnidirectional image to sphere. Rotational camera motion analysis
through generalized Fourier transform method.
See also Correspondence-free Structure from Motion.
BibRef
Daniilidis, K.,
Makadia, A.,
Bulow, T.,
Image processing in catadioptric planes: spatiotemporal derivatives and
optical flow computation,
OMNIVIS02(3-10).
IEEE Abstract.
0310
BibRef
Sorgi, L.[Lorenzo],
Edgelet tracking using Gauss-Laguerre Circular Harmonic filters,
ICIP11(2897-2900).
IEEE DOI
1201
BibRef
Makadia, A.,
Sorgi, L.,
Daniilidis, K.,
Rotation estimation from spherical images,
ICPR04(III: 590-593).
IEEE DOI
0409
See also Normalized Cross-Correlation for Spherical Images.
BibRef
Tagliasacchi, M.[Marco],
A genetic algorithm for optical flow estimation,
IVC(25), No. 2, February 2007, pp. 141-147.
Elsevier DOI
0701
Optical flow; Genetic algorithms; Motion estimation
BibRef
Lu, Z.Q.[Zong-Qing],
Liao, Q.M.[Qing-Min],
Pei, J.H.[Ji-Hong],
A Nonlinear Filtering Based Optical Flow Computation,
IJIG(9), No. 1, January 2009, pp. 121-132.
0903
BibRef
Shi, K.H.[Kai-Hong],
Lu, Z.Q.[Zong-Qing],
She, Q.Y.[Qing-Yun],
Zhou, F.[Fei],
Liao, Q.M.[Qing-Min],
Optical Flow Estimation Combining Spatial-Temporal Derivatives Based
Nonlinear Filtering,
IEICE(E97-D), No. 9, September 2014, pp. 2559-2562.
WWW Link.
1410
BibRef
She, Q.Y.[Qing-Yun],
Lu, Z.Q.[Zong-Qing],
Li, W.F.[Wei-Feng],
Liao, Q.M.[Qing-Min],
Multigrid Bilateral Filtering,
IEICE(E97-D), No. 10, October 2014, pp. 2748-2759.
WWW Link.
1411
BibRef
Lu, Z.Q.[Zong-Qing],
Xie, W.X.[Wei-Xin],
A PDE-Based Method For Optical Flow Estimation,
ICPR06(II: 78-81).
IEEE DOI
0609
BibRef
Aalaoui, E.M.I.[E.M. Ismaili],
Ibn-Elhaj, E.[Elhassane],
Bouyakhf, E.H.,
A Robust Subpixel Motion Estimation Algorithm Using HOS in the
Parametric Domain,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
0903
Consider noise issues.
BibRef
Aalaoui, E.M.I.[E.M. Ismaili],
Ibn-Elhaj, E.[Elhassane],
A comparative study of new HOS-based estimators for moving objects in
noisy video sequence,
SIViP(11), No. 7, October 2017, pp. 1297-1304.
WWW Link.
1708
BibRef
Sabatini, S.P.[Silvio P.],
Gastaldi, G.[Giulia],
Solari, F.[Fabio],
Pauwels, K.[Karl],
van Hulle, M.M.[Marc M.],
Diaz, J.[Javier],
Ros, E.[Eduardo],
Pugeault, N.[Nicolas],
Kruger, N.[Norbert],
A compact harmonic code for early vision based on anisotropic frequency
channels,
CVIU(114), No. 6, June 2010, pp. 681-699.
Elsevier DOI
1006
Early vision; Phase-based image analysis; Multichannel filtering;
Image representations; Stereo; Motion; Bio-inspired vision processing
See also Adjustable linear models for optic flow based obstacle avoidance.
BibRef
Molnar, J.[Jozsef],
Chetverikov, D.[Dmitry],
Fazekas, S.[Sandor],
Illumination-robust variational optical flow using cross-correlation,
CVIU(114), No. 10, October 2010, pp. 1104-1114.
Elsevier DOI
1003
BibRef
Earlier: A3, A2, A1:
An implicit non-linear numerical scheme for illumination-robust
variational optical flow,
BMVC09(xx-yy).
PDF File.
0909
Variational optical flow; Illumination-robustness; Cross-correlation
BibRef
Chetverikov, D.[Dmitry],
Molnar, J.[Jozsef],
An Experimental Study of Image Components and Data Metrics for
Illumination-Robust Variational Optical Flow,
ICPR10(1694-1697).
IEEE DOI
1008
BibRef
Dellen, B.[Babette],
Wörgötter, F.[Florentin],
A Local Algorithm for the Computation of Image Velocity via
Constructive Interference of Global Fourier Components,
IJCV(92), No. 1, March 2011, pp. 53-70.
WWW Link.
1103
BibRef
Earlier:
A Local Algorithm for the Computation of Optic Flow via Constructive
Interference of Global Fourier Components,
BMVC08(xx-yy).
PDF File.
0809
See also Disparity from stereo-segment silhouettes of weakly-textured images.
BibRef
Feigin, M.[Micha],
Sochen, N.A.[Nir A.],
Vemuri, B.C.[Baba C.],
Anisotropic alpha-Kernels and Associated Flows,
SIIMS(3), No. 4, 2010, pp. 904-925.
DOI Link
BibRef
1000
Earlier:
SSVM07(484-495).
Springer DOI
0705
Scale space computations. Fractional Laplacian.
BibRef
And:
Efficient anisotropic alpha-Kernels decompositions and flows,
Tensor08(1-8).
IEEE DOI
0806
scale space; image denoising; sparse decomposition; eigenspaces
See also Scale Space and Edge Detection using Anisotropic Diffusion.
See also Anisotropic Regularization for Inverse Problems with Application to the Wiener Filter with Gaussian and Impulse Noise.
BibRef
Belhachmi, Z.[Zakaria],
Hecht, F.,
Control of the Effects of Regularization on Variational Optic Flow
Computations,
JMIV(40), No. 1, May 2011, pp. 119.
WWW Link.
1103
BibRef
Belhachmi, Z.[Zakaria],
Hecht, F.,
An Adaptive Approach for the Segmentation and the TV-Filtering in the
Optic Flow Estimation,
JMIV(54), No. 3, March 2016, pp. 358-377.
WWW Link.
1604
BibRef
Bauer, M.[Martin],
Grasmair, M.[Markus],
Kirisits, C.[Clemens],
Optical Flow on Moving Manifolds,
SIIMS(8), No. 1, 2015, pp. 484-512.
DOI Link
1503
BibRef
Kirisits, C.[Clemens],
Lang, L.F.[Lukas F.],
Scherzer, O.[Otmar],
Optical Flow on Evolving Surfaces with Space and Time Regularisation,
JMIV(52), No. 1, May 2015, pp. 55-70.
Springer DOI
1505
BibRef
Earlier:
Optical Flow on Evolving Surfaces with an Application to the Analysis
of 4D Microscopy Data,
SSVM13(246-257).
Springer DOI
1305
BibRef
Abhau, J.[Jochen],
Belhachmi, Z.[Zakaria],
Scherzer, O.[Otmar],
On a Decomposition Model for Optical Flow,
EMMCVPR09(126-139).
Springer DOI
0908
BibRef
Kharbat, M.[Mohd],
Aouf, N.[Nabil],
Dense optical flow via robust data fusion,
SIViP(5), No. 2, June 2011, pp. 203-215.
WWW Link.
1101
BibRef
Kharbat, M.[Mohd],
Aouf, N.[Nabil],
Tsourdos, A.,
White, B.,
Robust Brightness Description for Computing Optical Flow,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Radgui, A.[Amina],
Demonceaux, C.[Cédric],
Mouaddib, E.[El_Mustapha],
Rziza, M.[Mohammed],
Aboutajdine, D.[Driss],
Optical flow estimation from multichannel spherical image decomposition,
CVIU(115), No. 9, September 2011, pp. 1263-1272.
Elsevier DOI
1107
BibRef
Earlier: A1, A2, A4, A3, A5:
An adapted Lucas-Kanade's method for optical flow estimation in
catadioptric images,
OMNIVIS08(xx-yy).
0810
Omnidirectional images; Optical flow; Spherical wavelets
See also Iterative Image Registration Technique with an Application to Stereo Vision, An.
BibRef
Alibouch, B.[Brahim],
Radgui, A.[Amina],
Demonceaux, C.[Cédric],
Rziza, M.[Mohammed],
Aboutajdine, D.[Driss],
A phase-based framework for optical flow estimation on omnidirectional
images,
SIViP(10), No. 1, February 2016, pp. 285-292.
Springer DOI
1601
BibRef
Earlier: A1, A2, A4, A5, Only:
Optical Flow Estimation on Omnidirectional Images:
An Adapted Phase Based Method,
ICISP12(468-475).
Springer DOI
1208
BibRef
Sellent, A.[Anita],
Eisemann, M.[Martin],
Goldlucke, B.,
Cremers, D.,
Magnor, M.[Marcus],
Motion Field Estimation from Alternate Exposure Images,
PAMI(33), No. 8, August 2011, pp. 1577-1589.
IEEE DOI
1107
BibRef
Earlier: A1, A2, A5, Only:
Two Algorithms for Motion Estimation from Alternate Exposure Images,
CompVideo10(25-51).
Springer DOI
1111
BibRef
Earlier: A1, A2, A5, Only:
Motion field and occlusion time estimation via alternate exposure flow,
ICCP09(1-8).
IEEE DOI
1208
Use an additional long exposure image (blurring) for motion field.
Also adds time of occlusion.
BibRef
Sellent, A.[Anita],
Ruhl, K.[Kai],
Magnor, M.[Marcus],
A loop-consistency measure for dense correspondences in multi-view
video,
IVC(30), No. 9, September 2012, pp. 641-654.
Elsevier DOI
1210
Multi-view video; Correspondence estimation; Confidence measure;
Optical flow
BibRef
Sellent, A.[Anita],
Linz, C.[Christian],
Magnor, M.[Marcus],
Consistent optical flow for stereo video,
ICIP10(1-4).
IEEE DOI
1009
BibRef
Héas, P.,
Herzet, C.,
Mémin, E.,
Bayesian Inference of Models and Hyperparameters for Robust
Optical-Flow Estimation,
IP(21), No. 4, April 2012, pp. 1437-1451.
IEEE DOI
1204
BibRef
Earlier:
Robust Optic-Flow Estimation with Bayesian Inference of Model and
Hyper-parameters,
SSVM11(773-785).
Springer DOI
1201
BibRef
Becker, F.[Florian],
Wieneke, B.,
Petra, S.,
Schroder, A.,
Schnorr, C.[Christoph],
Variational Adaptive Correlation Method for Flow Estimation,
IP(21), No. 6, June 2012, pp. 3053-3065.
IEEE DOI
1202
BibRef
Earlier:
Corrections:
IP(21), No. 8, August 2012, pp. 3813-3814.
IEEE DOI
1208
BibRef
Becker, F.[Florian],
Lenzen, F.[Frank],
Kappes, J.H.[Jörg H.],
Schnörr, C.[Christoph],
Variational Recursive Joint Estimation of Dense Scene Structure and
Camera Motion from Monocular High Speed Traffic Sequences,
IJCV(105), No. 3, December 2013, pp. 269-297.
Springer DOI
1309
BibRef
Earlier:
ICCV11(1692-1699).
IEEE DOI
1201
BibRef
Becker, F.[Florian],
Schnörr, C.[Christoph],
Decomposition of Quadratic Variational Problems,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Bodnariuc, E.[Ecaterina],
Petra, S.[Stefania],
Poelma, C.[Christian],
Schnörr, C.[Christoph],
Parametric Dictionary-Based Velocimetry for Echo PIV,
GCPR16(332-343).
Springer DOI
1611
BibRef
Bodnariuc, E.[Ecaterina],
Gurung, A.[Arati],
Petra, S.[Stefania],
Schnörr, C.[Christoph],
Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV,
EMMCVPR15(378-391).
Springer DOI
1504
BibRef
Yamashita, Y.[Yuya],
Harada, T.[Tatsuya],
Kuniyoshi, Y.[Yasuo],
Causal Flow,
MultMed(14), No. 3, 2012, pp. 619-629.
IEEE DOI
1202
The dominant real motion. Model as pixel-to-pixel information transfer, not
motion of pixels.
BibRef
Jia, K.[Kui],
Wang, X.G.[Xiao-Gang],
Tang, X.[Xiaoou],
Image Transformation Based on Learning Dictionaries across Image Spaces,
PAMI(35), No. 2, February 2013, pp. 367-380.
IEEE DOI
1301
BibRef
Earlier:
Optical flow estimation using learned sparse model,
ICCV11(2391-2398).
IEEE DOI
1201
Used for superresolution and shading or albedo extraction.
BibRef
Yan, B.[Bo],
Chen, Y.[Yue],
Low complexity image interpolation method based on path selection,
JVCIR(24), No. 6, August 2013, pp. 661-668.
Elsevier DOI
1306
Low complexity; Image animation; Pixel interlacing;
Path-based interpolation; Image interpolation; View interpolation;
Optical flow; Sub-pixel strategy
BibRef
Drulea, M.,
Nedevschi, S.,
Motion Estimation Using the Correlation Transform,
IP(22), No. 8, 2013, pp. 3260-3270.
IEEE DOI
1307
Correlation transform; changes in illumination;
correlation-based descriptors
BibRef
Garg, R.[Ravi],
Roussos, A.[Anastasios],
Agapito, L.[Lourdes],
A Variational Approach to Video Registration with Subspace Constraints,
IJCV(104), No. 3, September 2013, pp. 286-314.
WWW Link.
Springer DOI
1308
BibRef
Earlier:
Robust Trajectory-Space TV-L1 Optical Flow for Non-rigid Sequences,
EMMCVPR11(300-314).
Springer DOI
1107
non-rigid registration, or optic flow computation.
BibRef
Garg, R.[Ravi],
Pizarro, L.[Luis],
Rueckert, D.[Daniel],
Agapito, L.[Lourdes],
Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace
Constraints,
ACCV10(IV: 460-473).
Springer DOI
1011
BibRef
Kumar, A.,
Tung, F.,
Wong, A.,
Clausi, D.A.,
A Decoupled Approach to Illumination-Robust Optical Flow Estimation,
IP(22), No. 10, 2013, pp. 4136-4147.
IEEE DOI
1309
Optical flow
BibRef
Chantas, G.[Giannis],
Gkamas, T.[Theodosios],
Nikou, C.[Christophoros],
Variational-Bayes Optical Flow,
JMIV(50), No. 3, November 2014, pp. 199-213.
Springer DOI
1410
BibRef
Earlier: A2, A1, A3:
A probabilistic formulation of the optical flow problem,
ICPR12(754-757).
WWW Link.
1302
BibRef
Solari, F.[Fabio],
Chessa, M.[Manuela],
Medathati, N.V.K.[N.V. Kartheek],
Kornprobst, P.[Pierre],
What can we expect from a V1-MT feedforward architecture for optical
flow estimation?,
SP:IC(39, Part B), No. 1, 2015, pp. 342-354.
Elsevier DOI
1512
Optical flow
BibRef
Bengtsson, T.[Tomas],
McKelvey, T.[Tomas],
Lindström, K.[Konstantin],
On robust optical flow estimation on image sequences with differently
exposed frames using primal-dual optimization,
IVC(57), No. 1, 2017, pp. 78-88.
Elsevier DOI
1702
Optical flow estimation
BibRef
Chen, J.[Jun],
Cai, Z.M.[Ze-Min],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
Fast Optical Flow Estimation Based on the Split Bregman Method,
CirSysVideo(28), No. 3, March 2018, pp. 664-678.
IEEE DOI
1804
Computational modeling, Convergence, Estimation,
Mathematical model, Optical imaging, Optimization,
optical flow estimation
BibRef
Chen, J.[Jun],
Cai, Z.M.[Ze-Min],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
A Filtering-Based Framework for Optical Flow Estimation,
CirSysVideo(29), No. 5, May 2019, pp. 1350-1364.
IEEE DOI
1905
Optical imaging, Estimation, Adaptive optics, Optical filters,
Optical design, Algorithm design and analysis,
3D filtering
BibRef
Kong, K.,
Shin, S.,
Lee, J.,
Song, W.,
How to Estimate Global Motion Non-Iteratively From a Coarsely Sampled
Motion Vector Field,
CirSysVideo(29), No. 12, December 2019, pp. 3729-3742.
IEEE DOI
1912
Motion estimation, Mathematical model, Estimation, Cameras,
Linear programming, Video sequences, Motion segmentation,
outlier removal
BibRef
Zhang, C.,
Ge, L.,
Chen, Z.,
Li, M.,
Liu, W.,
Chen, H.,
Refined TV-L1 Optical Flow Estimation Using Joint Filtering,
MultMed(22), No. 2, February 2020, pp. 349-364.
IEEE DOI
2001
Optical flow, Filtering, Image edge detection, Estimation,
Optical filters, Linear programming, Optical flow,
edge-preserving
BibRef
Mei, L.,
Lai, J.,
Xie, X.,
Zhu, J.,
Chen, J.,
Illumination-Invariance Optical Flow Estimation Using Weighted
Regularization Transform,
CirSysVideo(30), No. 2, February 2020, pp. 495-508.
IEEE DOI
2002
Lighting, Transforms, Optical imaging, Estimation,
Computed tomography, Standards, Image color analysis, Optical flow,
face liveness detection
BibRef
Young, S.I.[Sean I.],
Naman, A.T.,
Taubman, D.S.[David S.],
Graph Laplacian Regularization for Robust Optical Flow Estimation,
IP(29), 2020, pp. 3970-3983.
IEEE DOI
2002
BibRef
And: A1, A3, Only:
Rate-distortion optimized optical flow estimation,
ICIP15(1677-1681)
IEEE DOI
1512
Laplace equations, Estimation, Optical imaging, Kernel,
Eigenvalues and eigenfunctions, Optimization, Inverse problems,
robust estimation.
motion estimation
BibRef
Tian, L.[Long],
Tu, Z.G.[Zhi-Gang],
Zhang, D.J.[De-Jun],
Liu, J.[Jun],
Li, B.X.[Bao-Xin],
Yuan, J.S.[Jun-Song],
Unsupervised Learning of Optical Flow With CNN-Based Non-Local
Filtering,
IP(29), 2020, pp. 8429-8442.
IEEE DOI
2008
Optical imaging, Optical computing, Optical losses,
Optical variables control, Estimation, Optical sensors,
occlusion map
BibRef
Chen, J.,
Lai, J.,
Cai, Z.,
Xie, X.,
Pan, Z.,
Optical Flow Estimation Based on the Frequency-Domain Regularization,
CirSysVideo(31), No. 1, January 2021, pp. 217-230.
IEEE DOI
2101
Optical imaging, Frequency-domain analysis, Wavelet transforms,
Estimation, Image edge detection, Integrated optics, wavelet transform
BibRef
Bhandari, K.[Keshav],
Zong, Z.L.[Zi-Liang],
Yan, Y.[Yan],
Revisiting Optical Flow Estimation in 360 Videos,
ICPR21(8196-8203)
IEEE DOI
2105
Training, Convolution, Wearable computers, Estimation,
Optical distortion, Computer architecture, Distortion
BibRef
Lę, H.Â.[Hoŕng-Ân],
Nimbhorkar, T.[Tushar],
Mensink, T.[Thomas],
Baslamisli, A.S.[Anil S.],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Automatic generation of dense non-rigid optical flow,
CVIU(212), 2021, pp. 103274.
Elsevier DOI
2110
non-rigi, optical flow, dataset, generation, as-rigid-as-possible
BibRef
Song, X.L.[Xiao-Lin],
Zhao, Y.Y.[Yu-Yang],
Yang, J.Y.[Jing-Yu],
STC-Flow: Spatio-temporal context-aware optical flow estimation,
SP:IC(99), 2021, pp. 116441.
Elsevier DOI
2111
Spatio-temporal network, Context modeling,
Optical flow estimation, Deep learning
BibRef
Luo, W.[Wei],
Zhang, F.L.[Fang-Long],
Yang, J.[Jian],
Yang, J.Y.[Jing-Yu],
Region Tree Based Sparse Model for Optical Flow Estimation,
ICPR14(2077-2082)
IEEE DOI
1412
Dictionaries
BibRef
Boquet-Pujadas, A.[Aleix],
Olivo-Marin, J.C.[Jean-Christophe],
Reformulating Optical Flow to Solve Image-Based Inverse Problems and
Quantify Uncertainty,
PAMI(45), No. 5, May 2023, pp. 6125-6141.
IEEE DOI
2304
Uncertainty, Force, Brightness, Meteorology, Mathematical models,
Image reconstruction, Inverse problems, Inverse problems, mechanobiology
BibRef
Shi, H.[Hao],
Zhou, Y.F.[Yi-Fan],
Yang, K.L.[Kai-Lun],
Yin, X.T.[Xiao-Ting],
Wang, Z.[Ze],
Ye, Y.Z.[Yao-Zu],
Yin, Z.[Zhe],
Meng, S.[Shi],
Li, P.[Peng],
Wang, K.W.[Kai-Wei],
PanoFlow: Learning 360° Optical Flow for Surrounding Temporal
Understanding,
ITS(24), No. 5, May 2023, pp. 5570-5585.
IEEE DOI
2305
Optical flow, Estimation, Optical distortion, Distortion,
Image motion analysis, Cameras, Intelligent vehicles,
synthetic dataset
BibRef
Deng, C.X.[Chang-Xing],
Luo, A.[Ao],
Huang, H.B.[Hai-Bin],
Ma, S.[Shaodan],
Liu, J.Y.[Jiang-Yu],
Liu, S.C.[Shuai-Cheng],
Explicit Motion Disentangling for Efficient Optical Flow Estimation,
ICCV23(9487-9496)
IEEE DOI Code:
WWW Link.
2401
BibRef
Fan, Z.Y.[Zheng-Yuan],
Cai, Z.[Zemin],
Random epipolar constraint loss functions for supervised optical flow
estimation,
PR(148), 2024, pp. 110141.
Elsevier DOI Code:
WWW Link.
2402
Optical flow estimation, Epipolar geometry, Lightweight neural network
BibRef
Tchenko, Y.C.[Yanick Christian],
Abdelkader, H.H.[Hicham Hadj],
Tabia, H.[Hedi],
Draft - Distilled Recurrent All-Pairs Field Transforms for Optical
Flow,
ICIP24(1547-1553)
IEEE DOI Code:
WWW Link.
2411
Deep learning, Adaptation models, Accuracy, Transforms,
Benchmark testing, Feature extraction, Optical flow, Deep Learning,
3D reconstruction
BibRef
Xu, J.W.[Jia-Wei],
Lu, Z.Q.[Zong-Qing],
Liao, Q.M.[Qing-Min],
LLA-Flow: A Lightweight Local Aggregation on Cost Volume for Optical
Flow Estimation,
ICIP23(3220-3224)
IEEE DOI
2312
BibRef
Kesenci, Y.[Yekta],
Boquet-Pujadas, A.[Aleix],
van Bodegraven, E.[Emma],
Étienne-Manneville, S.[Sandrine],
Labruyčre, E.[Elisabeth],
Olivo-Marin, J.C.[Jean-Christophe],
PDE-Constrained Optimization for Nuclear Mechanics,
ICIP22(2192-2195)
IEEE DOI
2211
Proteins, Deformable models, Computational modeling, Force,
Optimization, Optical flow, Nuclear mechanics, adjoint method.
BibRef
Goyal, A.[Ankit],
Mousavian, A.[Arsalan],
Paxton, C.[Chris],
Chao, Y.W.[Yu-Wei],
Okorn, B.[Brian],
Deng, J.[Jia],
Fox, D.[Dieter],
IFOR: Iterative Flow Minimization for Robotic Object Rearrangement,
CVPR22(14767-14777)
IEEE DOI
2210
HTML Version. Training, Minimization, Iterative algorithms, Data models,
Pattern recognition, Optical flow, Robot vision, Vision applications and systems
BibRef
Sui, X.C.[Xiu-Chao],
Li, S.H.[Shao-Hua],
Geng, X.[Xue],
Wu, Y.[Yan],
Xu, X.X.[Xin-Xing],
Liu, Y.[Yong],
Goh, R.[Rick],
Zhu, H.Y.[Hong-Yuan],
CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow,
CVPR22(17581-17590)
IEEE DOI
2210
Convolutional codes, Image motion analysis, Correlation,
Smoothing methods, Semantics, Estimation, Low-level vision,
Video analysis and understanding
BibRef
Sherina, E.[Ekaterina],
Krainz, L.[Lisa],
Hubmer, S.[Simon],
Drexler, W.[Wolfgang],
Scherzer, O.[Otmar],
Challenges for Optical Flow Estimates in Elastography,
SSVM21(128-139).
Springer DOI
2106
BibRef
Godet, P.[Pierre],
Boulch, A.[Alexandre],
Plyer, A.[Aurélien],
Besnerais, G.L.[Guy Le],
STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame
Optical Flow Estimation,
ICPR21(2462-2469)
IEEE DOI
2105
Tensors, Redundancy, Estimation, Writing, Spatial databases,
Robustness, Spatiotemporal phenomena
BibRef
Zhao, R.,
Xiong, R.,
Zhu, S.,
Zeng, B.,
Huang, T.,
Gao, W.,
Optical Flow Estimation Between Images of Different Resolutions via
Variational Method,
VCIP20(427-430)
IEEE DOI
2102
Optical imaging, Image resolution, Estimation, Task analysis,
Nonlinear optics, Mathematical model, Lighting, Optical flow, aliasing
BibRef
Im, W.B.[Woo-Bin],
Kim, T.K.[Tae-Kyun],
Yoon, S.E.[Sung-Eui],
Unsupervised Learning of Optical Flow with Deep Feature Similarity,
ECCV20(XXIV:172-188).
Springer DOI
2012
BibRef
Zheng, Y.,
Zhang, M.,
Lu, F.,
Optical Flow in the Dark,
CVPR20(6748-6756)
IEEE DOI
2008
Optical sensors, Brightness, Adaptive optics, Optical noise,
Optical flow, Cameras
BibRef
Hur, J.[Junhwa],
Roth, S.[Stefan],
Self-Supervised Multi-Frame Monocular Scene Flow,
CVPR21(2683-2693)
IEEE DOI
2111
BibRef
Earlier:
Self-Supervised Monocular Scene Flow Estimation,
CVPR20(7394-7403)
IEEE DOI
2008
Training, Solid modeling, Visualization,
Runtime, Pipelines, Real-time systems.
Optical imaging, Estimation, Cameras, Optical losses, Decoding, Task analysis
BibRef
Bar-Haim, A.,
Wolf, L.,
ScopeFlow: Dynamic Scene Scoping for Optical Flow,
CVPR20(7995-8004)
IEEE DOI
2008
Training, Optical imaging, Agriculture, Estimation, Protocols,
Benchmark testing, Adaptive optics
BibRef
Liu, L.[Liang],
Zhang, J.N.[Jiang-Ning],
He, R.F.[Rui-Fei],
Liu, Y.[Yong],
Wang, Y.B.[Ya-Biao],
Tai, Y.[Ying],
Luo, D.H.[Dong-Hao],
Wang, C.J.[Cheng-Jie],
Li, J.L.[Ji-Lin],
Huang, F.Y.[Fei-Yue],
Learning by Analogy: Reliable Supervision From Transformations for
Unsupervised Optical Flow Estimation,
CVPR20(6488-6497)
IEEE DOI
2008
Optical imaging, Training, Optical variables control, Reliability,
Pipelines, Adaptive optics, Unsupervised learning
BibRef
Yang, G.,
Deng, Z.,
Wang, S.,
Li, Z.,
Masked Label Learning for Optical Flow Regression,
ICPR18(1139-1144)
IEEE DOI
1812
Computational modeling, Adaptation models, Optical imaging,
Training, Task analysis, Calibration, Optical losses
BibRef
Ramakrishnan, N.,
Prakash, A.,
Srikanthan, T.,
Low-Complexity Global Motion Estimation for Aerial Vehicles,
ECVW17(402-410)
IEEE DOI
1709
Cameras, Complexity theory, Computational modeling, Estimation,
Feature extraction, Surveillance, Videos
BibRef
Dahlan, H.A.,
Hancock, E.R.,
Smith, W.A.P.,
Reflectance-aware optical flow,
ICPR16(2860-2865)
IEEE DOI
1705
Image color analysis, Light emitting diodes, Light sources,
Lighting, Optical imaging, Optical sensors, Optical, variables, control
BibRef
Bergamasco, F.[Filippo],
Torsello, A.[Andrea],
Robles-Kelly, A.[Antonio],
Spectral Dichromatic Parameter Recovery from Two Views via Total
Variation Hyper-priors,
HISP16(I: 317-333).
Springer DOI
1704
Joint estimation of illuminant, reflectance, and shading of each
pixel, as well as the optical flow between the two views.
BibRef
Pathak, S.,
Moro, A.,
Yamashita, A.,
Asama, H.,
A decoupled virtual camera using spherical optical flow,
ICIP16(4488-4492)
IEEE DOI
1610
Adaptive optics
BibRef
Snape, P.[Patrick],
Roussos, A.[Anastasios],
Panagakis, Y.[Yannis],
Zafeiriou, S.P.[Stefanos P.],
Face Flow,
ICCV15(2993-3001)
IEEE DOI
1602
multi-frame optical flow in an expressive sequence of facial images.
BibRef
Walker, J.,
Gupta, A.,
Hebert, M.,
Dense Optical Flow Prediction from a Static Image,
ICCV15(2443-2451)
IEEE DOI
1602
Context
BibRef
Blu, T.[Thierry],
Moulin, P.[Pierre],
Gilliam, C.[Christopher],
Approximation order of the LAP optical flow algorithm,
ICIP15(48-52)
IEEE DOI
1512
Optical flow; Padé approximante; all-pass filtering; approximation
BibRef
Li, J.Z.[Ji-Zhou],
Gilliam, C.[Christopher],
Blu, T.[Thierry],
A multi-frame optical flow spot tracker,
ICIP15(3670-3674)
IEEE DOI
1512
Spot tracking
BibRef
Elliethy, A.S.[Ahmed S.],
Sharma, G.[Gaurav],
Improved specular regions localization and optical-flow based motion
estimation via joint processing,
ICIP15(232-236)
IEEE DOI
1512
Specular region estimation; motion estimation; optical flow
BibRef
Jeong, J.[Jisoo],
Lin, J.M.[Jamie Menjay],
Porikli, F.M.[Fatih M.],
Kwak, N.[Nojun],
Imposing Consistency for Optical Flow Estimation,
CVPR22(3171-3181)
IEEE DOI
2210
Tracking, Annotations, Estimation, Self-supervised learning,
Semisupervised learning, Benchmark testing,
Motion and tracking
BibRef
Park, S.[Sungheon],
Kwak, N.[Nojun],
Illumination robust optical flow estimation by
illumination-chromaticity decoupling,
ICIP15(1910-1914)
IEEE DOI
1512
HSL color space; Optical flow; illumination robust
BibRef
Luo, Y.[Ye],
Cheong, L.F.[Loong-Fah],
Cabibihan, J.J.[John-John],
Modeling the Temporality of Saliency,
ACCV14(III: 205-220).
Springer DOI
1504
Evolution of changes over multiple frames.
BibRef
Vacar, C.[Cornelia],
Cheriet, F.[Farida],
Robust probabilistic optical flow for video sequences,
ICIP14(1962-1966)
IEEE DOI
1502
Approximation algorithms
BibRef
Daraei, M.H.[Mohammad Hossein],
Optical Flow Computation in the Presence of Spatially-Varying Motion
Blur,
ISVC14(I: 140-150).
Springer DOI
1501
BibRef
Drews, P.[Paulo],
Nascimento, E.R.[Erickson R.],
Xavier, A.[Arthur],
Campos, M.[Mario],
Generalized Optical Flow Model for Scattering Media,
ICPR14(3999-4004)
IEEE DOI
1412
Adaptive optics
BibRef
Fan, M.Y.[Ming-Ying],
Imiya, A.[Atsushi],
Kawamoto, K.[Kazuhiko],
Affine Colour Optical Flow Computation,
CAIP13(507-514).
Springer DOI
1308
BibRef
Stoll, M.[Michael],
Maurer, D.[Daniel],
Bruhn, A.[Andrés],
Variational Large Displacement Optical Flow Without Feature Matches,
EMMCVPR17(79-92).
Springer DOI
1805
BibRef
Stoll, M.[Michael],
Volz, S.[Sebastian],
Bruhn, A.[Andrés],
Adaptive Integration of Feature Matches into Variational Optical Flow
Methods,
ACCV12(III:1-14).
Springer DOI
1304
BibRef
Li, W.B.[Wen-Bin],
Chen, Y.[Yang],
Lee, J.[Jee_Hang],
Ren, G.[Gang],
Cosker, D.[Darren],
Robust optical flow estimation for continuous blurred scenes using
RGB-motion imaging and directional filtering,
WACV14(792-799)
IEEE DOI
1406
Cameras
BibRef
Li, W.B.[Wen-Bin],
Cosker, D.[Darren],
Brown, M.[Matthew],
Tang, R.[Rui],
Optical Flow Estimation Using Laplacian Mesh Energy,
CVPR13(2435-2442)
IEEE DOI
1309
Laplacian Mesh; Optical Flow
BibRef
Li, W.B.[Wen-Bin],
Cosker, D.[Darren],
Brown, M.[Matthew],
An Anchor Patch Based Optimization Framework for Reducing Optical Flow
Drift in Long Image Sequences,
ACCV12(III:112-125).
Springer DOI
1304
BibRef
Lim, H.J.[Hyung-Jun],
Kim, D.Y.[Dong-Yoon],
Choi, J.[Joonsung],
Park, S.H.[Seung-Ho],
Park, S.H.[Se Hyeok],
Kim, J.H.[Jae Hyun],
Park, H.W.[Hyun-Wook],
An optimal motion vector regularization method using
variance-distortion curve,
ICIP12(1525-1528).
IEEE DOI
1302
BibRef
Portz, T.[Travis],
Zhang, L.[Li],
Jiang, H.R.[Hong-Rui],
Optical flow in the presence of spatially-varying motion blur,
CVPR12(1752-1759).
IEEE DOI
1208
BibRef
Wang, H.B.[Hai-Bo],
Pan, C.H.[Chun-Hong],
Davoine, F.[Franck],
Liu, S.G.[Shao-Guo],
Hierarchical fusion of descriptor matching and L-K optical flow,
ICIP11(1893-1896).
IEEE DOI
1201
BibRef
Quelin, M.,
Bouzerdoum, A.,
Phung, S.L.[Son Lam],
Fast digital optical flow estimation based on EMD,
EUVIP10(155-158).
IEEE DOI
1110
BibRef
Maier, J.[Josef],
Ambrosch, K.[Kristian],
Distortion Compensation for Movement Detection Based on Dense Optical
Flow,
ISVC11(I: 168-179).
Springer DOI
1109
BibRef
Puxbaum, P.[Philipp],
Ambrosch, K.[Kristian],
Gradient-Based Modified Census Transform for Optical Flow,
ISVC10(I: 437-448).
Springer DOI
1011
BibRef
Chin, Y.[Yi],
Tsai, C.J.[Chun-Jen],
Dense true motion field compensation for video coding,
ICIP13(1958-1961)
IEEE DOI
1402
BibRef
Earlier:
Bayesian dense motion field estimation with landmark constraint,
ICIP10(773-776).
IEEE DOI
1009
decoder-side motion estimation
BibRef
Marti, R.[Robert],
Noble, J.A.[J. Alison],
Elastic modulus imaging using optical flow and image registration,
ICIP10(605-608).
IEEE DOI
1009
BibRef
Hossain, I.[Imtiaz],
Gunturk, B.[Bahadir],
Joint photometric registration and optical flow estimation,
ICIP10(1201-1204).
IEEE DOI
1009
BibRef
Gai, J.D.[Jia-Ding],
Stevenson, R.L.[Robert L.],
Optical flow estimation with p-harmonic regularization,
ICIP10(1969-1972).
IEEE DOI
1009
BibRef
Glocker, B.[Ben],
Heibel, T.H.[T. Hauke],
Navab, N.[Nassir],
Kohli, P.[Pushmeet],
Rother, C.[Carsten],
TriangleFlow:
Optical Flow with Triangulation-Based Higher-Order Likelihoods,
ECCV10(III: 272-285).
Springer DOI
1009
See also Discrete tracking of parametrized curves.
BibRef
Schoueri, Y.[Yasmina],
Scaccia, M.[Milena],
Rekleitis, I.[Ioannis],
Optical Flow from Motion Blurred Color Images,
CRV09(1-7).
IEEE DOI
0905
BibRef
Rodríguez, A.L.[Antonio L.],
López-de-Teruel, P.E.[Pedro E.],
Ruiz, A.[Alberto],
Real-Time Descriptorless Feature Tracking,
CIAP09(853-862).
Springer DOI
0909
Long-term sparse optical flow.
BibRef
Lin, D.[Dahua],
Grimson, W.E.L.[W. Eric L.],
Fisher, J.W.[John W.],
Modeling and estimating persistent motion with geometric flows,
CVPR10(1-8).
IEEE DOI
1006
BibRef
Earlier:
Learning visual flows: A Lie algebraic approach,
CVPR09(747-754).
IEEE DOI
0906
BibRef
Fehr, J.[Janis],
Local Rotation Invariant Patch Descriptors for 3D Vector Fields,
ICPR10(1381-1384).
IEEE DOI
1008
BibRef
Fehr, J.[Janis],
Reisert, M.[Marco],
Burkhardt, H.[Hans],
Cross-Correlation and Rotation Estimation of Local 3D Vector Field
Patches,
ISVC09(I: 287-296).
Springer DOI
0911
BibRef
Earlier:
Fast and Accurate Rotation Estimation on the 2-Sphere without
Correspondences,
ECCV08(II: 239-251).
Springer DOI
0810
BibRef
Glocker, B.[Ben],
Komodakis, N.[Nikos],
Paragios, N.[Nikos],
Navab, N.[Nassir],
Approximated Curvature Penalty in Non-rigid Registration Using Pairwise
MRFs,
ISVC09(I: 1101-1109).
Springer DOI
0911
BibRef
Glocker, B.[Ben],
Paragios, N.[Nikos],
Komodakis, N.[Nikos],
Tziritas, G.[Georgios],
Navab, N.[Nassir],
Optical flow estimation with uncertainties through dynamic MRFs,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Fashandi, H.[Homa],
Fazel-Rezai, R.[Reza],
Pistorius, S.[Stephen],
Optical Flow and Total Least Squares Solution for Multi-scale Data in
an Over-Determined System,
ISVC07(II: 33-42).
Springer DOI
0711
BibRef
Fahad, A.[Ahmed],
Morris, T.[Tim],
Multiple Combined Constraints for Optical Flow Estimation,
ISVC07(II: 11-20).
Springer DOI
0711
BibRef
Chen, W.X.[Wei-Xin],
Barron, J.L.[John L.],
High Accuracy Optical Flow Method Based on a Theory for Warping:
3D Extension,
ICIAR10(I: 250-262).
Springer DOI
1006
BibRef
Faisal, M.[Mohammad],
Barron, J.L.[John L.],
High Accuracy Optical Flow Method Based on a Theory for Warping:
Implementation and Qualitative/Quantitative Evaluation,
ICIAR07(513-525).
Springer DOI
0708
BibRef
Dong, G.[Gang],
Baskin, T.I.,
Palaniappan, K.,
Motion Flow Estimation from Image Sequences with Applications to
Biological Growth and Motility,
ICIP06(1245-1248).
0610
IEEE DOI
BibRef
Sun, Z.H.[Zhao-Hui],
A Three-Frame Approach to Constraint-Consistent Motion Estimation,
ICPR06(I: 35-38).
IEEE DOI
0609
BibRef
Wang, H.Y.[Hai-Yun],
Ma, K.K.[Kai-Kuang],
Accurate Optical Flow Estimation in Noisy Sequences by Robust
Tensor-driven Anisotropic Diffusion,
ICIP05(III: 1292-1295).
IEEE DOI
0512
BibRef
Karantzalos, K.,
Paragios, N.,
Higher Order Polynomials, Free Form Deformations and Optical
Flow Estimation,
ICIP05(III: 1280-1283).
IEEE DOI
0512
BibRef
Kim, J.[Jangheon],
Sikora, T.,
Hybrid Recursive Energy-based Method for Robust Optical Flow on Large
Motion Fields,
ICIP05(I: 129-132).
IEEE DOI
0512
BibRef
Hamid, R.,
Bobick, A.,
Yezzi, A.J.,
Audio-visual flow:
A variational approach to multi-modal flow estimation,
ICIP04(IV: 2563-2566).
IEEE DOI
0505
BibRef
Stein, F.[Fridtjof],
Efficient Computation of Optical Flow Using the Census Transform,
DAGM04(79-86).
Springer DOI
0505
BibRef
Myerscough, P.J.,
Guiding Optical Flow Estimation,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Goncalves, N.[Nuno],
Araujo, H.[Helder],
Linear solution for the pose estimation of noncentral catadioptric
systems,
OMNIVIS07(1-7).
IEEE DOI
0710
BibRef
Earlier:
Projection model, 3D reconstruction and rigid motion estimation from
non-central catadioptric images,
3DPVT04(325-332).
IEEE DOI
0412
BibRef
And:
Rigid motion estimation from non-central catadioptric images,
ICPR04(IV: 268-271).
IEEE DOI
0409
See also Fitting conics to paracatadioptric projections of lines.
BibRef
Gupta, D.,
Daniilidis, K.,
Planar motion of a parabolic catadioptric camera,
ICPR04(IV: 68-71).
IEEE DOI
0409
BibRef
Ying, X.H.[Xiang-Hua],
Hu, Z.Y.[Zhan-Yi],
Spherical objects based motion estimation for catadioptric cameras,
ICPR04(III: 231-234).
IEEE DOI
0409
BibRef
Eriksson, M.,
Carlsson, S.,
Maximizing validity in 2d motion analysis,
ICPR04(II: 179-183).
IEEE DOI
0409
BibRef
Stratmann, I.,
Omnidirectional imaging and optical flow,
OMNIVIS02(104-111).
IEEE Abstract.
0310
BibRef
Coquin, D.,
Bolon, P.,
A new method to compute the distortion vector field from two images,
ICPR02(I: 279-282).
IEEE DOI
0211
BibRef
Barron, J.L.,
Klette, R.,
Quantitative color optical flow,
ICPR02(IV: 251-255).
IEEE DOI
0211
BibRef
Auclair-Fortier, M.F.,
Poulin, P.,
Ziou, D.,
Allili, M.,
A computational algebraic topology approach for optical flow,
ICPR02(I: 352-355).
IEEE DOI
0211
BibRef
Auclair-Fortier, M.F.,
Poulin, P.,
Ziou, D.,
Allili, M.,
A Computational Algebraic Topology Model for the Deformation of Curves,
AMDO02(56 ff).
Springer DOI
0303
BibRef
Makhervaks, V.,
Barequet, G.,
Bruckstein, A.M.,
Image flows and one-liner graphical image representation,
ICPR02(I: 640-643).
IEEE DOI
0211
BibRef
Lim, S.,
El Gamal, A.,
Optical Flow Estimation Using High Frame Rate Sequences,
ICIP01(II: 925-928).
IEEE DOI
0108
BibRef
Baumela, L.,
de Agapito, L.,
Bustos, P.,
Reid, I.D.,
Motion Estimation Using the Differential Epipolar Equation,
ICPR00(Vol III: 840-843).
IEEE DOI
HTML Version.
0009
BibRef
Yao, J.,
Visual Motion Estimation Via Second Order Cone Programming,
ICIP00(Vol III: 604-607).
IEEE DOI
0008
BibRef
Chen, L.,
A Novel Affine Invariant Feature Set and Its Application in Motion
Estimation,
ICIP00(Vol III: 612-615).
IEEE DOI
0008
BibRef
Roy, S.[Sebastien],
Govindu, V.[Venu],
MRF Solutions for Probabilistic Optical Flow Formulations,
ICPR00(Vol III: 1041-1047).
IEEE DOI
0009
BibRef
Qiu, M.L.[Mao-Lin],
Computing Optical Flow Based on the Mass-conserving Assumption,
ICPR00(Vol III: 1029-1032).
IEEE DOI
0009
BibRef
Kristoffersen, E.,
Austvoll, I.,
Engan, K.,
Dense Motion Field Estimation Using Spatial Filtering and Quasi
Eigenfunction Approximations,
ICIP05(III: 1268-1271).
IEEE DOI
0512
BibRef
Austvoll, I.[Ivar],
Directional Filters and a New Structure for Estimation of Optical Flow,
ICIP00(Vol II: 574-577).
IEEE DOI
0008
BibRef
Clocksin, W.,
A New Method for Computing Optical Flow,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Socolinsky, D.A.[Diego A.],
Wolff, L.B.[Lawrence B.],
Multispectral Optic Flow,
DARPA98(755-760).
See also Multispectral image visualization through first-order fusion.
BibRef
9800
Lundberg, A.J.[Andrew J.],
Wolff, L.B.[Lawrence B.],
Optic Flow Estimation from 3D Wavelet Edge Detection,
DARPA97(375-378).
BibRef
9700
Mester, R.,
Mühlich, M.,
Improving Motion and Orientation Estimation Using an Equilibrated Total
Least Squares Approach,
ICIP01(II: 929-932).
IEEE DOI
0108
BibRef
Earlier: A2, A1:
The role of total least squares in motion analysis,
ECCV98(II: 305).
Springer DOI
BibRef
Sporring, J.[Jon], and
Nielsen, M.[Mads],
Direct estimation of First Order Optic Flow,
TAIA95(225-238).
First order optic flow using Lie derivatives to
make spatial filters where the flow is measured as Fourier phase
shift.
BibRef
9500
Kothari, R., and
Bellando, J.,
Optical Flow Determination Using Topology Preserving Mappings,
ICIP97(III: 344-347).
IEEE DOI
BibRef
9700
Giaccone, P.R.,
Greenhill, D.R., and
Jones, G.A.,
Recovering Very Large Visual Motion Fields,
SCIA97(xx-yy)
9705
HTML Version.
BibRef
Arnspang, J.,
Optic Acceleration,
ICCV88(364-373).
IEEE DOI
BibRef
8800
Rougee, A.,
Levy, B.C.,
Willsky, A.S.,
Reconstruction of Two-Dimensional Velocity Fields as a
Linear Estimation Problem,
ICCV87(646-650).
BibRef
8700
Lai, J.,
Gauch, J., and
Crisman, J.,
Using Color to Computer Optical Flow,
SPIE(2056), 1993, pp. 186-194.
BibRef
9300
Cooper, D.H.[David H.],
Madsen, B.R.[Bo René],
Graham, J.[Jim],
Estimating Motion in Ultrasound Images of the Small Bowel:
Optical Flow without Image Structure,
SCIA03(571-578).
Springer DOI
0310
BibRef
Cooper, D.H., and
Graham, J.,
Estimating Motion in Noisy, Textured Images:
Optical Flow in Medical Ultrasound,
BMVC96(Poster Session 2).
9608
University of Manchester
BibRef
Lee, D.,
Papageorgiou, A., and
Wasilkowski, G.W.,
Computing Optical Flow,
Motion89(99-106).
BibRef
8900
Earlier:
Computational Aspects of Determining Optical Flow,
ICCV88(612-618).
IEEE DOI A study of some aspects (quote from abstract).
BibRef
Blicher, A.P.[A. Peter], and
Omohundro, S.M.[Stephen M.],
Unique Recovery of Motion and Optic Flow Via Lie Algebras,
IJCAI85(889-891).
An abstract method that shows rigid 3D motion recovery is possible
from the time derivative of smooth
monochrome image at 6 points, or 2 points for color.
BibRef
8500
Rodrigues, V.,
Castan, S., and
Pailhes, L.M.,
Displacement Vector Field Computation by Temporal Covariance Model,
CVPR85(212-214). (Laboratoire CERFIA) Preliminary.
BibRef
8500
Huang, L.Q.[Liu-Qing],
Aloimonos, Y.[Yiannis],
How Normal Flow Constrains Relative Depth for an Active Observer,
IVC(12), No. 7, September 1994, pp. 435-445.
Elsevier DOI
BibRef
9409
Earlier:
Relative Depth from Motion Using Normal Flow:
An Active and Purposive Solution,
Motion91(196-204).
You can get relative information without computing optical flow.
BibRef
Huang, L.,
Aloimonos, Y.,
The geometry of visual interception,
CVPR92(741-743).
IEEE DOI
0403
BibRef
Nelson, R.C., and
Aloimonos, Y.,
Obstacle Avoidance Using Flow Field Divergence,
PAMI(11), No. 10, October 1989, pp. 1102-1106.
IEEE DOI
BibRef
8910
Earlier:
Using Flow Field Divergence for Obstacle Avoidance:
Towards Qualitative Vision,
ICCV88(188-196).
IEEE DOI Flow field divergence is a clue to obstacles. Simple system.
Terrible bibliography with many errors in it.
BibRef
Nelson, R.C., and
Aloimonos, Y.,
Finding Motion Parameters from Spherical Flow Fields (or the
Advantages of Having Eyes in the Back of Your Head),
BioCyber(58), 1988, pp. 261-273.
BibRef
8800
Earlier:
CVWS87(145-150).
If you have more information than is physically
possible then you can solve some problems.
BibRef
Gharavi, H., and
Mills, M.,
Block Matching Motion Estimation Algorithms: New Results,
CirSys(37), No. 5, May 1990, pp. 649-651.
IEEE Top Reference.
BibRef
9005
Magarey, J.[Julian],
Kingsbury, N.G.[Nick G.],
Motion Estimation Using A Complex-Valued Wavelet Transform,
TSP(46), No. 4, April 1998, pp. 1069-1084.
9804
BibRef
Earlier:
An Improved Motion Estimation Algorithm Using Complex Wavelets,
ICIP96(I: 969-972).
IEEE DOI
BibRef
Magarey, J.[Julian],
Kokaram, A.[Anil],
Kingsbury, N.[Nick],
Robust motion estimation using chrominance information in colour image
sequences,
CIAP97(I: 486-).
Springer DOI
9709
BibRef
And:
Optimal Schemes for Motion Estimation on Colour Image Sequences,
ICIP97(II: 187-190).
IEEE DOI
9710
BibRef
Young, R.W.,
Kingsbury, N.G.,
Frequency Domain Motion Estimation Using a Complex Lapped Transform,
IP(2), No. 1, January 1993, pp. 2-17.
IEEE DOI
BibRef
9301
Efstratiadis, S.N.,
Katsaggelos, A.K.,
An Adaptive Regularized Recursive Displacement Estimation Algorithm,
IP(2), No. 3, July 1993, pp. 341-352.
IEEE DOI
BibRef
9307
Zhang, J.,
Hanauer, G.G.,
The Application of Mean-Field Theory to Image Motion Estimation,
IP(4), No. 1, January 1995, pp. 19-33.
IEEE DOI
BibRef
9501
Li, W.,
Salari, E.,
Successive Elimination Algorithm for Motion Estimation,
IP(4), No. 1, January 1995, pp. 105-107.
IEEE DOI
BibRef
9501
Jong, C.M.[Chiou-Muh],
Salari, E.[Ezzatollah],
Analysis of Image Deformation under Orthographic Projection and
Flow Parameter Estimation,
PR(22), No. 3, 1989, pp. 309-315.
Elsevier DOI
BibRef
8900
Nomura, A.,
Miike, H.,
Koga, K.,
Field Theory Approach for Determining Optical Flow,
PRL(12), 1991, pp. 183-190.
BibRef
9100
Nomura, A.,
Miike, H.,
Koga, K.,
Determining Motion Fields Under Nonuniform Illumination,
PRL(16), No. 3, March 1995, pp. 285-296.
BibRef
9503
Nomura, A.[Atsushi],
Spatio-temporal optimization method for determining motion vector
fields under non-stationary illumination,
IVC(18), No. 12, September 2000, pp. 939-950.
Elsevier DOI
0008
BibRef
Earlier:
Integral based approach for determining motion vector fields,
CIAP97(I: 462-469).
Springer DOI
9709
BibRef
Cropper, S.J.,
Derrington, A.M.,
Detection and Motion Detection in Chromatic and Luminance Beats,
JOSA-A(13), No. 3, March 1996, pp. 401-407.
BibRef
9603
Srinivasan, S.[Sridhar],
Chellappa, R.[Rama],
Noise-resilient estimation of optical flow by use of overlapped basis
functions,
JOSA-A(16), No. 3, March 1999, pp. 493-507.
BibRef
9903
Earlier:
Optical Flow Using Overlapped Basis Functions for Solving Global Motion
Problems,
ECCV98(II: 288).
Springer DOI
BibRef
Earlier:
Robust Modeling and Estimation of Optical Flow with Overlapped Basis
Functions,
UMDTR3721, December 1996.
WWW Link.
WWW Link.
BibRef
Srinivasan, S.,
Chellappa, R.,
An Integrated Approach to Image Stabilization,
Mosaicking and Super-Resolution,
DARPA97(247-254).
BibRef
9700
And:
Image Stabilization and Mosaicking Using the Overlapped Basis
Optical Flow Field,
ICIP97(III: 356-359).
IEEE DOI
BibRef
Liu, H.C.[Hong-Che],
Hong, T.H.[Tsai-Hong],
Herman, M.,
Chellappa, R.,
A Generalized Motion Model for Estimating Optical Flow
Using 3-D Hermite Polynomials,
ICPR94(A:361-366).
IEEE DOI
BibRef
9400
Rekleitis, I.M.,
Optical flow recognition from the power spectrum of a single blurred
image,
ICIP96(III: 791-794).
IEEE DOI
9610
BibRef
Davis, C.Q.,
Karu, Z.Z.,
Freeman, D.M.,
Equivalence of Subpixel Motion Estimators Based on
Optical Flow and Block Matching,
SCV95(7-12)
IEEE DOI M.I.T.
Rigid motions. Block matching: minimize the difference between shifted
versions of the images.
BibRef
9500
Vico, F.J.,
Garrido, F.J.,
Sandoval, F.,
Leibovic, N.,
A connectionist model for local speed estimation,
ICIP94(II: 262-266).
IEEE DOI
9411
BibRef
Amini, A.A.,
A Scalar Function Formulation For Optical Flow,
ECCV94(A:123-131).
Springer DOI
BibRef
9400
Germain, F.,
Skordas, T.,
An Image Motion Estimation Technique Based on a Combined Statistical Test
and Spatiotemporal Generalised Likelihood Ratio Approach,
ECCV94(A:152-157).
Springer DOI
BibRef
9400
Cornelius, N.[Nancy], and
Kanade, T.[Takeo],
Adapting Optical-Flow to Measure Object Motion in Reflectance
and X-Ray Image Sequences,
Motion83(50-58).
BibRef
8300
And:
DARPA83(257-265).
BibRef
And:
CMU-CS-TR-83-119, CMU CS Dept.
BibRef
Derou, D.,
Dinten, J.M.,
Herault, L.,
Niez, J.J.,
Physical-Model Based Reconstruction of the Global
Instantaneous Velocity Field from Velocity Measurements at a Few Points,
PBMCV95(SESSION 3)
BibRef
9500
Wang, W.H.[Wen-Hao],
Lie, W.N.[Wen-Nung],
Chen, Y.C.[Yung-Chang],
A fuzzy-computing method for rotation-invariant image tracking,
ICIP94(I: 540-544).
IEEE DOI
9411
BibRef
Sherman, I.,
Spitzer, H.,
Model for local image velocity detection of early visual processing,
ICPR94(A:819-821).
IEEE DOI
9410
BibRef
Boyce, J.F.,
Protheroe, S.R.,
Haddon, J.F.,
A relaxation computation of optic flow from spatial and temporal
cooccurrence matrices,
ICPR92(III:594-597).
IEEE DOI
9208
BibRef
Markandey, V.[Vishal],
System and method for determining optical flow,
US_Patent5,680,487, Oct 21, 1997
WWW Link.
BibRef
9710
And:
Optical flow computation for moving sensors,
US_Patent5,257,209, Oct 26, 1993
WWW Link.
BibRef
Markandey, V.,
Flinchbaugh, B.E.,
Multispectral Constraints for Optical Flow Computation,
ICCV90(38-41).
IEEE DOI
BibRef
9000
Werkhoven, P.,
Toet, A.,
The Estimation of Displacement Vector Fields by Means of
Adaptive Affine Transformations,
ICPR86(798-800).
BibRef
8600
Forbus, K.D.,
Spatial and Qualitative Aspects of Reasoning about Motion,
AAAI-80(170-173).
BibRef
8000
Forbus, K.D.[Kenneth D.],
A Study of Qualitative and Geometric Knowledge in
Reasoning about Motion,
MIT AI-TR-615, February 1981.
WWW Link.
BibRef
8102
Lavin, M.A.,
Analysis of Scenes from a Moving Viewpoint,
MIT-AI79(183-208).
BibRef
7900
Chapter on Optical Flow Field Computations and Use continues in
Event Camera Opeical Flow .