DAVIS: Densely Annotated VIdeo Segmentation,
WWW Link.
2017.
Dataset, Video Segmentation. For the competition at CVPR 2017.
Video Instance Segmentation - YouTube-VOS,
WWW Link.
Dataset, Video Segmentation. Dataset for video instance segmentation.
Video Instance Segmentation - YouTube-VOS,
WWW Link.
Dataset, Video Segmentation. Dataset for video instance segmentation.
And related to Youtube-VIS.
Qi, J.Y.[Ji-Yang],
Gao, Y.[Yan],
Hu, Y.[Yao],
Wang, X.G.[Xing-Gang],
Liu, X.Y.[Xiao-Yu],
Bai, X.[Xiang],
Belongie, S.[Serge],
Yuille, A.L.[Alan L.],
Torr, P.H.S.[Philip H.S.],
Bai, S.[Song],
OVIS: Occluded Video Instance Segmentation,
Online2021.
WWW Link.
Dataset, Video Segmentation. Designed with the philosophy of perceiving object occlusions in
videos, which could reveal the complexity and the diversity of
real-world scenes.
BibRef
2100
Potter, J.L.[Jerry L.],
Scene Segmentation Using Motion Information,
CGIP(6), No. 6, December 1977, pp. 558-581.
Elsevier DOI
BibRef
7712
Earlier:
Scene Segmentation by Velocity Measurements Obtained with a Cross-Shaped
Template,
IJCAI75(803-810).
Perform analysis only at grid points. Use a cross template at the
grid points. Locate the boundary of the arms of the cross (if any),
and use these to follow the object to the next point. Find the
match for these templates in next image, T and L templates are
introduced to find occluding objects. Nonrigid (continuous)
motion, acceleration, z direction motion, and real time analysis is
possible. Points are grouped based on velocity (x,y,z),
acceleration, and continuity of motion.
BibRef
Potter, J.L.,
Velocity as a Cue to Segmentation,
SMC(5), 1975, pp. 390-394.
BibRef
7500
Potter, J.L.,
Extraction and Utilization of Motion in Scene Description,
Ph.D.Univ. of Wisconsin, 1974.
BibRef
7400
Murray, D.W., and
Buxton, B.F.,
Scene Segmentation from Visual Motion Using Global Optimization,
PAMI(9), No. 2, March 1987, pp. 220-228.
Uses a MAP criterion and simulated annealing to search for the
optimal segmentation when given the optical flow. 1200
iterations are used.
BibRef
8703
Murray, D.W., and
Buxton, B.F.,
Experiments in the Machine Interpretation of Visual Motion,
Cambridge:
MIT Press1990.
BibRef
9000
BookAlgorithms and systems for 2-D motion in an image, the 3-D
structure and object recognition.
BibRef
Harris, J.G.,
An Analog Network for Continuous-Time Segmentation,
IJCV(10), No. 1, February 1993, pp. 43-51.
Springer DOI Hardware implementation of motion segmentation technique.
See also Analog Hardware for Detecting Discontinuities in Early Vision.
BibRef
9302
Park, D.,
Adaptive Bayesian Decision-Model for Motion Segmentation,
PRL(15), No. 12, December 1994, pp. 1183-1189.
BibRef
9412
Tanaka, M.,
On the Representation of the Projected Motion Group in 2+1D,
PRL(14), 1993, pp. 871-678.
BibRef
9300
Tanaka, M.,
Kurita, T.,
Umeyama, S.,
Image Understanding Via Representation of the Projected Motion Group,
PRL(15), No. 10, October 1994, pp. 993-1001.
BibRef
9410
Zheng, H.Y.,
Blostein, S.D.,
Motion-Based Object Segmentation and Estimation Using the MDL Principle,
IP(4), No. 9, September 1995, pp. 1223-1235.
IEEE DOI
BibRef
9509
Choi, J.G.,
Lee, S.W.,
Kim, S.D.,
Spatiotemporal Video Segmentation Using a Joint Similarity Measure,
CirSysVideo(7), No. 2, April 1997, pp. 279-286.
IEEE Top Reference.
9704
BibRef
Lee, S.W.,
Choi, J.G.,
Kim, S.D.,
Scene Segmentation Using a Combined Criterion of Motion and Intensity,
OptEng(36), No. 8, August 1997, pp. 2346-2352.
9708
BibRef
Borshukov, G.D.,
Bozdagi, G.,
Altunbasak, Y.,
Tekalp, A.M.,
Motion Segmentation by Multistage Affine Classification,
IP(6), No. 11, November 1997, pp. 1591-1594.
IEEE DOI
9710
Build on Wang and Adelson:
See also Representing Moving Images with Layers. Clustering replaced by merging, implement in multiple stages.
BibRef
Bober, M.[Miroslaw],
Petrou, M.,
Kittler, J.V.,
Nonlinear Motion Estimation Using The Supercoupling Approach,
PAMI(20), No. 5, May 1998, pp. 550-555.
IEEE DOI
9806
BibRef
Earlier: A2, A1, A3:
Multiresolution Motion Segmentation,
ICPR94(A:379-383).
Efficient multiresolution approach for motion segmentation.
BibRef
Zhang, K.[Kui],
Bober, M.,
Kittler, J.V.,
Video Coding Using Affine Motion Compensated Prediction,
ICASSP96(XX).
BibRef
9600
And:
Motion Based Image Segmentation for Video Coding,
ICIP95(III: 476-479).
IEEE DOI
9510
BibRef
And:
Motion Compensation: The Selection of Optimal Motion Estimation Technique
and Quantization Levels,
DSP95(457-462).
BibRef
And:
Variable Block Size Video Coding with
Motion Prediction and Motion Segmentation,
SPIE(2419), February 1995, pp. 62-70.
BibRef
And:
Robust Motion Estimation and Multistage VQ for Sequence Compression,
ICIP94(II: 452-456).
IEEE DOI
9411
Dept. of Electronic Eng.. University of Surrey.
BibRef
Salari, E.,
Li, W.,
A fast quadtree motion segmentation for image sequence coding,
SP:IC(14), No. 10, August 1999, pp. 811-816.
Elsevier DOI
BibRef
9908
Vasconcelos, N.M.[Nuno M.],
Lippman, A.[Andrew],
Empirical Bayesian Motion Segmentation,
PAMI(23), No. 2, February 2001, pp. 217-221.
IEEE DOI
0102
BibRef
Earlier:
Empirical Bayesian EM Based Motion Segmentation,
CVPR97(527-532).
IEEE DOI
9704
(other paper?) Expectation maximation (motion with occlusions)
Layered motion representation.
See also Statistical Models of Video Structure for Content Analysis and Characterization.
BibRef
Wiskott, L.[Laurenz],
Segmentation from motion: Combining Gabor- and Mallat-Wavelets to
Overcome the Aperture and Correspondence Problems,
PR(32), No. 10, October 1999, pp. 1751-1766.
Elsevier DOI
BibRef
9910
Earlier:
Segmentation from Motion: Combining Gabor- and Mallat-Wavelets to
Overcome Aperture and Correspondence Problem,
CAIP97(329-336).
Springer DOI
9709
BibRef
And:
TR-IR-INI 96-10, Institut fur Neuroinformatik,
Ruhr-Universitat Bochum, 44780 Bochum, Germany, November 1996.
HTML Version. and
PS File.
BibRef
Kim, J.S.[Jin-Sang],
Chen, T.[Tom],
Multiple feature clustering for image sequence segmentation,
PRL(22), No. 11, September 2001, pp. 1207-1217.
Elsevier DOI
0108
BibRef
Earlier:
Segmentation of Image Sequences Using SOFM Networks,
ICPR00(Vol III: 869-872).
IEEE DOI
0009
BibRef
Rodríguez, J.A.,
Urdiales García, C.[Cristina],
Bandera Rubio, A.[Antonio],
Sandoval Hernández, F.[Francisco],
Nonuniform video coding by means of multifoveal geometries,
IJIST(12), No. 1, 2002, pp. 27-34.
WWW Link.
0202
BibRef
Rodríguez, J.A.,
Urdiales García, C.[Cristina],
Bandera Rubio, A.[Antonio],
Sandoval Hernández, F.[Francisco],
A multiresolution spatiotemporal motion segmentation technique for
video sequences based on pyramidal structures,
PRL(23), No. 14, December 2002, pp. 1761-1769.
Elsevier DOI
0208
BibRef
Valencia, G.,
Rodríguez, J.A.,
Urdiales García, C.[Cristina],
Bandera Rubio, A.[Antonio],
Sandoval Hernández, F.[Francisco],
Spatiotemporal video segmentation and
motion estimation through irregular pyramids,
PR(36), No. 6, June 2003, pp. 1445-1447.
Elsevier DOI
0304
BibRef
Valencia, G.,
Rodríguez, J.A.,
Urdiales García, C.[Cristina],
Sandoval Hernández, F.[Francisco],
Color-based video segmentation using interlinked irregular pyramids,
PR(37), No. 2, February 2004, pp. 377-380.
Elsevier DOI
0311
BibRef
Sifakis, E.[Eftychis],
Grinias, I.[Ilias],
Tziritas, G.[Georgios],
Video Segmentation Using Fast Marching and Region Growing Algorithms,
JASP(2002), No. 4, 2002, pp. 379-388.
WWW Link.
0204
See also Colour and Texture Segmentation Using Wavelet Frame Analysis, Deterministic Relaxation, and Fast Marching Algorithms.
BibRef
Grinias, I.,
Tziritas, G.,
A semi-automatic seeded region growing algorithm for video object
localization and tracking,
SP:IC(16), No. 10, August 2001, pp. 977-986.
Elsevier DOI
0001
BibRef
Panagiotakis, C.,
Grinias, I.,
Tziritas, G.,
Natural Image Segmentation Based on Tree Equipartition, Bayesian
Flooding and Region Merging,
IP(20), No. 8, August 2011, pp. 2276-2287.
IEEE DOI
1108
BibRef
Grinias, I.,
Tziritas, G.,
Foreground object localization using a flooding algorithm based on
inter-frame change and colour,
AVSBS07(523-527).
IEEE DOI
0709
BibRef
Sifakis, E.[Eftychis],
Tziritas, G.[Georgios],
Moving object localisation using a multi-label fast marching algorithm,
SP:IC(16), No. 10, August 2001, pp. 963-976.
Elsevier DOI
0001
BibRef
Earlier:
Fast Marching to Moving Object Location,
ScaleSpace99(447-452).
Change detection, Video object segmentation, Fast marching algorithm
BibRef
Mansouri, A.R.[Abdol-Reza],
Konrad, J.[Janusz],
Multiple Motion Segmentation with Level Sets,
IP(12), No. 2, February 2003, pp. 201-220.
IEEE DOI
0304
BibRef
Earlier:
Motion Segmentation with Level Sets,
ICIP99(II:126-130).
IEEE DOI
See also Approximation of Images by Basis Functions for Multiple Region Segmentation with Level Sets.
BibRef
Fowlkes, C.C.[Charless C.],
Belongie, S.J.[Serge J.],
Chung, F.[Fan],
Malik, J.[Jitendra],
Spectral Grouping Using the Nystrom Method,
PAMI(26), No. 2, February 2004, pp. 214-225.
IEEE Abstract.
0402
BibRef
Earlier: A2, A1, A3, A4:
Spectral Partitioning with Indefinite Kernels Using the Nyström
Extension,
ECCV02(III: 531 ff.).
Springer DOI
0205
See also Normalized Cuts and Image Segmentation.
See also Efficient Spatiotemporal Grouping Using the Nyström Method. Reduce computation time so that algorithm can be applied in motion application.
Leverage the fact that there are more pixels than coherent groups.
BibRef
Fowlkes, C.C.,
Belongie, S.J.,
Malik, J.,
Efficient Spatiotemporal Grouping Using the Nyström Method,
CVPR01(I:231-238).
IEEE DOI
0110
See also Normalized Cuts and Image Segmentation. Motion segmentation, Spectral segmentation then motion.
BibRef
Tripathi, S.[Subarna],
Belongie, S.J.[Serge J.],
Hwang, Y.[Youngbae],
Nguyen, T.[Truong],
Detecting temporally consistent objects in videos through object
class label propagation,
WACV16(1-9)
IEEE DOI
1606
BibRef
Earlier: A1, A3, A2, A4:
Improving streaming video segmentation with early and mid-level
visual processing,
WACV14(477-484)
IEEE DOI
1406
Accuracy
BibRef
Calderón, F.[Felix],
Marroquín, J.L.[Jose L.],
Botello, S.[Salvador],
Vemuri, B.C.[Baba C.],
The MPM-MAP algorithm for motion segmentation,
CVIU(95), No. 2, August 2004, pp. 165-183.
Elsevier DOI
0409
BibRef
Earlier: A2, A3, A1, A4:
The MPM-MAP Algorithm for Image Segmentation,
ICPR00(Vol I: 303-308).
IEEE DOI
0009
See also Hidden Markov measure field models for image segmentation.
BibRef
Kim, E.Y.[Eun Yi],
Hwang, S.W.[Sang Won],
Park, S.H.[Se Hyun],
Kim, H.J.[Hang Joon],
Spatiotemporal segmentation using genetic algorithms,
PR(34), No. 10, October 2001, pp. 2063-2066.
Elsevier DOI
0108
BibRef
Kim, E.Y.[Eun Yi],
Park, S.H.[Se Hyun],
Hwang, S.W.[Sang Won],
Kim, H.J.[Hang Joon],
Video sequence segmentation using genetic algorithms,
PRL(23), No. 7, May 2002, pp. 843-863.
Elsevier DOI
0203
BibRef
Earlier: A3, A1, A2, A4:
Object Extraction and Tracking Using Genetic Algorithms,
ICIP01(II: 383-386).
IEEE DOI
0108
BibRef
Kim, E.Y.[Eun Yi],
Park, S.H.[Se Hyun],
Automatic video segmentation using genetic algorithms,
PRL(27), No. 11, August 2006, pp. 1252-1265.
Elsevier DOI
0606
BibRef
Earlier:
A Genetic Algorithm with Automatic Parameter Adaptation for Video
Segmentation,
CAIP03(238-245).
Springer DOI
0311
Genetic algorithm, Markov random fields, Object detection, Tracking
BibRef
Park, S.H.[Se Hyun],
Kim, E.Y.[Eun Yi],
Cho, B.J.[Beom-Joon],
Genetic Algorithm-Based Video Segmentation with Adaptive Population
Size,
DAGM03(426-433).
Springer DOI
0310
BibRef
Kim, E.Y.[Eun Yi],
Jung, K.C.[Kee-Chul],
Genetic algorithms for video segmentation,
PR(38), No. 1, January 2005, pp. 59-73.
Elsevier DOI
0410
BibRef
Ayvaci, A.[Alper],
Raptis, M.[Michalis],
Soatto, S.[Stefano],
Sparse Occlusion Detection with Optical Flow,
IJCV(97), No. 3, May 2012, pp. 322-338.
WWW Link.
1203
Lambertian reflection and static illumination. A variational optimization
problem.
See also Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation.
BibRef
Georgiadis, G.[Georgios],
Ayvaci, A.[Alper],
Soatto, S.[Stefano],
Actionable saliency detection: Independent motion detection without
independent motion estimation,
CVPR12(646-653).
IEEE DOI
1208
BibRef
Ayvaci, A.[Alper],
Soatto, S.[Stefano],
Detachable Object Detection: Segmentation and Depth Ordering from
Short-Baseline Video,
PAMI(34), No. 10, October 2012, pp. 1942-1951.
IEEE DOI
1208
BibRef
Earlier:
Detachable Object Detection with Efficient Model Selection,
EMMCVPR11(191-204).
Springer DOI
1107
BibRef
Earlier:
Motion segmentation with occlusions on the superpixel graph,
WDV09(727-734).
IEEE DOI
0910
Appearance and motion.
BibRef
Lauer, F.[Fabien],
Schnorr, C.[Christoph],
Spectral clustering of linear subspaces for motion segmentation,
ICCV09(678-685).
IEEE DOI
0909
BibRef
Cremers, D.[Daniel],
Yuille, A.L.[Alan L.],
A Generative Model Based Approach to Motion Segmentation,
DAGM03(313-320).
Springer DOI
0310
BibRef
Nordberg, K.[Klas],
Farnebäck, G.[Gunnar],
Estimation of orientation tensors for simple signals by means of
second-order filters,
SP:IC(20), No. 6, July 2005, pp. 582-594.
Elsevier DOI
0506
BibRef
Earlier:
A framework for estimation of orientation and velocity,
ICIP03(III: 57-60).
IEEE DOI
0312
BibRef
Farnebäck, G.[Gunnar],
Polynomial Expansion for Orientation and Motion Estimation,
Ph.D.Thesis, Linkoping University, 2002.
HTML Version.
BibRef
0200
Farnebäck, G.[Gunnar],
Two-Frame Motion Estimation Based on Polynomial Expansion,
SCIA03(363-370).
Springer DOI
0310
BibRef
Farnebäck, G.[Gunnar],
Very High Accuracy Velocity Estimation using Orientation Tensors,
Parametric Motion, and Simultaneous Segmentation of the Motion Field,
ICCV01(I: 171-177).
IEEE DOI
0106
BibRef
Earlier:
Fast and Accurate Motion Estimation Using Orientation Tensors and
Parametric Motion Models,
ICPR00(Vol I: 135-139).
IEEE DOI
0009
BibRef
Farnebäck, G.[Gunnar],
Motion-Based Segmentation of Image Sequences Using Orientation Tensors,
SSAB97(Computer Vision)
9703
BibRef
Fan, Z.M.[Zhi-Min],
Zhou, J.[Jie],
Wu, Y.[Ying],
Multibody Grouping by Inference of Multiple Subspaces from
High-Dimensional Data Using Oriented-Frames,
PAMI(28), No. 1, January 2006, pp. 91-105.
IEEE DOI
0512
BibRef
Earlier:
Inference of multiple subspaces from high-dimensional data and
application to multibody grouping,
CVPR04(II: 661-666).
IEEE DOI
0408
BibRef
And:
Multibody motion segmentation based on simulated annealing,
CVPR04(I: 776-781).
IEEE DOI
0408
BibRef
Wong, K.Y.[King Yuen],
Spetsakis, M.E.[Minas E.],
Tracking based motion segmentation under relaxed statistical
assumptions,
CVIU(101), No. 1, January 2005, pp. 45-64.
Elsevier DOI
0512
BibRef
Earlier:
Motion Segmentation by EM Clustering of Good Features,
VideoRegister04(166).
WWW Link.
0502
BibRef
Earlier:
Motion Segmentation and Tracking,
VI02(80).
PDF File.
0208
BibRef
Wong, K.Y.,
Ye, L.,
Spetsakis, M.E.,
EM Clustering of Incomplete Data Applied to Motion Segmentation,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Bicego, M.[Manuele],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Unsupervised scene analysis: A hidden Markov model approach,
CVIU(102), No. 1, April 2006, pp. 22-41.
Elsevier DOI
0604
Scene analysis, Video processing, Video segmentation, Scene understanding, Video surveillance
See also Similarity-Based Classification of Sequences Using Hidden Markov Models.
BibRef
Regazzoni, C.S.,
Murino, V.[Vittorio],
Multilevel GMRF-based segmentation of image sequences,
ICPR92(II:713-716).
IEEE DOI
9208
BibRef
Vazquez, C.,
Mitiche, A.,
Laganiere, R.,
Joint Multiregion Segmentation and Parametric Estimation of Image
Motion by Basis Function Representation and Level Set Evolution,
PAMI(28), No. 5, May 2006, pp. 782-793.
IEEE DOI
0604
BibRef
Gheissari, N.[Niloofar],
Bab-Hadiashar, A.[Alireza],
Suter, D.[David],
Parametric model-based motion segmentation using surface selection
criterion,
CVIU(102), No. 2, May 2006, pp. 214-226.
Elsevier DOI
0605
BibRef
Earlier: A2, A1, A3:
Robust model based motion segmentation,
ICPR02(II: 753-756).
IEEE DOI
0211
Model selection, Optic flow, Motion estimation
See also Robust Optic Flow Computation.
BibRef
Bab-Hadiashar, A.[Alireza],
Gheissari, N.[Niloofar],
Range Image Segmentation Using Surface Selection Criterion,
IP(15), No. 7, July 2006, pp. 2006-2018.
IEEE DOI
0606
BibRef
Gheissari, N.[Niloofar],
Bab-Hadiashar, A.[Alireza],
Motion analysis: Model selection and motion segmentation,
CIAP03(442-448).
IEEE DOI
0310
See also Model Selection for Range Segmentation of Curved Objects.
BibRef
Bab-Hadiashar, A.[Alireza],
Range and Motion Segmentation: A Robust Approach,
TRMonash University. 1998.
PS File.
BibRef
9800
Bab-Hadiashar, A.[Alireza],
Suter, D.[David],
Robust Range Segmentation,
ICPR98(Vol II: 969-971).
IEEE DOI
9808
See also Robust Optic Flow Computation.
BibRef
Li, H.L.[Hong-Liang],
Ngan, K.N.[King Ngi],
Unsupervized Video Segmentation With Low Depth of Field,
CirSysVideo(17), No. 12, December 2007, pp. 1742-1751.
IEEE DOI
0712
BibRef
Earlier:
Unsupervised Segmentation of Defocused Video Based on Matting Model,
ICIP06(1825-1828).
IEEE DOI
0610
BibRef
Li, H.L.[Hong-Liang],
Ngan, K.N.[King Ngi], (Eds.)
Video Segmentation and Its Applications,
Springer2011, ISBN: 978-1-4419-9481-3
WWW Link.
Buy this book: Video Segmentation and Its Applications
1106
Gestures and other signals.
BibRef
Ronse, C.[Christian],
Agnus, V.[Vincent],
Geodesy on label images, and applications to video sequence processing,
JVCIR(19), No. 6, August 2008, pp. 392-408.
Elsevier DOI
0804
Label images, Mathematical morphology, Geodesic (conditional) dilation
and erosion, Geodesic reconstruction, Non-distributive lattice;
Complete lattice, Connectivity
BibRef
Agnus, V.[Vincent],
Ronse, C.[Christian],
Heitz, F.[Fabrice],
Spatio-temporal Segmentation Using 3d Morphological Tools,
ICPR00(Vol III: 877-880).
IEEE DOI
0009
BibRef
Conaire, C.Ó.[Ciarán Ó.],
O'Connor, N.E.[Noel E.],
Smeaton, A.F.[Alan F.],
Thermo-visual feature fusion for object tracking using multiple
spatiogram trackers,
MVA(19), No. 5-6, October 2008, pp. xx-yy.
Springer DOI
0810
BibRef
Conaire, C.O.,
O'Connor, N.E.,
Cooke, E.,
Smeaton, A.F.,
Multispectral Object Segmentation and Retrieval in Surveillance Video,
ICIP06(2381-2384).
IEEE DOI
0610
BibRef
Montoliu, R.[Raúl],
Pla, F.[Filiberto],
Generalized least squares-based parametric motion estimation,
CVIU(113), No. 7, July 2009, pp. 790-801.
Elsevier DOI
0905
BibRef
Earlier:
Generalized Least Squares-Based Parametric Motion Estimation Under
Non-uniform Illumination Changes,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Earlier:
Multiple Parametric Motion Model Estimation and Segmentation,
ICIP01(II: 933-936).
IEEE DOI
0108
Image Registration, Robust estimation, Outlier detection, Motion
estimation, Generalized least squares estimation
BibRef
Ryan, K.,
Amer, A.,
Gagnon, L.,
Spatiotemporal Region Enhancement and Merging for Unsupervized Object
Segmentation,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
0909
Offline video segmentation.
Initial color and motion variance, then motion tracking through the
sequence.
BibRef
Wen, C.L.[Chung-Lin],
Chen, B.Y.[Bing-Yu],
Sato, Y.[Yoichi],
Video Segmentation with Motion Smoothness,
IEICE(E93-D), No. 4, April 2010, pp. 873-881.
WWW Link.
1003
graph-cut-based. Color and motion both.
BibRef
Lu, X.Y.[Xiao-Ye],
Manduchi, R.[Roberto],
Fast image motion segmentation for surveillance applications,
IVC(29), No. 2-3, February 2011, pp. 104-116.
Elsevier DOI
1101
Optical flow, Motion computation, Belief propagation
BibRef
Gai, K.[Kun],
Shi, Z.W.[Zhen-Wei],
Zhang, C.S.[Chang-Shui],
Blind Separation of Superimposed Moving Images Using Image Statistics,
PAMI(34), No. 1, January 2012, pp. 19-32.
IEEE DOI
1112
BibRef
Earlier:
Blind separation of superimposed images with unknown motions,
CVPR09(1881-1888).
IEEE DOI
0906
BibRef
Earlier:
Blindly separating mixtures of multiple layers with spatial shifts,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Wu, S.[Si],
Wong, H.S.[Hau San],
Joint segmentation of collectively moving objects using a bag-of-words
model and level set evolution,
PR(45), No. 9, September 2012, pp. 3389-3401.
Elsevier DOI
1206
Collective motion, Segmentation, Bag-of-words, Level set
BibRef
Nedrich, M.[Matthew],
Davis, J.W.[James W.],
Detecting behavioral zones in local and global camera views,
MVA(24), No. 3, April 2013, pp. 579-605.
WWW Link.
1303
BibRef
Earlier:
Learning Scene Entries and Exits Using Coherent Motion Regions,
ISVC10(I: 120-131).
Springer DOI
1011
BibRef
Dimitriou, N.[Nikolaos],
Delopoulos, A.[Anastasios],
Motion-based segmentation of objects using overlapping temporal
windows,
IVC(31), No. 9, 2013, pp. 593-602.
Elsevier DOI
1307
BibRef
And:
Motion segmentation via overlapping temporal windows,
ICIP13(4239-4243)
IEEE DOI
1402
BibRef
Earlier:
Improved motion segmentation using Locally sampled Subspaces,
ICIP12(309-312).
IEEE DOI
1302
affine model.
Motion segmentation
BibRef
Dimitriou, N.[Nikolaos],
Delopoulos, A.[Anastasios],
Incorporating higher order models for occlusion resilient motion
segmentation in streaming videos,
IVC(36), No. 1, 2015, pp. 70-82.
Elsevier DOI
1504
BibRef
Earlier:
Fast, robust and occlusion resilient motion based video segmentation,
ICIP14(4398-4402)
IEEE DOI
1502
Motion segmentation
BibRef
Wan, P.,
Feng, Y.,
Cheung, G.,
Bajic, I.V.,
Au, O.C.,
3-D Motion Estimation for Visual Saliency Modeling,
SPLetters(20), No. 10, 2013, pp. 972-975.
IEEE DOI
1309
Cameras
BibRef
Juliet, S.E.[S. Ebenezer],
Sadasivam, V.,
Florinabel, D.J.[D. Jemi],
Effective layer-based segmentation of compound images using morphology,
RealTimeIP(9), No. 2, June 2014, pp. 299-314.
Springer DOI
1407
BibRef
Gao, Z.[Zhi],
Cheong, L.F.[Loong-Fah],
Wang, Y.X.[Yu-Xiang],
Block-Sparse RPCA for Salient Motion Detection,
PAMI(36), No. 10, October 2014, pp. 1975-1987.
IEEE DOI
1410
image motion analysis
BibRef
Gao, Z.[Zhi],
Cheong, L.F.[Loong-Fah],
Shan, M.[Mo],
Block-Sparse RPCA for Consistent Foreground Detection,
ECCV12(V: 690-703).
Springer DOI
1210
BibRef
Guo, J.[Jia_Ming],
Cheong, L.F.[Loong-Fah],
Tan, R.T.[Robby T.],
Zhou, S.Z.Y.[Steven Zhi-Ying],
Consistent Foreground Co-segmentation,
ACCV14(IV: 241-257).
Springer DOI
1504
BibRef
Guo, J.M.[Jia-Ming],
Li, Z.W.[Zhu-Wen],
Cheong, L.F.[Loong-Fah],
Zhou, S.Z.Y.[Steven Zhi-Ying],
Video Co-segmentation for Meaningful Action Extraction,
ICCV13(2232-2239)
IEEE DOI
1403
BibRef
Li, Z.W.[Zhu-Wen],
Guo, J.M.[Jia-Ming],
Cheong, L.F.[Loong-Fah],
Zhou, S.Z.Y.[Steven Zhi-Ying],
Perspective Motion Segmentation via Collaborative Clustering,
ICCV13(1369-1376)
IEEE DOI
1403
BibRef
Lee, C.M.[Choon-Meng],
Cheong, L.F.[Loong-Fah],
Minimal Basis Subspace Representation: A Unified Framework for Rigid
and Non-rigid Motion Segmentation,
IJCV(121), No. 2, January 2017, pp. 209-233.
Springer DOI
1702
BibRef
Earlier:
Minimal Basis Facility Location for Subspace Segmentation,
ICCV13(1585-1592)
IEEE DOI
1403
Hopkins 155
BibRef
Jiang, H.Q.[Han-Qing],
Zhang, G.F.[Guo-Feng],
Wang, H.Y.[Hui-Yan],
Bao, H.J.[Hu-Jun],
Spatio-Temporal Video Segmentation of Static Scenes and Its
Applications,
MultMed(17), No. 1, January 2015, pp. 3-15.
IEEE DOI
1502
image colour analysis
BibRef
Kannan, R.[Rajkumar],
Ghinea, G.[Gheorghita],
Swaminathan, S.[Sridhar],
Discovering salient objects from videos using spatiotemporal salient
region detection,
SP:IC(36), No. 1, 2015, pp. 154-178.
Elsevier DOI
1509
Salient region detection
BibRef
Wang, H.L.[Hui-Ling],
Wang, T.H.[Ting-Huai],
Primary object discovery and segmentation in videos via graph-based
transductive inference,
CVIU(143), No. 1, 2016, pp. 159-172.
Elsevier DOI
1601
BibRef
Earlier: A2, A1:
Graph Transduction Learning of Object Proposals for Video Object
Segmentation,
ACCV14(IV: 553-568).
Springer DOI
1504
Graph-based transductive inference
BibRef
Li, C.L.[Cheng-Long],
Lin, L.[Liang],
Zuo, W.M.[Wang-Meng],
Wang, W.,
Tang, J.[Jin],
An Approach to Streaming Video Segmentation With Sub-Optimal Low-Rank
Decomposition,
IP(25), No. 5, May 2016, pp. 1947-1960.
IEEE DOI
1604
image representation
BibRef
Xiao, H.X.[Hua-Xin],
Kang, B.Y.[Bing-Yi],
Liu, Y.[Yu],
Zhang, M.J.[Mao-Jun],
Feng, J.S.[Jia-Shi],
Online Meta Adaptation for Fast Video Object Segmentation,
PAMI(42), No. 5, May 2020, pp. 1205-1217.
IEEE DOI
2004
Adaptation models, Task analysis, Object segmentation,
Optical imaging, Motion segmentation, Image segmentation, Runtime,
convolutional neural networks
BibRef
Jin, X.J.[Xiao-Jie],
Li, X.[Xin],
Xiao, H.X.[Hua-Xin],
Shen, X.H.[Xiao-Hui],
Lin, Z.[Zhe],
Yang, J.M.[Ji-Mei],
Chen, Y.P.[Yun-Peng],
Dong, J.[Jian],
Liu, L.Q.[Luo-Qi],
Jie, Z.Q.[Ze-Qun],
Feng, J.S.[Jia-Shi],
Yan, S.C.[Shui-Cheng],
Video Scene Parsing with Predictive Feature Learning,
ICCV17(5581-5589)
IEEE DOI
1802
feature extraction, image classification, image representation,
image segmentation, learning (artificial intelligence),
Training
BibRef
Li, C.L.[Cheng-Long],
Lin, L.[Liang],
Zuo, W.M.[Wang-Meng],
Yan, S.C.[Shui-Cheng],
Tang, J.[Jin],
SOLD: Sub-optimal low-rank decomposition for efficient video
segmentation,
CVPR15(5519-5527)
IEEE DOI
1510
BibRef
Li, C.L.[Cheng-Long],
Wang, X.[Xiao],
Zhang, L.[Lei],
Tang, J.[Jin],
Wu, H.J.[He-Jun],
Lin, L.[Liang],
Weighted Low-Rank Decomposition for Robust Grayscale-Thermal
Foreground Detection,
CirSysVideo(27), No. 4, April 2017, pp. 725-738.
IEEE DOI
1704
Benchmark testing
BibRef
Yang, S.[Sen],
Luo, B.[Bin],
Li, C.L.[Cheng-Long],
Wang, G.Z.[Gui-Zhao],
Tang, J.[Jin],
Fast Grayscale-Thermal Foreground Detection With Collaborative
Low-Rank Decomposition,
CirSysVideo(28), No. 10, October 2018, pp. 2574-2585.
IEEE DOI
1811
Matrix decomposition, Sparse matrices, Videos, Collaboration,
Gray-scale, Algorithm design and analysis, Object detection,
edge-preserving filtering
BibRef
Kim, S.,
Yang, D.W.,
Park, H.W.,
A Disparity-Based Adaptive Multihomography Method for Moving Target
Detection Based on Global Motion Compensation,
CirSysVideo(26), No. 8, August 2016, pp. 1407-1420.
IEEE DOI
1609
cameras
BibRef
Pérez-Rúa, J.M.[Juan-Manuel],
Crivelli, T.[Tomas],
Pérez, P.[Patrick],
Object-guided motion estimation,
CVIU(153), No. 1, 2016, pp. 88-99.
Elsevier DOI
1612
Optical flow
BibRef
Pérez-Rúa, J.M.[Juan-Manuel],
Crivelli, T.[Tomas],
Pérez, P.[Patrick],
Bouthemy, P.[Patrick],
Discovering motion hierarchies via tree-structured coding of
trajectories,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
And:
Hierarchical motion decomposition for dynamic scene parsing,
ICIP16(3952-3956)
IEEE DOI
1610
BibRef
And: A1, A2, A4, A3:
Determining Occlusions from Space and Time Image Reconstructions,
CVPR16(1382-1391)
IEEE DOI
1612
Cameras.
Occlusions in frame-to-frame motion
BibRef
Chen, L.,
Fan, L.,
Xie, G.,
Huang, K.,
Nüchter, A.,
Moving-Object Detection From Consecutive Stereo Pairs Using Slanted
Plane Smoothing,
ITS(18), No. 11, November 2017, pp. 3093-3102.
IEEE DOI
1711
Cameras, Graphics processing units, Image segmentation,
Motion segmentation, Optical imaging,
Vehicle dynamics, Stereo vision, autonomous vehicles,
BibRef
Zhang, Y.[Yun],
Luo, B.[Bin],
Zhang, L.P.[Liang-Pei],
Permutation Preference Based Alternate Sampling and Clustering for
Motion Segmentation,
SPLetters(25), No. 3, March 2018, pp. 432-436.
IEEE DOI
1802
Segment tracking points belonging to different motions.
Clustering algorithms, Couplings,
Image color analysis, Motion segmentation, Shape, Tracking,
sampling and clustering
BibRef
Minaeian, S.,
Liu, J.,
Son, Y.J.,
Effective and Efficient Detection of Moving Targets From a UAV's
Camera,
ITS(19), No. 2, February 2018, pp. 497-506.
IEEE DOI
1802
Cameras, Motion segmentation, Object detection, Optical imaging,
Real-time systems, Robustness, Surveillance, Effectiveness,
unmanned aerial vehicles
BibRef
Chen, Y.,
Zou, W.,
Tang, Y.,
Li, X.,
Xu, C.,
Komodakis, N.,
SCOM: Spatiotemporal Constrained Optimization for Salient Object
Detection,
IP(27), No. 7, July 2018, pp. 3345-3357.
IEEE DOI
1805
image motion analysis, image sequences, motion estimation,
object detection, optimisation, spatiotemporal phenomena,
spatiotemporal constraints
BibRef
Yang, L.,
Han, J.,
Zhang, D.,
Liu, N.,
Zhang, D.,
Segmentation in Weakly Labeled Videos via a Semantic Ranking and
Optical Warping Network,
IP(27), No. 8, August 2018, pp. 4025-4037.
IEEE DOI
1806
Image segmentation, Motion segmentation, Object segmentation,
Optical imaging, Semantics, Task analysis, Videos,
weak supervision
BibRef
Fortun, D.,
Storath, M.,
Rickert, D.,
Weinmann, A.,
Unser, M.,
Fast Piecewise-Affine Motion Estimation Without Segmentation,
IP(27), No. 11, November 2018, pp. 5612-5624.
IEEE DOI
1809
image sequences, motion estimation, optimisation,
piecewise constant techniques, piecewise constancy,
piecewise affine
BibRef
Wang, Y.Y.[Ying-Yan],
Zeng, R.[Rui],
Image segmentation algorithm based on geometric flow Bandelets
transformation particle replanting,
PRL(116), 2018, pp. 200-204.
Elsevier DOI
1812
BibRef
Garcia-Pedrero, A.[Angel],
Gonzalo-Martín, C.[Consuelo],
Lillo-Saavedra, M.[Mario],
Rodríguez-Esparragón, D.[Dionisio],
The Outlining of Agricultural Plots Based on Spatiotemporal Consensus
Segmentation,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Merino-Caviedes, S.,
Cordero-Grande, L.,
Pérez, M.T.,
Casaseca-de-la-Higuera, P.,
Martín-Fernández, M.,
Deriche, R.,
Alberola-López, C.,
A Second Order Multi-Stencil Fast Marching Method With a Non-Constant
Local Cost Model,
IP(28), No. 4, April 2019, pp. 1967-1979.
IEEE DOI
1901
difference equations, finite difference methods,
image processing, iterative methods,
multi-stencil schemes
BibRef
Wang, B.[Bin],
Tang, S.[Sheng],
Xiao, J.B.[Jun-Bin],
Yan, Q.F.[Quan-Feng],
Zhang, Y.D.[Yong-Dong],
Detection and tracking based tubelet generation for video object
detection,
JVCIR(58), 2019, pp. 102-111.
Elsevier DOI
1901
Object detection, Tubelet generation, Tubelet fusion
BibRef
Tokmakov, P.[Pavel],
Schmid, C.[Cordelia],
Alahari, K.[Karteek],
Learning to Segment Moving Objects,
IJCV(127), No. 3, March 2019, pp. 282-301.
Springer DOI
1903
BibRef
Earlier: A1, A3, A2:
Learning Video Object Segmentation with Visual Memory,
ICCV17(4491-4500)
IEEE DOI
1802
BibRef
Earlier: A1, A3, A2:
Learning Motion Patterns in Videos,
CVPR17(531-539)
IEEE DOI
1711
BibRef
Earlier: A1, A3, A2:
Weakly-Supervised Semantic Segmentation Using Motion Cues,
ECCV16(IV: 388-404).
Springer DOI
1611
neural nets, Visualization.
Adaptive optics, Cameras, Decoding, Motion segmentation,
Object segmentation, Videos
BibRef
Bideau, P.[Pia],
Learned-Miller, E.[Erik],
Schmid, C.[Cordelia],
Alahari, K.[Karteek],
The Right Spin:
Learning Object Motion from Rotation-Compensated Flow Fields,
IJCV(132), No. 1, January 2024, pp. 40-55.
Springer DOI
2402
BibRef
Arn, R.T.[Robert T.],
Narayana, P.[Pradyumna],
Emerson, T.[Tegan],
Draper, B.A.[Bruce A.],
Kirby, M.[Michael],
Peterson, C.[Chris],
Motion Segmentation via Generalized Curvatures,
PAMI(41), No. 12, December 2019, pp. 2919-2932.
IEEE DOI
1911
Motion segmentation, Approximation algorithms,
Trajectory, Sensors, Noise measurement, video segmentation
BibRef
Wang, Y.[Ye],
Choi, J.M.[Jong-Moo],
Zhang, K.[Kaitai],
Huang, Q.[Qin],
Chen, Y.[Yueru],
Lee, M.S.[Ming-Sui],
Kuo, C.C.J.[C.C. Jay],
Video object tracking and segmentation with box annotation,
SP:IC(85), 2020, pp. 115858.
Elsevier DOI
2005
Video object tracking, Video object segmentation,
Reverse optimization, Bounding box annotation
BibRef
Li, S.Y.[Si-Yang],
Seybold, B.[Bryan],
Vorobyov, A.[Alexey],
Lei, X.J.[Xue-Jing],
Kuo, C.C.J.[C.C. Jay],
Unsupervised Video Object Segmentation with Motion-Based Bilateral
Networks,
ECCV18(III: 215-231).
Springer DOI
1810
BibRef
Wang, Y.[Ye],
Choi, J.M.[Jong-Moo],
Chen, Y.[Yueru],
Li, S.Y.[Si-Yang],
Huang, Q.[Qin],
Zhang, K.[Kaitai],
Lee, M.S.[Ming-Sui],
Kuo, C.C.J.[C.C. Jay],
Unsupervised video object segmentation with distractor-aware online
adaptation,
JVCIR(74), 2021, pp. 102953.
Elsevier DOI
2101
BibRef
Earlier: A1, A2, A3, A5, A4, A7, A8, Only:
Design Pseudo Ground Truth with Motion Cue for Unsupervised Video
Object Segmentation,
ACCV18(IV:518-533).
Springer DOI
1906
Unsupervised video object segmentation, Pseudo ground truth,
Motion saliency, Hard negative mining, Online adaptation
BibRef
Sharma, K.[Krishan],
Rameshan, R.[Renu],
Distance based kernels for video tensors on product of Riemannian
matrix manifolds,
JVCIR(75), 2021, pp. 103045.
Elsevier DOI
2103
Video tensor, Product manifold geometry, Sparse representation,
Grassmann manifold, SPD manifold, Riemannian manifold, Kernel methods
BibRef
Xu, C.Y.[Chun-Yan],
Wei, L.[Li],
Cui, Z.[Zhen],
Zhang, T.[Tong],
Yang, J.[Jian],
Meta-VOS: Learning to Adapt Online Target-Specific Segmentation,
IP(30), 2021, pp. 4760-4772.
IEEE DOI
2105
BibRef
Kutbi, M.[Mohammed],
Chang, Y.Z.[Yi-Zhe],
Mordohai, P.[Philippos],
Inlier clustering based on the residuals of random hypotheses,
PRL(150), 2021, pp. 101-107.
Elsevier DOI
2109
Motion segmentation, Model estimation, Clustering
BibRef
Qi, J.Y.[Ji-Yang],
Gao, Y.[Yan],
Hu, Y.[Yao],
Wang, X.G.[Xing-Gang],
Liu, X.Y.[Xiao-Yu],
Bai, X.[Xiang],
Belongie, S.[Serge],
Yuille, A.L.[Alan L.],
Torr, P.H.S.[Philip H. S.],
Bai, S.[Song],
Occluded Video Instance Segmentation: A Benchmark,
IJCV(130), No. 8, August 2022, pp. 2022-2039.
Springer DOI
2207
BibRef
Yu, R.[Ran],
Tian, C.Y.[Chen-Yu],
Xia, W.H.[Wei-Hao],
Zhao, X.Y.[Xin-Yuan],
Wang, L.J.[Lie-Jun],
Yang, Y.J.[Yu-Jiu],
Real-time human-centric segmentation for complex video scenes,
IVC(126), 2022, pp. 104552.
Elsevier DOI
2209
Multiple human tracking, Video instance segmentation,
One-stage detector, Video understanding, Deep neural networks
BibRef
Dong, S.H.[Shao-Hua],
Zhou, W.[Wujie],
Qian, X.H.[Xiao-Hong],
Yu, L.[Lu],
GEBNet: Graph-Enhancement Branch Network for RGB-T Scene Parsing,
SPLetters(29), 2022, pp. 2273-2277.
IEEE DOI
2212
Semantics, Convolution, Fuses, Feature extraction, Real-time systems,
Deep learning, graph neural network, scene parsing
BibRef
Meunier, E.[Etienne],
Badoual, A.[Anaïs],
Bouthemy, P.[Patrick],
EM-Driven Unsupervised Learning for Efficient Motion Segmentation,
PAMI(45), No. 4, April 2023, pp. 4462-4473.
IEEE DOI
2303
Motion segmentation, Image segmentation, Optical imaging,
Object segmentation, Training, Cameras,
multiple motion segmentation
BibRef
Lin, S.Y.[Shu-Yuan],
Yang, A.[Anjia],
Lai, T.[Taotao],
Weng, J.[Jian],
Wang, H.Z.[Han-Zi],
Multi-Motion Segmentation via Co-Attention-Induced Heterogeneous
Model Fitting,
CirSysVideo(34), No. 3, March 2024, pp. 1786-1798.
IEEE DOI
2403
Motion segmentation, Adaptation models, Sparse matrices, Tracking,
Correlation, Computational modeling, Parameter estimation, surface fitting
BibRef
Liao, J.H.[Jun-Hua],
Duan, H.[Haihan],
Zhao, W.[Wanbing],
Feng, K.H.[Kang-Hui],
Yang, Y.B.[Yan-Bing],
Chen, L.Y.[Liang-Yin],
A Video Shot Occlusion Detection Algorithm Based on the Abnormal
Fluctuation of Depth Information,
CirSysVideo(34), No. 3, March 2024, pp. 1627-1640.
IEEE DOI Code:
WWW Link.
2403
Task analysis, Estimation, Detection algorithms, Neural networks,
Fluctuations, Robustness, Training, Dataset, occlusion detection,
automatic video editing
BibRef
Cheng, C.[Chen],
Xu, H.[Huahu],
A 3D motion image recognition model based on 3D CNN-GRU model and
attention mechanism,
IVC(146), 2024, pp. 104991.
Elsevier DOI
2405
Graph convolutional networks, Cross-graph convolution operation,
Residual connections, 3D CNN
BibRef
Liang, Y.Q.[Yi-Qing],
Laidlaw, E.[Eliot],
Meyerowitz, A.[Alexander],
Sridhar, S.[Srinath],
Tompkin, J.[James],
Semantic Attention Flow Fields for Monocular Dynamic Scene
Decomposition,
ICCV23(21740-21749)
IEEE DOI Code:
WWW Link.
2401
BibRef
Wu, H.Q.[Hao-Qian],
Chen, K.Y.[Ke-Yu],
Luo, Y.[Yanan],
Qiao, R.Z.[Rui-Zhi],
Ren, B.[Bo],
Liu, H.Z.[Hao-Zhe],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Scene Consistency Representation Learning for Video Scene
Segmentation,
CVPR22(14001-14010)
IEEE DOI
2210
Representation learning, Measurement, Protocols, TV, Semantics,
Self-supervised learning, Motion pictures,
Self- semi- meta- unsupervised learning
BibRef
Lin, H.[Huaijia],
Wu, R.Z.[Rui-Zheng],
Liu, S.[Shu],
Lu, J.B.[Jiang-Bo],
Jia, J.Y.[Jia-Ya],
Video Instance Segmentation with a Propose-Reduce Paradigm,
ICCV21(1719-1728)
IEEE DOI
2203
Image segmentation, Head, Merging, Benchmark testing, Robustness,
Task analysis, Video analysis and understanding,
grouping and shape
BibRef
Du, W.T.[Wen-Tao],
Xiang, Z.Y.[Zhi-Yu],
Chen, S.Y.[Shu-Ya],
Qiao, C.Y.[Cheng-Yu],
Chen, Y.[Yiman],
Bai, T.M.[Ting-Ming],
Real-time Instance Segmentation with Discriminative Orientation Maps,
ICCV21(7294-7303)
IEEE DOI
2203
Codes, Filtering, Detectors, Benchmark testing,
Prediction algorithms, Real-time systems, Segmentation,
BibRef
Yang, S.[Shusheng],
Fang, Y.X.[Yu-Xin],
Wang, X.G.[Xing-Gang],
Li, Y.[Yu],
Fang, C.[Chen],
Shan, Y.[Ying],
Feng, B.[Bin],
Liu, W.Y.[Wen-Yu],
Crossover Learning for Fast Online Video Instance Segmentation,
ICCV21(8023-8032)
IEEE DOI
2203
Visualization, Codes, Computational modeling, Benchmark testing,
Task analysis, Context modeling,
BibRef
Wang, T.[Tao],
Xu, N.[Ning],
Chen, K.[Kean],
Lin, W.Y.[Wei-Yao],
End-to-End Video Instance Segmentation via Spatial-Temporal Graph
Neural Networks,
ICCV21(10777-10786)
IEEE DOI
2203
Image segmentation, Head, Image edge detection, Feature extraction,
Information filters, Graph neural networks, Motion and tracking,
Video analysis and understanding
BibRef
Wang, Y.Q.[Yu-Qing],
Xu, Z.L.[Zhao-Liang],
Wang, X.L.[Xin-Long],
Shen, C.H.[Chun-Hua],
Cheng, B.S.[Bao-Shan],
Shen, H.[Hao],
Xia, H.X.[Hua-Xia],
End-to-End Video Instance Segmentation with Transformers,
CVPR21(8737-8746)
IEEE DOI
2111
Image segmentation, Computational modeling,
Pipelines, Transformer cores, Transformers, Pattern recognition
BibRef
Liu, D.F.[Dong-Fang],
Cui, Y.M.[Yi-Ming],
Tan, W.B.[Wen-Bo],
Chen, Y.J.[Ying-Jie],
SG-Net: Spatial Granularity Network for One-Stage Video Instance
Segmentation,
CVPR21(9811-9820)
IEEE DOI
2111
Runtime, Tracking,
Predictive models, Feature extraction, Robustness
BibRef
Li, M.[Minghan],
Li, S.[Shuai],
Li, L.[Lida],
Zhang, L.[Lei],
Spatial Feature Calibration and Temporal Fusion for Effective
One-stage Video Instance Segmentation,
CVPR21(11210-11219)
IEEE DOI
2111
Convolutional codes, Correlation, Sensitivity,
Tracking, Motion segmentation, Redundancy
BibRef
Liu, Q.[Qing],
Ramanathan, V.[Vignesh],
Mahajan, D.[Dhruv],
Yuille, A.L.[Alan L.],
Yang, Z.[Zhenheng],
Weakly Supervised Instance Segmentation for Videos with Temporal Mask
Consistency,
CVPR21(13963-13973)
IEEE DOI
2111
Training, Measurement, Image segmentation, Costs,
Motion segmentation, Computational modeling
BibRef
Xiong, S.,
Li, S.,
Kou, L.,
Guo, W.,
Zhou, Z.,
Zhao, Z.,
Td-VOS: Tracking-Driven Single-Object Video Object Segmentation,
ICIVC20(102-107)
IEEE DOI
2009
Object segmentation, Image segmentation, Object tracking, Head,
Motion segmentation, Task analysis, Target tracking,
DAVIS2016
BibRef
Mitrokhin, A.,
Hua, Z.,
Fermüller, C.,
Aloimonos, Y.,
Learning Visual Motion Segmentation Using Event Surfaces,
CVPR20(14402-14411)
IEEE DOI
2008
Cameras, Optical sensors, Trajectory, Shape, Optical imaging, Task analysis
BibRef
Ranjan, A.[Anurag],
Jampani, V.[Varun],
Balles, L.[Lukas],
Kim, K.[Kihwan],
Sun, D.Q.[De-Qing],
Wulff, J.[Jonas],
Black, M.J.[Michael J.],
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera
Motion, Optical Flow and Motion Segmentation,
CVPR19(12232-12241).
IEEE DOI
2002
BibRef
Malekzadeh, M.,
Javanmard, R.,
Karimipour, F.,
Extracting Point of Interests From Movement Data Using Kernel Density
And Weighted K-means,
SMPR19(717-720).
DOI Link
1912
BibRef
Xu, X.,
Cheong, L.F.,
Li, Z.,
Motion Segmentation by Exploiting Complementary Geometric Models,
CVPR18(2859-2867)
IEEE DOI
1812
Transmission line matrix methods, Motion segmentation,
Adaptation models, Numerical models, Benchmark testing
BibRef
Kalboussi, R.[Rahma],
Abdellaoui, M.[Mehrez],
Douik, A.[Ali],
Detecting and Recognizing Salient Object in Videos,
ACIVS18(62-73).
Springer DOI
1810
BibRef
Xu, N.[Ning],
Yang, L.J.[Lin-Jie],
Fan, Y.C.[Yu-Chen],
Yang, J.C.[Jian-Chao],
Yue, D.C.[Ding-Cheng],
Liang, Y.C.[Yu-Chen],
Price, B.L.[Brian L.],
Cohen, S.[Scott],
Huang, T.S.[Thomas S.],
YouTube-VOS: Sequence-to-Sequence Video Object Segmentation,
ECCV18(VI: 603-619).
Springer DOI
1810
BibRef
Ci, H.[Hai],
Wang, C.Y.[Chun-Yu],
Wang, Y.Z.[Yi-Zhou],
Video Object Segmentation by Learning Location-Sensitive Embeddings,
ECCV18(XI: 524-539).
Springer DOI
1810
BibRef
Chen, D.J.,
Chen, H.T.,
Chang, L.W.,
Video segmentation via boundary-aware flow,
ICIP17(3340-3344)
IEEE DOI
1803
Estimation, Integrated optics, Motion segmentation,
Object segmentation, Optical imaging, Optical propagation,
transductive inference
BibRef
Zhu, X.,
Xiong, Y.,
Dai, J.,
Yuan, L.,
Wei, Y.,
Flow-Guided Feature Aggregation for Video Object Detection,
ICCV17(408-417)
IEEE DOI
1802
BibRef
And:
Deep Feature Flow for Video Recognition,
CVPR17(4141-4150)
IEEE DOI
1711
feature extraction, image motion analysis,
learning (artificial intelligence), object detection,
Training.
Convolutional codes, Image recognition,
Image segmentation, Optical imaging, Semantics
BibRef
Zhao, W.[Wei],
Roos, N.[Nico],
Peeters, R.[Ralf],
3D Motion Consistency Analysis for Segmentation in 2D Video Projection,
CAIP17(II: 440-452).
Springer DOI
1708
BibRef
Cordes, K.[Kai],
Ray’onaldo, C.[Christopherus],
Broszio, H.[Hellward],
Motion-Coherent Affinities for Hypergraph Based Motion Segmentation,
CAIP17(I: 121-132).
Springer DOI
1708
BibRef
Vongkulbhisal, J.[Jayakorn],
Cabral, R.S.[Ricardo S.],
de la Torre, F.[Fernando],
Costeira, J.P.[João P.],
Motion from Structure (MfS): Searching for 3D Objects in Cluttered
Point Trajectories,
CVPR16(5639-5647)
IEEE DOI
1612
Use 3D models to detect moving objects.
BibRef
Luiten, J.[Jonathon],
Voigtlaender, P.[Paul],
Leibe, B.[Bastian],
PReMVOS: Proposal-Generation, Refinement and Merging for Video Object
Segmentation,
ACCV18(IV:565-580).
Springer DOI
1906
BibRef
Kontogianni, T.[Theodora],
Mathias, M.[Markus],
Leibe, B.[Bastian],
Incremental Object Discovery in Time-Varying Image Collections,
CVPR16(2082-2090)
IEEE DOI
1612
Limited Horizon Minimum Spanning Tree.
BibRef
Perazzi, F.[Federico],
Pont-Tuset, J.,
McWilliams, B.,
Van Gool, L.J.,
Gross, M.,
Sorkine-Hornung, A.[Alexander],
A Benchmark Dataset and Evaluation Methodology for Video Object
Segmentation,
CVPR16(724-732)
IEEE DOI
1612
Dataset, Video Segmentation.
BibRef
Xiao, F.,
Lee, Y.J.,
Track and Segment:
An Iterative Unsupervised Approach for Video Object Proposals,
CVPR16(933-942)
IEEE DOI
1612
BibRef
Perazzi, F.[Federico],
Khoreva, A.,
Benenson, R.,
Schiele, B.,
Sorkine-Hornung, A.[Alexander],
Learning Video Object Segmentation from Static Images,
CVPR17(3491-3500)
IEEE DOI
1711
Image segmentation, Labeling, Object segmentation, Proposals, Strain, Training
BibRef
Märki, N.[Nicolas],
Perazzi, F.[Federico],
Wang, O.[Oliver],
Sorkine-Hornung, A.[Alexander],
Bilateral Space Video Segmentation,
CVPR16(743-751)
IEEE DOI
1612
BibRef
Perazzi, F.[Federico],
Wang, O.[Oliver],
Grosse, M.[Max],
Sorkine-Hornung, A.[Alexander],
Fully Connected Object Proposals for Video Segmentation,
ICCV15(3227-3234)
IEEE DOI
1602
Computer vision
BibRef
Nagaraja, N.S.,
Schmidt, F.R.,
Brox, T.,
Video Segmentation with Just a Few Strokes,
ICCV15(3235-3243)
IEEE DOI
1602
Benchmark testing
BibRef
Yang, M.Y.[Michael Ying],
Feng, S.[Sitong],
Rosenhahn, B.[Bodo],
Sparse Optimization for Motion Segmentation,
VSegCV14(375-389).
Springer DOI
1504
BibRef
Gray, C.[Charles],
James, S.[Stuart],
Collomosse, J.P.[John P.],
Asente, P.[Paul],
A particle filtering approach to salient video object localization,
ICIP14(194-198)
IEEE DOI
1502
Cameras
BibRef
Pu, S.T.[Song-Tao],
Zha, H.B.[Hong-Bin],
Sandwich Cut: An Algorithm for Temporally-Coherent Video Bilayer
Segmentation,
ICPR14(1061-1066)
IEEE DOI
1412
Adaptive optics
BibRef
Hu, H.[Han],
Lin, Z.C.[Zhou-Chen],
Feng, J.J.[Jian-Jiang],
Zhou, J.[Jie],
Smooth Representation Clustering,
CVPR14(3834-3841)
IEEE DOI
1409
motion segmentation, representation, subspace clustering
BibRef
Ji, P.[Pan],
Li, H.D.[Hong-Dong],
Salzmann, M.[Mathieu],
Dai, Y.C.[Yu-Chao],
Robust Motion Segmentation with Unknown Correspondences,
ECCV14(VI: 204-219).
Springer DOI
1408
BibRef
Chacon-Murguia, M.I.,
Ramirez-Quintana, J.A.,
Ramirez-Alonso, G.,
Evaluation of the background modeling method Auto-Adaptive Parallel
Neural Network Architecture in the SBMnet dataset,
ICPR16(137-142)
IEEE DOI
1705
Adaptation models, Analytical models, Classification algorithms,
Computational modeling, Heuristic algorithms,
Image color analysis, Videos, background modeling,
neural video analysis, video, analysis
BibRef
Ramirez-Alonso, G.,
Chacon-Murguia, M.I.,
Segmentation of dynamic objects in video sequences fusing the
strengths of a background subtraction model, optical flow and matting
algorithms,
Southwest14(33-36)
IEEE DOI
1406
image segmentation
BibRef
Banica, D.,
Agape, A.,
Ion, A.,
Sminchisescu, C.,
Video Object Segmentation by Salient Segment Chain Composition,
PGMs13(283-290)
IEEE DOI
1403
image colour analysis
BibRef
Verleysen, C.[Cédric],
de Vleeschouwer, C.[Christophe],
Learning and Propagation of Dominant Colors for Fast Video Segmentation,
ACIVS13(657-668).
Springer DOI
1311
BibRef
Min, K.[Kyle],
Corso, J.J.[Jason J.],
TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for
Video Saliency Detection,
ICCV19(2394-2403)
IEEE DOI
2004
convolutional neural nets, decoding, feature extraction,
image representation, image resolution, image sequences,
Convolution
BibRef
Griffin, B.[Brent],
Corso, J.J.[Jason J.],
Tukey-Inspired Video Object Segmentation,
WACV19(1723-1733)
IEEE DOI
1904
image annotation, image motion analysis, image segmentation,
unsupervised learning, video signal processing,
Benchmark testing
BibRef
Xu, C.L.[Chen-Liang],
Corso, J.J.[Jason J.],
Evaluation of super-voxel methods for early video processing,
CVPR12(1202-1209).
IEEE DOI
1208
Evaluate 5 methods aggregation, graph, hierarchical graph,
mean shift, normalized cuts.
BibRef
Bertasius, G.[Gedas],
Torresani, L.[Lorenzo],
Shi, J.B.[Jian-Bo],
Object Detection in Video with Spatiotemporal Sampling Networks,
ECCV18(XII: 342-357).
Springer DOI
1810
BibRef
Fragkiadaki, K.[Katerina],
Zhang, G.[Geng],
Shi, J.B.[Jian-Bo],
Video segmentation by tracing discontinuities in a trajectory embedding,
CVPR12(1846-1853).
IEEE DOI
1208
BibRef
Kim, J.S.[Jong-Sung],
Jeong, I.K.[Il-Kwon],
Motion Segmentation Using Divisive Graph Cuts,
MVA09(406-).
PDF File.
0905
BibRef
Ubukata, T.[Toru],
Terabayashi, K.[Kenji],
Moro, A.[Alessandro],
Umeda, K.[Kazunori],
Multi-object Segmentation in a Projection Plane Using Subtraction
Stereo,
ICPR10(3296-3299).
IEEE DOI
1008
extract the foreground objetct with stereo.
BibRef
Li, P.[Peng],
Wang, C.[Cheng],
Wang, H.[Han],
Semi-supervised object based digital measurable image sequence
segmentation for MMS,
CGC10(132).
PDF File.
1006
BibRef
Bachmann, A.[Alexander],
Lulcheva, I.[Irina],
Combining low-level segmentation with relational classification,
VS09(1216-1221).
IEEE DOI
0910
BibRef
Bachmann, A.[Alexander],
Kuehne, H.[Hildegard],
An iterative scheme for motion-based scene segmentation,
WDV09(735-742).
IEEE DOI
0910
BibRef
Kang, H.W.[Hong-Wen],
Efros, A.A.[Alexei A.],
Hebert, M.[Martial],
Kanade, T.[Takeo],
Image composition for object pop-out,
3DRR09(681-688).
IEEE DOI
0910
BibRef
Kang, Y.S.[You-Sun],
Yamaguchi, K.[Koichiro],
Naito, T.[Takashi],
Ninomiya, Y.[Yoshiki],
Road scene labeling using SfM module and 3D bag of textons,
3DRR09(657-664).
IEEE DOI
0910
Relate 3D spatial (SfM) with 2D segmentation.
BibRef
Kuchnio, P.[Peter],
Capson, D.W.[David W.],
A parallel mapping of optical flow to Compute Unified Device
Architecture for motion-based image segmentation,
ICIP09(2325-2328).
IEEE DOI
0911
BibRef
Kim, J.H.[Jae-Hak],
Agapito, L.[Lourdes],
Motion segmentation using the Hadamard product and spectral clustering,
WMVC09(1-8).
IEEE DOI
0912
BibRef
Huang, Y.C.[Yu-Chi],
Liu, Q.S.[Qing-Shan],
Metaxas, D.N.[Dimitris N.],
Video object segmentation by hypergraph cut,
CVPR09(1738-1745).
IEEE DOI
0906
Oversegment, then graph structure of patch relations.
BibRef
Yang, W.M.[Wen-Ming],
Lu, W.[Wang],
Zhang, N.T.[Nai-Tong],
Object Extraction Combining Image Partition with Motion Detection,
ICIP07(III: 337-340).
IEEE DOI
0709
BibRef
del-Blanco, C.R.[Carlos R.],
Garcia, N.[Narciso],
Salgado, L.[Luis],
Jaureguizar, F.[Fernando],
Object Tracking from Unstabilized Platforms by Particle Filtering with
Embedded Camera Ego Motion,
AVSBS09(400-405).
IEEE DOI
0909
BibRef
del-Blanco, C.R.[Carlos R.],
Jaureguizar, F.[Fernando],
Salgado, L.[Luis],
García, N.[Narciso],
Target Detection Through Robust Motion Segmentation and Tracking
Restrictions in Aerial FLIR Images,
ICIP07(V: 445-448).
IEEE DOI
0709
BibRef
And:
Aerial Moving Target Detection Based on Motion Vector Field Analysis,
ACIVS07(990-1001).
Springer DOI
0708
See also Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter.
BibRef
Chen, C.[Cheng],
Fan, G.L.[Guo-Liang],
What Can We Learn from Biological Vision Studies for Human Motion
Segmentation?,
ISVC06(II: 790-801).
Springer DOI
0611
BibRef
Ahmed, R.[Rakib],
Karmakar, G.C.[Gour C.],
Dooley, L.S.[Laurence S.],
Incorporation of Texture Information for Joint Spatio-Temporal
Probabilistic Video Object Segmentation,
ICIP07(VI: 293-296).
IEEE DOI
0709
BibRef
Earlier:
Region-Based Shape Incorporation for Probabilistic Spatio-Temporal
Video Object Segmentation,
ICIP06(2445-2448).
IEEE DOI
0610
BibRef
Dorea, C.C.,
Paraas, M.,
Marqees, F.,
Generation of Long-Term Color and Motion Coherent Partitions,
ICIP06(581-584).
IEEE DOI
0610
BibRef
Torsello, A.[Andrea],
Pavan, M.[Massimiliano],
Pelillo, M.[Marcello],
Spatio-temporal Segmentation Using Dominant Sets,
EMMCVPR05(301-315).
Springer DOI
0601
See also Dominant Sets and Pairwise Clustering.
BibRef
Singaraju, D.[Dheeraj],
Vidal, R.[René],
Direct Segmentation of Multiple 2-D Motion Models of Different Types,
WDV06(18-33).
Springer DOI
0705
BibRef
And:
A Bottom up Algebraic Approach to Motion Segmentation,
ACCV06(I:286-296).
Springer DOI
0601
BibRef
Benboudjema, D.,
Pieczynski, W.,
Segmenting Non Stationary Images with Triplet Markov Fields,
ICIP05(I: 317-320).
IEEE DOI
0512
BibRef
Galun, M.[Meirav],
Apartsin, A.[Alexander],
Basri, R.[Ronen],
Multiscale Segmentation by Combining Motion and Intensity Cues,
CVPR05(I: 256-263).
IEEE DOI
0507
BibRef
Saez, E.,
Benavides, J.L.,
Guil, N.,
Combining luminance and edge based metrics for robust temporal video
segmentation,
ICIP04(IV: 2231-2234).
IEEE DOI
0505
BibRef
Farmer, M.E.,
Lu, X.G.[Xiao-Guang],
Chen, H.[Hong],
Jain, A.K.[Anil K.],
Robust motion-based image segmentation using fusion,
ICIP04(V: 3375-3378).
IEEE DOI
0505
BibRef
Besbes, O.,
Belhadj, Z.,
Multiple motion segmentation with level sets without prior information,
ICIP04(I: 369-372).
IEEE DOI
0505
BibRef
Jia, Z.[Zhen],
Balasuriya, A.[Arjuna],
Motion Based Image Segmentation with Unsupervised Bayesian Learning,
Motion05(II: 2-7).
IEEE DOI
0502
BibRef
Wang, H.,
Culverhouse, P.F.,
Robust Motion Segmentation by Spectral Clustering,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Majchrzak, D.,
Sarkar, S.,
Parallelizing motion segmentation by perceptual organization of XYT,
ICPR04(I: 773-776).
IEEE DOI
0409
BibRef
Park, J.H.[Jin-Hyeong],
Zha, H.Y.[Hong-Yuan],
Kasturi, R.[Rangachar],
Spectral Clustering for Robust Motion Segmentation,
ECCV04(Vol IV: 390-401).
Springer DOI
0405
BibRef
Wang, J.[Jue],
Thiesson, B.[Bo],
Xu, Y.Q.[Ying-Qing],
Cohen, M.[Michael],
Image and Video Segmentation by Anisotropic Kernel Mean Shift,
ECCV04(Vol II: 238-249).
Springer DOI
0405
BibRef
Krajsek, K.[Kai],
Mester, R.[Rudolf],
On the equivalence of variational and statistical differential motion
estimation,
Southwest06(11-15).
IEEE DOI
0603
BibRef
Mester, R.[Rudolf],
A Bayesian view on matching and motion estimation,
Southwest12(197-200).
IEEE DOI
1205
BibRef
Ochs, M.[Matthias],
Bradler, H.[Henry],
Mester, R.[Rudolf],
Enhanced Phase Correlation for Reliable and Robust Estimation of
Multiple Motion Distributions,
PSIVT15(368-379).
Springer DOI
1602
BibRef
Mester, R.[Rudolf],
Motion estimation revisited: an estimation-theoretic approach,
Southwest14(113-116)
IEEE DOI
1406
BibRef
Earlier:
The generalization, optimization, and information-theoretic
justification of filter-based and autocovariance-based motion
estimation,
ICIP03(III: 81-84).
IEEE DOI
0312
BibRef
Earlier:
A New View at Differential and Tensor-Based Motion Estimation Schemes,
DAGM03(321-329).
Springer DOI
0310
BibRef
Earlier:
A system-theoretical view on local motion estimation,
Southwest02(201-205).
IEEE Top Reference.
0208
approximation theory
BibRef
El Saban, M.A.,
Manjunath, B.S.,
Video region segmentation by spatio-temporal watersheds,
ICIP03(I: 349-352).
IEEE DOI
0312
BibRef
Fu, M.F.[Ming Fai],
Au, O.C.,
Chan, W.C.[Wing Cheong],
Fast global motion estimation based on local motion segmentation,
ICIP03(II: 367-370).
IEEE DOI
0312
BibRef
Silveira, M.,
Piedade, M.,
MRF-motion Segmentation Based on Dominant Motion Estimation and the
Detection of Uncovered Regions,
ICIP01(I: 373-376).
IEEE DOI
0108
BibRef
Silveira, M.,
Piedade, M.,
Joint segmentation and motion estimation,
ICIP98(II: 657-661).
IEEE DOI
9810
BibRef
Lindh, P.,
van den Branden Lambrecht, C.[Christian],
Efficient Spatio-Temporal Decomposition for Perceptual Processing
of Video Sequences,
ICIP96(III: 331-334).
IEEE DOI
BibRef
9600
Mills, S.,
Novins, K.,
Motion Segmentation in Long Image Sequences,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Nitsuwat, S.,
Jin, J.,
Motion-based Video Segmentation Using Fuzzy Clustering and Classical
Mixture Model,
ICIP00(Vol I: 300-303).
IEEE DOI
0008
BibRef
Sun, H.Z.[Hong-Zan],
Feng, T.[Tao],
Tan, T.N.[Tie-Niu],
Spatio-temporal Segmentation for Video Surveillance,
ICPR00(Vol I: 843-846).
IEEE DOI
0009
BibRef
Sista, S.,
Kashyap, R.L.,
Unsupervised Video Segmentation and Object Tracking,
ICIP99(26PP6). Not in proceedings.
BibRef
9900
Fermüller, C.[Cornelia],
Brodsky, T.[Tomas],
Aloimonos, Y.F.[Yi-Fannis],
Motion Segmentation: A Synergistic Approach,
CVPR99(II:226-231a).
IEEE DOI
BibRef
9900
Fermüller, C.[Cornelia],
Defoort, F.P.[Filip P.], and
Aloimonos, Y.F.[Yi-Fannis],
Motion Segmentation for a Binocular Observer,
UMD--TR3893, April 1998.
Motion segmentation and camera motion estimation solved together
for binocular observer. Uses scene smoothness.
WWW Link.
BibRef
9804
Thirde, D.J.,
Jones, G.A.,
Hierarchical probabilistic models for video object segmentation and
tracking,
ICPR04(I: 636-639).
IEEE DOI
0409
BibRef
Thirde, D.J.,
Jones, G.A.,
Flack, J.,
Spatio-Temporal Semantic Object Segmentation using Probabilistic
Sub-Object Regions,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Giaccone, P.R.,
Jones, G.A.,
Segmentation of Global Motion using
Temporal Probabilistic Classification,
BMVC98(xx-yy).
BibRef
9800
Kim, W.S.[Won Sup],
Lee, S.W.[Seong-Whan],
Han, S.K.[Seung Kee],
Kook, H.[Hyungtae],
Temporal Segmentation and Selective Attention in the
Stochastic Oscillator Neural Network,
ICPR98(Vol I: 259-261).
IEEE DOI
9808
BibRef
Shi, J.B.[Jian-Bo], and
Malik, J.[Jitendra],
Motion Segmentation and Tracking Using Normalized Cuts,
ICCV98(1154-1160).
IEEE DOI
See also Normalized Cuts and Image Segmentation.
BibRef
9800
Morier, F.,
Nicolas, H.,
Benois-Pineau, J.,
Barba, D.,
Sanson, H.,
Relative depth estimation of video objects for image interpolation,
ICIP98(I: 953-957).
IEEE DOI
9810
See also Hierarchical Segmentation of Video Sequences for Content Manipulation and Adaptive Coding.
BibRef
Martinez, F.X.,
Benois-Pineeau, J.,
Barba, D.,
Extraction of the relative depth information of objects in video
sequences,
ICIP98(I: 948-952).
IEEE DOI
9810
BibRef
Kong, M.Q.[Ming-Qi],
Leduc, J.P.,
Ghosh, B.K.,
Wickerhauser, M.V.,
Spatio-temporal continuous wavelet transforms for motion-based
segmentation in real image sequences,
ICIP98(II: 662-666).
IEEE DOI
9810
BibRef
Wilson, R.,
Meulemans, P.,
Calway, A.D.,
Kruger, S.,
Image sequence analysis and segmentation using G-blobs,
ICIP98(II: 483-487).
IEEE DOI
9810
BibRef
Strens, M., and
Boyce, J.,
Constraint Directed Learning for Unsupervised
Image Sequence Segmentation,
ICIP97(I: 743-746).
IEEE DOI
BibRef
9700
Herodotou, N.,
Venetsanopoulos, A.N.,
Temporal prediction of video sequences using an image warping technique
based on color segmentation,
CIAP97(I: 494-501).
Springer DOI
9709
BibRef
Li, Y.[Yi],
Hatzinakos, D.[Dimitrios],
Venetsanopoulos, A.N.[Anastasios N.],
A Multi-Frame, Region-Feature Based Technique for Motion Segmentation,
ICIP99(I:11-15).
IEEE DOI
BibRef
9900
Chalom, E.[Edmond],
Bove, V.M.[V. Michael],
Segmentation of an Image Sequence Using Multi-Dimensional
image attributes,
ICIP96(II: 525-528).
IEEE DOI
BibRef
9600
Duc, B.[Benoît],
Schroeter, P.[Philippe],
Bigün, J.[Josef],
Motion Segmentation by Fuzzy Clustering with Automatic Determination
of the Number of Motions,
ICPR96(IV: 376-380).
IEEE DOI
9608
BibRef
And:
Motion Estimation and Segmentation by Fuzzy Algorithms,
ICIP95(III: 472-475).
IEEE DOI
9510
BibRef
And:
Spatio-temporal robust motion estimation and segmentation,
CAIP95(238-245).
Springer DOI
9509
(Swiss Federal Inst. of Technology, CH)
BibRef
Duc, B.[Benoît],
Motion estimation using invariance under group transformations,
ICPR94(A:159-163).
IEEE DOI
9410
BibRef
Konrad, J.,
Dang, V.N.,
Coding-Oriented Video Segmentation Inspired by MRF Models,
ICIP96(I: 909-912).
IEEE DOI
BibRef
9600
Cheong, C.K.[Cha Keon],
Aizawa, K.[Kiyoharu],
Structural Motion Segmentation Based on Probabilistic Clustering,
ICIP96(I: 505-508).
IEEE DOI
BibRef
9600
Xu, G.[Gang],
Tsuji, S.,
Correspondence and segmentation of multiple rigid motions via epipolar
geometry,
ICPR96(I: 213-217).
IEEE DOI
0509
BibRef
Charan, R.,
Ahuja, N.,
Feature Guided Pixel Matching and Segmentation
in Motion Image Sequences,
SCV95(277-282).
IEEE DOI University of Illinois at Urbana-Champaign.
Multi-grid approach, find pixels through the sequence, segment
into different motions.
BibRef
9500
Saito, T.,
Komatsu, T.,
Akimoto, Y.,
Global motion segmentation for mid-level representation of moving
images,
ICIP95(II: 402-405).
IEEE DOI
9510
BibRef
Saito, T.[Takahiro],
Komatsu, T.[Takashi],
Motion analysis and segmentation for object-oriented mid-level image
representation,
CIAP95(663-668).
Springer DOI
9509
BibRef
Ben-Ezra, M.[Moshe],
Peleg, S.[Shmuel], and
Rousso, B.[Benny],
Motion Segmentation Using Convergence Properties,
ARPA94(II:1233-1235).
BibRef
9400
Desmet, S.,
Deknuydt, B.,
van Eycken, L.[Luc],
Oosterlinck, A.,
Initial segmentation of a scene using the results of a classification
based motion estimator,
ICIP94(I: 559-562).
IEEE DOI
9411
BibRef
Yamamoto, M.,
A Segmentation Method Based on Motion from Image Sequence and Depth,
ICPR90(I: 230-232).
IEEE DOI
BibRef
9000
Sinclair, D.A.,
Motion Segmentation and Local Structure,
ICCV93(366-373).
IEEE DOI Accumulate estimates of the structure from flow normals.
BibRef
9300
Sinclair, D.A.,
Blake, A.[Andrew],
Beardsley, P.A.[Paul A.],
Murray, D.W.[David W.],
A Novel Approach to Motion Segmentation,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Gong, S.G.[Shao-Gang],
Buxton, H.[Hilary],
From Contextual Knowledge to Computational Constraints,
BMVC93(229-238)
PDF File.
9309
(QMW, London and Sussex Univ)
Was given as:
Bayesian Net for Mapping Contextual Knowledge to
Computational Constraints in Motion Segmentation and Tracking.
BibRef
Gambotto, J.P.,
A region-based spatio-temporal segmentation algorithm,
ICPR92(III:189-192).
IEEE DOI
9208
BibRef
Marchant, J.A.,
Accurate Boundary Location from Motion,
BMVC92(xx-yy).
PDF File.
9209
BibRef
Peleg, S., and
Rom, H.,
Motion Based Segmentation,
ICPR90(I: 109-113).
IEEE DOI
BibRef
9000
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Motion Detection, Analysis of Motion Detectors .