Zacharias, G.L.,
Caglayan, A.K.,
Sinacori, J.B.,
A Model for Visual Flow-Field Cueing and Self-Motion Estimation,
SMC(15), 1985, pp. 385-389.
BibRef
8500
van Doorn, A.J., and
Koenderink, J.J.,
Visibility of Movement Gradients,
BioCyber(44), 1982, pp. 167-175.
BibRef
8200
Koenderink, J.J., and
van Doorn, A.J.,
Affine Structure from Motion,
JOSA-A(8), No. 2, 1991, pp. 377-385.
BibRef
9100
Koenderink, J.J., and
van Doorn, A.J.,
Invariant Properties of the Motion Parallax Field Due
to the Movement of Rigid Bodies Relative to an Observer,
Optica Acta(22), No. 9, 1975, pp. 773-791.
See also Local Structure of Movement Parallax of the Plane.
BibRef
7500
Koenderink, J.J., and
van Doorn, A.J.,
Exterospecific Component of the Motion Parallax Field,
JOSA(66), 1976, pp. 953-957.
See also Local Structure of Movement Parallax of the Plane.
BibRef
7600
Rosenholtz, R.[Ruth],
Koenderink, J.J.[Jan J.],
Affine Structure and Photometry,
CVPR96(790-795).
IEEE DOI
BibRef
9600
Bruss, A.R.[Anna R.], and
Horn, B.K.P.[Berthold K.P.],
Passive Navigation,
CVGIP(21), No. 1, January 1983, pp. 3-20.
Elsevier DOI
BibRef
8301
Earlier:
DARPA82(204-214).
BibRef
And:
MIT AI Memo-662, November 1981.
A lot of equations to show what can be done with optic flow data.
Determine the motion of a body relative to a fixed environment
using the changing image seen by the camera attached to the moving
body. The optic flow in the image is the input.
BibRef
Negahdaripour, S., and
Horn, B.K.P.,
Direct Passive Navigation,
PAMI(9), No. 1, January 1987, pp. 168-176.
BibRef
8701
Earlier:
MIT AI Memo-821, February 1984.
BibRef
Earlier:
Direct Passive Navigation: Analytical Solution for Planes,
DARPA85(381-387).
BibRef
And:
A1 only ?:
MIT AI Memo-863, August 1985.
Motion of the observer relative to a planar surface using image
brightness derivatives. No optical flow is computed, just
derivatives at 8 points.
BibRef
Negahdaripour, S.[Shahriar],
Yuille, A.L.[Alan L.],
Direct Passive Navigation: Analytical Solution for Quadratic Patches,
MIT AI Memo-876, March 1986.
BibRef
8603
Negahdaripour, S.,
Kolagani, N., and
Hayashi, B.Y.,
Direct Motion Stereo for Passive Navigation,
CVPR92(425-431).
IEEE DOI Consider axial translation and panning translation, computed from
image gradients and time derivatives. Uses stereo image sequences.
BibRef
9200
Hayashi, B.Y.,
Direct Motion Stereo: Recovery of Observer Motion and Scene Structure,
ICCV90(446-450).
IEEE DOI
BibRef
9000
Negahdaripour, S.,
Motion Recovery from Image Sequences Using Only
First Order Optical Flow Information,
IJCV(9), No. 3, 1992, pp. 163-184.
Springer DOI
BibRef
9200
Earlier:
add A2
Lee, S.,
Motion Recovery from Image
Sequences Using First-Order Optical Flow Information,
Motion91(132-139).
Use optical flow in two regions to get ego motion.
BibRef
Inigo, R.M.,
McVey, E.S.,
Berger, B.J.,
Wirtz, M.J.,
Machine Vision Applied to Vehicle Guidance,
PAMI(6), No. 6, November 1984, pp. 820-826.
BibRef
8411
Inigo, R.M., and
McVey, E.S.,
Machine vision applied to vehicle guidance and safety,
Conference(469-474).
32nd IEEE Vehicular Technology Conference, 1982, Vol.32.
HTML Version.
BibRef
8200
McVey, E.S.,
Drake, K.C.,
Inigo, R.M.,
Range Measurements by a Mobile Robot Using a Navigation Line,
PAMI(8), No. 1, January 1986, pp. 105-109.
BibRef
8601
Drake, K.C.,
McVey, E.S.,
Inigo, R.M.,
Sensing Error for a Mobile Robot Using Line Navigation,
PAMI(7), No. 4, July 1985, pp. 485-490.
BibRef
8507
Drake, K.C.,
McVey, E.S.,
Inigo, R.M.,
Sensor Roll Angle Error for a Mobile Robot Using a Navigation Line,
PAMI(10), No. 5, September 1988, pp. 727-731.
IEEE DOI
BibRef
8809
Drake, K.C.,
McVey, E.S.,
Inigo, R.M.,
Experimental Position and Ranging Results for a Mobile Robot,
RA(3), 1987, pp. 31-42.
BibRef
8700
Lawton, T.B.[Teri B.],
Method and apparatus for predicting the direction of movement
in machine vision,
US_Patent5,109,425, Apr 28, 1992
WWW Link.
BibRef
9204
Heeger, D.J., and
Jepson, A.D.,
Subspace Methods for Recovering Rigid Motion I:
Algorithms and Implementation,
IJCV(7), No. 2, January 1992, pp. 95-117.
Springer DOI
BibRef
9201
And:
RBCV-TR-90-35, Toronto, November 1990.
BibRef
And: A2, A1:
Subspace Methods for Recovering Rigid Motion, Part II: Theory,
RBCV-TR-90-36, Toronto, November 1990.
BibRef
And:
Linear Subspace Methods for Recovering Translation Direction,
RBCV-TR-92-40, Toronto, 1992.
Depth from optical flow.
BibRef
Heeger, D.J.[David J.],
Jepson, A.D.[Allan D.],
Method and apparatus for image processing to obtain
three dimensional motion and depth,
US_Patent4,980,762, Dec 25, 1990
WWW Link.
BibRef
9012
Heeger, D.J.,
Jepson, A.D.,
Simple Method for Computing 3D Motion and Depth,
ICCV90(96-100).
IEEE DOI
BibRef
9000
Heeger, D.J., and
Jepson, A.D.,
A Fast Subspace Methods for Recovering Rigid Motion,
Motion91(124-131).
Egomotion, recover translation direction, then a linear method
to get rotation and depth.
BibRef
9100
Heeger, D.J.,
Hager, G.,
Egomotion and the Stabilized World,
ICCV88(435-440).
IEEE DOI
BibRef
8800
Dvornychenko, V.N.,
Kong, M.S.,
Soria, S.M.,
Mission Parameters Derived from Optical Flow,
JMIV(2), 1992, pp. 27-38.
BibRef
9200
Hummel, R.A., and
Sundareswaran, V.,
Motion Parameter Estimation from Global Flow Field Data,
PAMI(15), No. 5, May 1993, pp. 459-476.
IEEE DOI Two iterative algorithms to get the parameters of motion given the
flow field. The first is flow circulation, the second is the
FOE search algorithm.
BibRef
9305
Sundareswaran, V.,
Egomotion from Global Flow Field Data,
Motion91(140-145).
Get T and R given the optical flow field. The curl of FF is
approximately linear in R. The FoE is at the center of a circle
where the line integral of the FF projected on the circle is 0.
BibRef
9100
Sundareswaran, V.,
Global Methods for Image Motion Analysis,
Ph.D.October 1992,
BibRef
9210
NYU
BibRef
Barron, J.L.[John L.],
A Survey of Approaches for Determining Optic Flow, Environmental
Layout and Egomotion,
RBCV-TR-84-5, November 1984, Toronto.
Survey, Optic Flow. A good survey of motion papers up to 1984, especially the optic flow
papers. There are summaries of most of the equations that people use
and a lot of diagrams.
BibRef
8411
Prazdny, K.,
Ego Motion and a Relative Depth Map from Optical Flow,
BioCyber(36), 1980, pp. 87-102.
BibRef
8000
And:
A Simple Method for Recovering Relative Depth Map in the Case of a
Translating Sensor,
IJCAI81(698-699).
BibRef
And:
Relative Depth and Local Surface Orientation from Image Motions,
DARPA81(47-60).
Develop equations to use optical flow to recover rotation and
translation direction, orientation of approaching surface. The
magnitude of translation is not possible.
BibRef
Prazdny, K.,
Determining the Instantaneous Direction of Motion
from Optical Flow Generated by a Curvilinearly Moving Observer,
CGIP(17), No. 3, November 1981, pp. 238-248.
Elsevier DOI
BibRef
8111
Earlier:
DARPA81(14-21).
BibRef
And:
PRIP81(109-114).
Decompose into rotational and translational. Focus of expansion to get
translational.
BibRef
Prazdny, K.,
Motion and Structure from Optical Flow,
IJCAI79(702-704).
BibRef
7900
Prazdny, K.,
Computing Motions of Planar Surfaces from Spatio-Temporal Changes
in Image Brightness,
PRIP82(256-258).
BibRef
8200
Prazdny, K.,
A Sketch of a (Computational) Theory of Visual Kinesthesis,
HMV83(413-423).
BibRef
8300
Rieger, J.H., and
Lawton, D.T.,
Determining the Instantaneous Axis of Translation from Optic Flow
Generated by Arbitrary Sensor Motion,
Motion83(33-41).
BibRef
8300
And:
COINSTR 83-1, UMass., January 1983.
Method: compute (locally) the difference vectors from optic flow
field; Threshold difference vectors; Minimize the angle between the
difference vector field.
BibRef
Rieger, J.H., and
Lawton, D.T.,
Processing Differential Image Motion,
JOSA-A(2), 1985, pp. 254-260.
BibRef
8500
Earlier:
COINSTR 84-28, 1984.
BibRef
Earlier: A2, A1:
The Use of Difference Fields in Processing Sensor Motion,
DARPA83(77-83). Identical paper (different title):
BibRef
Sensor Motion and Relative Depth from Difference Fields of
Optic Flows,
IJCAI83(1027-1031).
Recover the motion of the sensor only. This is
about the same as the above report (COINS 83-1).
BibRef
Horn, B.K.P., and
Weldon, Jr., E.J.,
Direct Methods for Recovering Motion,
IJCV(2), No. 1, June 1988, pp. 51-76.
Springer DOI Pure rotation, pure translation, or general motion with known pure
rotation, using first order derivatives of the image.
BibRef
8806
Horn, B.K.P., and
Weldon, Jr., E.J.,
Computationally-Efficient Methods for Recovering
Translational Motion,
ICCV87(2-11).
Translation of the observer using a gradient approach.
BibRef
8700
Sinclair, D.A.,
Blake, A.,
Murray, D.W.,
Robust Estimation of Egomotion from Normal Flow,
IJCV(13), No. 1, September 1994, pp. 57-69.
Springer DOI
BibRef
9409
Earlier:
Robust ego-motion estimation,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Duric, Z.[Zoran],
Rosenfeld, A., and
Davis, L.S.,
Egomotion Analysis Based on the Frenet-Serret Motion Model,
IJCV(15), No. 1-2, June 1995, pp. 105-122.
Springer DOI
BibRef
9506
Earlier:
ICCV93(703-712).
IEEE DOI
See also Estimating The Heading Direction Using Normal Flow.
BibRef
Heeger, D.J., and
Jepson, A.D.,
Visual Perception of Three-Dimensional Motion,
NeurComp(2), 1990, pp. 129-137.
BibRef
9000
Silva, C.[Cesar],
Santos-Victor, J.[Jose],
Robust Egomotion Estimation from the Normal Flow
Using Search Subspaces,
PAMI(19), No. 9, September 1997, pp. 1026-1034.
IEEE DOI
9710
BibRef
And:
Egomotion Estimation on a Topological Space,
ICPR98(Vol I: 64-66).
IEEE DOI
9808
BibRef
Silva, C.[César], and
Santos-Victor, J.[José],
Egomotion Estimation Using Log-Polar Images,
ICCV98(967-972).
IEEE DOI
BibRef
9800
Silva, C.[César], and
Santos-Victor, J.[José],
Direct Egomotion Estimation,
ICPR96(I: 702-706).
IEEE DOI
9608
(Inst. de Sistemas e Robotica, P)
BibRef
Brooks, M.J.[Michael J.],
Chojnacki, W.[Wojciech],
Baumela, L.,
Determining the Egomotion of an Uncalibrated Camera from
Instantaneous Optical Flow,
JOSA-A(14), No. 10, October 1997, pp. 2670-2677.
9710
See also From FNS to HEIV: A Link Between Two Vision Parameter Estimation Methods.
BibRef
Brooks, M.J.,
Chojnacki, W.,
van den Hengel, A.J.,
Baumela, L.,
Robust Techniques for the Estimation of Structure from Motion
in the Uncalibrated Case,
ECCV98(I: 281).
Springer DOI
BibRef
9800
Irani, M.[Michal],
Rousso, B.[Benny],
Peleg, S.[Shmuel],
Recovery of Ego-Motion Using Region Alignment,
PAMI(19), No. 3, March 1997, pp. 268-272.
IEEE DOI
9704
BibRef
Earlier:
Recovery of Ego-Motion Using Image Stabilization,
CVPR94(454-460).
IEEE DOI
BibRef
Earlier:
Robust recovery of ego-motion,
CAIP93(371-378).
Springer DOI
9309
2D image motion is used to align the image regions, this registration
removed the rotation effects. The resulting residual parallax gives the
FOE, and thus the ego-translation. Rotation comes from the translation
and the 2D image motion.
BibRef
Cameron, S.,
Grossberg, S.,
Guenther, F.H.,
A Self-Organizing Neural-Network Architecture for
Navigation Using Optic Flow,
NeurComp(10), No. 2, February 15 1998, pp. 313-352.
9802
BibRef
Verri, A.[Alessandro], and
Trucco, E.[Emanuele],
Finding the Epipole from Uncalibrated Optical Flow,
IVC(17), No. 8, June 1999, pp. 605-609.
Elsevier DOI
BibRef
9906
Earlier:
ICCV98(987-991).
IEEE DOI
BibRef
BMVC97(xx-yy).
HTML Version.
0209
projective transform, optical flow at 6 locations.
BibRef
Fejes, S.[Sandor],
Davis, L.S.[Larry S.],
Detection of Independent Motion Using Directional Motion Estimation,
CVIU(74), No. 2, May 1999, pp. 101-120.
DOI Link
BibRef
9905
Earlier:
UMD--TR3815, August 1997.
Partial Egomotion Estimation.
Detection of Moving Objects.
Robust Line Fitting.
Spatio-Temporal Filtering.
WWW Link.
BibRef
Earlier:
Exploring Visual Motion Using Projections of Motion Fields,
DARPA97(113-122).
BibRef
Fejes, S.[Sandor], and
Davis, L.S.[Larry S.],
What Can Projections of Flow Fields Tell Us About Visual Motion,
ICCV98(979-986).
IEEE DOI
BibRef
9800
Fejes, S.[Sandor],
Davis, L.S.[Larry S.],
Direction-Selective Filters for Egomotion Estimation,
UMD--CS-TR-3814, July 1997.
Egomotion Estimation.
Fisher Discriminant.
Robust Line Fitting.
PS File.
BibRef
9707
Fermüller, C.[Cornelia],
Pless, R.[Robert],
The Ouchi Illusion as an Artifact of Biased Flow Estimation,
Vision Research(40), No. 1, 2000, pp. 77-95.
BibRef
0001
Earlier:
Add A3:
Aloimonos, Y.[Yiannis],
UMD--TR3917, July 1998
WWW Link.
WWW Link.
BibRef
Fermüller, C.[Cornelia],
Aloimonos, Y.[Yiannis],
Global Rigidity Constraints in Image Displacement Fields,
ICCV95(245-250).
IEEE DOI Analysis of optical flow.
BibRef
9500
Fermüller, C.,
Alimonos, Y.[Yiannis],
Recognizing 3d Motion,
IJCAI93(1624-1630).
BibRef
9300
Fermüller, C.,
Global 3-D Motion Estimation,
CVPR93(415-421).
IEEE DOI
BibRef
9300
And:
Motion Constraint Patterns,
WQV93(128-139).
BibRef
And:
DARPA93(629-640).
Find egomotion based on the sign of the normal flow.
BibRef
Tzovaras, D.,
Ploskas, N.,
Strintzis, M.G.,
Rigid 3-D Motion Estimation Using Neural Networks and Initially
Estimated 2-D Motion Data,
CirSysVideo(10), No. 1, February 2000, pp. 158.
IEEE Top Reference.
0003
BibRef
Ploskas, N.,
Simitopoulos, D.,
Tzovaras, D.,
Triantafyllidis, G.A.,
Strintzis, M.G.,
Rigid and non-rigid 3D motion estimation from multiview image sequences,
SP:IC(18), No. 3, March 2003, pp. 185-202.
Elsevier DOI
0304
BibRef
Demirdjian, D.[David],
Horaud, R.[Radu],
Motion-Egomotion Discrimination and Motion Segmentation from Image-Pair
Streams,
CVIU(78), No. 1, April 2000, pp. 53-68.
0004
DOI Link Robust techniques.
BibRef
Branca, A.,
Stella, E.,
Distante, A.,
Passive navigation using egomotion estimates,
IVC(18), No. 10, July 2000, pp. 833-841.
Elsevier DOI
0005
2 state approach, feature matching and egomotion computation.
BibRef
Branca, A.,
Stella, E.,
Ancona, N.,
Distante, A.,
Planar Surface Reconstruction using Projective Geometry,
SCIA99(Computer Vision III).
BibRef
9900
Chen, Y.S.[Yong-Sheng],
Liou, L.G.[Lin-Gwo],
Hung, Y.P.[Yi-Ping],
Fuh, C.S.[Chiou-Shann],
Three-dimensional ego-motion estimation from motion fields observed
with multiple cameras,
PR(34), No. 8, August 2001, pp. 1573-1583.
Elsevier DOI
0105
BibRef
Tsao, A.T.,
Hung, Y.P.,
Fuh, C.S.,
Chen, Y.S.,
Ego Motion Estimation Using Optical Flow Fields Observed from
Multiple Cameras,
CVPR97(457-462).
IEEE DOI
9704
BibRef
Harding, C.M.[Cressida M.],
Lane, R.G.[Richard G.],
Passive navigation from image sequences by use of a volumetric approach,
JOSA-A(19), No. 2, February 2002, pp. 295-305.
WWW Link.
0202
BibRef
Chiuso, A.[Alessandro],
Favaro, P.[Paolo],
Jin, H.L.[Hai-Lin],
Soatto, S.[Stefano],
Structure from Motion Causally Integrated Over Time,
PAMI(24), No. 4, April 2002, pp. 523-535.
IEEE DOI
PDF File.
0204
BibRef
Earlier:
3-D Motion and Structure from 2-D Motion Causally Integrated over Time:
Implementation,
ECCV00(II: 734-750).
Springer DOI
0003
3-D structure in real time from monocular sequence.
Prove it is minimal and stable.
Handle occlusions. 20-40 high contrast points with small motion relative
to sampling.
See also semi-direct approach to structure from motion, A.
BibRef
Gurnsey, R.,
Fleet, D.J., and
Potechin, C.,
Second-order motions contribute to vection,
Vision Research(38), No. 18, 1998, pp. 2801-2816.
HTML Version.
BibRef
9800
Ota, T.[Takaaki],
Schaffer, M.[Mark],
Video motion vector detection including rotation and/or
zoom vector generation,
US_Patent6,236,682, May 22, 2001
WWW Link.
BibRef
0105
Mandelbaum, R.[Robert],
Salgian, G.[Garbis],
Sawhney, H.S.[Harpreet Singh],
Method and apparatus for estimating scene structure and ego-motion from multiple images of a scene using correlation,
US_Patent6,307,959, Oct 23, 2001
WWW Link.
BibRef
0110
And:
Correlation-based Estimation of Ego-Motion and Structure from Motion
and Stereo,
ICCV99(544-550).
IEEE DOI
BibRef
Wang, H.[Han],
Song, W.L.[Wei-Lin],
Correction of bias for motion estimation algorithms,
PRL(23), No. 13, November 2002, pp. 1505-1514.
Elsevier DOI
0206
Egomotion from epipolar qquations.
Minimize error of point from epiploar line.
BibRef
Armangué, X.[Xavier],
Araújo, H.[Helder],
Salvi, J.[Joaquim],
A review on egomotion by means of differential epipolar geometry
applied to the movement of a mobile robot,
PR(36), No. 12, December 2003, pp. 2927-2944.
Elsevier DOI
0310
BibRef
Earlier:
Differential epipolar constraint in mobile robot egomotion estimation,
ICPR02(III: 599-602).
IEEE DOI
0211
Restrict to movement on a plane.
BibRef
Park, S.C.[Sang-Cheol],
Lee, H.S.[Hyoung-Suk],
Lee, S.W.[Seong-Whan],
Qualitative estimation of camera motion parameters from the linear
composition of optical flow,
PR(37), No. 4, April 2004, pp. 767-779.
Elsevier DOI
0403
BibRef
Escalante-Ramírez, B.[Boris],
Silván-Cárdenas, J.L.[José L.],
Advanced modeling of visual information processing: A multi-resolution
directional-oriented image transform based on Gaussian derivatives,
SP:IC(20), No. 9-10, October-November 2005, pp. 801-812.
Elsevier DOI
0510
BibRef
Earlier: A2, A1:
Optic-flow Information Extraction with Directional Gaussian-derivatives,
ICPR00(Vol III: 190-193).
IEEE DOI
0009
From Gaussian Derivitave model for early vision.
BibRef
Jang, S.W.[Seok-Woo],
Pomplun, M.[Marc],
Kim, G.Y.[Gye-Young],
Choi, H.I.[Hyung-Il],
Adaptive robust estimation of affine parameters from block motion
vectors,
IVC(23), No. 14, 12 December 2005, pp. 1250-1263.
Elsevier DOI
0601
BibRef
Mann, R.[Richard],
Langer, M.S.[Michael S.],
Spectrum analysis of motion parallax in a 3D cluttered scene and
application to egomotion,
JOSA-A(22), No. 9, September 2005, pp. 1717-1731.
WWW Link.
0601
BibRef
Earlier:
Estimating camera motion through a 3D cluttered scene,
CRV04(472-479).
IEEE DOI
0408
See also Optical Snow.
BibRef
Pauwels, K.[Karl],
van Hulle, M.M.[Marc M.],
Optimal instantaneous rigid motion estimation insensitive to local
minima,
CVIU(104), No. 1, October 2006, pp. 77-86.
Elsevier DOI
0609
BibRef
Earlier:
Robust Instantaneous Rigid Motion Estimation,
CVPR05(II: 980-985).
IEEE DOI
0507
Egomotion; Optic flow; Calibrated camera; Local minima; Reweighting
Estimation of rigid camera motion from instantaneous velocity
measurements.
BibRef
Pauwels, K.[Karl],
van Hulle, M.M.[Marc M.],
Optic flow from unstable sequences through local velocity constancy
maximization,
IVC(27), No. 5, 2 April 2009, pp. 579-587.
Elsevier DOI
0904
BibRef
Earlier:
Optic Flow from Unstable Sequences containing Unconstrained Scenes
through Local Velocity Constancy Maximization,
BMVC06(I:397).
PDF File.
0609
Multiscale optic flow; Video stabilization; Phase-based techniques
BibRef
Burl, M.C.[Michael Christopher],
Pirjanian, P.[Paolo],
Systems and methods for the automated sensing of motion in a
mobile robot using visual data,
US_Patent7,162,056, Jan 9, 2007
WWW Link.
BibRef
0701
Kim, S.W.[Se Wan],
Hong, C.H.[Chan Hee],
Mobile robot using image sensor and method for measuring
moving distance thereof,
US_Patent7,171,285, Jan 30, 2007
WWW Link.
BibRef
0701
Dong, H.,
Hsiang, S.M.,
Smith, J.L.,
An Optimal-Control Model of Vision-Gait Interaction in a Virtual
Walkway,
SMC-B(39), No. 1, February 2009, pp. 156-166.
IEEE DOI
0902
Model vision-posture coupling for astronaut locomotion in partial gravity.
optical flow stabilization.
BibRef
Hu, C.X.[Chuan-Xin],
Cheong, L.F.[Loong Fah],
Linear Quasi-Parallax SfM Using Laterally-Placed Eyes,
IJCV(84), No. 1, August 2009, pp. xx-yy.
Springer DOI
0905
BibRef
Earlier:
Linear ego-motion recovery algorithm based on quasi-parallax,
ICIP08(233-236).
IEEE DOI
0810
Visual systems with multiple eyes and little overlap in visual fields.
BibRef
Ngo, T.T.[Trung Thanh],
Kojima, Y.[Yuichiro],
Nagahara, H.[Hajime],
Sagawa, R.[Ryusuke],
Mukaigawa, Y.[Yasuhiro],
Yachida, M.[Masahiko],
Yagi, Y.S.[Yasu-Shi],
Real-Time Estimation of Fast Egomotion with Feature Classification
Using Compound Omnidirectional Vision Sensor,
IEICE(E93-D), No. 1, January 2010, pp. 152-166.
WWW Link.
1001
BibRef
Ngo, T.T.[Thanh Trung],
Nagahara, H.[Hajime],
Sagawa, R.[Ryusuke],
Mukaigawa, Y.[Yasuhiro],
Yachida, M.[Masahiko],
Yagi, Y.S.[Yasu-Shi],
Adaptive-Scale Robust Estimator Using Distribution Model Fitting,
ACCV09(III: 287-298).
Springer DOI
0909
BibRef
Alenya, G.,
Torras, C.,
Camera motion estimation by tracking contour deformation:
Precision analysis,
IVC(28), No. 3, March 2010, pp. 474-490.
Elsevier DOI
1001
Egomotion estimation; Active contours; Precision analysis; Unscented
transformation
BibRef
Hao, J.[Jia],
Shibata, T.[Tadashi],
An Ego-Motion Detection System Employing Directional-Edge-Based Motion
Field Representations,
IEICE(E93-D), No. 1, January 2010, pp. 94-106.
WWW Link.
1001
BibRef
Yuan, H.,
Chang, Y.,
Lu, Z.,
Ma, Y.,
Model Based Motion Vector Predictor for Zoom Motion,
SPLetters(17), No. 9, September 2010, pp. 787-790.
IEEE DOI
1007
BibRef
Yuan, H.,
Liu, J.,
Sun, J.,
Liu, H.,
Li, Y.,
Affine Model Based Motion Compensation Prediction for Zoom,
MultMed(14), No. 4, 2012, pp. 1370-1375.
IEEE DOI
1208
BibRef
Raudies, F.[Florian],
Neumann, H.[Heiko],
A review and evaluation of methods estimating ego-motion,
CVIU(116), No. 5, May 2012, pp. 606-633.
Elsevier DOI
1203
Survey, Ego-Motion.
BibRef
And:
An Efficient Linear Method for the Estimation of Ego-Motion from
Optical Flow,
DAGM09(11-20).
Springer DOI
0909
Ego-motion estimation; Visual motion field; Robust estimators; Optic
flow; Random sample consensus; m-Functions; Hough transform;
Statistical bias; Consistency; Gaussian noise; Outlier noise
BibRef
Pradeep, V.[Vivek],
Lim, J.W.[Jong-Woo],
Egomotion Estimation Using Assorted Features,
IJCV(98), No. 2, June 2012, pp. 202-216.
WWW Link.
1204
BibRef
Earlier:
Egomotion using assorted features,
CVPR10(1514-1521).
IEEE DOI
1006
BibRef
Sung, C.H.[Chang-Hun],
Chung, M.J.[Myung Jin],
Multi-Scale Descriptor for Robust and Fast Camera Motion Estimation,
SPLetters(20), No. 7, 2013, pp. 725-728.
IEEE DOI
1307
multiscale descriptor
BibRef
Onkarappa, N.[Naveen],
Sappa, A.D.[Angel Domingo],
Speed and Texture: An Empirical Study on Optical-Flow Accuracy in
ADAS Scenarios,
ITS(15), No. 1, February 2014, pp. 136-147.
IEEE DOI
1403
BibRef
Earlier:
Laplacian Derivative Based Regularization for Optical Flow Estimation
in Driving Scenario,
CAIP13(II:483-490).
Springer DOI
1311
BibRef
Onkarappa, N.[Naveen],
Optical Flow in Driver Assistance Systems,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Choi, M.K.[Min-Kook],
Park, J.[Joonseok],
Lee, S.C.[Sang-Chul],
Event classification for vehicle navigation system by regional optical
flow analysis,
MVA(25), No. 3, April 2014, pp. 547-559.
WWW Link.
1404
BibRef
Yuan, D.[Ding],
Liu, M.[Miao],
Yin, J.[Jihao],
Hu, J.K.[Jian-Kun],
Camera motion estimation through monocular normal flow vectors,
PRL(52), No. 1, 2015, pp. 59-64.
Elsevier DOI
1412
Camera motion estimation
BibRef
Bastanlar, Y.L.[Ya-Lin],
Reduced egomotion estimation drift using omnidirectional views,
ELCVIA(13), No. 3, 2014, pp. xx-yy.
DOI Link
1505
BibRef
Uhm, T.[Taeyoung],
Ryu, M.S.[Min-Soo],
Park, J.I.[Jong-Il],
Fine-Motion Estimation Using Ego/Exo-Cameras,
ETRI(37), No. 4, August 2015, pp. 766-771.
DOI Link
1511
BibRef
Jayaraman, D.[Dinesh],
Grauman, K.[Kristen],
Learning Image Representations Tied to Egomotion from Unlabeled Video,
IJCV(125), No. 1-3, December 2018, pp. 136-161.
Springer DOI
1711
BibRef
Earlier:
Learning Image Representations Tied to Ego-Motion,
ICCV15(1413-1421)
IEEE DOI
1602
How images and objects behave with egomotion.
Cameras
BibRef
Ramakrishnan, S.K.[Santhosh K.],
Jayaraman, D.[Dinesh],
Grauman, K.[Kristen],
An Exploration of Embodied Visual Exploration,
IJCV(129), No. 5, May 2021, pp. 1616-1649.
Springer DOI
2105
BibRef
Gao, R.H.[Ruo-Han],
Jayaraman, D.[Dinesh],
Grauman, K.[Kristen],
Object-Centric Representation Learning from Unlabeled Videos,
ACCV16(V: 248-263).
Springer DOI
1704
BibRef
Gee, T.[Trevor],
Gong, R.[Rui],
Delmas, P.[Patrice],
Gimel'farb, G.L.[Georgy L.],
Robust Tracking in Weakly Dynamic Scenes,
ACIVS17(301-312).
Springer DOI
1712
Inter-frame motion of a free-moving camera. Static and dynamic objects.
BibRef
Dehghani, M.[Mehdi],
Kharrati, H.[Hamed],
Seyedarabi, H.[Hadi],
Baradarannia, M.[Mahdi],
Improvement of angular velocity and position estimation in gyro-free
inertial navigation based on vision aid equipment,
IET-CV(12), No. 3, April 2018, pp. 261-275.
DOI Link
1804
BibRef
Liu, L.,
Li, H.,
Dai, Y.,
Pan, Q.,
Robust and Efficient Relative Pose With a Multi-Camera System for
Autonomous Driving in Highly Dynamic Environments,
ITS(19), No. 8, August 2018, pp. 2432-2444.
IEEE DOI
1808
Cameras, Robustness, Heuristic algorithms, Vehicle dynamics,
Motion estimation, Pose estimation, Road vehicles,
conjugate motion
BibRef
Liu, Y.[Yu],
Shen, J.B.[Jian-Bing],
Wang, W.G.[Wen-Guan],
Sun, H.Q.[Han-Qiu],
Shao, L.[Ling],
Better Dense Trajectories by Motion in Videos,
Cyber(49), No. 1, January 2019, pp. 159-170.
IEEE DOI
1901
Trajectory, Videos, Tracking, Color, Optical imaging,
Integrated optics, Motion segmentation, Boundaries, motion,
video
BibRef
Kesana, V.[Varun],
Okade, M.[Manish],
Compressed domain zoom motion classification using local tetra patterns,
SIViP(13), No. 5, July 2019, pp. 879-885.
Springer DOI
1906
BibRef
Chermak, L.[Lounis],
Aouf, N.[Nabil],
Richardson, M.[Mark],
Visentin, G.[Gianfranco],
Real-time smart and standalone vision/IMU navigation sensor,
RealTimeIP(16), No. 4, August 2019, pp. 1189-1205.
Springer DOI
1908
standalone, multi-platform stereo vision/IMU-based navigation system,
providing ego-motion estimation.
BibRef
Li, C.T.[Chu-Tak],
Siu, W.C.[Wan-Chi],
Lun, D.P.K.[Daniel P.K.],
Semi-Supervised Deep Vision-Based Localization Using Temporal
Correlation Between Consecutive Frames,
ICIP19(1985-1989)
IEEE DOI
1910
Egomotion analysis.
Visual localization, temporal correlation, scene recognition,
autonomous driving, deep learning
BibRef
Yoon, J.S.[J. Shin],
Kim, K.,
Gallo, O.,
Park, H.S.,
Kautz, J.,
Novel View Synthesis of Dynamic Scenes With Globally Coherent Depths
From a Monocular Camera,
CVPR20(5335-5344)
IEEE DOI
2008
Image reconstruction, Cameras, Geometry, Dynamics, Vehicle dynamics,
Estimation
BibRef
Zhang, K.X.[Kai-Xiang],
Chen, J.[Jian],
Yu, G.Q.[Guo-Qing],
Zhang, X.F.[Xin-Fang],
Li, Z.J.[Zhao-Jian],
Visual Trajectory Tracking of Wheeled Mobile Robots With Uncalibrated
Camera Extrinsic Parameters,
SMCS(51), No. 11, November 2021, pp. 7191-7200.
IEEE DOI
2110
Cameras, Robot vision systems, Visualization, Trajectory tracking,
Mobile robots, Trajectory, Extrinsic parameter identification,
wheeled mobile robots (WMRs)
BibRef
Wang, G.M.[Guang-Ming],
Zhang, C.[Chi],
Wang, H.S.[He-Sheng],
Wang, J.C.[Jing-Chuan],
Wang, Y.[Yong],
Wang, X.L.[Xin-Lei],
Unsupervised Learning of Depth, Optical Flow and Pose With Occlusion
From 3D Geometry,
ITS(23), No. 1, January 2022, pp. 308-320.
IEEE DOI
2201
Optical imaging, Training, Optical fiber networks, Optical losses,
Estimation, Adaptive optics, Image reconstruction, unsupervised learning
BibRef
Wang, G.M.[Guang-Ming],
Ren, S.Q.[Shuai-Qi],
Wang, H.S.[He-Sheng],
Unsupervised Learning of Optical Flow With Non-Occlusion From
Geometry,
ITS(23), No. 11, November 2022, pp. 20850-20859.
IEEE DOI
2212
Optical imaging, Geometrical optics, Optical losses, Estimation,
Unsupervised learning, Optical fiber networks, Automobiles, occlusion
BibRef
Ando, S.[Shigeru],
Kindo, T.[Toshiki],
Direct Imaging of Stabilized Optical Flow and Possible Anomalies From
Moving Vehicle,
ITS(23), No. 12, December 2022, pp. 24044-24056.
IEEE DOI
2212
Optical sensors, Cameras, Visualization, Roads, Optical flow,
Image sensors, Optical flow, ego-motion, gaze, autonomous vehicle,
correlation image sensor
BibRef
Rozsa, Z.[Zoltan],
Golarits, M.[Marcell],
Sziranyi, T.[Tamas],
Immediate Vehicle Movement Estimation and 3D Reconstruction for Mono
Cameras by Utilizing Epipolar Geometry and Direction Prior,
ITS(23), No. 12, December 2022, pp. 23548-23558.
IEEE DOI
2212
Cameras, Image reconstruction, Estimation, Trajectory, MONOS devices,
Vehicle dynamics, Vehicle trajectory, 3D reconstruction,
intelligent transportation
BibRef
Wang, G.M.[Guang-Ming],
Zhong, J.[Jiquan],
Zhao, S.J.[Shi-Jie],
Wu, W.H.[Wen-Hua],
Liu, Z.[Zhe],
Wang, H.S.[He-Sheng],
3D Hierarchical Refinement and Augmentation for Unsupervised Learning
of Depth and Pose From Monocular Video,
CirSysVideo(33), No. 4, April 2023, pp. 1776-1786.
IEEE DOI
WWW Link.
2304
Pose estimation, Training, Optical imaging,
Optical variables control, Image reconstruction, 3D augmentation
BibRef
Lee, W.Y.[Wan Yeon],
Choi, Y.S.[Yun-Seok],
Kim, T.M.[Tong Min],
Quantitative Estimation of Video Forgery with Anomaly Analysis of
Optical Flow,
IEICE(E106-D), No. 10, October 2023, pp. 1757-1760.
WWW Link.
2310
BibRef
Zhou, B.B.[Bei-Bei],
Xie, J.[Jin],
Jin, Z.[Zhong],
Kong, H.[Hui],
Geometry-Aware Network for Unsupervised Learning of Monocular
Camera's Ego-Motion,
ITS(24), No. 12, December 2023, pp. 14226-14236.
IEEE DOI
2312
BibRef
Shiba, S.[Shintaro],
Klose, Y.[Yannick],
Aoki, Y.[Yoshimitsu],
Gallego, G.[Guillermo],
Secrets of Event-Based Optical Flow, Depth and Ego-Motion Estimation
by Contrast Maximization,
PAMI(46), No. 12, December 2024, pp. 7742-7759.
IEEE DOI
2411
Optical imaging, Optical sensors, Cameras, Estimation,
Adaptive optics, Biomedical optical imaging,
high dynamic range
BibRef
Yuan, S.[Shuai],
Yu, S.Z.[Shu-Zhi],
Kim, H.[Hannah],
Tomasi, C.[Carlo],
SemARFlow: Injecting Semantics into Unsupervised Optical Flow
Estimation for Autonomous Driving,
ICCV23(9532-9543)
IEEE DOI Code:
WWW Link.
2401
BibRef
Xu, C.X.[Chen-Xin],
Tan, R.T.[Robby T.],
Tan, Y.H.[Yu-Hong],
Chen, S.[Siheng],
Wang, Y.G.[Yu Guang],
Wang, X.C.[Xin-Chao],
Wang, Y.F.[Yan-Feng],
EqMotion: Equivariant Multi-Agent Motion Prediction with Invariant
Interaction Reasoning,
CVPR23(1410-1420)
IEEE DOI
2309
BibRef
Boulahbal, H.E.[Houssem Eddine],
Voicila, A.[Adrian],
Comport, A.I.[Andrew I.],
Forecasting of depth and ego-motion with transformers and
self-supervision,
ICPR22(3706-3713)
IEEE DOI
2212
Geometry, Convolution, Benchmark testing, Transformers,
Feature extraction, Forecasting
BibRef
Sekkati, H.[Hicham],
Lapointe, J.F.[Jean-Francois],
Back to Old Constraints to Jointly Supervise Learning Depth, Camera
Motion and Optical Flow in a Monocular Video,
ICIP22(336-340)
IEEE DOI
2211
Deep learning, Optical losses, Geometry, Structure from motion,
Simultaneous localization and mapping, Estimation,
Unsupervised Deep-Learning
BibRef
Lee, S.[Seokju],
Rameau, F.[Francois],
Pan, F.[Fei],
Kweon, I.S.[In So],
Attentive and Contrastive Learning for Joint Depth and Motion Field
Estimation,
ICCV21(4842-4851)
IEEE DOI
2203
Dynamics, Semantics, Estimation, Cameras, Rigidity, Vehicle dynamics,
Vision applications and systems, Vision for robotics and autonomous vehicles
BibRef
Neumann, L.[Luká],
Vedaldi, A.[Andrea],
Pedestrian and Ego-vehicle Trajectory Prediction from Monocular
Camera,
CVPR21(10199-10207)
IEEE DOI
2111
Training, Drives, Cameras, Trajectory, Autonomous vehicles
BibRef
Ding, Y.Q.[Ya-Qing],
Barath, D.[Daniel],
Kukelova, Z.[Zuzana],
Homography-based Egomotion Estimation Using Gravity and Sift Features,
ACCV20(I:278-294).
Springer DOI
2103
BibRef
Vasiljevic, I.,
Guizilini, V.,
Ambrus, R.,
Pillai, S.,
Burgard, W.,
Shakhnarovich, G.,
Gaidon, A.,
Neural Ray Surfaces for Self-Supervised Learning of Depth and
Ego-motion,
3DV20(1-11)
IEEE DOI
2102
Cameras, Calibration, Training,
Standards, Adaptation models, Solid modeling
BibRef
Tishchenko, I.,
Lombardi, S.,
Oswald, M.R.,
Pollefeys, M.,
Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion,
3DV20(150-159)
IEEE DOI
2102
Cameras, Estimation, Training, Lattices,
Deep learning, Transforms, Deep Learning, Scene Flow, Self Supervised Learning
BibRef
Shu, C.[Chang],
Yu, K.[Kun],
Duan, Z.X.[Zhi-Xiang],
Yang, K.Y.[Kui-Yuan],
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion,
ECCV20(XIX:572-588).
Springer DOI
2011
BibRef
Tzabari, M.[Masada],
Schechner, Y.Y.[Yoav Y.],
Polarized Optical-flow Gyroscope,
ECCV20(XVI: 363-381).
Springer DOI
2010
BibRef
Yuan, Y.[Ye],
Kitani, K.[Kris],
Ego-Pose Estimation and Forecasting As Real-Time PD Control,
ICCV19(10081-10091)
IEEE DOI
2004
Proportional-Derivative (PD).
image motion analysis, learning (artificial intelligence),
PD control, pose estimation, stereo image processing, Physics
BibRef
Bozorgtabar, B.[Behzad],
Rad, M.S.[Mohammad Saeed],
Mahapatra, D.[Dwarikanath],
Thiran, J.P.[Jean-Philippe],
SynDeMo: Synergistic Deep Feature Alignment for Joint Learning of
Depth and Ego-Motion,
ICCV19(4209-4218)
IEEE DOI
2004
feature extraction, image representation, image sensors,
image sequences, learning (artificial intelligence),
BibRef
Zhong, Y.R.[Yi-Ran],
Ji, P.[Pan],
Wang, J.Y.[Jian-Yuan],
Dai, Y.C.[Yu-Chao],
Li, H.D.[Hong-Dong],
Unsupervised Deep Epipolar Flow for Stationary or Dynamic Scenes,
CVPR19(12087-12096).
IEEE DOI
2002
BibRef
Prasad, V.,
Bhowmick, B.,
SfMLearner++: Learning Monocular Depth Ego-Motion Using Meaningful
Geometric Constraints,
WACV19(2087-2096)
IEEE DOI
1904
image reconstruction, image sequences,
learning (artificial intelligence), motion estimation,
Pose estimation
BibRef
Mahjourian, R.,
Wicke, M.,
Angelova, A.,
Unsupervised Learning of Depth and Ego-Motion from Monocular Video
Using 3D Geometric Constraints,
CVPR18(5667-5675)
IEEE DOI
1812
Cameras, Geometry,
Image reconstruction, Training, Unsupervised learning, Google
BibRef
Cai, H.,
Ye, S.,
Vardy, A.,
Gong, M.,
3D Visual Homing for Commodity UAVs,
CRV18(269-276)
IEEE DOI
1812
Visualization, Feature extraction,
Cameras, Robots, Real-time systems, Mobile handsets, visual homing,
robot navigation
BibRef
Lao, Y.Z.[Yi-Zhen],
Ait-Aider, O.[Omar],
Bartoli, A.E.[Adrien E.],
Rolling Shutter Pose and Ego-Motion Estimation Using
Shape-from-Template,
ECCV18(II: 477-492).
Springer DOI
1810
BibRef
Pathak, S.,
Moro, A.,
Fujii, H.,
Yamashita, A.,
Asama, H.,
Distortion-Robust Spherical Camera Motion Estimation via Dense
Optical Flow,
ICIP18(3358-3362)
IEEE DOI
1809
Optical distortion, Optical imaging, Adaptive optics,
Optical variables control, Cameras, Estimation, Distortion,
Optical flow
BibRef
Marban, A.,
Srinivasan, V.,
Samek, W.,
Fernández, J.,
Casals, A.,
Estimating Position Velocity in 3D Space from Monocular Video
Sequences Using a Deep Neural Network,
ACVR17(1460-1469)
IEEE DOI
1802
Analytical models, Computational modeling, Feature extraction,
Neural networks, Video sequences
BibRef
Zhou, T.,
Brown, M.,
Snavely, N.,
Lowe, D.G.,
Unsupervised Learning of Depth and Ego-Motion from Video,
CVPR17(6612-6619)
IEEE DOI
1711
Cameras, Geometry, Pipelines, Pose estimation,
Training
BibRef
Finocchiaro, J.[Jessica],
Khan, A.U.[Aisha Urooj],
Borji, A.[Ali],
Egocentric Height Estimation,
WACV17(1142-1150)
IEEE DOI
1609
Cameras, Estimation, Feature extraction, Head,
Static VAr compensators, Support, vector, machines
BibRef
Huang, T.H.[Ting-Hsiang],
Zhuang, Z.Q.[Zhen-Qi],
Chen, C.Y.,
Chang, B.R.[Bao Rong],
Kuo, C.C.[Chia-Chen],
Feature tracking using epipolar geometry for ego-motion estimation,
ICVNZ15(1-6)
IEEE DOI
1701
image matching
BibRef
Park, H.S.[Hyun Soo],
Hwang, J.J.[Jyh-Jing],
Niu, Y.D.[Ye-Dong],
Shi, J.B.[Jian-Bo],
Egocentric Future Localization,
CVPR16(4697-4705)
IEEE DOI
1612
BibRef
Lessmann, S.[Stephanie],
Westerhoff, J.[Jens],
Meuter, M.[Mirko],
Pauli, J.[Josef],
Learning a Confidence Measure for Real-Time Egomotion Estimation,
GCPR16(389-401).
Springer DOI
1611
BibRef
Weiss, S.[Stephan],
Brockers, R.[Roland],
Albrektsen, S.[Sigurd],
Matthies, L.H.[Larry H.],
Inertial Optical Flow for Throw-and-Go Micro Air Vehicles,
WACV15(262-269)
IEEE DOI
1503
Adaptive optics
BibRef
Geng, H.[Haokun],
Chien, H.J.[Hsiang-Jen],
Nicolescu, R.[Radu],
Klette, R.[Reinhard],
Egomotion Estimation and Reconstruction with Kalman Filters and GPS
Integration,
CAIP15(I:399-410).
Springer DOI
1511
BibRef
Earlier: A1, A3, A4, Only:
Egomotion Estimation by Point-Cloud Back-Mapping,
ICCVG14(228-235).
Springer DOI
1410
BibRef
Okorn, B.[Brian],
Harguess, J.[Josh],
Ego-Motion Estimation on Range Images Using High-Order Polynomial
Expansion,
PBVS14(299-306)
IEEE DOI
1409
Optical Flow
BibRef
Yuan, D.[Ding],
Liu, M.[Miao],
Zhang, H.[Hong],
Direct Ego-Motion Estimation Using Normal Flows,
ACPR13(310-314)
IEEE DOI
1408
cameras
BibRef
Geng, H.[Haokun],
Hu, Q.[Qinwen],
Feature-matching and extended Kalman filter for stereo ego-motion
estimation,
IVCNZ13(242-246)
IEEE DOI
1402
Kalman filters
BibRef
Chen, C.Y.[Chia-Yen],
Zhang, J.H.[Jia-Hong],
Chen, T.I.[Tsung-I],
Chen, C.F.[Chi-Fa],
3D egomotion from stereo cameras using constrained search window and
bundle adjustment,
IVCNZ13(442-447)
IEEE DOI
1402
cameras
BibRef
Zhong, H.[Hao],
Wildes, R.P.[Richard P.],
Egomotion Estimation Using Binocular Spatiotemporal Oriented Energy,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Tiburzi, F.[Fabrizio],
Bescos, J.[Jesus],
Robust camera motion estimation in presence of large moving objects,
ICIP13(2509-2513)
IEEE DOI
1402
Global motion estimation
BibRef
Jones, G.A.[Graeme A.],
Accurate and Computationally-inexpensive Recovery of Ego-Motion using
Optical Flow and Range Flow with Extended Temporal Support,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Jones, G.A.[Graeme A.],
Hunter, G.[Gordon],
Spatio-temporal Support for Range Flow Based Ego-Motion Estimators,
CAIP13(II:531-538).
Springer DOI
1311
BibRef
Fragkiadaki, K.[Katerina],
Hu, H.[Han],
Shi, J.B.[Jian-Bo],
Pose from Flow and Flow from Pose,
CVPR13(2059-2066)
IEEE DOI
1309
motion segmentation; optical flow; pose estimation; tracking
BibRef
Mohamed, M.A.[Mahmoud A.],
Mertsching, B.[Bärbel],
Robust Optical Flow Estimation Using the Monocular Epipolar Geometry,
CVS19(521-530).
Springer DOI
1912
BibRef
Mohamed, M.A.[Mahmoud A.],
Mirabdollah, M.H.[M. Hossein],
Mertsching, B.[Bärbel],
Monocular Epipolar Constraint for Optical Flow Estimation,
CVS17(62-71).
Springer DOI
1711
BibRef
Earlier:
Differential Optical Flow Estimation Under Monocular Epipolar Line
Constraint,
CVS15(354-363).
Springer DOI
1507
BibRef
Earlier: A2, A3, Only:
Motion Recovery of a Single Camera Installed on a Wheeled Vehicle,
ICIAR13(417-425).
Springer DOI
1307
BibRef
Beumier, C.[Charles],
Speed Estimation Thanks to Two Images from One Stationary Camera,
CIARP12(854-861).
Springer DOI
1209
Of another vehicle. Compare to laser methods.
BibRef
Panin, G.[Giorgio],
Oumer, N.W.[Nassir W.],
Ego-motion Estimation Using Rectified Stereo and Bilateral Transfer
Function,
ISVC12(I: 458-469).
Springer DOI
1209
BibRef
Hernández, D.[Daniel],
Olague, G.[Gustavo],
Clemente, E.[Eddie],
Dozal, L.[León],
Evolutionary Purposive or Behavioral Vision for Camera Trajectory
Estimation,
EvoIASP12(336-345).
Springer DOI
1204
BibRef
Song, X.J.[Xiao-Jing],
Althoefer, K.,
Seneviratne, L.,
A robust downward-looking camera based velocity estimation with height
compensation for mobile robots,
ICARCV10(378-383).
IEEE DOI
1109
BibRef
Krishnan, S.,
Lee, P.Y.[Pei Yean],
Moore, J.B.,
Camera motion estimation via optimization-on-a-manifold,
ICARCV08(1836-1843).
IEEE DOI
1109
BibRef
Hui, T.W.[Tak-Wai],
Chung, R.[Ronald],
Determining Motion Directly from Normal Flows Upon the Use of a
Spherical Eye Platform,
CVPR13(2267-2274)
IEEE DOI
1309
BibRef
Hui, T.W.[Tak-Wai],
Chung, R.[Ronald],
Determining Spatial Motion Directly from Normal Flow Field:
A Comprehensive Treatment,
VS10(23-32).
Springer DOI
1109
BibRef
Ramalingam, S.[Srikumar],
Bouaziz, S.[Sofien],
Sturm, P.F.[Peter F.],
Torr, P.H.S.[Philip H. S.],
The light-path less traveled,
CVPR11(3145-3152).
IEEE DOI
1106
Light follows piece-wise linear paths, not single lines.
Catadioptric configurations and mirages.
Camera motion.
BibRef
Bostelmann, J.,
Heipke, C.,
Modeling spacecraft oscillations in HRSC images of Mars Express,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Effendi, S.[Sutono],
Jarvis, R.[Ray],
Camera Ego-Motion Estimation Using Phase Correlation under Planar
Motion Constraint,
DICTA10(158-165).
IEEE DOI
1012
BibRef
Soto, M.,
Maludrottu, S.,
Regazzoni, C.S.,
Fast and correspondence-less camera motion estimation based on voting
mechanism and morton codes,
ICIP10(745-748).
IEEE DOI
1009
BibRef
Yu, C.P.[Chen-Ping],
Duffy, C.,
Page, W.,
Gaborski, R.,
Computational model of cortical neuronal receptive fields for
self-motion perception,
AIPR09(1-8).
IEEE DOI
0910
BibRef
Czajewski, W.[Witold],
Iwanowski, M.[Marcin],
Vision-Based Vehicle Speed Measurement Method,
ICCVG10(I: 308-315).
Springer DOI
1009
BibRef
Drareni, J.[Jamil],
Martin, N.[Nicolas],
Roy, S.[Sebastien],
Fast probabilisitic estimation of egomotion from image intensities,
VAM10(31-37).
IEEE DOI
1006
BibRef
Aoki, K.[Kyota],
Estimation of Translation, Rotation and Large Scale Scaling Based on
Multiple Scaling Assumptions,
ICMV09(79-83).
IEEE DOI
0912
Sector region luminosity correlation for motion.
BibRef
Almeida, J.[Jurandy],
Minetto, R.[Rodrigo],
Almeida, T.A.[Tiago A.],
da Silva Torres, R.[Ricardo],
Leite, N.J.[Neucimar J.],
Robust Estimation of Camera Motion Using Optical Flow Models,
ISVC09(I: 435-446).
Springer DOI
0911
BibRef
Mannadiar, R.[Raphael],
Efficient Online Egomotion Estimation Using Visual and Inertial
Readings,
CRV09(244-251).
IEEE DOI
0905
BibRef
Pagel, F.[Frank],
Robust Monocular Egomotion Estimation Based on an IEKF,
CRV09(213-220).
IEEE DOI
0905
BibRef
Toriu, T.,
Fukumoto, H.,
A learning method for association between vision and ego-motion which
is Capable of Adapting to Arbitrary Image Distortion,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Kim, M.W.[Min-Woo],
Oh, I.S.[Il-Seok],
Estimation of rapid-motion for mobile devices using temporal coherence,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Makkapati, V.V.[Vishnu V.],
Robust Camera Pan and Zoom Change Detection Using Optical Flow,
NCVPRIPG08(73-78).
PDF File.
BibRef
0800
Shah, H.,
Lakshmikumar, A.,
Probabilistic egomotion from a statistical framework,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Meidow, J.,
Kirchhof, M.,
Continuous Self-Calibration and Ego-Motion Determination of a Moving
Camera by Observing a Plane,
PIA07(31).
PDF File.
0711
BibRef
Cao, Y.P.[Yan-Peng],
Cook, P.[Peter],
Renfrew, A.[Alasdair],
Vehicle Ego-Motion Estimation by using Pulse-Coupled Neural Network,
IMVIP07(185-191).
IEEE DOI
0709
BibRef
Zhang, X.[Xiang],
Genc, Y.,
Bootstrapped real-time ego motion estimation and scene modeling,
3DIM05(514-521).
IEEE DOI
0508
BibRef
He, X.C.[Xiao Chen],
Yung, N.H.C.[Nelson H. C.],
A Novel Algorithm for Estimating Vehicle Speed from Two Consecutive
Images,
WACV07(12-12).
IEEE DOI
0702
BibRef
Jung, S.H.[Sang-Hack],
Eledath, J.[Jayan],
Johansson, S.[Stefan],
Mathevon, V.[Vincent],
Egomotion Estimation in Monocular Infra-red Image Sequence for Night
Vision Applications,
WACV07(8-8).
IEEE DOI
0702
BibRef
Yamaguchi, K.[Koichiro],
McAllester, D.[David],
Urtasun, R.[Raquel],
Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow
Estimation,
ECCV14(V: 756-771).
Springer DOI
1408
BibRef
Earlier:
Robust Monocular Epipolar Flow Estimation,
CVPR13(1862-1869)
IEEE DOI
1309
Autonomous driving; Optical flow
See also Continuous Markov Random Fields for Robust Stereo Estimation.
BibRef
Yamaguchi, K.[Koichiro],
Kato, T.[Takeo],
Ninomiya, Y.[Yoshiki],
Vehicle Ego-Motion Estimation and Moving Object Detection using a
Monocular Camera,
ICPR06(IV: 610-613).
IEEE DOI
0609
BibRef
Sim, K.[Kristy],
Hartley, R.I.[Richard I.],
Recovering Camera Motion Using L-inf Minimization,
CVPR06(I: 1230-1237).
IEEE DOI
0606
See also Removing Outliers Using The L-inf Norm.
BibRef
Verma, S.[Siddharth],
Sharf, I.[Inna],
Dudek, G.[Gregory],
Kinematic Variables Estimation using Eye-in-Hand Robot Camera System,
CRV05(550-557).
IEEE DOI
0505
BibRef
Domke, J.[Justin],
Aloimonos, Y.[Yiannis],
A Probabilistic Framework for Correspondence and Egomotion,
WDV06(232-242).
Springer DOI
0705
PDF File.
BibRef
Domke, J.[Justin], and
Aloimonos, Y.[Yiannis],
Integration of Visual and Inertial Information for Egomotion:
A Stochastic Approach,
CRA06(xx-yy).
PDF File.
BibRef
0600
Milella, A.[Annalisa],
Siegwart, R.[Roland],
Stereo-Based Ego-Motion Estimation Using Pixel Tracking and Iterative
Closest Point,
CVS06(21).
IEEE DOI
0602
BibRef
Makadia, A.[Ameesh],
Gupta, D.[Dinkar],
Daniilidis, K.[Kostas],
Planar Ego-Motion Without Correspondences,
Motion05(II: 160-165).
IEEE DOI
0502
BibRef
Ewerth, R.,
Schwalb, M.,
Tessmann, P.,
Freisleben, B.,
Estimation of arbitrary camera motion in MPEG videos,
ICPR04(I: 512-515).
IEEE DOI
0409
BibRef
Nir, T.[Tal],
Bruckstein, A.M.[Alfred M.],
Causal Camera Motion Estimation by Condensation and Robust Statistics
Distance Measures,
ECCV04(Vol III: 119-131).
Springer DOI
0405
Simultaneous localization and mapping.
BibRef
Morency, L.P.,
Gupta, R.,
Robust real-time egomotion from stereo images,
ICIP03(II: 719-722).
IEEE DOI
0312
BibRef
Vassallo, R.F.,
Santos-Victor, J.,
Schneebeli, H.J.,
A general approach for egomotion estimation with omnidirectional images,
OMNIVIS02(97-103).
IEEE Abstract.
0310
BibRef
Zanker, J.M.[Johannes M.],
Zeil, J.[Jochen],
An Analysis of the Motion Signal Distributions Emerging from Locomotion
through a Natural Environment,
BMCV02(146 ff.).
Springer DOI
0303
BibRef
Franz, M.O.[Matthias O.],
Chahl, J.S.[Javaan S.],
Insect-Inspired Estimation of Self-Motion,
BMCV02(171 ff.).
Springer DOI
0303
BibRef
Jung, S.H.[Sang-Hack],
Taylor, C.J.[Camillo J.],
Camera Trajectory Estimation using Inertial Sensor Measurements and
Structure from Motion Results,
CVPR01(II:732-737).
IEEE DOI
0110
SfM applied to a few key frames, not all. Use intertial sensor information.
BibRef
Yu, L.,
Dyer, C.R.,
Observer Motion Estimation and Control from Optical Flow,
ICIP01(II: 941-944).
IEEE DOI
0108
BibRef
Yu, L.Y.[Liang-Yin], and
Dyer, C.R.[Charles R.],
Shape Recovery from Stationary Surface Contours by
Controlled Observer Motion,
AIU96(177-193).
How to move to get a better view.
WWW Link.
BibRef
9600
Majchrzak, D.[Daniel],
Sarkar, S.[Sudeep],
Sheppard, B.[Barry],
Murphy, R.[Robin],
Motion Detection from Temporally Integrated Images,
ICPR00(Vol III: 836-839).
IEEE DOI
0009
Optical flow type (foe, etc.) computations but on motion blurred images.
BibRef
Lourakis, M.I.A.[Manolis I.A.],
Egomotion Estimation Using Quadruples of Collinear Image Points,
ECCV00(II: 834-848).
Springer DOI
0003
BibRef
And:
Using Constraint Lines for Estimating Egomotion,
ACCV00(II: 971-976).
PS File.
0001
BibRef
Kolodko, J.,
Vlacic, L.,
Peters, L.,
On the use of motion as a primitive quantity for
autonomous vehicle guidance,
IVS00(64-69).
BibRef
0001
MacLean, W.J.[W. James],
Removal of Translation Bias when using Subspace Methods,
ICCV99(753-758).
IEEE DOI Recover T from optic flow field.
BibRef
9900
Toepfer, C.[Christian],
Wende, M.[Moritz],
Baratoff, G.[Gregory],
Neumann, H.[Heiko],
Robot Navigation by Combining Central and Peripheral
Optical Flow Detection on a Space-Variant Map,
ICPR98(Vol II: 1804-1807).
IEEE DOI
9808
BibRef
Gluckman, J.M.[Joshua M.],
Nayar, S.K.[Shree K.],
Thoresz, K.J.[Keith J.],
Real-Time Omnidirectional and Panoramic Stereo,
DARPA98(299-303).
BibRef
9800
Gluckman, J.M.[Joshua M.], and
Nayar, S.K.[Shree K.],
Ego-Motion and Omnidirectional Cameras,
ICCV98(999-1005).
IEEE DOI
BibRef
9800
Orwell, J.,
Boyce, J.F.,
Haddon, J.F.,
Ego Motion from Near-Degenerate Sequences,
ICPR96(I: 412-416).
IEEE DOI
9608
(Kings College London, UK)
BibRef
Tian, T.Y.[Tina Y.],
Tomasi, C.[Carlo],
Heeger, D.J.[David J.],
Comparison of Approaches to Egomotion Computation,
CVPR96(315-320).
IEEE DOI
Evaluation, Optical Flow. Compares several techniques:
See also Passive Navigation.
See also Subspace Methods for Recovering Rigid Motion I: Algorithms and Implementation.
See also Direction of Heading from Image Deformations.
See also Ego Motion and a Relative Depth Map from Optical Flow. And 2 forms of:
See also 3-D Interpretation of Optical-Flow by Renormalization. (similar to
See also Simplified Linear Optical Flow-Motion Algorithm, A. )
BibRef
9600
Hagen, E.,
Heyerdahl, E.,
Navigation by Optical Flow,
ICPR92(I:700-703).
IEEE DOI
BibRef
9200
Herwig, C.[Christoph],
Carmesin, H.O.[Hans-Otto],
Robust patch concept for egomotion estimation,
CAIP95(926-931).
Springer DOI
9509
BibRef
Yang, Y.B.[Yi-Bing], and
Yuille, A.L.[Alan L.],
Grouping Iso-Velocity Points for Ego-Motion Recovery,
AAAI-92(356-361).
Harvard University
BibRef
9200
Hallam, J.,
Resolving Observer Motion by Object Tracking,
IJCAI83(792-798).
BibRef
8300
Firschein, O., and
Oron, M.,
A 'Non-Correlation' Approach to Image-Based Velocity Determination,
DARPA80(195-200).
BibRef
8000
Chapter on Optical Flow Field Computations and Use continues in
Visual Odometry, Distance Measurments from Vision, Motion .