Lu, H.Q.,
Aggarwal, J.K.,
Applying Perceptual Organization to the Detection of Man-Made Objects
in Non-Urban Scenes,
PR(25), No. 8, August 1992, pp. 835-853.
Elsevier DOI
BibRef
9208
Yu, S.,
Berthod, M.,
Giraudon, G.,
Toward Robust Analysis of Satellite Images Using Map Information:
Application to Urban Area Detection,
GeoRS(37), No. 4, July 1999, pp. 1925.
IEEE Top Reference.
BibRef
9907
Yu, S.,
Berthod, M.,
Urban Area Detection in Satellite Images Using Map Knowledge
by a Feedback Control Technique,
ICPR94(A:98-102).
IEEE DOI
BibRef
9400
Borghys, D.,
Perneel, C.,
Acheroy, M.,
Automatic detection of built-up areas in high-resolution polarimetric
SAR images,
PRL(23), No. 9, July 2002, pp. 1085-1093.
Elsevier DOI
0205
BibRef
Borghys, D.,
Perneel, C.,
Acheroy, M.,
A multivariate contour detector for high-resolution polarimetric SAR
images,
ICPR00(Vol III: 646-651).
IEEE DOI
0009
BibRef
Borghys, D.,
Lacroix, V.,
Perneel, C.,
Edge and line detection in polarimetric SAR images,
ICPR02(II: 921-924).
IEEE DOI
0211
BibRef
Epstein, J.[Jeanne],
Payne, K.[Karen],
Kramer, E.[Elizabeth],
Techniques for Mapping Suburban Sprawl,
PhEngRS(68), No. 9, September 2002, pp. 913-919.
WWW Link. While the amount of time required to edit road coverages is
significantly higher than that for traditional remote sensing
techniques, the improved thematic accuracy, spatial contiguity, and
potential future uses of the resulting dataset justifies its use in a
state-wide mapping program.
0304
BibRef
Hasse, J.[John],
Lathrop, R.G.[Richard G.],
A Housing-Unit-Level Approach to Characterizing Residential Sprawl,
PhEngRS(69), No. 9, September 2003, pp. 1021-1030.
WWW Link.
0309
Spatial measurements of new housing units provide a means for
assessing the degree to which new residential development can be
characterized as sprawling.
BibRef
Dell'Acqua, F.,
Gamba, P.,
Texture-Based Characterization of Urban Environments on Satellite SAR
Images,
GeoRS(41), No. 1, January 2003, pp. 153-159.
IEEE Top Reference.
0304
BibRef
Dell'Acqua, F.,
Gamba, P.,
Lisini, G.,
Improvements to urban area characterization using multitemporal and
multiangle SAR images,
GeoRS(41), No. 9, September 2003, pp. 1996-2004.
IEEE Abstract.
0310
BibRef
Gamba, P.[Paolo],
Dell'Acqua, F.[Fabio],
Lisini, G.,
Trianni, G.,
Improved VHR Urban Area Mapping Exploiting Object Boundaries,
GeoRS(45), No. 8, August 2007, pp. 2676-2682.
IEEE DOI
0709
BibRef
Bian, L.[Ling],
Retrieving Urban Objects Using a Wavelet Transform Approach,
PhEngRS(69), No. 2, February 2003, pp. 133-142.
The Harr wavelet transform is used to represent edge information for
the retrieval of traditional industrial complexes
from digital aerial photographs in an urban area.
WWW Link.
0304
BibRef
Clapham, Jr., W.B.,
Continuum-based classification of remotely sensed imagery to describe
urban sprawl on a watershed scale,
RSE(86), No. 3, 15 August 2003, pp. 322-340.
Elsevier DOI
0309
BibRef
Nobrega, R.A.A.,
O'Hara, C.G.,
Quintanilha, J.A.,
Detecting roads in informal settlements surrounding Sao Paulo City by
using object-based classification,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Nobrega, R.A.A.,
O'Hara, C.G.,
Segmentation and object extraction from anisotropic diffusion filtered
LiDAR intensity data,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Greenhill, D.R.,
Ripke, L.T.,
Hitchman, A.P.,
Jones, G.A.,
Wilkinson, G.G.,
Characterization of suburban areas for land use planning using
landscape ecological indicators derived from Ikonos-2 multispectral
imagery,
GeoRS(41), No. 9, September 2003, pp. 2015-2021.
IEEE Abstract.
0310
BibRef
Herold, M.,
Gardner, M.E.,
Roberts, D.A.,
Spectral resolution requirements for mapping urban areas,
GeoRS(41), No. 9, September 2003, pp. 1907-1919.
IEEE Abstract.
0310
BibRef
Benediktsson, J.A.,
Pesaresi, M.,
Arnason, K.,
Classification and feature extraction for remote sensing images from
urban areas based on morphological transformations,
GeoRS(41), No. 9, September 2003, pp. 1940-1949.
IEEE Abstract.
0310
BibRef
Fauvel, M.,
Chanussot, J.,
Benediktsson, J.A.,
Decision Fusion for the Classification of Urban Remote Sensing Images,
GeoRS(44), No. 10, October 2006, pp. 2828-2838.
IEEE DOI
0609
BibRef
Orun, A.B.[Ahmet B.],
Automated Identification of Man-Made Textural Features on Satellite
Imagery by Bayesian Networks,
PhEngRS(70), No. 2, February 2004, pp. 211-217.
WWW Link. A classification technique which distinguishes between man-made and
natural textural features on satellite imagery by the use of textural
analyses and Bayesian networks is introduced.
0403
BibRef
Unsalan, C.,
Boyer, K.L.,
Classifying Land Development in High-Resolution Panchromatic Satellite
Images Using Straight-Line Statistics,
GeoRS(42), No. 4, April 2004, pp. 907-919.
IEEE Abstract.
0407
BibRef
Earlier:
Classifying land development in high resolution satellite images using
straight line statistics,
ICPR02(I: 127-130).
IEEE DOI
0211
BibRef
Unsalan, C.,
Boyer, K.L.,
A Theoretical and Experimental Investigation of Graph Theoretical
Measures for Land Development in Satellite Imagery,
PAMI(27), No. 4, April 2005, pp. 575-589.
IEEE Abstract.
0501
BibRef
Earlier:
ICPR04(II: 64-67).
IEEE DOI
0409
BibRef
Ünsalan, C.[Cem],
Boyer, K.L.[Kim L.],
A system to detect houses and residential street networks in
multispectral satellite images,
CVIU(98), No. 3, June 2005, pp. 423-461.
Elsevier DOI
0505
BibRef
Earlier:
ICPR04(III: 49-52).
IEEE DOI
0409
BibRef
Unsalan, C.,
Measuring Land Development in Urban Regions Using Graph Theoretical and
Conditional Statistical Features,
GeoRS(45), No. 12, December 2007, pp. 3989-3999.
IEEE DOI
0711
BibRef
Sirmacek, B.[Beril],
Unsalan, C.[Cem],
Using local features to measure land development in urban regions,
PRL(31), No. 10, 15 July 2010, pp. 1155-1159.
Elsevier DOI
1008
Ikonos images; Gabor filtering; Local features; Spatial voting;
Measuring land development
BibRef
Sirmacek, B.[Beril],
Unsalan, C.[Cem],
Urban-Area and Building Detection Using SIFT Keypoints and Graph Theory,
GeoRS(47), No. 4, April 2009, pp. 1156-1167.
IEEE DOI
0903
BibRef
Unsalan, C.[Cem],
Sirmacek, B.[Beril],
Road Network Detection Using Probabilistic and Graph Theoretical
Methods,
GeoRS(50), No. 11, November 2012, pp. 4441-4453.
IEEE DOI
1210
BibRef
Earlier: A2, A1:
Road Network Extraction Using Edge Detection and Spatial Voting,
ICPR10(3113-3116).
IEEE DOI
1008
BibRef
Sirmacek, B.[Beril],
Unsalan, C.[Cem],
A Probabilistic Framework to Detect Buildings in Aerial and Satellite
Images,
GeoRS(49), No. 1, January 2011, pp. 211-221.
IEEE DOI
1101
BibRef
Özcan, A.H.[Abdullah H.],
Ünsalan, C.[Cem],
Probabilistic object detection and shape extraction in remote sensing
data,
CVIU(195), 2020, pp. 102953.
Elsevier DOI
2005
BibRef
Zeljkovic, V.,
Dorado, A.,
Izquierdo, E.,
Combining a Fuzzy Rule-Based Classifier and Illumination Invariance for
Improved Building Detection,
CirSysVideo(14), No. 11, November 2004, pp. 1277-1280.
IEEE Abstract.
0411
Edge based classification of buildings from video.
BibRef
Zeljkovic, V.[Vesna],
Tameze, C.[Claude],
Vincelette, R.[Robert],
Izquierdo, E.,
Different non-linear diffusion filters combined with triangle method
used for noise removal from polygonal shapes,
IET-IPR(4), No. 4, August 2010, pp. 313-333.
DOI Link
1008
BibRef
Earlier: A1, A2, A3, Only:
Combined nonlinear inverse diffusion filter and triangle method used
for noise removal from polygonal shapes,
ICIP08(21-24).
IEEE DOI
0810
BibRef
Dorado, A.[Andres],
Izquierdo, E.[Ebroul],
Exploiting Problem Domain Knowledge for Accurate Building Image
Classification,
CIVR04(199-206).
Springer DOI
0505
BibRef
Myint, S.W.[Soe W.],
Lam, N.[Nina],
Examining Lacunarity Approaches in Comparison with Fractal and Spatial
Autocorrelation Techniques for Urban Mapping,
PhEngRS(71), No. 8, August 2005, pp. 927-938.
WWW Link.
0602
An evaluation and comparison of two lacunarity methods, fractal
triangular prism and spatial autocorrelation, and original spectral
band approaches in classifying urban images.
BibRef
Zandona-Schneider, R.,
Papathanassiou, K.P.,
Hajnsek, I.,
Moreira, A.,
Polarimetric and Interferometric Characterization of Coherent
Scatterers in Urban Areas,
GeoRS(44), No. 4, April 2006, pp. 971-984.
IEEE DOI
0604
BibRef
Matikainen, L.[Leena],
Hyyppä, J.[Juha],
Engdahl, M.[Marcus],
Mapping Built-up Areas from Multitemporal Interferometric SAR Images:
A Segment-based Approach,
PhEngRS(72), No. 6, June 2006, pp. 701-714.
WWW Link.
0610
BibRef
Earlier:
Extracting Built-Up Areas from Multitemporal Interferometric SAR Images,
PCV02(B: 170).
0305
Built-up areas were accurately detected from a multitemporal
interferometric ERS dataset using a region-based classification
approach, and a correlation between the building density and
intensity/coherence in the image was found.
BibRef
Zhong, P.[Ping],
Wang, R.S.[Run-Sheng],
Using Combination of Statistical Models and Multilevel Structural
Information for Detecting Urban Areas From a Single Gray-Level Image,
GeoRS(45), No. 5, May 2007, pp. 1469-1482.
IEEE DOI
0704
See also Learning Conditional Random Fields for Classification of Hyperspectral Images.
BibRef
Zhong, P.[Ping],
Wang, R.S.[Run-Sheng],
A Multiple Conditional Random Fields Ensemble Model for Urban Area
Detection in Remote Sensing Optical Images,
GeoRS(45), No. 12, December 2007, pp. 3978-3988.
IEEE DOI
0711
BibRef
Inglada, J.[Jordi],
Automatic recognition of man-made objects in high resolution optical
remote sensing images by SVM classification of geometric image features,
PandRS(62), No. 3, August 2007, pp. 236-248.
Elsevier DOI
0709
Object recognition; Man-made objects; Support vector machines;
Geometrical moments
BibRef
Inglada, J.,
Michel, J.,
Qualitative Spatial Reasoning for High-Resolution Remote Sensing Image
Analysis,
GeoRS(47), No. 2, February 2009, pp. 599-612.
IEEE DOI
0903
BibRef
Vanegas, M.C.,
Bloch, I.,
Inglada, J.,
Alignment and Parallelism for the Description of
High-Resolution Remote Sensing Images,
GeoRS(51), No. 6, 2013, pp. 3542-3557.
IEEE DOI fuzzy set theory; object alignment representation
1307
BibRef
Xu, H.Q.[Han-Qiu],
Extraction of Urban Built-up Land Features from Landsat Imagery Using a
Thematic-oriented Index Combination Technique,
PhEngRS(73), No. 12, December 2007, pp. 1381-1392.
WWW Link.
0712
A new method to extract urban built-up land information from Landsat
imagery based on three thematic indexes.
BibRef
Wei, W.[Wang],
Xin, Y.[Yang],
Feature extraction for man-made objects segmentation in aerial images,
MVA(19), No. 1, January 2008, pp. 57-64.
Springer DOI
0801
BibRef
Wei, W.[Wang],
Xin, Y.[Yang],
Guo, C.[Cao],
A Multiphase Level Set Evolution Scheme for Aerial Image Segmentation
Using Multi-scale Image Geometric Analysis,
SSPR06(56-64).
Springer DOI
0608
BibRef
Wei, W.[Wang],
Xin, Y.[Yang],
Rapid, man-made object morphological segmentation for aerial images
using a multi-scaled, geometric image analysis,
IVC(28), No. 4, April 2010, pp. 626-633.
Elsevier DOI
1002
Man-made object segmentation; Multi-scaled geometric image analysis;
Watershed; The non-subsampled contourlet transform
BibRef
Huang, M.J.[Ming-Jer],
Shyue, S.W.[Shiahn-Wern],
Lee, L.H.[Liang-Hwei],
Kao, C.C.[Chih-Chung],
A Knowledge-based Approach to Urban Feature Classification Using Aerial
Imagery with Lidar Data,
PhEngRS(74), No. 12, December 2008, pp. 1473-1486.
WWW Link.
0804
Applying knowledge- and segment-based vertical stratification,
rule-based classification, and aggregation schemes with
knowledge-based correction to improve the classification accuracy of
urban features
BibRef
Guindon, B.[Bert],
Zhang, Y.[Ying],
Automated Urban Delineation from Landsat Imagery Based on Spatial
Information Processing,
PhEngRS(75), No. 7, July 2009, pp. 845-858.
WWW Link.
0910
Proposed methods to automatically delineate urban areas on Landsat
imagery based on extracted line information.
BibRef
Karantzalos, K.[Konstantinos],
Argialas, D.[Demertre],
A Region-based Level Set Segmentation for Automatic Detection of
Man-made Objects from Aerial and Satellite Images,
PhEngRS(75), No. 6, June 2009, pp. 667-678.
WWW Link.
0910
A region-based segmentation developed, tested, and evaluated for
automatically detecting roads, buildings, and other man-made objects
from aerial and satellite images.
See also Large-Scale Building Reconstruction Through Information Fusion and 3-D Priors.
BibRef
Esch, T.,
Thiel, M.,
Schenk, A.,
Roth, A.,
Muller, A.,
Dech, S.,
Delineation of Urban Footprints From TerraSAR-X Data by Analyzing
Speckle Characteristics and Intensity Information,
GeoRS(48), No. 2, February 2010, pp. 905-916.
IEEE DOI
1002
See also Characterization of Land Cover Types in TerraSAR-X Images by Combined Analysis of Speckle Statistics and Intensity Information.
BibRef
Margarit, G.,
Mallorqui, J.J.,
Pipia, L.,
Polarimetric Characterization and Temporal Stability Analysis of Urban
Target Scattering,
GeoRS(48), No. 4, April 2010, pp. 2038-2048.
IEEE DOI
1003
BibRef
Ouma, Y.O.,
Tateishi, R.,
Sri-Sumantyo, J.T.,
Urban features recognition and extraction from very-high resolution
multi-spectral satellite imagery: A micro-macro texture determination
and integration framework,
IET-IPR(4), No. 4, August 2010, pp. 235-254.
DOI Link
1008
BibRef
Lafarge, F.[Florent],
Gimel'farb, G.L.[Georgy L.],
Descombes, X.[Xavier],
Geometric Feature Extraction by a Multimarked Point Process,
PAMI(32), No. 9, September 2010, pp. 1597-1609.
IEEE DOI
1008
BibRef
Earlier:
A Geometric Primitive Extraction Process for Remote Sensing Problems,
ACIVS08(xx-yy).
Springer DOI
0810
Tree crowns, building footprints, roads. Describe the image in terms
of a finite library of geometric objects.
Segments, lines, line ends, circles, rectangles, bands (||), band ends (U).
BibRef
Lafarge, F.,
Descombes, X.,
Zerubia, J.B.,
Textural Kernel for SVM Classification in Remote Sensing:
Application to Forest Fire Detection and Urban Area Extraction,
ICIP05(III: 1096-1099).
IEEE DOI
0512
BibRef
Mallet, C.[Clement],
Lafarge, F.[Florent],
Roux, M.,
Soergel, U.[Uwe],
Bretar, F.[Frederic],
Heipke, C.[Christian],
A Marked Point Process for Modeling Lidar Waveforms,
IP(19), No. 12, December 2010, pp. 3204-3221.
IEEE DOI
1011
BibRef
Earlier: A1, A2, A5, A4, A6, Only:
Lidar waveform modeling using a marked point process,
ICIP09(1713-1716).
IEEE DOI
0911
BibRef
Schmidt, A.,
Kruse, C.,
Rottensteiner, F.,
Soergel, U.,
Heipke, C.,
Network Detection In Raster Data Using Marked Point Processes,
ISPRS16(B3: 701-708).
DOI Link
1610
BibRef
Earlier: A1, A3, A4, A5, Only:
Extraction of fluvial networks in lidar data using marked point
processes,
PCV14(297-304).
DOI Link
1404
BibRef
Guo, L.[Li],
Boukir, S.[Samia],
Fast Data Selection for SVM Training Using Ensemble Margin,
PRL(51), No. 1, 2015, pp. 112-119.
Elsevier DOI
1412
BibRef
And:
Ensemble margin framework for image classification,
ICIP14(4231-4235)
IEEE DOI
1502
Accuracy.
Boundary points
See also Exploring Issues of Training Data Imbalance and Mislabelling on Random Forest Performance for Large Area Land Cover Classification Using the Ensemble Margin.
BibRef
Guo, L.[Li],
Boukir, S.[Samia],
Margin-based ordered aggregation for ensemble pruning,
PRL(34), No. 6, 15 April 2013, pp. 603-609.
Elsevier DOI
1303
Ensemble learning; Ensemble pruning; Margin; Ordered aggregation;
Bagging
BibRef
Boukir, S.[Samia],
Mellor, A.,
Ensemble diversity analysis on remote sensing data classification
using random forests,
ICIP17(1302-1306)
IEEE DOI
1803
Training, Ensemble diversity, classification, ensemble margin,
land cover, training data selection
BibRef
Boukir, S.[Samia],
Guo, L.[Li],
Chehata, N.[Nesrine],
Classification of Remote Sensing Data Using Margin-Based Ensemble
Methods,
ICIP13(2602-2606)
IEEE DOI
1402
BibRef
And: A2, A1, A3:
Support Vectors Selection for Supervised Learning Using an Ensemble
Approach,
ICPR10(37-40).
IEEE DOI
1008
Bagging
BibRef
Paladini, R.,
Martorella, M.,
Berizzi, F.,
Classification of Man-Made Targets via Invariant Coherency-Matrix
Eigenvector Decomposition of Polarimetric SAR/ISAR Images,
GeoRS(49), No. 8, August 2011, pp. 3022-3034.
IEEE DOI
1108
BibRef
Stumpf, A.,
Lachiche, N.,
Malet, J.P.,
Kerle, N.,
Puissant, A.,
Active Learning in the Spatial Domain for Remote Sensing Image
Classification,
GeoRS(52), No. 5, May 2014, pp. 2492-2507.
IEEE DOI
1403
Entropy
BibRef
Geiß, C.,
Taubenböck, H.,
Wurm, M.,
Esch, T.,
Nast, M.,
Schillings, C.,
Blaschke, T.,
Remote Sensing-Based Characterization of Settlement Structures for
Assessing Local Potential of District Heat,
RS(3), No. 7, July 2011, pp. 1447-1471.
DOI Link
1203
BibRef
Yang, F.[Fan],
Matsushita, B.[Bunkei],
Yang, W.[Wei],
Fukushima, T.[Takehiko],
Mapping the human footprint from satellite measurements in Japan,
PandRS(88), No. 1, 2014, pp. 80-90.
Elsevier DOI
1402
Human footprint
BibRef
As-syakur, A.,
Adnyana, I.,
Arthana, I.,
Nuarsa, I.,
Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and
Bare Land in an Urban Area,
RS(4), No. 10, October 2012, pp. 2957-2970.
DOI Link
1210
BibRef
Henze, F.[Frank],
Lehmann, H.[Heike],
Bruschke, B.[Bettina],
Analysis of Historic Maps and Images for Research on Urban Development
of Baalbek/Lebanon,
PFG(2009), No. 3, 2009, pp. 221-234.
WWW Link.
1211
BibRef
Gamba, P.,
Human Settlements: A Global Challenge for EO Data Processing and
Interpretation,
PIEEE(100), No. 3, March 2013, pp. 570-581.
IEEE DOI
1303
BibRef
Li, W.W.[Wen-Wen],
Li, L.[Linna],
Goodchild, M.F.[Michael F.],
Anselin, L.[Luc],
A Geospatial Cyberinfrastructure for Urban Economic Analysis
and Spatial Decision-Making,
IJGI(2), No. 2, 2013, pp. 413-431.
DOI Link
1307
BibRef
Petrovic, S.[Stefan],
Karlsson, K.[Kenneth],
Model for Determining Geographical Distribution of Heat Saving
Potentials in Danish Building Stock,
IJGI(3), No. 1, 2014, pp. 143-165.
DOI Link
1404
BibRef
Mei, A.[Alessandro],
Salvatori, R.[Rosamaria],
Fiore, N.[Nicola],
Allegrini, A.[Alessia],
d'Andrea, A.[Antonio],
Integration of Field and Laboratory Spectral Data with
Multi-Resolution Remote Sensed Imagery for Asphalt Surface
Differentiation,
RS(6), No. 4, 2014, pp. 2765-2781.
DOI Link
1405
BibRef
Li, N.[Na],
Bruzzone, L.[Lorenzo],
Chen, Z.P.[Zeng-Ping],
Liu, F.[Fang],
A Novel Technique Based on the Combination of Labeled Co-Occurrence
Matrix and Variogram for the Detection of Built-up Areas in
High-Resolution SAR Images,
RS(6), No. 5, 2014, pp. 3857-3878.
DOI Link
1407
BibRef
Oltra-Carrio, R.,
Cubero-Castan, M.,
Briottet, X.,
Sobrino, J.A.,
Analysis of the Performance of the TES Algorithm Over Urban Areas,
GeoRS(52), No. 11, November 2014, pp. 6989-6998.
IEEE DOI
1407
Asphalt
BibRef
Zhang, J.[Jun],
Li, P.J.[Pei-Jun],
Wang, J.F.[Jin-Fei],
Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using
Spectral Information and Multivariate Texture,
RS(6), No. 8, 2014, pp. 7339-7359.
DOI Link
1410
BibRef
Scott, D.[Douglas],
Petropoulos, G.P.[George P.],
Moxley, J.[Janet],
Malcolm, H.[Heath],
Quantifying the Physical Composition of Urban Morphology throughout
Wales Based on the Time Series (1989-2011) Analysis of Landsat
TM/ETM+ Images and Supporting GIS Data,
RS(6), No. 12, 2014, pp. 11731-11752.
DOI Link
1412
BibRef
Lelo, K.[Keti],
A GIS Approach to Urban History: Rome in the 18th Century,
IJGI(3), No. 4, 2014, pp. 1293-1316.
DOI Link
1412
BibRef
Conesa, F.C.[Francesc C.],
Devanthéry, N.[Núria],
Balbo, A.L.[Andrea L.],
Madella, M.[Marco],
Monserrat, O.[Oriol],
Use of Satellite SAR for Understanding Long-Term Human Occupation
Dynamics in the Monsoonal Semi-Arid Plains of North Gujarat, India,
RS(6), No. 11, 2014, pp. 11420-11443.
DOI Link
1412
BibRef
Gueguen, L.[Lionel],
Classifying Compound Structures in Satellite Images:
A Compressed Representation for Fast Queries,
GeoRS(53), No. 4, April 2015, pp. 1803-1818.
IEEE DOI
1502
geophysical image processing. High res imagery, hierarchical segmentation,
descriptions.
BibRef
Gueguen, L.[Lionel],
Pesaresi, M.[Martino],
Ehrlich, D.[Daniele],
Lu, L.L.[Lin-Lin],
Urbanization analysis by mutual information based change detection
between SPOT 5 panchromatic images,
MultiTemp11(157-160).
IEEE DOI
1109
BibRef
Li, C.[Cheng],
Thinh, N.X.[Nguyen Xuan],
Zhao, J.[Jie],
Spatiotemporally Varying Relationships between Urban Growth Patterns
and Driving Factors in Xuzhou City, China,
PFG(2014), No. 6, 2014, pp. 535-548.
DOI Link
1503
BibRef
Duan, Y.L.[Yu-Lin],
Shao, X.W.[Xiao-Wei],
Shi, Y.[Yun],
Miyazaki, H.[Hiroyuki],
Iwao, K.[Koki],
Shibasaki, R.[Ryosuke],
Unsupervised Global Urban Area Mapping via Automatic Labeling from
ASTER and PALSAR Satellite Images,
RS(7), No. 2, 2015, pp. 2171-2192.
DOI Link
1503
BibRef
Bitelli, G.[Gabriele],
Conte, P.[Paolo],
Csoknyai, T.[Tamas],
Franci, F.[Francesca],
Girelli, V.A.[Valentina A.],
Mandanici, E.[Emanuele],
Aerial Thermography for Energetic Modelling of Cities,
RS(7), No. 2, 2015, pp. 2152-2170.
DOI Link
1503
BibRef
Ban, Y.F.[Yi-Fang],
Jacob, A.[Alexander],
Gamba, P.[Paolo],
Spaceborne SAR data for global urban mapping at 30M resolution
using a robust urban extractor,
PandRS(103), No. 1, 2015, pp. 28-37.
Elsevier DOI
1504
KTH-Pavia Urban Extractor
BibRef
Asahara, A.[Akinori],
Hayashi, H.[Hideki],
Kai, T.[Takashi],
Moving Point Density Estimation Algorithm Based on a Generated
Bayesian Prior,
IJGI(4), No. 2, 2015, pp. 515-534.
DOI Link
1504
BibRef
Bennie, J.[Jonathan],
Duffy, J.P.[James P.],
Davies, T.W.[Thomas W.],
Correa-Cano, M.E.[Maria Eugenia],
Gaston, K.J.[Kevin J.],
Global Trends in Exposure to Light Pollution in Natural Terrestrial
Ecosystems,
RS(7), No. 3, 2015, pp. 2715-2730.
DOI Link
1504
BibRef
Chen, X.[Xi],
Nordhaus, W.[William],
A Test of the New VIIRS Lights Data Set:
Population and Economic Output in Africa,
RS(7), No. 4, 2015, pp. 4937-4947.
DOI Link
1505
BibRef
Zhang, X.[Xiya],
Li, P.J.[Pei-Jun],
Cai, C.[Cai],
Regional Urban Extent Extraction Using Multi-Sensor Data and
One-Class Classification,
RS(7), No. 6, 2015, pp. 7671.
DOI Link
1507
BibRef
Wan, B.[Bo],
Guo, Q.H.[Qing-Hua],
Fang, F.[Fang],
Su, Y.J.[Yan-Jun],
Wang, R.[Run],
Mapping US Urban Extents from MODIS Data Using One-Class
Classification Method,
RS(7), No. 8, 2015, pp. 10143.
DOI Link
1509
BibRef
Johnson, B.A.[Brian A.],
Bragais, M.[Milben],
Endo, I.[Isao],
Magcale-Macandog, D.B.[Damasa B.],
Macandog, P.B.M.[Paula Beatrice M.],
Image Segmentation Parameter Optimization Considering Within- and
Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for
Mapping Residential Areas Using Landsat Imagery,
IJGI(4), No. 4, 2015, pp. 2292.
DOI Link
1511
BibRef
Zhang, L.B.[Li-Bao],
Zhang, J.[Jue],
Wang, S.[Shuang],
Chen, J.[Jie],
Residential Area Extraction Based on Saliency Analysis for High
Spatial Resolution Remote Sensing Images,
JVCIR(33), No. 1, 2015, pp. 273-285.
Elsevier DOI
1512
Remote sensing image processing
BibRef
Zhang, L.B.[Li-Bao],
Li, A.[Aoxue],
Zhang, Z.J.[Zhong-Jun],
Yang, K.[Kaina],
Global and Local Saliency Analysis for the Extraction of Residential
Areas in High-Spatial-Resolution Remote Sensing Image,
GeoRS(54), No. 7, July 2016, pp. 3750-3763.
IEEE DOI
1606
Biological system modeling
BibRef
Zhang, Z.H.[Zhong-Hao],
Yang, X.Q.[Xiao-Qin],
Xiao, R.[Rui],
Fractal Characterization of Settlement Patterns and Their Spatial
Determinants in Coastal Zones,
IJGI(4), No. 4, 2015, pp. 2728.
DOI Link
1601
Human settlement.
BibRef
Hu, Z.W.[Zhong-Wen],
Li, Q.Q.[Qing-Quan],
Zhang, Q.[Qian],
Wu, G.F.[Guo-Feng],
Representation of Block-Based Image Features in a Multi-Scale
Framework for Built-Up Area Detection,
RS(8), No. 2, 2016, pp. 155.
DOI Link
1603
BibRef
Krayenhoff, E.S.[E. Scott],
Voogt, J.A.[James A.],
Daytime Thermal Anisotropy of Urban Neighbourhoods:
Morphological Causation,
RS(8), No. 2, 2016, pp. 108.
DOI Link
1603
BibRef
Liu, K.[Kai],
Fang, J.Y.[Jun-Yong],
Zhao, D.[Dong],
Liu, X.[Xue],
Zhang, X.H.[Xiao-Hong],
Wang, X.[Xiao],
Li, X.K.[Xue-Ke],
An Assessment of Urban Surface Energy Fluxes Using a Sub-Pixel Remote
Sensing Analysis: A Case Study in Suzhou, China,
IJGI(5), No. 2, 2016, pp. 11.
DOI Link
1603
BibRef
Pesaresi, M.[Martino],
Corbane, C.[Christina],
Julea, A.[Andreea],
Florczyk, A.J.[Aneta J.],
Syrris, V.[Vasileios],
Soille, P.[Pierre],
Assessment of the Added-Value of Sentinel-2 for Detecting Built-up
Areas,
RS(8), No. 4, 2016, pp. 299.
DOI Link
1604
BibRef
Huang, J.[Junyi],
Zhou, Q.M.[Qi-Ming],
Wu, Z.F.[Zhi-Feng],
Delineating Urban Fringe Area by Land Cover Information Entropy: An
Empirical Study of Guangzhou-Foshan Metropolitan Area, China,
IJGI(5), No. 5, 2016, pp. 59.
DOI Link
1606
BibRef
Kuffer, M.[Monika],
Pfeffer, K.[Karin],
Sliuzas, R.[Richard],
Slums from Space: 15 Years of Slum Mapping Using Remote Sensing,
RS(8), No. 6, 2016, pp. 455.
DOI Link
1608
BibRef
Krehl, A.[Angelika],
Siedentop, S.[Stefan],
Taubenböck, H.[Hannes],
Wurm, M.[Michael],
A Comprehensive View on Urban Spatial Structure:
Urban Density Patterns of German City Regions,
IJGI(5), No. 6, 2016, pp. 76.
DOI Link
1608
BibRef
di Palma, F.[Flavia],
Amato, F.[Federico],
Nolè, G.[Gabriele],
Martellozzo, F.[Federico],
Murgante, B.[Beniamino],
A SMAP Supervised Classification of Landsat Images for Urban Sprawl
Evaluation,
IJGI(5), No. 7, 2016, pp. 109.
DOI Link
1608
BibRef
Fluschnik, T.[Till],
Kriewald, S.[Steffen],
Ros, A.G.C.[Anselmo García Cantú],
Zhou, B.[Bin],
Reusser, D.E.[Dominik E.],
Kropp, J.P.[Jürgen P.],
Rybski, D.[Diego],
The Size Distribution, Scaling Properties and Spatial Organization of
Urban Clusters: A Global and Regional Percolation Perspective,
IJGI(5), No. 7, 2016, pp. 110.
DOI Link
1608
BibRef
Cutini, V.[Valerio],
Motorways in Metropolitan Areas: The Northwestern Growth of Florence
and the Urban Use of Motorway A1,
IJGI(5), No. 6, 2016, pp. 77.
DOI Link
1608
BibRef
Harig, O.[Oliver],
Burghardt, D.[Dirk],
Hecht, R.[Robert],
A Supervised Approach to Delineate Built-Up Areas for Monitoring and
Analysis of Settlements,
IJGI(5), No. 8, 2016, pp. 137.
DOI Link
1609
BibRef
Xiang, D.L.[De-Liang],
Tang, T.[Tao],
Hu, C.B.[Can-Bin],
Fan, Q.H.[Qing-Hui],
Su, Y.[Yi],
Built-up Area Extraction from PolSAR Imagery with Model-Based
Decomposition and Polarimetric Coherence,
RS(8), No. 8, 2016, pp. 685.
DOI Link
1609
See also Unsupervised Polarimetric SAR Urban Area Classification Based on Model-Based Decomposition with Cross Scattering.
BibRef
Goldblatt, R.[Ran],
You, W.[Wei],
Hanson, G.[Gordon],
Khandelwal, A.K.[Amit K.],
Detecting the Boundaries of Urban Areas in India: A Dataset for
Pixel-Based Image Classification in Google Earth Engine,
RS(8), No. 8, 2016, pp. 634.
DOI Link
1609
BibRef
Ma, L.[Lei],
Li, M.C.[Man-Chun],
Blaschke, T.[Thomas],
Ma, X.X.[Xiao-Xue],
Tiede, D.[Dirk],
Cheng, L.[Liang],
Chen, Z.J.[Zhen-Jie],
Chen, D.[Dong],
Object-Based Change Detection in Urban Areas: The Effects of
Segmentation Strategy, Scale, and Feature Space on Unsupervised
Methods,
RS(8), No. 9, 2016, pp. 761.
DOI Link
1610
BibRef
Wieland, M.[Marc],
Pittore, M.[Massimiliano],
Large-area settlement pattern recognition from Landsat-8 data,
PandRS(119), No. 1, 2016, pp. 294-308.
Elsevier DOI
1610
Landsat-8
BibRef
Ouyang, Z.T.[Zu-Tao],
Fan, P.L.[Pei-Lei],
Chen, J.Q.[Ji-Quan],
Urban Built-up Areas in Transitional Economies of Southeast Asia:
Spatial Extent and Dynamics,
RS(8), No. 10, 2016, pp. 819.
DOI Link
1609
BibRef
Huang, W.[Wei],
Li, S.N.[Song-Nian],
Understanding human activity patterns based on space-time-semantics,
PandRS(121), No. 1, 2016, pp. 1-10.
Elsevier DOI
1609
Human mobility
BibRef
Tomaszewska, M.A.[Monika A.],
Henebry, G.M.[Geoffrey M.],
Urban-Rural Contrasts in Central-Eastern European Cities Using a
MODIS 4 Micron Time Series,
RS(8), No. 11, 2016, pp. 924.
DOI Link
1612
BibRef
Zhou, Y.[Yi],
Lin, C.X.[Chen-Xi],
Wang, S.X.[Shi-Xin],
Liu, W.L.[Wen-Liang],
Tian, Y.[Ye],
Estimation of Building Density with the Integrated Use of GF-1 PMS
and Radarsat-2 Data,
RS(8), No. 11, 2016, pp. 969.
DOI Link
1612
BibRef
Taubenböck, H.[Hannes],
Standfuß, I.[Ines],
Klotz, M.[Martin],
Wurm, M.[Michael],
The Physical Density of the City: Deconstruction of the Delusive
Density Measure with Evidence from Two European Megacities,
IJGI(5), No. 11, 2016, pp. 206.
DOI Link
1612
BibRef
Gevaert, C.M.[Caroline M.],
Persello, C.[Claudio],
Sliuzas, R.,
Vosselman, G.[George],
Informal settlement classification using point-cloud and image-based
features from UAV data,
PandRS(125), No. 1, 2017, pp. 225-236.
Elsevier DOI
1703
Informal settlements
BibRef
Rizaldy, A.[Aldino],
Persello, C.[Claudio],
Gevaert, C.M.[Caroline M.],
Oude Elberink, S.[Sander],
Vosselman, G.[George],
Ground and Multi-Class Classification of Airborne Laser Scanner Point
Clouds Using Fully Convolutional Networks,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Taubenböck, H.[Hannes],
Ferstl, J.[Joachim],
Dech, S.[Stefan],
Regions Set in Stone: Delimiting and Categorizing Regions in Europe by
Settlement Patterns Derived from EO-Data,
IJGI(6), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Ma, X.L.[Xiao-Long],
Tong, X.H.[Xiao-Hua],
Liu, S.[Sicong],
Luo, X.[Xin],
Xie, H.[Huan],
Li, C.M.[Cheng-Ming],
Optimized Sample Selection in SVM Classification by Combining with
DMSP-OLS, Landsat NDVI and GlobeLand30 Products for Extracting Urban
Built-Up Areas,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Peng, F.F.[Fei-Fei],
Gong, J.Y.[Jian-Ya],
Wang, L.[Le],
Wu, H.Y.[Hua-Yi],
Liu, P.C.[Peng-Cheng],
A New Stereo Pair Disparity Index (SPDI) for Detecting Built-Up Areas
from High-Resolution Stereo Imagery,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zhang, Q.[Qian],
Huang, X.[Xin],
Zhang, G.X.[Gui-Xu],
Urban Area Extraction by Regional and Line Segment Feature Fusion and
Urban Morphology Analysis,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, R.[Run],
Wan, B.[Bo],
Guo, Q.H.[Qing-Hua],
Hu, M.S.[Mao-Sheng],
Zhou, S.P.[Shun-Ping],
Mapping Regional Urban Extent Using NPP-VIIRS DNB and MODIS NDVI Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Liao, C.[Cong],
Dai, T.[Teqi],
Cai, H.Y.[Hong-Yu],
Zhang, W.X.[Wen-Xin],
Examining the Driving Factors Causing Rapid Urban Expansion in China:
An Analysis Based on GlobeLand30 Data,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Rimal, B.[Bhagawat],
Zhang, L.[Lifu],
Keshtkar, H.[Hamidreza],
Wang, N.[Nan],
Lin, Y.[Yi],
Monitoring and Modeling of Spatiotemporal Urban Expansion and
Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular
Automata Model,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Rimal, B.[Bhagawat],
Zhang, L.[Lifu],
Keshtkar, H.[Hamidreza],
Haack, B.N.[Barry N.],
Rijal, S.[Sushila],
Zhang, P.[Peng],
Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by
the Integration of Cellular Automata and Markov Chain,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Esch, T.[Thomas],
Heldens, W.[Wieke],
Hirner, A.[Andreas],
Keil, M.[Manfred],
Marconcini, M.[Mattia],
Roth, A.[Achim],
Zeidler, J.[Julian],
Dech, S.[Stefan],
Strano, E.[Emanuele],
Breaking new ground in mapping human settlements from space:
The Global Urban Footprint,
PandRS(134), No. Supplement C, 2017, pp. 30-42.
Elsevier DOI
1712
Global mapping, Human settlements, Urbanization, Automation,
Processing, Image analysis, Texture, TerraSAR-X, TanDEM-X
BibRef
Mboga, N.[Nicholus],
Persello, C.[Claudio],
Bergado, J.R.[John Ray],
Stein, A.[Alfred],
Detection of Informal Settlements from VHR Images Using Convolutional
Neural Networks,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Ajami, A.[Alireza],
Kuffer, M.[Monika],
Persello, C.[Claudio],
Pfeffer, K.[Karin],
Identifying a Slums' Degree of Deprivation from VHR Images Using
Convolutional Neural Networks,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Ning, X.G.[Xiao-Gang],
Lin, X.G.[Xiang-Guo],
An Index Based on Joint Density of Corners and Line Segments for
Built-Up Area Detection from High Resolution Satellite Imagery,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Pratomo, J.[Jati],
Kuffer, M.[Monika],
Martinez, J.[Javier],
Kohli, D.[Divyani],
Coupling Uncertainties with Accuracy Assessment in Object-Based Slum
Detections, Case Study: Jakarta, Indonesia,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Valdiviezo-Navarro, J.C.[Juan C.],
Tellez-Quinones, A.[Alejandro],
Salazar-Garibay, A.[Adan],
Lopez-Caloca, A.A.[Alejandra A.],
Built-up index methods and their applications for urban extraction
from Sentinel 2A satellite data: discussion,
JOSA-A(35), No. 1, January 2018, pp. 35-44.
DOI Link
1801
Digital image processing, Image analysis,
Optical sensing and sensors , Passive remote sensing
BibRef
Dawson, T.[Teddy],
Sandoval, J.S.O.[J.S. Onésimo],
Sagan, V.[Vasit],
Crawford, T.[Thomas],
A Spatial Analysis of the Relationship between Vegetation and Poverty,
IJGI(7), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
And:
Correction:
IJGI(7), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Zhou, Y.[Yi],
Tu, M.G.[Ming-Guang],
Wang, S.X.[Shi-Xin],
Liu, W.L.[Wen-Liang],
A Novel Approach for Identifying Urban Built-Up Area Boundaries Using
High-Resolution Remote-Sensing Data Based on the Scale Effect,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Cao, H.[Han],
Zhang, H.[Hong],
Wang, C.[Chao],
Zhang, B.[Bo],
Operational Built-Up Areas Extraction for Cities in China Using
Sentinel-1 SAR Data,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Novack, T.[Tessio],
Stilla, U.[Uwe],
Classifying the Built-Up Structure of Urban Blocks with Probabilistic
Graphical Models and TerraSAR-X Spotlight Imagery,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Quan, S.,
Xiong, B.,
Xiang, D.,
Kuang, G.,
Derivation of the Orientation Parameters in Built-Up Areas:
With Application to Model-Based Decomposition,
GeoRS(56), No. 8, August 2018, pp. 4714-4730.
IEEE DOI
1808
airborne radar, geophysical image processing,
image classification, land cover, radar imaging, radar polarimetry,
scattering characteristics
BibRef
Ehrlich, D.[Daniele],
Melchiorri, M.[Michele],
Florczyk, A.J.[Aneta J.],
Pesaresi, M.[Martino],
Kemper, T.[Thomas],
Corbane, C.[Christina],
Freire, S.[Sergio],
Schiavina, M.[Marcello],
Siragusa, A.[Alice],
Remote Sensing Derived Built-Up Area and Population Density to
Quantify Global Exposure to Five Natural Hazards over Time,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Wu, Q.[Qiong],
Guo, F.X.[Feng-Xiang],
Li, H.Q.[Hong-Qing],
Wavelet-Based Correlation Identification of Scales and Locations
between Landscape Patterns and Topography in Urban-Rural Profiles:
Case of the Jilin City, China,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Chen, Y.X.[Yi-Xiang],
Lv, Z.Y.[Zhi-Yong],
Huang, B.[Bo],
Jia, Y.[Yan],
Delineation of Built-Up Areas from Very High-Resolution Satellite
Imagery Using Multi-Scale Textures and Spatial Dependence,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Chen, Y.X.[Yi-Xiang],
Lv, Z.Y.[Zhi-Yong],
Huang, B.[Bo],
Zhang, P.D.[Peng-Dong],
Zhang, Y.[Yu],
Automatic Extraction of Built-Up Areas from Very High-Resolution
Satellite Imagery Using Patch-Level Spatial Features and Gestalt Laws
of Perceptual Grouping,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Leonita, G.[Gina],
Kuffer, M.[Monika],
Sliuzas, R.[Richard],
Persello, C.[Claudio],
Machine Learning-Based Slum Mapping in Support of Slum Upgrading
Programs: The Case of Bandung City, Indonesia,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Zhang, J.L.[Jun-Lin],
Xu, W.[Wei],
Qin, L.[Lianjie],
Tian, Y.G.[Yu-Gang],
Spatial Distribution Estimates of the Urban Population Using DSM and
DEM Data in China,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Kuffer, M.[Monika],
Wang, J.[Jiong],
Nagenborg, M.[Michael],
Pfeffer, K.[Karin],
Kohli, D.[Divyani],
Sliuzas, R.[Richard],
Persello, C.[Claudio],
The Scope of Earth-Observation to Improve the Consistency of the SDG
Slum Indicator,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Zhang, T.[Tao],
Tang, H.[Hong],
A Comprehensive Evaluation of Approaches for Built-Up Area Extraction
from Landsat OLI Images Using Massive Samples,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Osgouei, P.E.[Paria Ettehadi],
Kaya, S.[Sinasi],
Sertel, E.[Elif],
Alganci, U.[Ugur],
Separating Built-Up Areas from Bare Land in Mediterranean Cities
Using Sentinel-2A Imagery,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Yang, J.[Jing],
Zhu, J.[Jie],
Sun, Y.Z.[Yi-Zhong],
Zhao, J.H.[Jian-Hua],
Delimitating Urban Commercial Central Districts by Combining Kernel
Density Estimation and Road Intersections: A Case Study in Nanjing
City, China,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Gadal, S.[Sébastien],
Ouerghemmi, W.[Walid],
Multi-Level Morphometric Characterization of Built-up Areas and
Change Detection in Siberian Sub-Arctic Urban Area: Yakutsk,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Rizeei, H.M.[Hossein Mojaddadi],
Pradhan, B.[Biswajeet],
Urban Mapping Accuracy Enhancement in High-Rise Built-Up Areas
Deployed by 3D-Orthorectification Correction from WorldView-3 and
LiDAR Imageries,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Karunarathne, A.[Ananda],
Lee, G.[Gunhak],
Estimating Hilly Areas Population Using a Dasymetric Mapping
Approach: A Case of Sri Lanka's Highest Mountain Range,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Wang, X.[Xiao],
Burghardt, D.[Dirk],
A Mesh-Based Typification Method for Building Groups with Grid
Patterns,
IJGI(8), No. 4, 2019, pp. xx-yy.
DOI Link
1905
Patterns in how buildings are grouped.
BibRef
Cui, X.J.[Xiao-Jie],
Wang, J.Y.[Jia-Yao],
Wu, F.[Fang],
Li, J.H.[Jing-Han],
Gong, X.Y.[Xian-Yong],
Zhao, Y.[Yao],
Zhu, R.X.[Ruo-Xin],
Extracting Main Center Pattern from Road Networks Using Density-Based
Clustering with Fuzzy Neighborhood,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
Finding urban centers based on density of roads and intersections.
BibRef
Herfort, B.[Benjamin],
Li, H.[Hao],
Fendrich, S.[Sascha],
Lautenbach, S.[Sven],
Zipf, A.[Alexander],
Mapping Human Settlements with Higher Accuracy and Less Volunteer
Efforts by Combining Crowdsourcing and Deep Learning,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Firozjaei, M.K.[Mohammad Karimi],
Sedighi, A.[Amir],
Kiavarz, M.[Majid],
Qureshi, S.[Salman],
Haase, D.[Dagmar],
Alavipanah, S.K.[Seyed Kazem],
Automated Built-Up Extraction Index: A New Technique for Mapping
Surface Built-Up Areas Using LANDSAT 8 OLI Imagery,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Ma, X.L.[Xiao-Long],
Li, C.M.[Cheng-Ming],
Tong, X.H.[Xiao-Hua],
Liu, S.[Sicong],
A New Fusion Approach for Extracting Urban Built-up Areas from
Multisource Remotely Sensed Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Luo, P.[Peng],
Zhang, X.F.[Xian-Feng],
Cheng, J.[Junyi],
Sun, Q.[Quan],
Modeling Population Density Using a New Index Derived from
Multi-Sensor Image Data,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Sun, L.[Lang],
Tang, L.[Lina],
Shao, G.F.[Guo-Fan],
Qiu, Q.Y.[Quan-Yi],
Lan, T.[Ting],
Shao, J.Y.[Jin-Yuan],
A Machine Learning-Based Classification System for Urban Built-Up
Areas Using Multiple Classifiers and Data Sources,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
El Mendili, L.[Lamiae],
Puissant, A.[Anne],
Chougrad, M.[Mehdi],
Sebari, I.[Imane],
Towards a Multi-Temporal Deep Learning Approach for Mapping Urban
Fabric Using Sentinel 2 Images,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Roni, R.[Rezaul],
Jia, P.[Peng],
An Optimal Population Modeling Approach Using Geographically Weighted
Regression Based on High-Resolution Remote Sensing Data:
A Case Study in Dhaka City, Bangladesh,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Ma, D.[Ding],
Guo, R.Z.[Ren-Zhong],
Zheng, Y.[Ye],
Zhao, Z.G.[Zhi-Gang],
He, F.N.[Fang-Ning],
Zhu, W.[Wei],
Understanding Chinese Urban Form: The Universal Fractal Pattern of
Street Networks over 298 Cities,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Masot, A.N.[Ana Nieto],
Alonso, G.C.[Gema Cárdenas],
Moriche, Á.E.[Ángela Engelmo],
Spatial Analysis of the Rural-Urban Structure of the Spanish
Municipalities,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Li, Q.M.[Qian-Ming],
Zheng, B.[Bohong],
Tu, B.[Bing],
Yang, Y.S.[Yu-Sheng],
Wang, Z.Y.[Zhi-Yuan],
Jiang, W.[Wei],
Yao, K.[Kai],
Yang, J.W.[Jia-Wei],
Refining Urban Built-Up Area via Multi-Source Data Fusion for the
Analysis of Dongting Lake Eco-Economic Zone Spatiotemporal Expansion,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Stoica, I.V.[Ilinca-Valentina],
Vîrghileanu, M.[Marina],
Zamfir, D.[Daniela],
Mihai, B.A.[Bogdan-Andrei],
Savulescu, I.[Ionut],
Comparative Assessment of the Built-Up Area Expansion Based on Corine
Land Cover and Landsat Datasets: A Case Study of a Post-Socialist
City,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Cabrera-Barona, P.F.[Pablo F.],
Bayón, M.[Manuel],
Durán, G.[Gustavo],
Bonilla, A.[Alejandra],
Mejía, V.[Verónica],
Generating and Mapping Amazonian Urban Regions Using a Geospatial
Approach,
IJGI(9), No. 7, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Zhao, L.[Lu],
Ren, H.Y.[Hong-Yan],
Cui, C.[Cheng],
Huang, Y.H.[Yao-Huan],
A Partition-Based Detection of Urban Villages Using High-Resolution
Remote Sensing Imagery in Guangzhou, China,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Bartsch, A.[Annett],
Pointner, G.[Georg],
Ingeman-Nielsen, T.[Thomas],
Lu, W.J.[Wen-Jun],
Towards Circumpolar Mapping of Arctic Settlements and Infrastructure
Based on Sentinel-1 and Sentinel-2,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Iqbal, J.[Javed],
Ali, M.[Mohsen],
Weakly-supervised domain adaptation for built-up region segmentation
in aerial and satellite imagery,
PandRS(167), 2020, pp. 263-275.
Elsevier DOI
2008
Built-up region segmentation, Semantic segmentation,
Domain adaptation, Weakly-supervised adaptation, Deep learning
BibRef
Ji, H.Y.[Han-Yu],
Li, X.[Xing],
Wei, X.C.[Xin-Chun],
Liu, W.[Wei],
Zhang, L.P.[Lian-Peng],
Wang, L.J.[Li-Juan],
Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote
Sensing Datasets with the Google Earth Engine Platform,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Suwanlee, S.R.[Savittri Ratanopad],
Som-ard, J.[Jaturong],
Spatial Interaction Effect of Population Density Patterns in
Sub-Districts of Northeastern Thailand,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Geiß, C.[Christian],
Schrade, H.[Henrik],
Pelizari, P.A.[Patrick Aravena],
Taubenböck, H.[Hannes],
Multistrategy ensemble regression for mapping of built-up density and
height with Sentinel-2 data,
PandRS(170), 2020, pp. 57-71.
Elsevier DOI
2011
Sentinel-2, TanDEM-X, Urban morphology,
Built-up height estimation, Built-up density estimation, Regression models
BibRef
Zhao, G.[Guanwei],
Yang, M.[Muzhuang],
Urban Population Distribution Mapping with Multisource Geospatial
Data Based on Zonal Strategy,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Henriques, C.[Cristina],
Domingues, A.[Alexandre],
Pereira, M.[Margarida],
What Is Urban after All? A Critical Review of Measuring and Mapping
Urban Typologies in Portugal,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Mukherjee, A.,
Kumar, A.A.,
Ramachandran, P.,
Development of New Index-Based Methodology for Extraction of Built-Up
Area From Landsat7 Imagery: Comparison of Performance With SVM, ANN,
and Existing Indices,
GeoRS(59), No. 2, February 2021, pp. 1592-1603.
IEEE DOI
2101
Indexes, Earth, Artificial satellites, Remote sensing, Satellites,
Support vector machines, Estimation, urban built-up extraction
BibRef
Kotaridis, I.[Ioannis],
Lazaridou, M.[Maria],
Remote sensing image segmentation advances: A meta-analysis,
PandRS(173), 2021, pp. 309-322.
Elsevier DOI
2102
BibRef
Earlier:
Object-based Image Analysis of Different Spatial Resolution Satellite
Imageries In Urban and Suburban Environment,
ISPRS20(B3:105-112).
DOI Link
2012
Image segmentation, Remote sensing, Semantic segmentation,
Meta-analysis, Review
BibRef
He, X.[Xiong],
Yuan, X.D.[Xiao-Die],
Zhang, D.[Dahao],
Zhang, R.R.[Rong-Rong],
Li, M.[Ming],
Zhou, C.[Chunshan],
Delineation of Urban Agglomeration Boundary Based on Multisource Big
Data Fusion: A Case Study of Guangdong-Hong Kong-Macao Greater Bay
Area (GBA),
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Yuan, X.D.[Xiao-Die],
Dai, X.J.[Xiang-Jun],
Zou, Z.[Zeduo],
He, X.[Xiong],
Sun, Y.C.[Yu-Cong],
Zhou, C.S.[Chun-Shan],
Multi-Source Data-Driven Extraction of Urban Residential Space: A
Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area Urban
Agglomeration,
RS(16), No. 19, 2024, pp. 3631.
DOI Link
2410
BibRef
Li, F.[Feng],
Liu, X.Y.[Xiao-Yang],
Liao, S.[Shunbao],
Jia, P.[Peng],
The Modified Normalized Urban Area Composite Index:
A Satelliate-Derived High-Resolution Index for Extracting Urban Areas,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Balk, D.[Deborah],
Leyk, S.[Stefan],
Montgomery, M.R.[Mark R.],
Engin, H.[Hasim],
Global Harmonization of Urbanization Measures: Proceed with Care,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
Definitions of urbanization.
BibRef
Hettiarachchi, C.J.[Chamara J.],
Priyankara, P.[Prabath],
Morimoto, T.[Takehiro],
Murayama, Y.J.[Yu-Ji],
Participatory GIS-Based Approach for the Demarcation of Village
Boundaries and Their Utility: A Case Study of the Eastern Boundary of
Wilpattu National Park, Sri Lanka,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Gao, X.R.[Xiao-Rong],
Yan, H.[Haowen],
Lu, X.M.[Xiao-Min],
Li, P.[Pengbo],
Automated Residential Area Generalization: Combination of
Knowledge-Based Framework and Similarity Measurement,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Xu, G.[Gang],
Fang, Y.J.[Yong-Jun],
Deng, M.[Min],
Sun, G.[Geng],
Chen, J.[Jie],
Remote Sensing Mapping of Build-Up Land with Noisy Label via
Fault-Tolerant Learning,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Zhou, Y.Q.[Yu-Quan],
He, X.[Xiong],
Zhu, Y.T.[Yi-Ting],
Identification and Evaluation of the Polycentric Urban Structure:
An Empirical Analysis Based on Multi-Source Big Data Fusion,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
Near-by complex of multiple cities.
BibRef
He, X.J.[Xian-Jin],
Deng, M.[Min],
Luo, G.W.[Guo-Wei],
Recognizing Building Group Patterns in Topographic Maps by
Integrating Building Functional and Geometric Information,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, W.[Wei],
Lu, S.T.[Sheng-Tao],
Xiang, D.L.[De-Liang],
Su, Y.[Yi],
Built-Up Area Mapping for the Greater Bay Area in China from
Spaceborne SAR Data Based on the PSDNet and Spatial Statistical
Features,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, X.J.[Xiao-Jia],
Zheng, K.[Kang],
Qin, F.[Fen],
Wang, H.Y.[Hai-Ying],
Zhao, C.H.[Chun-Hong],
Deriving Urban Boundaries of Henan Province, China, Based on
Sentinel-2 and Deep Learning Methods,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, T.Y.[Tian-Yang],
Wang, C.[Chao],
Wu, F.[Fan],
Zhang, H.[Hong],
Tian, S.[Sirui],
Fu, Q.Y.[Qiao-Yan],
Xu, L.[Lu],
Built-Up Area Extraction from GF-3 SAR Data Based on a Dual-Attention
Transformer Model,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Chen, Y.P.[Ya-Ping],
Zhang, J.[Jun],
Extraction of Urban Built-Up Areas Based on Data Fusion: A Case Study
of Zhengzhou, China,
IJGI(11), No. 10, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Wang, Y.H.[Yi-Hang],
Lv, C.F.[Cai-Feng],
Pan, X.H.[Xin-Hao],
Liu, Z.W.[Zi-Wen],
Xia, P.[Pei],
Zhang, C.[Chunna],
Liu, Z.F.[Zhi-Feng],
Spatiotemporal Patterns of Light Pollution on the Tibetan Plateau
over Three Decades at Multiple Scales: Implications for Conservation
of Natural Habitats,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Han, J.[Jing],
Wang, Y.[Yue],
Wang, X.P.[Xing-Ping],
Regional Small Towns Classification Assessment and Spatial Pattern
Integration:
A Case Study of the Yunnan Section of the China-Laos Economic Corridor,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Li, S.[Sijia],
Guo, H.D.[Hua-Dong],
Sun, Z.C.[Zhong-Chang],
Liu, Z.Q.[Zong-Qiang],
Jiang, H.P.[Hui-Ping],
Zhang, H.S.[Hong-Sheng],
Patterns of Typical Chinese Urban Agglomerations Based on Complex
Spatial Network Analysis,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wang, J.[Jiahan],
Chen, J.Q.[Jia-Qi],
Liu, X.M.[Xiang-Mei],
Wang, W.[Wei],
Min, S.N.[Sheng-Nan],
Exploring the Spatial and Temporal Characteristics of China's Four
Major Urban Agglomerations in the Luminous Remote Sensing Perspective,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Chen, N.[Nanyu],
Yang, A.[Anran],
Chen, L.[Luo],
Xiong, W.[Wei],
Jing, N.[Ning],
STO2Vec: A Multiscale Spatio-Temporal Object Representation Method
for Association Analysis,
IJGI(12), No. 5, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Tao, Y.[Yuan],
Liu, W.Z.[Wan-Zeng],
Chen, J.[Jun],
Gao, J.X.[Jing-Xiang],
Li, R.[Ran],
Ren, J.X.[Jia-Xin],
Zhu, X.L.[Xiu-Li],
A Self-Supervised Learning Approach for Extracting China Physical
Urban Boundaries Based on Multi-Source Data,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhu, Q.[Quan],
Liu, S.[Shuang],
Spatial Morphological Characteristics and Evolution of Traditional
Villages in the Mountainous Area of Southwest Zhejiang,
IJGI(12), No. 8, 2023, pp. 317.
DOI Link
2309
BibRef
Verma, A.[Abhinav],
Bhattacharya, A.[Avik],
Dey, S.[Subhadip],
López-Martínez, C.[Carlos],
Gamba, P.[Paolo],
Built-up area mapping using Sentinel-1 SAR data,
PandRS(203), 2023, pp. 55-70.
Elsevier DOI
2310
Built-up area index, Urban area index, Built-up area mapping,
Urban area mapping, Dual polarized SAR, Sentinel-1
BibRef
Maloney, M.C.[Megan C.],
Becker, S.J.[Sarah J.],
Griffin, A.W.H.[Andrew W. H.],
Lyon, S.L.[Susan L.],
Lasko, K.[Kristofer],
Automated Built-Up Infrastructure Land Cover Extraction Using Index
Ensembles with Machine Learning, Automated Training Data, and Red
Band Texture Layers,
RS(16), No. 5, 2024, pp. 868.
DOI Link
2403
BibRef
Zhu, W.[Wenlu],
Yuan, C.[Chao],
Tian, Y.C.[Yi-Chen],
Wang, Y.Q.[Ying-Qi],
Li, L.P.[Li-Ping],
Hu, C.[Chenlu],
A New High-Resolution Rural Built-Up Land Extraction Method Based on
Artificial Surface Index with Short-Wave Infrared Downscaling,
RS(16), No. 7, 2024, pp. 1126.
DOI Link
2404
BibRef
Li, F.T.[Fang-Ting],
Zhou, F.D.[Fang-Dong],
Zhang, G.[Guo],
Xiao, J.F.[Jian-Feng],
Zeng, P.[Peng],
HSAA-CD: A Hierarchical Semantic Aggregation Mechanism and Attention
Module for Non-Agricultural Change Detection in Cultivated Land,
RS(16), No. 8, 2024, pp. 1372.
DOI Link
2405
BibRef
Gao, X.R.[Xiao-Rong],
Yan, H.W.[Hao-Wen],
Lu, X.M.[Xiao-Min],
Wang, X.L.[Xiao-Long],
Wang, R.[Rong],
A Novel Approach to Urban Village Extraction and Generalization from
Digital Line Graphics Using the Computational Geometric Method and
the Modified Hausdorff Distance,
IJGI(13), No. 6, 2024, pp. 198.
DOI Link
2406
BibRef
Liu, S.Y.[Shao-Yang],
Wang, C.X.[Cong-Xiao],
Wu, B.[Bin],
Chen, Z.Q.[Zuo-Qi],
Zhang, J.R.[Jia-Rui],
Huang, Y.[Yan],
Wu, J.P.[Jian-Ping],
Yu, B.[Bailang],
Integrating NTL Intensity and Building Volume to Improve the Built-Up
Areas' Extraction from SDGSAT-1 GLI Data,
RS(16), No. 13, 2024, pp. 2278.
DOI Link
2407
BibRef
Puniach, E.[Edyta],
Gruszczynski, W.[Wojciech],
Cwiakala, P.[Pawel],
Strzabala, K.[Katarzyna],
Pastucha, E.[Elzbieta],
Recognition of Urbanized Areas in UAV-Derived Very-High-Resolution
Visible-Light Imagery,
RS(16), No. 18, 2024, pp. 3444.
DOI Link
2410
BibRef
Jamali, A.,
Abdul Rahman, A.,
Sentinel-1 Image Classification for City Extraction Based On The
Support Vector Machine and Random Forest Algorithms,
GGT19(297-302).
DOI Link
1912
BibRef
Vigneshwaran, S.,
Vasantha Kumar, S.,
Extraction of Built-up Area Using High Resolution Sentinel-2a And
Google Satellite Imagery,
GeoDisast18(165-169).
DOI Link
1901
GIS and Disaster Risk
BibRef
Altay Açar, S.,
Bayir, S.,
Pre-processes for Urban Areas Detection in Sar Images,
GeoAdvances17(15-17).
DOI Link
1805
BibRef
Chini, M.,
Pelich, R.,
Hostache, R.,
Matgen, P.,
Built-up areas mapping at global scale based on adaptive parametric
thresholding of Sentinel-1 intensity coherence time series,
MultiTemp17(1-4)
IEEE DOI
1712
radar interferometry, remote sensing by radar,
synthetic aperture radar,
thresholding
BibRef
Grinias, I.[Ilias],
Panagiotakis, C.[Costas],
Tziritas, G.[Georgios],
MRF-based segmentation and unsupervised classification for building
and road detection in peri-urban areas of high-resolution satellite
images,
PandRS(122), No. 1, 2016, pp. 145-166.
Elsevier DOI
1612
Building/road extraction
BibRef
Pour, T.,
Burian, J.,
Mirijovský, J.,
Advanced Extraction Of Spatial Information From High Resolution
Satellite Data,
ISPRS16(B3: 905-907).
DOI Link
1610
BibRef
Wang, H.[Hao],
Ning, X.G.[Xiao-Gang],
Zhu, W.W.[Wei-Wei],
Li, F.[Fei],
Comprehensive Evaluation Of Urban Sprawl On Ecological Environment
Using Multi-source Data: A Case Study Of Beijing,
ISPRS16(B8: 1073-1077).
DOI Link
1610
BibRef
Imam, A.[Ayman],
Alhaddad, B.[Bahaa],
Roca, J.[Josep],
Remote Sensing Efficiency For Urban Analysis Of Mecca And Surrounds,
ISPRS16(B8: 905-910).
DOI Link
1610
BibRef
Sapena, M.,
Ruiz, L.A.,
Goerlich, F.J.,
Analysing Relationships Between Urban Land Use Fragmentation Metrics
And Socio-economic Variables,
ISPRS16(B8: 1029-1036).
DOI Link
1610
BibRef
Akay, S.S.,
Sertel, E.,
Urban Land Cover/use Change Detection Using High Resolution Spot 5 And
Spot 6 Images And Urban Atlas Nomenclature,
ISPRS16(B8: 789-796).
DOI Link
1610
BibRef
Zhang, Y.H.,
Liu, H.P.,
Trajectory-based Analysis Of Urban Land-cover Change Detection,
ISPRS16(B7: 607-610).
DOI Link
1610
See also Detection of Cropland Change Using Multi-Harmonic Based Phenological Trajectory Similarity.
BibRef
Candas, E.,
Flacke, J.,
Yomralioglu, T.,
Understanding Urban Regeneration In Turkey,
ISPRS16(B4: 669-675).
DOI Link
1610
BibRef
Roynard, X.,
Deschaud, J.E.,
Goulette, F.,
Fast And Robust Segmentation And Classification For Change Detection In
Urban Point Clouds,
ISPRS16(B3: 693-699).
DOI Link
1610
BibRef
Wang, Y.D.,
Jiang, B.T.,
Ye, X.Y.,
A method for studying the development pattern of urban commercial
service facilities based on customer reviews from social media,
ISPRS16(B2: 577-578).
DOI Link
1610
BibRef
Rautenbach, V.,
Coetzee, S.,
Çöltekin, A.,
Investigating The Use Of 3d Geovisualizations For Urban Design In
Informal Settlement Upgrading In South Africa,
ISPRS16(B2: 425-431).
DOI Link
1610
BibRef
Koziatek, O.,
Dragicevic, S.,
Li, S.,
Geospatial Modelling Approach For 3d Urban Densification Developments,
ISPRS16(B2: 349-352).
DOI Link
1610
BibRef
Lopez-Caloca, A.A.,
Data fusion approach for Urban area identification using multisensor
information,
MultiTemp15(1-4)
IEEE DOI
1511
Markov processes
BibRef
Li, M.[Minmin],
Zhang, Z.X.[Zeng-Xiang],
Zhao, X.L.[Xiao-Li],
Wang, X.[Xiao],
Seen, D.L.[D. Lo],
Characteristics of spatial-temporal sprawl in specific Chinese
coastal cities from 1979 to 2013,
MultiTemp15(1-4)
IEEE DOI
1511
land use
BibRef
Guyet, T.,
Landscape features that prevent or foster urban sprawl,
MultiTemp15(1-4)
IEEE DOI
1511
land use
BibRef
Liu, X.,
Zhang, J.X.,
Zhao, Z.,
Ma, A.D.,
Built-up Areas Extraction in High Resolution SAR Imagery based on the
method of Multiple Feature Weighted Fusion,
IWIDF15(121-125).
DOI Link
1508
BibRef
Adami, A.,
4D City Transformations by time Series of Aerial Images,
3D-Arch15(339-344).
DOI Link
1504
BibRef
Susaki, J.,
Kishimoto, M.,
Urban Area Extraction Using Airborne X-Band Fully Polarimetric Pi-SAR2
Imagery,
PIA15(219-226).
DOI Link
1504
BibRef
Zhao, H.,
Wang, H.,
Wu, W.,
Wang, C.,
Integrated 3S Technology Used in Urban Grid Management,
Geospatial14(1-5).
DOI Link
1411
monitor state and changes of the city.
BibRef
Akin, A.,
Aliffi, S.,
Sunar, F.,
Spatio-temporal Urban Change Analysis and the Ecological Threats
Concerning The Third Bridge in Istanbul City,
Thematic14(9-14).
DOI Link
1404
BibRef
Mashford, J.[John],
Lipkin, F.[Felix],
Olie, C.[Charlelie],
Cuchennec, M.[Mailys],
Song, Y.[Yong],
Automatic Interpretation of Remotely Sensed Images for Urban Form
Assessment,
ICIAR14(I: 441-449).
Springer DOI
1410
BibRef
Lozano, J.,
Quartulli, M.,
Tamayo, I.,
Laka, M.,
Olaizola, I.,
Visual analytics for built-up area understanding from metric resolution
Earth observation data,
SSG13(151-154).
DOI Link
1402
BibRef
Ruzgiene, B.,
Aksamitauskas, C.,
The Use of UAV Systems for Mapping of Built-Up Area,
UAV-g13(349-353).
DOI Link
1311
BibRef
Cianci, M.G.,
Calisi, D.,
The Urban Structure of Rome Between History and Modern Times,
CIPA13(189-194).
DOI Link
1311
BibRef
Aghababaee, H.,
Niazmardi, S.,
Amini, J.,
Urban Area Extraction in SAR Data,
SMPR13(1-5).
DOI Link
1311
BibRef
Karanja, F.N.,
Matara, S.,
The Transformation from Green to Concrete Cities;
A Remote Sensing Perspective,
Hannover13(163-166).
DOI Link
1308
BibRef
Vyas, A.,
Sashtri, B.,
SAR Polarimetric Signatures For Urban Targets:
Polarimetric Signature Calculation And Visualization,
ISPRS12(XXXIX-B7:535-540).
DOI Link
1209
BibRef
Mesev, V.,
Multiscale And Multitemporal Urban Remote Sensing,
ISPRS12(XXXIX-B2:17-21).
DOI Link
1209
BibRef
Nocerino, E.,
Menna, F.,
Menna, F.,
Multi-temporal Analysis Of Landscapes And Urban Areas,
ISPRS12(XXXIX-B4:85-90).
DOI Link
1209
BibRef
Miyazaki, H.,
Iwao, K.,
Shibasaki, R.,
Automated Construction Of Coverage Catalogues Of Aster Satellite Image
For Urban Areas Of The World,
ISPRS12(XXXIX-B8:497-500).
DOI Link
1209
BibRef
Linh, N.H.K.,
Erasmi, S.,
Kappas, M.,
Quantifying Land Use/cover Change And Landscape Fragmentation In Danang
City, Vietnam: 1979-2009,
ISPRS12(XXXIX-B8:501-506).
DOI Link
1209
BibRef
Alhaddad, B.,
Arellano, B.E.,
Roca, J.,
Urban Detection, Delimitation And Morphology: Comparative Analysis Of
Selective 'megacities',
ISPRS12(XXXIX-B7:381-386).
DOI Link
1209
BibRef
Colaninno, N.,
Roca, J.,
Burns, M.,
Alhaddad, B.,
Defining Densities For Urban Residential Texture, Through Land Use
Classification, From Landsat Tm Imagery: Case Study Of Spanish
Mediterranean Coast,
ISPRS12(XXXIX-B7:179-184).
DOI Link
1209
BibRef
Bouraoui, S.,
Deruyver, A.,
A system to detect residential area in multispectral satellite images,
IVCNZ10(1-5).
IEEE DOI
1203
BibRef
Yu, L.J.[Li-Jun],
Nie, Y.P.[Yue-Ping],
Zhu, C.H.[Chun-Hua],
Relations analysis between canal and urban development of Yangzhou
supported by space technology,
IASP11(460-462).
IEEE DOI
1112
BibRef
Shi, B.Q.[Bei-Qi],
Liu, C.[Chun],
Sun, W.W.[Wei-We],
Wu, H.B.[Hang-Bin],
Residential Area Recognition Using Oscillatory Correlation Segmentation
of Hyperspectral Imagery,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
van de Voorde, T.[Tim],
Jacquet, W.,
Canters, F.[Frank],
A Region-Based Approach for Describing Urban Morphology Based on
Sub-Pixel Estimation of Sealed Surface Cover,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Thunig, H.,
Wolf, N.,
Naumann, S.,
Siegmund, A.,
Jurgens, C.,
Automated LULC Classification of VHR Optical Satellite Data in the
Context of Urban Planning,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Yang, C.J.[Cun-Jian],
Luo, Z.[Zhen],
Extracting Rural Settlement Information from Quickbird Images,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Simler, C.,
Beumier, C.,
Performance Evaluation of Road and Building Classifiers on VHR Images,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
de Maeyer, M.,
Sotiaux, A.,
Wolff, E.,
Comparison of Standardized Methods (Object-Oriented vs. Per Pixel) to
Extract The Urban Built-Up Area: Example of Lubumbashi (DRC),
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Dinis, J.,
Navarro, A.,
Soares, F.,
Santos, T.,
Freire, S.,
Fonseca, A.,
Afonso, N.,
Tenedório, J.A.,
Hierarchical Object-Based Classification of Dense Urban Areas by
Integrating High Spatial Resolution Satellite Images and LIDAR
Elevation Data,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Soares, F.,
Navarro, A.,
Santos, T.,
Freire, S.,
Fonseca, A.,
Santos, N.,
Tenedório, J.A.,
Cartographic Data Extraction from Airborne Imagery by
Hierarchical-Based Morphologic Image Processing,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Besbes, O.[Olfa],
Boujemaa, N.[Nozha],
Belhadj, Z.[Ziad],
Cue Integration for Urban Area Extraction in Remote Sensing Images,
ICIAR09(248-257).
Springer DOI
0907
BibRef
And:
Contextual classification of high-resolution satellite images,
CIIP09(41-47).
IEEE DOI
0903
BibRef
Yang, Y.[Yetao],
Zhou, O.[Oiming],
Gong, J.Y.[Jian-Ya],
Gradient Analysis Of Landscape Pattern Spatial-temporal Changes In
Beijing Metropolitan Area, China,
VCGVA09(xx-yy).
0910
gradient analysis, landscape metrics, spatio-temporal, urban expansion
BibRef
Adam, O.[Osama],
Ban, Y.F.[Yi-Fang],
Multitemporal Spaceborn SAR Data For Change Detection In Urban Areas:a
Case Study In Shanghai,
VCGVA09(xx-yy).
0910
Change detection, SAR, Minimum-error thresholding, Ratio image, Modified ratio, Urban area
BibRef
Qiao, Y.[Yu],
Liu, H.P.[Hui-Ping],
Bai, M.[Mu],
Wang, X.D.[Xiao-Dong],
Zhou, X.L.[Xiao-Luo],
The Decision Tree Algorithm Of Urban Extraction From Multi-source Image
Data,
VCGVA09(xx-yy).
0910
Multi-Source Image Data, Decision Tree, Unified Conceptual Model
BibRef
Lee, J.A.[Jin A.],
Chi, K.H.[Kwang Hoon],
Modeling of urban industrial economy through utilization of thermal
band,
CityModels09(xx-yy).
PDF File.
0912
BibRef
Bedawi, S.M.[Safaa M.],
Kamel, M.S.[Mohamed S.],
Road Detection in Urban Areas Using Random Forest Tree-Based Ensemble
Classification,
ICIAR15(499-505).
Springer DOI
1507
BibRef
Bedawi, S.M.[Safaa M.],
Kamel, M.S.[Mohamed S.],
Multiple Classifier System for Urban Area's Extraction from High
Resolution Remote Sensing Imagery,
ICIAR11(II: 307-316).
Springer DOI
1106
BibRef
Earlier:
Segmentation of Very High Resolution Remote Sensing Imagery of Urban
Areas Using Particle Swarm Optimization Algorithm,
ICIAR10(I: 81-88).
Springer DOI
1006
BibRef
Zheng, S.F.[Song-Feng],
Probabilistic Cascade Random Fields for Man-Made Structure Detection,
ACCV09(II: 596-607).
Springer DOI
0909
BibRef
Wang, M.[Min],
Influence of Number of Features on Texture Based Residential Area
Extraction from Remotely Sensed Imagery,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, J.M.[Jian-Min],
Xie, C.X.[Chun-Xi],
Extracting Residential Area Information from Dual-SAR Image Based on
Object-Oriented Technique,
CISP09(1-4).
IEEE DOI
0910
BibRef
Murtaza, K.[Kashif],
Khan, S.[Sohaib],
Rajpoot, N.[Nasir],
Villagefinder: Segmentation of Nucleated Villages in Satellite Imagery,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Shandiz, H.T.,
Mirhassani, S.M.,
Yousefi, B.,
Hierarchical method for building extraction in urban area's images
using unsharp masking [USM] and Bayesian classifier,
WSSIP08(193-196).
IEEE DOI
0806
BibRef
Bouakache, A.[Abdenour],
Khedam, R.[Radja],
Belhadj-Aissa, A.[Aichouche],
Mercier, G.[Grégoire],
A Generalized Appriou's Model for Evidential Classification of
Multispectral Images: A Case Study of Algiers City,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Li, X.[Xi],
Guan, Z.Q.[Ze-Qun],
Shen, T.Y.[Ti-Yan],
Extract Profile of Urbanized Area in Beijing Assisted by Skewness,
ISPRS08(B3b: 463 ff).
PDF File.
0807
BibRef
Kampouraki, M.,
Wood, G.A.,
Brewer, T.,
The application of remote sensing to identify and measure sealed areas
in urban environments,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Jacquin, A.,
Misakova, L.,
Gay, M.,
The potential use of very high spatial resolution data and object-based
classification for mapping urban sprawl,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Hofmann, P.,
Strobl, J.,
Blaschke, T.,
Kux, H.,
Detecting informal settlements from QuickBird data in Rio de Janeiro
using an object based approach,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Marchesi, A.,
Colombo, R.,
Valentini, P.,
Application of high spatial resolution satellite imagery for urban
environment mapping,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Madden, M.,
Jordan, T.,
Kim, M.,
Object-based segmentation of cultural and natural landscapes using
landscape models to derive contextual classification,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Fritz, G.[Gerald],
Seifert, C.[Christin],
Paletta, L.[Lucas],
A Mobile Vision System for Urban Detection with Informative Local
Descriptors,
CVS06(30).
IEEE DOI
0602
Urban objects from mobile phone images for tourist services.
BibRef
Fritz, G.[Gerald],
Seifert, C.[Christin],
Kumar, M.[Manish],
Paletta, L.[Lucas],
Building Detection from Mobile Imagery Using Informative SIFT
Descriptors,
SCIA05(629-638).
Springer DOI
0506
BibRef
Wang, W.[Wei],
Yang, X.[Xin],
Chen, S.S.[Shou-Shui],
A Kernel Matching Pursuit Approach to Man-Made Objects Detection in
Aerial Images,
IbPRIA07(II: 507-514).
Springer DOI
0706
BibRef
Cao, G.[Guo],
Yang, X.[Xin],
Zhou, D.[Dake],
Mumford-Shah Model Based Man-Made Objects Detection from Aerial Images,
ScaleSpace05(386-395).
Springer DOI
0505
BibRef
Kumar, S.,
Hebert, M.,
Man-made structure detection in natural images using a causal
multiscale random field,
CVPR03(I: 119-126).
IEEE DOI
0307
BibRef
Straub, B.M.[Bernd-Michael],
Gerke, M.[Markus],
Pahl, M.[Martin],
Automatic Mapping of Settlement Areas Using a Knowledge-Based Image
Interpretation System,
CVS03(355 ff).
Springer DOI
0306
BibRef
Gerke, M.[Markus],
Scene Analysis in Urban Areas Using a Knowledge-Based
Interpretation-System,
PCV02(B: 63).
0305
BibRef
Jiang, Q.,
Automatic Extraction of Urban Regions from Multispectral
SPOT Satellite Imagery,
ICIP00(Vol II: 728-731).
IEEE DOI
0008
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Impervious Surface Detection, Urban Area Extraction .