Wharton, S.W.[Stephen W.],
A Contextual Classification Method for Recognizing Land Use Patterns in
High Resolution Remotely Sensed Data,
PR(15), No. 4, 1982, pp. 317-324.
Elsevier DOI
BibRef
8200
Heikkonen, J.[Jukka],
Varfis, A.[Aristide],
Land Cover Land Use Classification of Urban Areas:
A Remote-Sensing Approach,
PRAI(12), No. 4, June 1998, pp. 475-489.
9808
BibRef
Heikkonen, J.[Jukka],
Varfis, A.[Aristide],
Kanellopoulos, I.[Ioannis],
A Method for Remote Sensing Based Classification of Urban Areas,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Schneider, A.[Annemarie],
Friedl, M.A.[Mark A.],
McIver, D.M.[Douglas M.],
Woodcock, C.E.[Curtis E.],
Mapping Urban Areas by Fusing Multiple Sources of Coarse Resolution
Remotely Sensed Data,
PhEngRS(69), No. 12, December 2003, pp. 1377-1386.
WWW Link.
0401
The main objective of this research is to improve the understanding
of the methodological, scale, and validation
requirements for mapping urban land cover from the fusion of 1-km MODIS
data with DMSP nighttime lights data set and gridded population density data.
BibRef
Islam, Z.,
Metternicht, G.,
The Performance of Fuzzy Operators on Fuzzy Classification of Urban
Land Covers,
PhEngRS(71), No. 1, January 2005, pp. 59-68.
Evaluation of the performance of fuzzy operators for integrating fuzzy
membership values associated with multiple spectral bands for mapping
urban land covers.
WWW Link.
0509
BibRef
Pozzi, F.[Francesca],
Small, C.[Christopher],
Analysis of Urban Land Cover and Population Density in the United
States,
PhEngRS(71), No. 6, June 2005, pp. 719-726.
Analysis of population density and vegetation distribution for several
cities shows a strong correspondence in cities with high population
density but considerable regional variability that precludes simple
spectral classifications of land cover.
WWW Link.
0509
BibRef
Huang, X.[Xin],
Zhang, L.P.[Liang-Pei],
Li, P.X.[Ping-Xiang],
Classification of Very High Spatial Resolution Imagery Based on the
Fusion of Edge and Multispectral Information,
PhEngRS(74), No. 12, December 2008, pp. 1585-1597.
WWW Link.
0804
A new algorithm to classify high spatial resolution remotely sensed
imagery by integrating fuzzy edge information and multispectral
features.
BibRef
Huang, X.[Xin],
Zhang, L.P.[Liang-Pei],
An Adaptive Mean-Shift Analysis Approach for Object Extraction and
Classification from Urban Hyperspectral Imagery,
GeoRS(46), No. 12, December 2008, pp. 4173-4185.
IEEE DOI
0812
BibRef
Huang, X.[Xin],
Zhang, L.P.[Liang-Pei],
An SVM Ensemble Approach Combining Spectral, Structural, and Semantic
Features for the Classification of High-Resolution Remotely Sensed
Imagery,
GeoRS(51), No. 1, January 2013, pp. 257-272.
IEEE DOI
1301
BibRef
Zhu, Q.Q.[Qi-Qi],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Li, D.,
Scene Classification Based on the Fully Sparse Semantic Topic Model,
GeoRS(55), No. 10, October 2017, pp. 5525-5538.
IEEE DOI
1710
BibRef
Earlier: A1, A2, A3, Only:
Scene Classification Based On The Semantic-feature Fusion Fully Sparse
Topic Model For High Spatial Resolution Remote Sensing Imagery,
ISPRS16(B7: 451-457).
DOI Link
1610
feature extraction, optimisation,
concave maximization, dense semantic representation,
limited training samples,
BibRef
Zhu, Q.Q.[Qi-Qi],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Li, D.,
Adaptive Deep Sparse Semantic Modeling Framework for High Spatial
Resolution Image Scene Classification,
GeoRS(56), No. 10, October 2018, pp. 6180-6195.
IEEE DOI
1810
Feature extraction, Semantics, Visualization, Adaptation models,
Probabilistic logic, Remote sensing, Encoding, Adaptive,
scene classification
BibRef
Zhu, Q.Q.[Qi-Qi],
Zhong, Y.F.[Yan-Fei],
Wu, S.,
Zhang, L.P.[Liang-Pei],
Li, D.,
Scene Classification Based on the Sparse Homogeneous-Heterogeneous
Topic Feature Model,
GeoRS(56), No. 5, May 2018, pp. 2689-2703.
IEEE DOI
1805
Feature extraction, Image segmentation, Remote sensing, Roads,
Semantics, Training, Visualization, Geographical,
scene understanding
BibRef
Zhao, B.[Bei],
Zhong, Y.F.[Yan-Fei],
Xia, G.S.[Gui-Song],
Zhang, L.P.[Liang-Pei],
Dirichlet-Derived Multiple Topic Scene Classification Model for High
Spatial Resolution Remote Sensing Imagery,
GeoRS(54), No. 4, April 2016, pp. 2108-2123.
IEEE DOI
1604
Buildings
BibRef
Zhao, B.[Bei],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Huang, B.[Bo],
The Fisher Kernel Coding Framework for High Spatial Resolution Scene
Classification,
RS(8), No. 2, 2016, pp. 157.
DOI Link
1603
BibRef
Zhong, Y.F.[Yan-Fei],
Zhu, Q.Q.[Qi-Qi],
Zhang, L.P.[Liang-Pei],
Scene Classification Based on the Multifeature Fusion Probabilistic
Topic Model for High Spatial Resolution Remote Sensing Imagery,
GeoRS(53), No. 11, November 2015, pp. 6207-6222.
IEEE DOI
1509
feature extraction
BibRef
Zhong, Y.F.[Yan-Fei],
Han, X.B.[Xiao-Bing],
Zhang, L.P.[Liang-Pei],
Multi-class geospatial object detection based on a position-sensitive
balancing framework for high spatial resolution remote sensing
imagery,
PandRS(138), 2018, pp. 281-294.
Elsevier DOI
1804
Geospatial object detection,
High spatial resolution (HSR) remote sensing imagery,
Position-sensitive balancing
BibRef
Hu, J.W.[Jing-Wen],
Xia, G.S.[Gui-Song],
Hu, F.[Fan],
Zhang, L.P.[Liang-Pei],
A Comparative Study of Sampling Analysis in the Scene Classification
of Optical High-Spatial Resolution Remote Sensing Imagery,
RS(7), No. 11, 2015, pp. 14988.
DOI Link
1512
BibRef
Hu, F.[Fan],
Xia, G.S.[Gui-Song],
Hu, J.W.[Jing-Wen],
Zhong, Y.F.[Yan-Fei],
Xu, K.[Kan],
Fast Binary Coding for the Scene Classification of High-Resolution
Remote Sensing Imagery,
RS(8), No. 7, 2016, pp. 555.
DOI Link
1608
BibRef
Zhao, B.[Bei],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
A spectral-structural bag-of-features scene classifier for very high
spatial resolution remote sensing imagery,
PandRS(116), No. 1, 2016, pp. 73-85.
Elsevier DOI
1604
Scene classification
BibRef
Zhu, Q.Q.[Qi-Qi],
Zhong, Y.F.[Yan-Fei],
Liu, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Li, D.R.[De-Ren],
A Deep-Local-Global Feature Fusion Framework for High Spatial
Resolution Imagery Scene Classification,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Zhong, Y.F.[Yan-Fei],
Zhao, B.[Bei],
Zhang, L.P.[Liang-Pei],
Multiagent Object-Based Classifier for High Spatial Resolution
Imagery,
GeoRS(52), No. 2, February 2014, pp. 841-857.
IEEE DOI
1402
evolutionary computation
BibRef
Chen, D.Y.[Ding-Yuan],
Zhong, Y.F.[Yan-Fei],
Ma, A.[Ailong],
Zhang, L.P.[Liang-Pei],
Blurry dense object extraction based on buffer parsing network for
high-resolution satellite remote sensing imagery,
PandRS(207), 2024, pp. 122-140.
Elsevier DOI Code:
WWW Link.
2401
Blurry dense object extraction, Dense boundary separation,
Blurry boundary refinement, Buffer parsing architecture,
High-resolution remote sensing imagery
BibRef
Zhong, Y.F.[Yan-Fei],
Zhao, J.,
Zhang, L.P.[Liang-Pei],
A Hybrid Object-Oriented Conditional Random Field Classification
Framework for High Spatial Resolution Remote Sensing Imagery,
GeoRS(52), No. 11, November 2014, pp. 7023-7037.
IEEE DOI
1407
Context modeling
BibRef
Zhao, Y.D.[Yin-Di],
Zhang, L.P.[Liang-Pei],
Li, P.X.[Ping-Xiang],
Huang, B.[Bo],
Classification of High Spatial Resolution Imagery Using Improved
Gaussian Markov Random-Field-Based Texture Features,
GeoRS(45), No. 5, May 2007, pp. 1458-1468.
IEEE DOI
0704
BibRef
Zhao, J.[Ji],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Detail-Preserving Smoothing Classifier Based on Conditional Random
Fields for High Spatial Resolution Remote Sensing Imagery,
GeoRS(53), No. 5, May 2015, pp. 2440-2452.
IEEE DOI
1502
geophysical image processing
BibRef
Lv, P.Y.[Peng-Yuan],
Zhong, Y.F.[Yan-Fei],
Zhao, J.[Ji],
Zhang, L.P.[Liang-Pei],
Unsupervised Change Detection Based on Hybrid Conditional Random
Field Model for High Spatial Resolution Remote Sensing Imagery,
GeoRS(56), No. 7, July 2018, pp. 4002-4015.
IEEE DOI
1807
geophysical image processing, geophysical techniques,
image resolution, image segmentation, remote sensing, HCRF model,
remote sensing
BibRef
Shi, S.[Sunan],
Zhong, Y.F.[Yan-Fei],
Zhao, J.[Ji],
Lv, P.Y.[Peng-Yuan],
Liu, Y.H.[Yin-He],
Zhang, L.P.[Liang-Pei],
Land-Use/Land-Cover Change Detection Based on Class-Prior
Object-Oriented Conditional Random Field Framework for High Spatial
Resolution Remote Sensing Imagery,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI
2112
Task analysis, Object oriented modeling, Remote sensing,
Image segmentation, Spatial resolution, Manuals, Analytical models,
remote sensing
BibRef
Zhu, Q.Q.[Qi-Qi],
Guo, X.[Xi],
Deng, W.H.[Wei-Huan],
Shi, S.[Sunan],
Guan, Q.F.[Qing-Feng],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
Li, D.R.[De-Ren],
Land-Use/Land-Cover change detection based on a Siamese global
learning framework for high spatial resolution remote sensing imagery,
PandRS(184), 2022, pp. 63-78.
Elsevier DOI
2202
Change detection, Semantic change detection, Remote sensing,
Imbalanced sample, Siamese network, Change mask
BibRef
Zhao, J.[Ji],
Zhong, Y.F.[Yan-Fei],
Shu, H.,
Zhang, L.P.[Liang-Pei],
High-Resolution Image Classification Integrating
Spectral-Spatial-Location Cues by Conditional Random Fields,
IP(25), No. 9, September 2016, pp. 4033-4045.
IEEE DOI
1609
geophysical image processing
BibRef
Zhang, L.P.[Liang-Pei],
Zhao, Y.D.[Yin-Di],
Huang, B.[Bo],
Li, P.X.[Ping-Xiang],
Texture Feature Fusion with Neighborhood-Oscillating Tabu Search for
High Resolution Image Classification,
PhEngRS(74), No. 3, March 2008, pp. 323-332.
WWW Link.
0803
Neighborhood-Oscillating tabu search integrates different types of
texture features to improve classifi cation performance of
high-resolution imagery.
BibRef
Wu, S.S.[Shuo-Sheng],
Xu, B.[Bing],
Wang, L.[Le],
Urban Land-use Classification Using Variogram-based Analysis with an
Aerial Photograph,
PhEngRS(72), No. 7, July 2006, pp. 813-822.
WWW Link.
0610
A variogram-based texture analysis was tested for classifying detailed urban
land-use classes, such as mobile home, singlefamily house,
multi-family house, industrial, and commercial, from a digital color
infrared aerial photograph.
BibRef
van de Voorde, T.[Tim],
de Genst, W.[William],
Canters, F.[Frank],
Improving Pixel-based VHR Land-cover Classifications of Urban Areas
with Post-classification Techniques,
PhEngRS(73), No. 9, September 2007, pp. 1017-1028.
WWW Link.
0709
Three post-classification techniques were applied to improve the accuracy
and the structural coherence of an urban land-cover map derived
from a soft pixel-based classification.
BibRef
Bellens, R.,
Gautama, S.,
Martinez-Fonte, L.,
Philips, W.,
Chan, J.C.W.,
Canters, F.[Frank],
Improved Classification of VHR Images of Urban Areas Using Directional
Morphological Profiles,
GeoRS(46), No. 10, October 2008, pp. 2803-2813.
IEEE DOI
0810
BibRef
Chan, J.C.W.[Jonathan Cheung-Wai],
Bellens, R.[Rik],
Canters, F.[Frank],
Gautama, S.[Sidharta],
An Assessment of Geometric Activity Features for Per-pixel
Classification of Urban Man-made Objects using Very High Resolution
Satellite Imagery,
PhEngRS(75), No. 4, April 2009, pp. 397-412.
WWW Link.
0903
The results of using geometric activity features based on ridge-based
modeling and morphological profi les for the classification of urban
man-made objects from an Ikonos image.
BibRef
Xu, B.[Bing],
Gong, P.[Peng],
Land-use/Land-cover Classification with Multispectral and Hyperspectral
EO-1 Data,
PhEngRS(73), No. 8, August 2007, pp. 955-965.
WWW Link.
0709
Land-use and land-cover classification in an urban rural fringe
of the San Francisco Bay Area using EO-1 Hyperion imagery is compared
with that using EO-1 ALI imagery, and the application of a computationally
efficient segmentation-based feature reduction approach.
BibRef
Myint, S.W.[Soe W.],
Wentz, E.A.[Elizabeth A.],
Purkis, S.J.[Sam J.],
Employing Spatial Metrics in Urban Land-use/Landcover Mapping:
Comparing the Getis and Geary Indices,
PhEngRS(73), No. 12, December 2007, pp. 1403-1417.
WWW Link.
0712
The effectiveness of Getis index (Gi) in comparison to a measure of
spatial autocorrelation (Geary's C) in classifying landuse /
land-cover classes in a high resolution imagery and the impact of
distance threshold used in Getis index with regards to the
classification accuracy.
BibRef
Huang, H.[Heng],
Legarsky, J.[Justin],
Othman, M.[Maslina],
Land-cover Classification Using Radarsat and Landsat Imagery for St.
Louis, Missouri,
PhEngRS(73), No. 1, January 2007, pp. 37-44.
WWW Link.
0704
An investigation of the classification accuracy of merging satellite
imagery from Radarsat and Landsat missions.
BibRef
Aytekin, Ö.[Örsan],
Ulusoy, I.[Ilkay],
Automatic segmentation of VHR images using type information of local
structures acquired by mathematical morphology,
PRL(32), No. 13, 1 October 2011, pp. 1618-1625.
Elsevier DOI
1109
Image segmentation; Differential morphological profile (DMP); Very
high resolution (VHR) images; Mathematical morphology
Morphology to get scale.
BibRef
Miyazaki, H.,
Iwao, K.,
Shibasaki, R.,
Development of a New Ground Truth Database for Global Urban Area
Mapping from a Gazetteer,
RS(3), No. 6, June 2011, pp. 1177-1187.
DOI Link
1203
BibRef
d'Oleire-Oltmanns, S.,
Coenradie, B.,
Kleinschmit, B.,
An Object-Based Classification Approach for Mapping Migrant Housing in
the Mega-Urban Area of the Pearl River Delta (China),
RS(3), No. 8, August 2011, pp. 1710-1723.
DOI Link
1203
BibRef
Matikainen, L.,
Karila, K.,
Segment-Based Land Cover Mapping of a Suburban Area: Comparison of
High-Resolution Remotely Sensed Datasets Using Classification Trees and
Test Field Points,
RS(3), No. 8, August 2011, pp. 1777-1804.
DOI Link
1203
BibRef
Moskal, L.,
Styers, D.,
Halabisky, M.,
Monitoring Urban Tree Cover Using Object-Based Image Analysis and
Public Domain Remotely Sensed Data,
RS(3), No. 10, October 2011, pp. 2243-2262.
DOI Link
1203
BibRef
Novack, T.,
Esch, T.,
Kux, H.,
Stilla, U.,
Machine Learning Comparison between WorldView-2 and
QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover
Classification,
RS(3), No. 10, October 2011, pp. 2263-2282.
DOI Link
1203
BibRef
Hofmann, P.,
Strobl, J.,
Nazarkulova, A.,
Mapping Green Spaces in Bishkek: How Reliable can Spatial Analysis Be?,
RS(3), No. 6, June 2011, pp. 1088-1103.
DOI Link
1203
BibRef
Longbotham, N.,
Chaapel, C.,
Bleiler, L.,
Padwick, C.,
Emery, W.J.,
Pacifici, F.,
Very High Resolution Multiangle Urban Classification Analysis,
GeoRS(50), No. 4, April 2012, pp. 1155-1170.
IEEE DOI
1204
BibRef
Salehi, B.,
Zhang, Y.,
Zhong, M.,
Dey, V.,
Object-Based Classification of Urban Areas Using VHR Imagery and Height
Points Ancillary Data,
RS(4), No. 8, August 2012, pp. 2256-2276.
DOI Link
1209
BibRef
Soheili Majd, M.[Maryam],
Simonetto, E.[Elisabeth],
Polidori, L.[Laurent],
Maximum Likelihood Classification of Single Highresolution Polarimetric
SAR Images in Urban Areas,
PFG(2012), No. 4, 2012, pp. 395-407.
WWW Link.
1211
BibRef
Earlier:
Maximum Likelihood Classification of High-Resolution Polarimetric SAR
Images in Urban Area,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Ogashawara, I.,
Bastos, V.,
A Quantitative Approach for Analyzing the Relationship between Urban
Heat Islands and Land Cover,
RS(4), No. 11, November 2012, pp. 3596-3618.
DOI Link
1211
BibRef
Singh, K.K.[Kunwar K.],
Vogler, J.B.[John B.],
Shoemaker, D.A.[Douglas A.],
Meentemeyer, R.K.[Ross K.],
LiDAR-Landsat data fusion for large-area assessment of urban land
cover: Balancing spatial resolution, data volume and mapping accuracy,
PandRS(74), No. 1, November 2012, pp. 110-121.
Elsevier DOI
1212
LiDAR; Landsat; Fusion; Land cover; Large-area assessment; Mapping
accuracy; Managed clearings
BibRef
Pan, G.,
Qi, G.,
Wu, Z.,
Zhang, D.,
Li, S.,
Land-Use Classification Using Taxi GPS Traces,
ITS(14), No. 1, March 2013, pp. 113-123.
IEEE DOI
1303
BibRef
Ban, Y.,
Jacob, A.,
Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B
Multispectral Data for Urban Land-Cover Mapping,
GeoRS(51), No. 4, April 2013, pp. 1998-2006.
IEEE DOI
1304
BibRef
Shen, L.[Luou],
Lu, C.X.[Chen-Xi],
Zhao, F.[Fang],
Liu, W.M.[Wei-Ming],
Discrete Fourier Transformation for Seasonal-Factor
Pattern Classification and Assignment,
ITS(14), No. 2, 2013, pp. 511-516.
IEEE DOI
1307
DFT; land use characteristic; urban area; Roads
BibRef
Johnson, B.[Brian],
Xie, Z.X.[Zhi-Xiao],
Classifying a high resolution image of an urban area using
super-object information,
PandRS(83), No. 1, 2013, pp. 40-49.
Elsevier DOI
1308
Segmentation
BibRef
Kohli, D.[Divyani],
Warwadekar, P.[Pankaj],
Kerle, N.[Norman],
Sliuzas, R.[Richard],
Stein, A.[Alfred],
Transferability of Object-Oriented Image Analysis Methods for Slum
Identification,
RS(5), No. 9, 2013, pp. 4209-4228.
DOI Link
1310
BibRef
Wu, H.[Hao],
Sun, Y.R.[Yu-Rong],
Shi, W.Z.[Wen-Zhong],
Chen, X.L.[Xiao-Ling],
Fu, D.J.[Dong-Jie],
Examining the Satellite-Detected Urban Land Use Spatial Patterns
Using Multidimensional Fractal Dimension Indices,
RS(5), No. 10, 2013, pp. 5152-5172.
DOI Link
1311
BibRef
Belgiu, M.[Mariana],
Dragut, L.[Lucian],
Strobl, J.[Josef],
Quantitative evaluation of variations in rule-based classifications
of land cover in urban neighbourhoods using WorldView-2 imagery,
PandRS(87), No. 1, 2014, pp. 205-215.
Elsevier DOI
1402
Land Cover
BibRef
Meganem, I.,
Deliot, P.,
Briottet, X.,
Deville, Y.,
Hosseini, S.,
Linear-Quadratic Mixing Model for Reflectances in Urban Environments,
GeoRS(52), No. 1, January 2014, pp. 544-558.
IEEE DOI
1402
geophysical image processing
BibRef
Li, C.C.[Cong-Cong],
Wang, J.[Jie],
Wang, L.[Lei],
Hu, L.Y.[Luan-Yun],
Gong, P.[Peng],
Comparison of Classification Algorithms and Training Sample Sizes in
Urban Land Classification with Landsat Thematic Mapper Imagery,
RS(6), No. 2, 2014, pp. 964-983.
DOI Link
1403
BibRef
Carlei, V.[Vittorio],
Nuccio, M.[Massimiliano],
Mapping industrial patterns in spatial agglomeration:
A SOM approach to Italian industrial districts,
PRL(40), No. 1, 2014, pp. 1-10.
Elsevier DOI
1403
Self-organizing maps
BibRef
Huang, X.[Xin],
Lu, Q.K.[Qi-Kai],
Zhang, L.P.[Liang-Pei],
A multi-index learning approach for classification of high-resolution
remotely sensed images over urban areas,
PandRS(90), No. 1, 2014, pp. 36-48.
Elsevier DOI
1404
High spatial resolution
BibRef
Wieland, M.[Marc],
Pittore, M.[Massimiliano],
Performance Evaluation of Machine Learning Algorithms for Urban
Pattern Recognition from Multi-spectral Satellite Images,
RS(6), No. 4, 2014, pp. 2912-2939.
DOI Link
1405
BibRef
Zhou, W.Q.[Wei-Qi],
Cadenasso, M.L.[Mary. L.],
Schwarz, K.[Kirsten],
Pickett, S.T.A.[Steward T.A.],
Quantifying Spatial Heterogeneity in Urban Landscapes:
Integrating Visual Interpretation and Object-Based Classification,
RS(6), No. 4, 2014, pp. 3369-3386.
DOI Link
1405
BibRef
Kotthaus, S.[Simone],
Smith, T.E.L.[Thomas E.L.],
Wooster, M.J.[Martin J.],
Grimmond, C.S.B.,
Derivation of an urban materials spectral library through emittance
and reflectance spectroscopy,
PandRS(94), No. 1, 2014, pp. 194-212.
Elsevier DOI
1407
Spectral library
BibRef
Okujeni, A.[Akpona],
van der Linden, S.[Sebastian],
Jakimow, B.[Benjamin],
Rabe, A.[Andreas],
Verrelst, J.[Jochem],
Hostert, P.[Patrick],
A Comparison of Advanced Regression Algorithms for Quantifying Urban
Land Cover,
RS(6), No. 7, 2014, pp. 6324-6346.
DOI Link
1408
BibRef
Galletti, C.S.[Christopher S.],
Myint, S.W.[Soe W.],
Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using
Object-Based Image Analysis: A Case Study from Maricopa, Arizona,
RS(6), No. 7, 2014, pp. 6089-6110.
DOI Link
1408
BibRef
Haberman, D.[Daniel],
Gillies, L.[Laura],
Canter, A.[Aryeh],
Rinner, V.[Valentine],
Pancrazi, L.[Laetitia],
Martellozzo, F.[Federico],
The Potential of Urban Agriculture in Montréal:
A Quantitative Assessment,
IJGI(3), No. 3, 2014, pp. 1101-1117.
DOI Link
1410
BibRef
Du, P.J.[Pei-Jun],
Liu, P.[Pei],
Xia, J.[Junshi],
Feng, L.[Li],
Liu, S.[Sicong],
Tan, K.[Kun],
Cheng, L.[Liang],
Remote Sensing Image Interpretation for Urban Environment Analysis:
Methods, System and Examples,
RS(6), No. 10, 2014, pp. 9458-9474.
DOI Link
1411
BibRef
Rahman, M.M.[Mir Mustafizur],
Hay, G.J.[Geoffrey J.],
Couloigner, I.[Isabelle],
Hemachandran, B.[Bharanidharan],
Transforming Image-Objects into Multiscale Fields: A GEOBIA Approach
to Mitigate Urban Microclimatic Variability within H-Res Thermal
Infrared Airborne Flight-Lines,
RS(6), No. 10, 2014, pp. 9435-9457.
DOI Link
1411
BibRef
O'Neil-Dunne, J.[Jarlath],
MacFaden, S.[Sean],
Royar, A.[Anna],
A Versatile, Production-Oriented Approach to High-Resolution
Tree-Canopy Mapping in Urban and Suburban Landscapes Using GEOBIA and
Data Fusion,
RS(6), No. 12, 2014, pp. 12837-12865.
DOI Link
1412
BibRef
Rau, J.Y.[Jiann-Yeou],
Jhan, J.P.[Jyun-Ping],
Hsu, Y.C.[Ya-Ching],
Analysis of Oblique Aerial Images for Land Cover and Point Cloud
Classification in an Urban Environment,
GeoRS(53), No. 3, March 2015, pp. 1304-1319.
IEEE DOI
1412
feature extraction
BibRef
Ðuric, N.[Nataša],
Pehani, P.[Peter],
Oštir, K.[Krištof],
Application of In-Segment Multiple Sampling in Object-Based
Classification,
RS(6), No. 12, 2014, pp. 12138-12165.
DOI Link
1412
Urban area.
BibRef
Feng, Q.L.[Quan-Long],
Liu, J.T.[Jian-Tao],
Gong, J.H.[Jian-Hua],
UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest
and Texture Analysis,
RS(7), No. 1, 2015, pp. 1074-1094.
DOI Link
1502
See also Flood Mapping Based on Multiple Endmember Spectral Mixture Analysis and Random Forest Classifier: The Case of Yuyao, China.
BibRef
Li, M.M.[Meng-Meng],
Bijker, W.[Wietske],
Stein, A.[Alfred],
Use of Binary Partition Tree and energy minimization for object-based
classification of urban land cover,
PandRS(102), No. 1, 2015, pp. 48-61.
Elsevier DOI
1503
Urban land cover
BibRef
Chhetri, S.K.[Sachin Kumar],
Kayastha, P.[Prabin],
Manifestation of an Analytic Hierarchy Process (AHP) Model on Fire
Potential Zonation Mapping in Kathmandu Metropolitan City, Nepal,
IJGI(4), No. 1, 2015, pp. 400-417.
DOI Link
1504
BibRef
Su, G.W.[Gui-Wu],
Qi, W.H.[Wen-Hua],
Zhang, S.L.[Su-Ling],
Sim, T.[Timothy],
Liu, X.S.[Xin-Sheng],
Sun, R.[Rui],
Sun, L.[Lei],
Jin, Y.F.[Yi-Fan],
An Integrated Method Combining Remote Sensing Data and Local
Knowledge for the Large-Scale Estimation of Seismic Loss Risks to
Buildings in the Context of Rapid Socioeconomic Growth: A Case Study
in Tangshan, China,
RS(7), No. 3, 2015, pp. 2543-2601.
DOI Link
1504
BibRef
Blaschke, T.[Thomas],
Hay, G.J.[Geoffrey J.],
Weng, Q.H.[Qi-Hao],
Resch, B.[Bernd],
Collective Sensing: Integrating Geospatial Technologies to
Understand Urban Systems: An Overview,
RS(3), No. 8, August 2011, pp. 1743-1776.
DOI Link
Award, Remote Sensing, Review, Second. 2015.
BibRef
1108
Yang, J.X.[Jin-Xin],
Wong, M.S.[Man Sing],
Menenti, M.[Massimo],
Nichol, J.[Janet],
Modeling the effective emissivity of the urban canopy using sky view
factor,
PandRS(105), No. 1, 2015, pp. 211-219.
Elsevier DOI
1506
Urban geometry
BibRef
Yang, J.X.[Jin-Xin],
Wong, M.S.[Man Sing],
Menenti, M.[Massimo],
Nichol, J.[Janet],
Study of the geometry effect on land surface temperature retrieval in
urban environment,
PandRS(109), No. 1, 2015, pp. 77-87.
Elsevier DOI
1512
Urban surface temperature
BibRef
Cheng, G.[Gong],
Han, J.W.[Jun-Wei],
Guo, L.[Lei],
Liu, Z.B.[Zhen-Bao],
Bu, S.H.[Shu-Hui],
Ren, J.C.[Jin-Chang],
Effective and Efficient Midlevel Visual Elements-Oriented Land-Use
Classification Using VHR Remote Sensing Images,
GeoRS(53), No. 8, August 2015, pp. 4238-4249.
IEEE DOI
1506
land use
BibRef
Matasci, G.[Giona],
Longbotham, N.[Nathan],
Pacifici, F.[Fabio],
Kanevski, M.[Mikhail],
Tuia, D.[Devis],
Understanding angular effects in VHR imagery and their significance
for urban land-cover model portability:
A study of two multi-angle in-track image sequences,
PandRS(107), No. 1, 2015, pp. 99-111.
Elsevier DOI
1508
Image classification
BibRef
Wu, W.J.[Wen-Jin],
Guo, H.D.[Hua-Dong],
Li, X.[Xinwu],
Ferro-Famil, L.,
Zhang, L.[Lu],
Urban Land Use Information Extraction Using the Ultrahigh-Resolution
Chinese Airborne SAR Imagery,
GeoRS(53), No. 10, October 2015, pp. 5583-5599.
IEEE DOI
1509
Gaussian distribution
BibRef
Calegari, G.R.[Gloria Re],
Carlino, E.[Emanuela],
Peroni, D.[Diego],
Celino, I.[Irene],
Extracting Urban Land Use from Linked Open Geospatial Data,
IJGI(4), No. 4, 2015, pp. 2109.
DOI Link
1511
BibRef
Zhang, Q.[Qian],
Qin, R.J.[Rong-Jun],
Huang, X.[Xin],
Fang, Y.[Yong],
Liu, L.[Liang],
Classification of Ultra-High Resolution Orthophotos Combined with DSM
Using a Dual Morphological Top Hat Profile,
RS(7), No. 12, 2015, pp. 15840.
DOI Link
1601
Dealing with high resolution for classification.
BibRef
Comber, A.J.[Alexis J.],
Harris, P.[Paul],
Tsutsumida, N.[Narumasa],
Improving land cover classification using input variables derived
from a geographically weighted principal components analysis,
PandRS(119), No. 1, 2016, pp. 347-360.
Elsevier DOI
1610
GWmodel
BibRef
Momeni, R.[Rahman],
Aplin, P.[Paul],
Boyd, D.S.[Doreen S.],
Mapping Complex Urban Land Cover from Spaceborne Imagery: The
Influence of Spatial Resolution, Spectral Band Set and Classification
Approach,
RS(8), No. 2, 2016, pp. 88.
DOI Link
1603
BibRef
Ma, P.,
Lin, H.,
Robust Detection of Single and Double Persistent Scatterers in Urban
Built Environments,
GeoRS(54), No. 4, April 2016, pp. 2124-2139.
IEEE DOI
1604
Interferometry
BibRef
Yang, Y.[Yetao],
Wang, Y.[Yi],
Wu, K.[Ke],
Yu, X.[Xin],
Classification of Complex Urban Fringe Land Cover Using Evidential
Reasoning Based on Fuzzy Rough Set: A Case Study of Wuhan City,
RS(8), No. 4, 2016, pp. 304.
DOI Link
1604
BibRef
Xiang, D.L.[De-Liang],
Tang, T.[Tao],
Ban, Y.F.[Yi-Fang],
Su, Y.[Yi],
Kuang, G.Y.[Gang-Yao],
Unsupervised Polarimetric SAR Urban Area Classification Based on
Model-Based Decomposition with Cross Scattering,
PandRS(116), No. 1, 2016, pp. 86-100.
Elsevier DOI
1604
Cross scattering matrix
See also Built-up Area Extraction from PolSAR Imagery with Model-Based Decomposition and Polarimetric Coherence.
BibRef
Guan, D.D.[Dong-Dong],
Xiang, D.L.[De-Liang],
Tang, X.A.[Xiao-An],
Kuang, G.Y.[Gang-Yao],
SAR Image Despeckling Based on Nonlocal Low-Rank Regularization,
GeoRS(57), No. 6, June 2019, pp. 3472-3489.
IEEE DOI
1906
Synthetic aperture radar, Minimization, Image denoising, Speckle,
Convex functions, Noise measurement, Optimization,
weighted nuclear norm
BibRef
Xiang, D.L.[De-Liang],
Ban, Y.F.[Yi-Fang],
Wang, W.[Wei],
Su, Y.[Yi],
Adaptive Superpixel Generation for Polarimetric SAR Images With Local
Iterative Clustering and SIRV Model,
GeoRS(55), No. 6, June 2017, pp. 3115-3131.
IEEE DOI
1706
Atmospheric modeling, Covariance matrices, Estimation,
Image edge detection, Image segmentation,
Synthetic aperture radar, Urban areas, Edge detection,
polarimetric synthetic aperture radar (PolSAR),
simple linear iterative clustering (SLIC),
spherically invariant random vector (SIRV), superpixel
BibRef
Li, X.[Xueke],
Wu, T.X.[Tai-Xia],
Liu, K.[Kai],
Li, Y.[Yao],
Zhang, L.F.[Li-Fu],
Evaluation of the Chinese Fine Spatial Resolution Hyperspectral
Satellite TianGong-1 in Urban Land-Cover Classification,
RS(8), No. 5, 2016, pp. 438.
DOI Link
1606
BibRef
Karalas, K.[Konstantinos],
Tsagkatakis, G.[Grigorios],
Zervakis, M.[Michael],
Tsakalides, P.[Panagiotis],
Land Classification Using Remotely Sensed Data: Going Multilabel,
GeoRS(54), No. 6, June 2016, pp. 3548-3563.
IEEE DOI
1606
feature extraction
BibRef
Aspri, M.[Maria],
Tsagkatakis, G.[Grigorios],
Tsakalides, P.[Panagiotis],
Distributed Training and Inference of Deep Learning Models for
Multi-Modal Land Cover Classification,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Giannopoulos, M.[Michalis],
Tsagkatakis, G.[Grigorios],
Tsakalides, P.[Panagiotis],
4D U-Nets for Multi-Temporal Remote Sensing Data Classification,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Kim, Y.M.[Yong-Min],
Generation of Land Cover Maps through the Fusion of Aerial Images and
Airborne LiDAR Data in Urban Areas,
RS(8), No. 6, 2016, pp. 521.
DOI Link
1608
BibRef
Deilami, K.[Kaveh],
Kamruzzaman, M.,
Hayes, J.F.[John Francis],
Correlation or Causality between Land Cover Patterns and the Urban
Heat Island Effect? Evidence from Brisbane, Australia,
RS(8), No. 9, 2016, pp. 716.
DOI Link
1610
BibRef
Zhang, Q.[Qi],
Xin, J.Y.[Jin-Yuan],
Yin, Y.[Yan],
Wang, L.L.[Li-Li],
Wang, Y.[Yuesi],
The Variations and Trends of MODIS C5 & C6 Products' Errors in
the Recent Decade over the Background and Urban Areas of North China,
RS(8), No. 9, 2016, pp. 754.
DOI Link
1610
BibRef
Zheng, X.Y.[Xin-Yu],
Wang, Y.[Yang],
Gan, M.[Muye],
Zhang, J.[Jing],
Teng, L.M.[Long-Mei],
Wang, K.[Ke],
Shen, Z.Q.[Zhang-Quan],
Zhang, L.[Ling],
Discrimination of Settlement and Industrial Area Using Landscape
Metrics in Rural Region,
RS(8), No. 10, 2016, pp. 845.
DOI Link
1609
BibRef
Li, M.M.[Meng-Meng],
Stein, A.[Alfred],
Bijker, W.[Wietske],
Zhan, Q.M.[Qing-Ming],
Urban land use extraction from Very High Resolution remote sensing
imagery using a Bayesian network,
PandRS(122), No. 1, 2016, pp. 192-205.
Elsevier DOI
1612
Urban land use
BibRef
Schreyer, J.[Johannes],
Lakes, T.[Tobia],
Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X
DEM,
RS(8), No. 11, 2016, pp. 940.
DOI Link
1612
BibRef
Gervais, N.[Norman],
Buyantuev, A.[Alexander],
Gao, F.[Feng],
Modeling the Effects of the Urban Built-Up Environment on Plant
Phenology Using Fused Satellite Data,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Lu, Y.H.[Yu-Hao],
Coops, N.C.[Nicholas C.],
Hermosilla, T.[Txomin],
Estimating urban vegetation fraction across 25 cities in pan-Pacific
using Landsat time series data,
PandRS(126), No. 1, 2017, pp. 11-23.
Elsevier DOI
1704
Time series
BibRef
Susaki, J.[Junichi],
Kubota, S.[Seiya],
Automatic Assessment of Green Space Ratio in Urban Areas from Mobile
Scanning Data,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Li, H.[Hui],
Wang, C.Z.[Cui-Zhen],
Zhong, C.[Cheng],
Su, A.J.[Ai-Jun],
Xiong, C.R.[Cheng-Ren],
Wang, J.G.[Jin-Ge],
Liu, J.Q.[Jun-Qi],
Mapping Urban Bare Land Automatically from Landsat Imagery with a
Simple Index,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Li, H.[Hui],
Wang, C.Z.[Cui-Zhen],
Zhong, C.[Cheng],
Zhang, Z.[Zhi],
Liu, Q.B.[Qing-Bin],
Mapping Typical Urban LULC from Landsat Imagery without Training
Samples or Self-Defined Parameters,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Grippa, T.[Taïs],
Lennert, M.[Moritz],
Beaumont, B.[Benjamin],
Vanhuysse, S.[Sabine],
Stephenne, N.[Nathalie],
Wolff, E.[Eléonore],
An Open-Source Semi-Automated Processing Chain for Urban Object-Based
Classification,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Simwanda, M.[Matamyo],
Murayama, Y.J.[Yu-Ji],
Integrating Geospatial Techniques for Urban Land Use Classification
in the Developing Sub-Saharan African City of Lusaka, Zambia,
IJGI(6), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Kuffer, M.[Monika],
Pfeffer, K.[Karin],
Sliuzas, R.[Richard],
Baud, I.[Isa],
van Maarseveen, M.[Martin],
Capturing the Diversity of Deprived Areas with Image-Based Features:
The Case of Mumbai,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Tsou, J.Y.[Jin-Yeu],
Gao, Y.F.[Yan-Fei],
Zhang, Y.Z.[Yuan-Zhi],
Genyun, S.[Sun],
Ren, J.C.[Jin-Chang],
Li, Y.[Yu],
Evaluating Urban Land Carrying Capacity Based on the Ecological
Sensitivity Analysis: A Case Study in Hangzhou, China,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Chen, T.[Tao],
Zhang, X.[Xujia],
Niu, R.Q.[Rui-Qing],
The Relationship between Urban Land Surface Material Fractions and
Brightness Temperature Based on MESMA,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Degerickx, J.[Jeroen],
Okujeni, A.[Akpona],
Iordache, M.D.[Marian-Daniel],
Hermy, M.[Martin],
van der Linden, S.[Sebastian],
Somers, B.[Ben],
A Novel Spectral Library Pruning Technique for Spectral Unmixing of
Urban Land Cover,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Sun, X.F.[Xiao-Feng],
Lin, X.G.[Xiang-Guo],
Shen, S.H.[Shu-Han],
Hu, Z.Y.[Zhan-Yi],
High-Resolution Remote Sensing Data Classification over Urban Areas
Using Random Forest Ensemble and Fully Connected Conditional Random
Field,
IJGI(6), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Liu, Y.X.Y.[Yang-Xiao-Yue],
Yang, Y.P.[Ya-Ping],
Jing, W.L.[Wen-Long],
Yao, L.[Ling],
Yue, X.F.[Xia-Fang],
Zhao, X.D.[Xiao-Dan],
A New Urban Index for Expressing Inner-City Patterns Based on MODIS
LST and EVI Regulated DMSP/OLS NTL,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zhong, Y.F.[Yan-Fei],
Cao, Q.[Qiong],
Zhao, J.[Ji],
Ma, A.L.[Ai-Long],
Zhao, B.[Bei],
Zhang, L.P.[Liang-Pei],
Optimal Decision Fusion for Urban Land-Use/Land-Cover Classification
Based on Adaptive Differential Evolution Using Hyperspectral and
LiDAR Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Maleki, J.[Jamshid],
Hakimpour, F.[Farshad],
Masoumi, Z.[Zohreh],
A Parcel-Level Model for Ranking and Allocating Urban Land-Uses,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Duque, J.C.[Juan C.],
Patino, J.E.[Jorge E.],
Betancourt, A.[Alejandro],
Exploring the Potential of Machine Learning for Automatic Slum
Identification from VHR Imagery,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Xia, Z.L.[Ze-Long],
Li, H.[Hao],
Chen, Y.H.[Yue-Hong],
An Integrated Spatial Clustering Analysis Method for Identifying
Urban Fire Risk Locations in a Network-Constrained Environment:
A Case Study in Nanjing, China,
IJGI(6), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Huang, X.[Xin],
Chen, H.J.[Hui-Jun],
Gong, J.Y.[Jian-Ya],
Angular difference feature extraction for urban scene classification
using ZY-3 multi-angle high-resolution satellite imagery,
PandRS(135), No. Supplement C, 2018, pp. 127-141.
Elsevier DOI
1712
Multi-angle, Urban classification, High spatial resolution,
Scene classification
BibRef
Georg, I.[Isabel],
Blaschke, T.[Thomas],
Taubenböck, H.[Hannes],
Are We in Boswash Yet? A Multi-Source Geodata Approach to Spatially
Delimit Urban Corridors,
IJGI(7), No. 1, 2018, pp. xx-yy.
DOI Link
1801
BibRef
Zhou, T.[Tao],
Zhao, M.F.[Mei-Fang],
Sun, C.L.[Chuan-Liang],
Pan, J.J.[Jian-Jun],
Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using
Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical
Monsoon-Climate Region,
IJGI(7), No. 1, 2018, pp. xx-yy.
DOI Link
1801
BibRef
Johnson, B.A.[Brian A.],
Jozdani, S.E.[Shahab E.],
Identifying Generalizable Image Segmentation Parameters for Urban
Land Cover Mapping through Meta-Analysis and Regression Tree Modeling,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Jia, Y.X.[Yuan-Xin],
Ge, Y.[Yong],
Ling, F.[Feng],
Guo, X.[Xian],
Wang, J.H.[Jiang-Hao],
Wang, L.[Le],
Chen, Y.H.[Yue-Hong],
Li, X.D.[Xiao-Dong],
Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile
Phone Positioning Data,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Audebert, N.[Nicolas],
Le Saux, B.[Bertrand],
Lefèvre, S.[Sébastien],
Beyond RGB: Very high resolution urban remote sensing with multimodal
deep networks,
PandRS(140), 2018, pp. 20-32.
Elsevier DOI
1805
Deep learning, Remote sensing, Semantic mapping, Data fusion
BibRef
Baker, F.[Fraser],
Smith, C.L.[Claire L.],
Cavan, G.[Gina],
A Combined Approach to Classifying Land Surface Cover of Urban
Domestic Gardens Using Citizen Science Data and High Resolution Image
Analysis,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Roupioz, L.[Laure],
Nerry, F.[Françoise],
Colin, J.[Jérôme],
Correction for the Impact of the Surface Characteristics on the
Estimation of the Effective Emissivity at Fine Resolution in Urban
Areas,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Garg, A.,
Singh, D.,
Development of an Efficient Contextual Algorithm for Discrimination
of Tall Vegetation and Urban for PALSAR Data,
GeoRS(56), No. 6, June 2018, pp. 3413-3420.
IEEE DOI
1806
Backscatter, Entropy, Fractals, Scattering, Silicon, Vegetation,
Vegetation mapping, Classification, entropy,
texture
BibRef
Chen, J.[Jike],
Du, P.J.[Pei-Jun],
Wu, C.[Changshan],
Xia, J.[Junshi],
Chanussot, J.[Jocelyn],
Mapping Urban Land Cover of a Large Area Using Multiple Sensors
Multiple Features,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Grippa, T.[Taïs],
Georganos, S.[Stefanos],
Zarougui, S.[Soukaina],
Bognounou, P.[Pauline],
Diboulo, E.[Eric],
Forget, Y.[Yann],
Lennert, M.[Moritz],
Vanhuysse, S.[Sabine],
Mboga, N.[Nicholus],
Wolff, E.[Eléonore],
Mapping Urban Land Use at Street Block Level Using OpenStreetMap,
Remote Sensing Data, and Spatial Metrics,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Xie, X.P.[Xiao-Ping],
Hou, W.[Wei],
Herold, H.[Hendrik],
Ex Post Impact Assessment of Master Plans:
The Case of Shenzhen in Shaping a Polycentric Urban Structure,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Zhang, N.Y.[Ning-Yu],
Deng, S.M.[Shu-Min],
Chen, H.J.[Hua-Jun],
Chen, X.[Xi],
Chen, J.Y.[Jiao-Yan],
Li, X.Q.[Xiao-Qian],
Zhang, Y.[Yiyi],
Structured Knowledge Base as Prior Knowledge to Improve Urban Data
Analysis,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Mossoux, S.[Sophie],
Kervyn, M.[Matthieu],
Soulé, H.[Hamid],
Canters, F.[Frank],
Mapping Population Distribution from High Resolution Remotely Sensed
Imagery in a Data Poor Setting,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Cao, R.[Rui],
Zhu, J.S.[Jia-Song],
Tu, W.[Wei],
Li, Q.Q.[Qing-Quan],
Cao, J.Z.[Jin-Zhou],
Liu, B.Z.[Bo-Zhi],
Zhang, Q.[Qian],
Qiu, G.P.[Guo-Ping],
Integrating Aerial and Street View Images for Urban Land Use
Classification,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Feng, Y.[Yanlei],
Qi, Y.[Yi],
Modeling Patterns of Land Use in Chinese Cities Using an Integrated
Cellular Automata Model,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Faridatul, M.I.[Mst Ilme],
Wu, B.[Bo],
Automatic Classification of Major Urban Land Covers Based on Novel
Spectral Indices,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Ren, Q.A.[Qi-Ang],
He, C.Y.[Chun-Yang],
Huang, Q.X.[Qing-Xu],
Zhou, Y.Y.[Yu-Yu],
Urbanization Impacts on Vegetation Phenology in China,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Luo, N.X.[Nian-Xue],
Wan, T.L.[Tai-Li],
Hao, H.X.[Huai-Xu],
Lu, Q.K.[Qi-Kai],
Fusing High-Spatial-Resolution Remotely Sensed Imagery and
OpenStreetMap Data for Land Cover Classification Over Urban Areas,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Feng, Q.L.[Quan-Long],
Zhu, D.[Dehai],
Yang, J.Y.[Jian-Yu],
Li, B.G.[Bao-Guo],
Multisource Hyperspectral and LiDAR Data Fusion for Urban Land-Use
Mapping based on a Modified Two-Branch Convolutional Neural Network,
IJGI(8), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Nduati, E.[Eunice],
Sofue, Y.[Yuki],
Matniyaz, A.[Akbar],
Park, J.G.[Jong Geol],
Yang, W.[Wei],
Kondoh, A.[Akihiko],
Cropland Mapping Using Fusion of Multi-Sensor Data in a Complex
Urban/Peri-Urban Area,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Alganci, U.[Ugur],
Dynamic Land Cover Mapping of Urbanized Cities with Landsat 8
Multi-temporal Images: Comparative Evaluation of Classification
Algorithms and Dimension Reduction Methods,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Kranjcic, N.[Nikola],
Medak, D.[Damir],
Župan, R.[Robert],
Rezo, M.[Milan],
Support Vector Machine Accuracy Assessment for Extracting Green Urban
Areas in Towns,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wurm, M.[Michael],
Stark, T.[Thomas],
Zhu, X.X.[Xiao Xiang],
Weigand, M.[Matthias],
Taubenböck, H.[Hannes],
Semantic segmentation of slums in satellite images using transfer
learning on fully convolutional neural networks,
PandRS(150), 2019, pp. 59-69.
Elsevier DOI
1903
Slums, FCN, Convolutional neural networks, Deep learning, Transfer learning
BibRef
Ge, P.P.[Pan-Pan],
He, J.[Jun],
Zhang, S.H.[Shu-Hua],
Zhang, L.W.[Li-Wei],
She, J.F.[Jiang-Feng],
An Integrated Framework Combining Multiple Human Activity Features
for Land Use Classification,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhao, W.Z.[Wen-Zhi],
Bo, Y.C.[Yan-Chen],
Chen, J.G.[Jia-Ge],
Tiede, D.[Dirk],
Blaschke, T.[Thomas],
Emery, W.J.[William J.],
Exploring semantic elements for urban scene recognition:
Deep integration of high-resolution imagery and OpenStreetMap (OSM),
PandRS(151), 2019, pp. 237-250.
Elsevier DOI
1904
Semantic classification, Urban scene recognition,
Deep learning, High-resolution imagery, OpenStreetMap (OSM), Data fusion
BibRef
Zhang, A.Z.[Ai-Zhu],
Zhang, S.A.[Shu-Ang],
Sun, G.Y.[Gen-Yun],
Li, F.[Feng],
Fu, H.[Hang],
Zhao, Y.H.[Yun-Hua],
Huang, H.[Hui],
Cheng, J.[Ji],
Wang, Z.J.[Zhen-Jie],
Mapping of Coastal Cities Using Optimized Spectral-Spatial Features
Based Multi-Scale Superpixel Classification,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Liu, S.[Shishi],
Su, H.[Hang],
Cao, G.F.[Guo-Feng],
Wang, S.Q.[Shan-Qin],
Guan, Q.F.[Qing-Feng],
Learning from data: A post classification method for annual land
cover analysis in urban areas,
PandRS(154), 2019, pp. 202-215.
Elsevier DOI
1907
Annual land cover change detection,
Spatio-temporal land cover filter, Urban area
BibRef
Pan, T.[Tao],
Kuang, W.H.[Wen-Hui],
Hamdi, R.[Rafiq],
Zhang, C.[Chi],
Zhang, S.[Shu],
Li, Z.L.[Zhi-Li],
Chen, X.[Xin],
City-Level Comparison of Urban Land-Cover Configurations from
2000-2015 across 65 Countries within the Global Belt and Road,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Jozdani, S.E.[Shahab Eddin],
Johnson, B.A.[Brian Alan],
Chen, D.M.[Dong-Mei],
Comparing Deep Neural Networks, Ensemble Classifiers, and Support
Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover
Classification,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Mugiraneza, T.[Theodomir],
Nascetti, A.[Andrea],
Ban, Y.F.[Yi-Fang],
WorldView-2 Data for Hierarchical Object-Based Urban Land Cover
Classification in Kigali: Integrating Rule-Based Approach with Urban
Density and Greenness Indices,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Ilehag, R.[Rebecca],
Schenk, A.[Andreas],
Huang, Y.L.[Yi-Lin],
Hinz, S.[Stefan],
KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building
Materials,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhou, Q.[Qian],
Zhao, X.[Xiang],
Wu, D.H.[Dong-Hai],
Tang, R.Y.[Rong-Yun],
Du, X.Z.[Xiao-Zheng],
Wang, H.Y.[Hao-Yu],
Zhao, J.C.[Jia-Cheng],
Xu, P.P.[Pei-Pei],
Peng, Y.F.[Yi-Feng],
Impact of Urbanization and Climate on Vegetation Coverage in the
Beijing-Tianjin-Hebei Region of China,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Yang, F.S.[Feng-Shuo],
Wang, Z.H.[Zhi-Hua],
Yang, X.M.[Xiao-Mei],
Liu, Y.M.[Yue-Ming],
Liu, B.[Bin],
Wang, J.[Jun],
Kang, J.[Junmei],
Using Multi-Sensor Satellite Images and Auxiliary Data in Updating
and Assessing the Accuracies of Urban Land Products in Different
Landscape Patterns,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Shi, Y.[Yan],
Qi, Z.X.[Zhi-Xin],
Liu, X.P.[Xiao-Ping],
Niu, N.[Ning],
Zhang, H.[Hui],
Urban Land Use and Land Cover Classification Using Multisource Remote
Sensing Images and Social Media Data,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Ullah, H.[Hidayat],
Wan, W.G.[Wang-Gen],
Haidery, S.A.[Saqib Ali],
Khan, N.U.[Naimat Ullah],
Ebrahimpour, Z.[Zeinab],
Luo, T.H.[Tian-Hang],
Analyzing the Spatiotemporal Patterns in Green Spaces for Urban
Studies Using Location-Based Social Media Data,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Nie, Z.[Zhen],
Chan, K.K.Y.[Karen Kie Yan],
Xu, B.[Bing],
Preliminary Evaluation of the Consistency of Landsat 8 and Sentinel-2
Time Series Products in An Urban Area: An Example in Beijing, China,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Fu, C.[Cheng],
Song, X.P.[Xiao-Peng],
Stewart, K.[Kathleen],
Integrating Activity-Based Geographic Information and Long-Term
Remote Sensing to Characterize Urban Land Use Change,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Masoumi, Z.[Zohreh],
van Genderen, J.[John],
Maleki, J.[Jamshid],
Fire Risk Assessment in Dense Urban Areas Using Information Fusion
Techniques,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Richards, D.R.[Daniel R.],
Belcher, R.N.[Richard N.],
Global Changes in Urban Vegetation Cover,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Liu, C.[Chun],
Zeng, D.D.[Dou-Dou],
Wu, H.B.[Hang-Bin],
Wang, Y.[Yin],
Jia, S.J.[Shou-Jun],
Xin, L.[Liang],
Urban Land Cover Classification of High-Resolution Aerial Imagery
Using a Relation-Enhanced Multiscale Convolutional Network,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Zhong, Y.[Yang],
Lin, A.[Aiwen],
He, L.J.[Li-Jie],
Zhou, Z.[Zhigao],
Yuan, M.[Moxi],
Spatiotemporal Dynamics and Driving Forces of Urban Land-Use
Expansion: A Case Study of the Yangtze River Economic Belt, China,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Xiao, C.L.[Chang-Lin],
Qin, R.[Rongjun],
Ling, X.[Xiao],
Urban Land-Cover Classification Using Side-View Information from
Oblique Images,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Granero-Belinchon, C.[Carlos],
Adeline, K.[Karine],
Lemonsu, A.[Aude],
Briottet, X.[Xavier],
Phenological Dynamics Characterization of Alignment Trees with
Sentinel-2 Imagery: A Vegetation Indices Time Series Reconstruction
Methodology Adapted to Urban Areas,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Tsoeleng, L.T.[Lesiba Thomas],
Odindi, J.[John],
Mhangara, P.[Paidamwoyo],
A Comparison of Two Morphological Techniques in the Classification of
Urban Land Cover,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Tu, Y.[Ying],
Chen, B.[Bin],
Zhang, T.[Tao],
Xu, B.[Bing],
Regional Mapping of Essential Urban Land Use Categories in China:
A Segmentation-Based Approach,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Tian, T.[Tian],
Yu, L.[Le],
Tu, Y.[Ying],
Chen, B.[Bin],
Gong, P.[Peng],
Mapping the Time-Series of Essential Urban Land Use Categories in
China: A Multi-Source Data Integration Approach,
RS(16), No. 17, 2024, pp. 3125.
DOI Link
2409
BibRef
Zhang, Y.[Ye],
Qin, K.[Kun],
Bi, Q.[Qi],
Cui, W.H.[Wei-Hong],
Li, G.[Gang],
Landscape Patterns and Building Functions for Urban Land-Use
Classification from Remote Sensing Images at the Block Level: A Case
Study of Wuchang District, Wuhan, China,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Dupuy, S.[Stéphane],
Defrise, L.[Laurence],
Lebourgeois, V.[Valentine],
Gaetano, R.[Raffaele],
Burnod, P.[Perrine],
Tonneau, J.P.[Jean-Philippe],
Analyzing Urban Agriculture's Contribution to a Southern City's
Resilience through Land Cover Mapping:
The Case of Antananarivo, Capital of Madagascar,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Firozjaei, M.K.[Mohammad Karimi],
Fathololoumi, S.[Solmaz],
Weng, Q.H.[Qi-Hao],
Kiavarz, M.[Majid],
Alavipanah, S.K.[Seyed Kazem],
Remotely Sensed Urban Surface Ecological Index (RSUSEI): An
Analytical Framework for Assessing the Surface Ecological Status in
Urban Environments,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zong, L.[Leli],
He, S.[Sijia],
Lian, J.T.[Ji-Ting],
Bie, Q.A.[Qi-Ang],
Wang, X.Y.[Xiao-Yun],
Dong, J.R.[Jing-Ru],
Xie, Y.W.[Yao-Wen],
Detailed Mapping of Urban Land Use Based on Multi-Source Data: A Case
Study of Lanzhou,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Gašparovic, M.[Mateo],
Dobrinic, D.[Dino],
Comparative Assessment of Machine Learning Methods for Urban
Vegetation Mapping Using Multitemporal Sentinel-1 Imagery,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Dobrinic, D.[Dino],
Medak, D.,
Gašparovic, M.[Mateo],
Integration of Multitemporal Sentinel-1 and Sentinel-2 Imagery For
Land-cover Classification Using Machine Learning Methods,
ISPRS20(B1:91-98).
DOI Link
2012
BibRef
Pilant, A.[Andrew],
Endres, K.[Keith],
Rosenbaum, D.[Daniel],
Gundersen, G.[Gillian],
US EPA EnviroAtlas Meter-Scale Urban Land Cover (MULC): 1-m Pixel
Land Cover Class Definitions and Guidance,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Luo, X.[Xin],
Tong, X.H.[Xiao-Hua],
Hu, Z.W.[Zhong-Wen],
Wu, G.F.[Guo-Feng],
Improving Urban Land Cover/Use Mapping by Integrating A Hybrid
Convolutional Neural Network and An Automatic Training Sample
Expanding Strategy,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Coleman, R.W.[Red Willow],
Stavros, N.[Natasha],
Yadav, V.[Vineet],
Parazoo, N.[Nicholas],
A Simplified Framework for High-Resolution Urban Vegetation
Classification with Optical Imagery in the Los Angeles Megacity,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Mao, W.[Wanliu],
Lu, D.B.[De-Bin],
Hou, L.[Li],
Liu, X.[Xue],
Yue, W.Z.[Wen-Ze],
Comparison of Machine-Learning Methods for Urban Land-Use Mapping in
Hangzhou City, China,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Mugiraneza, T.[Theodomir],
Nascetti, A.[Andrea],
Ban, Y.F.[Yi-Fang],
Continuous Monitoring of Urban Land Cover Change Trajectories with
Landsat Time Series and LandTrendr-Google Earth Engine Cloud
Computing,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Liu, J.T.[Jian-Tao],
Feng, Q.L.[Quan-Long],
Wang, Y.[Ying],
Batsaikhan, B.[Bayartungalag],
Gong, J.H.[Jian-Hua],
Li, Y.[Yi],
Liu, C.T.[Chun-Ting],
Ma, Y.[Yin],
Urban Green Plastic Cover Mapping Based on VHR Remote Sensing Images
and a Deep Semi-Supervised Learning Framework,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Huang, Z.[Zhou],
Qi, H.J.[Hou-Ji],
Kang, C.G.[Chao-Gui],
Su, Y.L.[Yue-Long],
Liu, Y.[Yu],
An Ensemble Learning Approach for Urban Land Use Mapping Based on
Remote Sensing Imagery and Social Sensing Data,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Dong, X.Y.[Xuan-Yan],
Xu, Y.[Yue],
Huang, L.P.[Le-Ping],
Liu, Z.G.[Zhi-Gang],
Xu, Y.[Yi],
Zhang, K.Y.[Kang-Yong],
Hu, Z.W.[Zhong-Wen],
Wu, G.F.[Guo-Feng],
Exploring Impact of Spatial Unit on Urban Land Use Mapping with
Multisource Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yanru, H.[Hou],
Masoudi, M.[Mahyar],
Chadala, A.[Agnieszka],
Olszewska-Guizzo, A.[Agnieszka],
Visual Quality Assessment of Urban Scenes with the Contemplative
Landscape Model: Evidence from a Compact City Downtown Core,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Xu, F.[Fei],
Somers, B.[Ben],
Unmixing-based Sentinel-2 downscaling for urban land cover mapping,
PandRS(171), 2021, pp. 133-154.
Elsevier DOI
2012
Image fusion, Sentinel-2, Urban land cover mapping, Spectral mixture analysis
BibRef
Moniruzzaman, M.[Md],
Thakur, P.K.[Praveen K.],
Kumar, P.[Pramod],
Alam, M.A.[Md. Ashraful],
Garg, V.[Vaibhav],
Rousta, I.[Iman],
Olafsson, H.[Haraldur],
Decadal Urban Land Use/Land Cover Changes and Its Impact on Surface
Runoff Potential for the Dhaka City and Surroundings Using Remote
Sensing,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Yao, Y.[Yuan],
Leung, Y.[Yee],
Fung, T.[Tung],
Shao, Z.F.[Zhen-Feng],
Lu, J.[Jie],
Meng, D.Y.[De-Yu],
Ying, H.C.[Han-Chi],
Zhou, Y.[Yu],
Continuous Multi-Angle Remote Sensing and Its Application in Urban
Land Cover Classification,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Carneiro, E.[Eduilson],
Lopes, W.[Wilza],
Espindola, G.[Giovana],
Urban Land Mapping Based on Remote Sensing Time Series in the Google
Earth Engine Platform: A Case Study of the Teresina-Timon Conurbation
Area in Brazil,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Tao, Y.Y.[Yuan-Yuan],
Wang, Q.X.[Qian-Xin],
Quantitative Recognition and Characteristic Analysis of
Production-Living-Ecological Space Evolution for Five Resource-Based
Cities: Zululand, Xuzhou, Lota, Surf Coast and Ruhr,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Banzhaf, E.[Ellen],
Wu, W.[Wanben],
Luo, X.Y.[Xiang-Yu],
Knopp, J.[Julius],
Integrated Mapping of Spatial Urban Dynamics: A European-Chinese
Exploration. Part 1: Methodology for Automatic Land Cover
Classification Tailored towards Spatial Allocation of Ecosystem
Services Features,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Teillet, C.[Claire],
Pillot, B.[Benjamin],
Catry, T.[Thibault],
Demagistri, L.[Laurent],
Lyszczarz, D.[Dominique],
Lang, M.[Marc],
Couteron, P.[Pierre],
Barbier, N.[Nicolas],
Kouassi, A.A.[Arsène Adou],
Gunther, Q.[Quentin],
Dessay, N.[Nadine],
Fast Unsupervised Multi-Scale Characterization of Urban Landscapes
Based on Earth Observation Data,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Stumpf, T.[Tyler],
Bigman, D.P.[Daniel P.],
Day, D.J.[Dominic J.],
Mapping Complex Land Use Histories and Urban Renewal Using Ground
Penetrating Radar: A Case Study from Fort Stanwix,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Rahimzad, M.[Maryam],
Homayouni, S.[Saeid],
Naeini, A.A.[Amin Alizadeh],
Nadi, S.[Saeed],
An Efficient Multi-Sensor Remote Sensing Image Clustering in Urban
Areas via Boosted Convolutional Autoencoder (BCAE),
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
He, J.[Jialyu],
Li, X.[Xia],
Liu, P.H.[Peng-Hua],
Wu, X.X.[Xin-Xin],
Zhang, J.B.[Jin-Bao],
Zhang, D.C.[Da-Chuan],
Liu, X.J.[Xiao-Juan],
Yao, Y.[Yao],
Accurate Estimation of the Proportion of Mixed Land Use at the
Street-Block Level by Integrating High Spatial Resolution Images and
Geospatial Big Data,
GeoRS(59), No. 8, August 2021, pp. 6357-6370.
IEEE DOI
2108
Big Data, Feature extraction, Geospatial analysis, Remote sensing,
Deep learning, Urban areas, Spatial resolution, Deep learning, remote sensing
BibRef
Chen, B.[Bin],
Tu, Y.[Ying],
Song, Y.M.[Yi-Meng],
Theobald, D.M.[David M.],
Zhang, T.[Tao],
Ren, Z.H.[Zhe-Hao],
Li, X.C.[Xue-Cao],
Yang, J.[Jun],
Wang, J.[Jie],
Wang, X.[Xi],
Gong, P.[Peng],
Bai, Y.Q.[Yu-Qi],
Xu, B.[Bing],
Mapping essential urban land use categories with open big data:
Results for five metropolitan areas in the United States of America,
PandRS(178), 2021, pp. 203-218.
Elsevier DOI
2108
Land use classification, Block-level mapping,
Geospatial big data, Ensemble learning, NAIP, Sentinel-1/2
BibRef
Cruz-Ramos, C.[Clara],
Garcia-Salgado, B.P.[Beatriz P.],
Reyes-Reyes, R.[Rogelio],
Ponomaryov, V.[Volodymyr],
Sadovnychiy, S.[Sergiy],
Gabor Features Extraction and Land-Cover Classification of Urban
Hyperspectral Images for Remote Sensing Applications,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Su, Y.[Yu],
Zhong, Y.F.[Yan-Fei],
Zhu, Q.Q.[Qi-Qi],
Zhao, J.[Ji],
Urban scene understanding based on semantic and socioeconomic
features: From high-resolution remote sensing imagery to multi-source
geographic datasets,
PandRS(179), 2021, pp. 50-65.
Elsevier DOI
2108
Urban scene understanding, Points of interest,
High-resolution remote sensing imagery, Urban planning
BibRef
Kuras, A.[Agnieszka],
Brell, M.[Maximilian],
Rizzi, J.[Jonathan],
Burud, I.[Ingunn],
Hyperspectral and Lidar Data Applied to the Urban Land Cover Machine
Learning and Neural-Network-Based Classification: A Review,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Bühler, M.M.[Michael Max],
Sebald, C.[Christoph],
Rechid, D.[Diana],
Baier, E.[Eberhard],
Michalski, A.[Alexander],
Rothstein, B.[Benno],
Nübel, K.[Konrad],
Metzner, M.[Martin],
Schwieger, V.[Volker],
Harrs, J.A.[Jan-Albrecht],
Jacob, D.[Daniela],
Köhler, L.[Lothar],
in het Panhuis, G.[Gunnar],
Tejeda, R.C.R.[Raymundo C. Rodríguez],
Herrmann, M.[Michael],
Buziek, G.[Gerd],
Application of Copernicus Data for Climate-Relevant Urban Planning
Using the Example of Water, Heat, and Vegetation,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Khikmah, F.[Fithrothul],
Sebald, C.[Christoph],
Metzner, M.[Martin],
Schwieger, V.[Volker],
Modelling Vegetation Health and Its Relation to Climate Conditions
Using Copernicus Data in the City of Constance,
RS(16), No. 4, 2024, pp. 691.
DOI Link
2402
BibRef
Cai, Z.[Zhi],
Sun, G.[Gongyu],
Su, X.[Xing],
Li, T.[Tong],
Guo, L.M.[Li-Min],
Ding, Z.M.[Zhi-Ming],
Visual Analysis of Land Use Characteristics Around Urban Rail Transit
Stations,
ITS(22), No. 10, October 2021, pp. 6221-6231.
IEEE DOI
2110
Rails, Data visualization, Visualization, Public transportation,
Urban areas, Correlation, Visual analysis, land use,
skyline query
BibRef
Yan, Y.X.[Yu-Xiang],
Yu, X.W.[Xian-Wen],
Long, F.Y.[Feng-Yang],
Dong, Y.F.[Yan-Feng],
A Multi-Criteria Evaluation of the Urban Ecological Environment in
Shanghai Based on Remote Sensing,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Tu, Y.[Ying],
Chen, B.[Bin],
Lang, W.[Wei],
Chen, T.T.[Ting-Ting],
Li, M.[Miao],
Zhang, T.[Tao],
Xu, B.[Bing],
Uncovering the Nature of Urban Land Use Composition Using
Multi-Source Open Big Data with Ensemble Learning,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
He, D.[Da],
Shi, Q.[Qian],
Liu, X.P.[Xiao-Ping],
Zhong, Y.F.[Yan-Fei],
Zhang, X.[Xinchang],
Deep Subpixel Mapping Based on Semantic Information Modulated Network
for Urban Land Use Mapping,
GeoRS(59), No. 12, December 2021, pp. 10628-10646.
IEEE DOI
2112
Semantics, Remote sensing, Image restoration, Spatial resolution,
Training, Superresolution, Data models, Deep learning,
urban land use mapping
BibRef
Huang, X.[Xin],
Li, S.[Shuang],
Li, J.Y.[Jia-Yi],
Jia, X.P.[Xiu-Ping],
Li, J.[Jun],
Zhu, X.X.[Xiao Xiang],
Benediktsson, J.A.[Jón Atli],
A Multispectral and Multiangle 3-D Convolutional Neural Network for
the Classification of ZY-3 Satellite Images Over Urban Areas,
GeoRS(59), No. 12, December 2021, pp. 10266-10285.
IEEE DOI
2112
Satellites, Feature extraction, Tensors, Remote sensing, Urban areas,
Convolutional neural networks, Streaming media,
tensor
BibRef
Ling, J.[Jing],
Zhang, H.S.[Hong-Sheng],
Lin, Y.[Yinyi],
Improving Urban Land Cover Classification in Cloud-Prone Areas with
Polarimetric SAR Images,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Cheng, L.X.[Lu-Xiao],
Feng, R.[Ruyi],
Wang, L.[Lizhe],
Fractal Characteristic Analysis of Urban Land-Cover Spatial Patterns
with Spatiotemporal Remote Sensing Images in Shenzhen City
(1988-2015),
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Guan, J.Y.[Jing-Yun],
Yao, J.Q.[Jun-Qiang],
Li, M.[Moyan],
Zheng, J.H.[Jiang-Hua],
Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on
Remotely Sensed Vegetation Dynamics in Xinjiang, China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ji, C.[Chaonan],
Jilge, M.[Marianne],
Heiden, U.[Uta],
Stellmes, M.[Marion],
Feilhauer, H.[Hannes],
Sampling Robustness in Gradient Analysis of Urban Material Mixtures,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Systematics, Urban areas, Robustness, Spatial resolution,
Principal component analysis, Loading, Ecosystems,
urban mapping
BibRef
Georganos, S.[Stefanos],
Abascal, A.[Angela],
Kuffer, M.[Monika],
Wang, J.[Jiong],
Owusu, M.[Maxwell],
Wolff, E.[Eléonore],
Vanhuysse, S.[Sabine],
Is It All the Same? Mapping and Characterizing Deprived Urban Areas
Using WorldView-3 Superspectral Imagery. A Case Study in Nairobi,
Kenya,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Petrushevsky, N.[Naomi],
Manzoni, M.[Marco],
Monti-Guarnieri, A.[Andrea],
Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2
Data,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Hofierka, J.[Jaroslav],
Onacillová, K.[Katarína],
Estimating Visible Band Albedo from Aerial Orthophotographs in Urban
Areas,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Deng, Y.W.[Ya-Wen],
Jiang, W.G.[Wei-Guo],
Wu, Z.F.[Zhi-Feng],
Ling, Z.Y.[Zi-Yan],
Peng, K.F.[Kai-Feng],
Deng, Y.[Yue],
Assessing Surface Water Losses and Gains under Rapid Urbanization for
SDG 6.6.1 Using Long-Term Landsat Imagery in the Guangdong-Hong
Kong-Macao Greater Bay Area, China,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Huang, F.[Fang],
Peng, S.Y.[Shu-Ying],
Chen, S.Y.[Sheng-Yi],
Cao, H.X.[Hong-Xia],
Ma, N.[Ning],
VO-LVV: A Novel Urban Regional Living Vegetation Volume Quantitative
Estimation Model Based on the Voxel Measurement Method and an Octree
Data Structure,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Dong, S.W.[Shi-Wei],
Guo, H.[Hui],
Chen, Z.Y.[Zi-Yue],
Pan, Y.C.[Yu-Chun],
Gao, B.B.[Bing-Bo],
Spatial Stratification Method for the Sampling Design of LULC
Classification Accuracy Assessment: A Case Study in Beijing, China,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Yang, L.Q.[Liu-Qing],
Yu, K.Y.[Kun-Yong],
Ai, J.W.[Jing-Wen],
Liu, Y.F.[Yan-Fen],
Yang, W.[Wufa],
Liu, J.[Jian],
Dominant Factors and Spatial Heterogeneity of Land Surface
Temperatures in Urban Areas: A Case Study in Fuzhou, China,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Lu, W.[Wei],
Li, Y.C.[Yue-Chen],
Zhao, R.[Rongkun],
Wang, Y.[Yue],
Using Remote Sensing to Identify Urban Fringe Areas and Their Spatial
Pattern of Educational Resources:
A Case Study of the Chengdu-Chongqing Economic Circle,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Elamin, A.[Ahmed],
El-Rabbany, A.[Ahmed],
UAV-Based Multi-Sensor Data Fusion for Urban Land Cover Mapping Using
a Deep Convolutional Neural Network,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Shan, Y.F.[Yun-Feng],
Dai, X.A.[Xiao-Ai],
Li, W.[Weile],
Yang, Z.C.[Zhi-Chong],
Wang, Y.L.[You-Lin],
Qu, G.[Ge],
Liu, W.X.[Wen-Xin],
Ren, J.S.[Jia-Shun],
Li, C.[Cheng],
Liang, S.[Shuneng],
Zeng, B.Y.[Bin-Yang],
Detecting Spatial-Temporal Changes of Urban Environment Quality by
Remote Sensing-Based Ecological Indices: A Case Study in Panzhihua
City, Sichuan Province, China,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Liu, W.[Wei],
Yang, J.[Jie],
Gong, Y.[Yue],
Cheng, Q.[Qi],
An Evaluation of Urban Renewal Based on Inclusive Development Theory:
The Case of Wuhan, China,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhao, D.J.[Dan-Jing],
Ji, L.[Linna],
Yang, F.B.[Feng-Bao],
Liu, X.X.[Xiao-Xia],
A Possibility-Based Method for Urban Land Cover Classification Using
Airborne Lidar Data,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chai, B.[Baohui],
Li, P.J.[Pei-Jun],
An ensemble method for monitoring land cover changes in urban areas
using dense Landsat time series data,
PandRS(195), 2023, pp. 29-42.
Elsevier DOI
2301
Land cover change monitoring, Urbanization,
Time series analysis, Spatio-temporal analysis
BibRef
Ji, Y.Y.[Ying-Ying],
Zhan, W.F.[Wen-Feng],
Du, H.L.[Hui-Lin],
Wang, S.S.[Sha-Sha],
Li, L.[Long],
Xiao, J.F.[Jing-Feng],
Liu, Z.H.[Zi-Han],
Huang, F.[Fan],
Jin, J.X.[Jia-Xin],
Urban-rural gradient in vegetation phenology changes of over 1500
cities across China jointly regulated by urbanization and climate
change,
PandRS(205), 2023, pp. 367-384.
Elsevier DOI
2311
Urban vegetation phenology, Long-term changes,
Urban-rural gradient, Urbanization, Climate change, Enhanced vegetation index
BibRef
Traore, M.,
Ndepete, C.P.,
Zaguy-Guerembo, R.L.,
Pour, A.B.,
Assessment of Land Use/land Cover Change Mapping In Bangui City Using
Remote Sensing and GIS Techniques,
ISPRS20(B3:1651-1656).
DOI Link
2012
BibRef
Amarsaikhan, D.,
Advanced Classification of Optical and Sar Images for Urban Land Cover
Mapping,
ISPRS20(B3:1417-1421).
DOI Link
2012
BibRef
Tilak, T.,
Braun, A.,
Chandler, D.,
David, N.,
Galopin, S.,
Lombard, A.,
Michaud, M.,
Parisel, C.,
Porte, M.,
Robert, M.,
Very High Resolution Land Cover Mapping of Urban Areas At Global Scale
With Convolutional Neural Networks,
ISPRS20(B3:201-208).
DOI Link
2012
BibRef
Uçar, Z.,
Akay, A.E.,
Bilici, E.,
Towards Green Smart Cities:
Importance of Urban Forestry and Urban Vegetation,
SmartCityApp20(399-403).
DOI Link
2012
BibRef
Alvarado-Robles, G.[Gilberto],
Terol-Villalobos, I.R.[Ivan R.],
Garduño-Ramon, M.A.[Marco A.],
Morales-Hernandez, L.A.[Luis A.],
Segmentation of Green Areas Using Bivariate Histograms Based in
Hue-Saturation Type Color Spaces,
CIAP17(II:277-287).
Springer DOI
1711
Urban area vegetation.
BibRef
Salberg, A.B.[Arnt-Børre],
Trier, Ø.D.[Øivind Due],
Kampffmeyer, M.[Michael],
Large-Scale Mapping of Small Roads in Lidar Images Using Deep
Convolutional Neural Networks,
SCIA17(II: 193-204).
Springer DOI
1706
BibRef
Kampffmeyer, M.[Michael],
Salberg, A.B.[Arnt-Børre],
Jenssen, R.[Robert],
Semantic Segmentation of Small Objects and Modeling of Uncertainty in
Urban Remote Sensing Images Using Deep Convolutional Neural Networks,
SatStreet16(680-688)
IEEE DOI
1612
BibRef
Zeng, Y.,
Huang, W.,
Jin, W.,
Li, S.,
Multi-agent Based Simulation Of Optimal Urban Land Use Allocation In
The Middle Reaches Of The Yangtze River, China,
ISPRS16(B8: 1089-1092).
DOI Link
1610
BibRef
Willkomm, M.,
Dannenberg, P.,
Monitoring Land Use Dynamics Of Peri-urban Agricultutre In Central
Kenya With Rapideye Satellite Imagery,
ISPRS16(B8: 1079-1081).
DOI Link
1610
BibRef
Li, F.[Feng],
Han, L.[Liu],
Zhu, L.J.[Liu-Jun],
Huang, Y.Y.[Yin-You],
Song, G.[Guo],
Urban Vegetation Mapping Based On The Hj-1 Ndvi Reconstrction,
ISPRS16(B8: 867-871).
DOI Link
1610
BibRef
Roychowdhury, K.,
Comparison Between Spectral, Spatial And Polarimetric Classification Of
Urban And Periurban Landcover Using Temporal Sentinel: 1 Images,
ISPRS16(B7: 789-796).
DOI Link
1610
Ths 4: Tandem-x
BibRef
Zhang, Y.,
Qin, K.,
Zeng, C.,
Zhang, E.B.,
Yue, M.X.,
Tong, X.,
A Data Field Method For Urban Remotely Sensed Imagery Classification
Considering Spatial Correlation,
ISPRS16(B7: 431-435).
DOI Link
1610
BibRef
Yao, W.,
Poleswki, P.,
Krzystek, P.,
Classification Of Urban Aerial Data Based On Pixel Labelling With Deep
Convolutional Neural Networks And Logistic Regression,
ISPRS16(B7: 405-410).
DOI Link
1610
BibRef
Manzke, N.[Nina],
Kada, M.[Martin],
Kastler, T.[Thomas],
Xu, S.J.[Shao-Juan],
de Lange, N.[Norbert],
Ehlers, M.[Manfred],
The Urbis Project: Identification And Characterization Of Potential
Urban Development Areas As A Web-based Service,
ISPRS16(B4: 227-233).
DOI Link
1610
BibRef
Zou, X.L.[Xiao-Liang],
Zhao, G.H.[Gui-Hua],
Li, J.[Jonathan],
Yang, Y.X.[Yuan-Xi],
Fang, Y.[Yong],
Object Based Image Analysis Combining High Spatial Resolution Imagery
And Laser Point Clouds For Urban Land Cover,
ISPRS16(B3: 733-739).
DOI Link
1610
BibRef
Peng, F.F.[Fei-Fei],
Gong, J.Y.[Jian-Ya],
Wang, L.[Le],
Wu, H.Y.[Hua-Yi],
Yang, J.[Jiansi],
Impact Of Building Heights On 3d Urban Density Estimation From
Spaceborne Stereo Imagery,
ISPRS16(B3: 677-683).
DOI Link
1610
BibRef
Volpi, M.[Michele],
Ferrari, V.[Vittorio],
Semantic segmentation of urban scenes by learning local class
interactions,
EarthObserv15(1-9)
IEEE DOI
1510
Image segmentation
BibRef
Kumar, U.,
Milesi, C.,
Nemani, R.R.,
Basu, S.,
Multi-sensor multi-resolution image fusion for improved vegetation and
urban area classification,
IWIDF15(51-58).
DOI Link
1508
BibRef
Kumar, U.,
Milesi, C.,
Nemani, R.R.,
Kumar Raja, S.,
Ganguly, S.,
Wang, W.,
Sparse unmixing via variable splitting and augmented Lagrangian for
vegetation and urban area classification using Landsat data,
IWIDF15(59-65).
DOI Link
1508
BibRef
Sakurada, K.[Ken],
Okatani, T.[Takayuki],
Kitani, K.M.[Kris M.],
Massive City-Scale Surface Condition Analysis Using Ground and Aerial
Imagery,
ACCV14(I: 49-64).
Springer DOI
1504
BibRef
Badawy, H.M.,
Moussa, A.,
El-Sheimy, N.,
Automatic Classification of coarse density LiDAR data in urban area,
CloseRange14(77-81).
DOI Link
1411
buildings, vehicles, trees and roads without RGB.
BibRef
Kouchi, H.S.[H. Salimi],
Sahebi, M.R.,
Abkar, A.A.,
Valadan Zoej, M.J.,
Fractional Vegetation Cover Estimation In Urban Environments,
SMPR13(357-360).
DOI Link
1311
BibRef
Tompalski, P.,
Wezyk, P.,
LIDAR and VHRS Data for Assessing Living Quality in Cities:
An Approach Based on 3D Spatial Indices,
ISPRS12(XXXIX-B6:173-176).
DOI Link
1209
BibRef
Shekhar, S.,
Detecting Slums From Quick Bird Data In Pune Using An Object Oriented
Approach,
ISPRS12(XXXIX-B8:519-524).
DOI Link
1209
BibRef
Bechtel, B.,
Langkamp, T.,
Böhner, J.,
Daneke, C.,
Ossenbrügge, J.,
Schempp, S.,
Classification and Modelling of Urban Micro-Climates Using
Multisensoral and Multitemporal Remote Sensing Data,
ISPRS12(XXXIX-B8:463-468).
DOI Link
1209
BibRef
Guan, H.,
Yu, J.,
Li, J.,
Luo, L.,
Random Forests-based Feature Selection For Land-Use Classification
Using Lidar Data And Orthoimagery,
ISPRS12(XXXIX-B7:203-208).
DOI Link
1209
BibRef
Shi, L.,
The Low Backscattering Targets Classification In Urban Areas,
AnnalsPRS(I-7), No. 2012, pp. 171-176.
DOI Link
1209
BibRef
Walde, I.,
Hese, S.,
Berger, C.,
Schmullius, C.,
Graph-based Urban Land Use Mapping From High Resolution Satellite
Images,
AnnalsPRS(I-4), No. 2012, pp. 119-124.
DOI Link
1209
BibRef
Jiang, L.,
Gu, J.,
Chen, X.,
You, Y.,
Tang, Q.,
A Study Of Urban Intensive Land Evaluating System,
AnnalsPRS(I-4), No. 2012, pp. 19-22.
DOI Link
1209
BibRef
Elsharkawy, A.,
Elhabiby, M.,
El-sheimy, N.,
New Combined Pixel/object-based Technique For Efficient Urban
Classsification Using Worldview-2 Data,
ISPRS12(XXXIX-B7:191-195).
DOI Link
1209
BibRef
Bekkari, A.[Aissam],
Idbraim, S.[Soufiane],
Elhassouny, A.[Azeddine],
Mammass, D.[Driss],
El yassa, M.[Mostafa],
Ducrot, D.[Danielle],
SVM and Haralick Features for Classification of High Resolution
Satellite Images from Urban Areas,
ICISP12(17-26).
Springer DOI
1208
BibRef
Le Bris, A.,
Robert-Sainte, P.,
Classification of Roof Materials for Rainwater Pollution Modelization,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Hese, S.,
Voltersen, M.,
Lindner, M.,
Berger, C.,
TerraSAR-X and RapidEye data for the parameterisation of relational
characteristics of urban ATKIS DLM objects,
HighRes11(xx-yy).
PDF File.
1106
digital landscape model.
BibRef
Hermosilla, T.[Txomin],
Ruiz, L.A.[Luis A.],
Recio, J.A.,
Balsa-Barreiro, J.,
Land-use Mapping of Valencia City Area from Aerial Images
and LiDAR Data,
GEOProcessing12(232-237).
WWW Link. Remote Sensing, Classification, Urban areas
1204
BibRef
Hermosilla, T.[Txomin],
Ruiz, L.A.[Luis A.],
Recio, J.A.,
Cambra López, M.,
Efficiency of Context-Based Attributes for Land Use Classification of
Urban Environments,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Kux, H.J.H.,
Novack, T.,
Ferreira, R.,
Oliveira, D.A.,
Urban Land Cover Classification Using Optical VHR Data and the
Knowledge-Based System Interimage,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Novack, T.,
Kux, H.J.H.,
Feitosa, R.Q.,
Costa, G.A.,
Per Block Urban Land Use Interpretation Using Optical VHR Data and the
Knowledge-Based System Interimage,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Cui, H.S.[Hai-Shan],
Qian, H.S.[Huai-Sui],
Qian, L.X.[Le-Xiang],
Li, Y.[Ying],
Remote Sensing Experts Classification System Applying in the Land Use
Classification in Guangzhou City,
CISP09(1-4).
IEEE DOI
0910
BibRef
Mavrantza, O.D.,
Argialas, D.P.,
Identification of Urban Features Using Object-Oriented Image Analysis,
PIA07(101).
PDF File.
0711
See also Object-Oriented Image Analysis for the Identification of Geologic Lineaments.
BibRef
Mavrantza, O.D.,
Charou, E.,
Stefouli, M.,
Object-oriented image analysis of land cover for multi-temporal
monitoring. Case study: Zakynthos Island, Greece,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Kux, H.,
Araújo, E.,
Multi-temporal object-oriented classifications and analysis of
Quickbird scenes at a metropolitan area in Brazil (Belo Horizonte,
Minas Gerais State),
OBIA06(xx-yy).
PDF File.
0607
BibRef
Kux, H.,
Pinho, C.,
Object-oriented analysis of high-resolution satellite images for
intra-urban land cover classification: case study in São José dos
campos, São Paulo State, Brazil,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Pesaresi, M.[Martino],
Textural Classification of Very High-resolution Satellite Imagery:
Empirical Estimation of the Relationship Between Window Size and
Detection Accuracy in Urban Environment,
ICIP99(I:114-118).
IEEE DOI
BibRef
9900
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Urban Green Space Mapping, Parks, Detection, Analysis .