Beucher, S.,
Watersheds of Functions and Picture Segmentation,
ICASSP82(1928-1931).
The original watershed paper.
See also Segmentation Tools in Mathematical Morphology.
BibRef
8200
Meyer, F., and
Beucher, S.,
Morphological Segmentation,
JVCIR(1), No. 1, September 1990, pp. 21-46.
Watershed technique.
BibRef
9009
Meyer, F.,
Topographic Distance and Watershed Lines,
SP(38), No. 1, July 1994, pp. 113-125.
BibRef
9407
Meyer, F.,
Flooding and Segmentation,
MMAISP00(189-198).
BibRef
0001
Meyer, F.,
Stochastic watershed hierarchies,
ICAPR15(1-8)
IEEE DOI
1511
image segmentation
BibRef
Watson, A.I.,
A New Method of Classification for Landsat Data Using the
'Watershed' Algorithm,
PRL(6), 1987, pp. 15-19.
BibRef
8700
Vincent, L., and
Soille, P.[Pierre],
Watersheds in Digital Spaces:
An Efficient Algorithm Based on Immersion Simulations,
PAMI(13), No. 6, June 1991, pp. 583-598.
IEEE DOI Description of Watershed techniques.
BibRef
9106
Najman, L.,
Schmitt, M.,
Geodesic Saliency of Watershed Contours and Hierarchical Segmentation,
PAMI(18), No. 12, December 1996, pp. 1163-1173.
IEEE DOI
9701
Morphology. Morphology based segmentation, find the regions based on analysis
of the contours.
See also Comments on Geodesic Saliency of Watershed Contours and Hierarchical Segmentation.
BibRef
Najman, L.,
Schmitt, M.,
Watershed of a continuous function,
SP(38), No. 1, 1994, pp. 99-112.
BibRef
9400
Cousty, J.[Jean],
Couprie, M.[Michel],
Najman, L.[Laurent],
Bertrand, G.[Gilles],
Fusion Graphs: Merging Properties and Watersheds,
JMIV(30), No. 1, January 2008, pp. 87-104.
Springer DOI
0801
BibRef
Earlier: A1, A4, A2, A3:
Grayscale Watersheds on Perfect Fusion Graphs,
IWCIA06(60-73).
Springer DOI
0606
BibRef
Cousty, J.[Jean],
Bertrand, G.[Gilles],
Najman, L.[Laurent],
Couprie, M.[Michel],
Watershed Cuts: Minimum Spanning Forests and the Drop of Water
Principle,
PAMI(31), No. 8, August 2009, pp. 1362-1374.
IEEE DOI
0906
BibRef
Earlier:
On Watershed Cuts and Thinnings,
DGCI08(xx-yy).
Springer DOI
0804
Watersheds in edge-weighted graphs.
See also On Topological Watersheds.
BibRef
Cousty, J.[Jean],
Bertrand, G.[Gilles],
Najman, L.[Laurent],
Couprie, M.[Michel],
Watershed Cuts:
Thinnings, Shortest Path Forests, and Topological Watersheds,
PAMI(32), No. 5, May 2010, pp. 925-939.
IEEE DOI
1003
Thinning paradigm for 3 watershed cut strategies. Parallel, sequential, and
link to flooding algorithms.
BibRef
Cousty, J.[Jean],
Bertrand, G.[Gilles],
Couprie, M.[Michel],
Najman, L.[Laurent],
Collapses and Watersheds in Pseudomanifolds of Arbitrary Dimension,
JMIV(50), No. 3, November 2014, pp. 261-285.
Springer DOI
WWW Link.
1410
BibRef
Earlier:
Collapses and Watersheds in Pseudomanifolds,
IWCIA09(397-410).
Springer DOI
0911
BibRef
Cousty, J.[Jean],
Najman, L.[Laurent],
Morphological floodings and optimal cuts in hierarchies,
ICIP14(4462-4466)
IEEE DOI
1502
DH-HEMTs
BibRef
Cousty, J.[Jean],
Najman, L.[Laurent],
Serra, J.[Jean],
Raising in watershed lattices,
ICIP08(2196-2199).
IEEE DOI
0810
BibRef
Cousty, J.[Jean],
Bertrand, G.[Gilles],
Uniqueness of the Perfect Fusion Grid on Zd,
JMIV(34), No. 3, July 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Shafarenko, L.,
Petrou, M.,
Kittler, J.V.,
Automatic Watershed Segmentation of Randomly Textured Color Images,
IP(6), No. 11, November 1997, pp. 1530-1544.
IEEE DOI
9710
Color.
Texture.
See also Histogram Based Segmentation in a Perceptually Uniform Color Space.
BibRef
Moga, A.N.[Alina N.],
Gabbouj, M.[Moncef],
Parallel Image Component Labeling with Watershed Transformation,
PAMI(19), No. 5, May 1997, pp. 441-450.
IEEE DOI
9705
Watershed. Delimit the extent of connected components locally (on each processor).
Use pyramidal structure.
Expand the regions out from minima until they colides with another.
BibRef
Moga, A.N.,
Gabbouj, M.,
A Parallel Marker Based Watershed Transformation,
ICIP96(II: 137-140).
IEEE DOI
BibRef
9600
Dorbin, B.P.,
Viero, T.,
Gabbouj, M.,
Fast Watershed Algorithms: Analysis and Extensions,
SPIE(2180), 1994, pp. 209-220.
BibRef
9400
Moga, A.N.,
Parallel Watershed Algorithms for Image Segmentation,
Ph.D.Thesis, Tampere Univ. of Tech., Finland, February 1997.
BibRef
9702
Moga, A.N.,
Cramariuc, B.,
Gabbouj, M.,
An Efficient Watershed Segmentation Algorithm Suitable
for Parallel Implementation,
ICIP95(II: 101-104).
IEEE DOI
9510
BibRef
Lemarechal, C.,
Fjortoft, R.,
Marthon, P.,
Cubero-Castan, E.,
Comments on Geodesic Saliency of Watershed Contours and
Hierarchical Segmentation,
PAMI(20), No. 7, July 1998, pp. 762-766.
IEEE DOI
9808
See also Geodesic Saliency of Watershed Contours and Hierarchical Segmentation.
BibRef
Schmitt, M.,
Response to the Comment on Geodesic Saliency of
Watershed Contours and Hierarchical Segmentation,
PAMI(20), No. 7, July 1998, pp. 764-766.
IEEE DOI
9808
BibRef
Wang, D.M.[De-Min],
A Multiscale Gradient Algorithm for Image Segmentation
Using Watersheds,
PR(30), No. 12, December 1997, pp. 2043-2052.
Elsevier DOI
9805
For Video application:
See also Unsupervised Video Segmentation Based on Watersheds and Temporal Tracking.
BibRef
Gauch, J.M.[John M.],
Image Segmentation and Analysis via Multiscale Gradient Watershed
Hierarchies,
IP(8), No. 1, January 1999, pp. 69-79.
IEEE DOI
BibRef
9901
Haris, K.,
Efstratiadis, S.N.,
Maglaveras, N.,
Katsaggelos, A.K.,
Hybrid Image Segmentation Using Watersheds And Fast Region Merging,
IP(7), No. 12, December 1998, pp. 1684-1699.
IEEE DOI
9812
BibRef
Haris, K.,
Efstratiadis, S.,
Maglaveras, N.,
Hierarchical Image Segmentation Based on Contour Dynamics,
ICIP01(I: 54-57).
IEEE DOI
0108
BibRef
Haris, K.,
Efstratiadis, S.N.,
Maglaveras, N.,
Watershed-based image segmentation with fast region merging,
ICIP98(III: 338-342).
IEEE DOI
9810
BibRef
Pratikakis, I.E.,
Sahli, H.,
Cornelis, J.,
Low level image partitioning guided by the gradient watershed hierarchy,
SP(75), No. 2, 1 June 1999, pp. 173-195.
BibRef
9906
Li, W.[Wei],
Benie, G.B.[Goze B.],
He, D.C.[Dong-Chen],
Wang, S.R.[Sheng-Rui],
Ziou, D.[Djemel],
Gwyn, Q.H.J.[Q. Hugh J.],
Watershed-based hierarchical SAR image segmentation,
JRS(20), No. 17, November 1999, pp. 3377.
BibRef
9911
Hansen, M.W.,
Higgins, W.E.,
Watershed-Based Maximum-Homogeneity Filtering,
IP(8), No. 7, July 1999, pp. 982-988.
IEEE DOI
BibRef
9907
Earlier:
Image enhancement using watershed-based maximum homogeneity filtering,
ICIP95(I: 482-485).
IEEE DOI
9510
BibRef
Arcelli, C.[Carlo],
Topological changes in grey-tone digital pictures,
PR(32), No. 6, June 1999, pp. 1019-1023.
Elsevier DOI Reduce to a few regions.
BibRef
9906
Bleau, A.[Andrè],
Leon, L.J.[L. Joshua],
Watershed-Based Segmentation and Region Merging,
CVIU(77), No. 3, March 2000, pp. 317-370.
DOI Link
0004
BibRef
Bieniek, A.[Andreas],
Moga, A.,
An efficient watershed algorithm based on connected components,
PR(33), No. 6, June 2000, pp. 907-916.
Elsevier DOI
0004
BibRef
Bieniek, A.[Andreas],
Burkhardt, H.[Hans],
Marschner, H.[Heiko],
Noolle, M.[Michael],
Schreiber, G.[Gerald],
A Parallel Watershed Algorithm,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Pitas, I.,
Cotsaces, C.I.,
Memory Efficient Propagation-Based Watershed and Influence Zone
Algorithms for Large Images,
IP(9), No. 7, July 2000, pp. 1185-1199.
IEEE DOI
0006
BibRef
Kim, J.B.[Jong-Bae],
Kim, H.J.[Hang-Joon],
Multiresolution-based watersheds for efficient image segmentation,
PRL(24), No. 1-3, January 2003, pp. 473-488.
Elsevier DOI
0211
BibRef
Kim, J.B.[Jong Bae],
Kim, H.J.[Hang Joon],
A wavelet-based watershed image segmentation for VOP generation,
ICPR02(III: 505-508).
IEEE DOI
0211
BibRef
Nguyen, H.T.[Hieu Tat],
Worring, M.[Marcel],
van den Boomgaard, R.[Rein],
Watersnakes: Energy-Driven Watershed Segmentation,
PAMI(25), No. 3, March 2003, pp. 330-342.
IEEE DOI
0301
BibRef
And:
TR12, Intelligent Sensory Information Systems Group,
Univ. of Amsterdam, 2000.
PS File. Combine energy approach with watershed approach by including (as energy)
distance to the watershed. Impose a priori conditions (smoothness).
See also Tracking nonparameterized object contours in video.
BibRef
Nguyen, H.T.[Hieu Tat],
Ji, Q.A.[Qi-Ang],
Shape-Driven Three-Dimensional Watersnake Segmentation of Biological
Membranes in Electron Tomography,
MedImg(27), No. 5, May 2008, pp. 616-628.
IEEE DOI
0711
BibRef
Earlier:
Improved watershed segmentation using water diffusion and local shape
priors,
CVPR06(I: 985-992).
IEEE DOI
0606
BibRef
Malpica, N.[Norberto],
Ortuño, J.E.[Juan E.],
Santos, A.[Andrés],
A multichannel watershed-based algorithm for supervised texture
segmentation,
PRL(24), No. 9-10, June 2003, pp. 1545-1554.
Elsevier DOI
0304
BibRef
Vanhamel, I.,
Pratikakis, I.E.,
Sahli, H.,
Multiscale gradient watersheds of color images,
IP(12), No. 6, June 2003, pp. 617-626.
IEEE DOI
0307
BibRef
Vanhamel, I.,
Pratikakis, I.E.,
Sahli, H.,
Multiscale Graph Theory Based Color Segmentation,
ICIP06(769-772).
IEEE DOI
0610
BibRef
Earlier: A1, A3, A2:
Nonlinear Multiscale Graph Theory based Segmentation of Color Images,
ICPR06(II: 407-411).
IEEE DOI
0609
BibRef
Earlier: A1, A2, A3:
Hierarchical segmentation using dynamics of multi-scale color gradient
watersheds,
ScaleSpace01(xx-yy).
0106
BibRef
Pratikakis, I.E.,
Sahli, H.,
Cornelis, J.,
Hierarchical Segmentation Using Dynamics of Multiscale Gradient
Watersheds,
SCIA99(Image Analysis).
BibRef
9900
Earlier:
Hierarchy Determination of the Gradient Watershed Adjacent Groups,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Katartzis, A.,
Vanhamel, I.,
Sahli, H.,
A Hierarchical Markovian Model for Multiscale Region-Based
Classification of Vector-Valued Images,
GeoRS(43), No. 3, March 2005, pp. 548-558.
IEEE Abstract.
0501
BibRef
Vanhamel, I.,
Katartzis, A.,
Sahli, H.,
Hierarchical segmentation via a diffusion scheme in color/texture
feature space,
ICIP03(I: 969-972).
IEEE DOI
0312
BibRef
Hill, P.R.,
Canagarajah, C.N.,
Bull, D.R.,
Image segmentation using a texture gradient based watershed transform,
IP(12), No. 12, December 2003, pp. 1618-1633.
IEEE DOI
0402
BibRef
Nieniewski, M.,
Extraction of Diffuse Objects From Images by Means of Watershed and
Region Merging: Example of Solar Images,
SMC-B(34), No. 1, February 2004, pp. 796-801.
IEEE Abstract.
0403
Developed for segmentation of solar images obtained from extreme-UV
imaging telescope (EIT).
BibRef
Grau, V.,
Mewes, A.U.J.,
Alcaniz, M.,
Kikinis, R.,
Warfield, S.K.,
Improved watershed transform for medical image segmentation using prior
information,
MedImg(23), No. 4, April 2004, pp. 447-458.
IEEE Abstract.
0406
BibRef
Rambabu, C.,
Chakrabarti, I.,
Mahanta, A.,
Flooding-based watershed algorithm and its prototype hardware
architecture,
VISP(151), No. 3, June 2004, pp. 224-234.
IEEE Abstract.
0409
BibRef
Tsai, Y.P.[Yu-Pao],
Lai, C.C.[Chih-Chuan],
Hung, Y.P.[Yi-Ping],
Shih, Z.C.,
A Bayesian Approach to Video Object Segmentation via Merging 3-D
Watershed Volumes,
CirSysVideo(15), No. 1, January 2005, pp. 175-180.
IEEE Abstract.
0501
BibRef
Earlier: A3, A1, A2 only:
ICPR02(I: 496-499).
IEEE DOI
0211
BibRef
Makrogiannis, S.,
Economou, G.,
Fotopoulos, S.,
Bourbakis, N.G.,
Segmentation of Color Images Using Multiscale Clustering and Graph
Theoretic Region Synthesis,
SMC-A(35), No. 2, March 2005, pp. 224-238.
IEEE Abstract.
0501
Combine region segmentation and clustering.
Multi-scale clustering, then combine these regions into the final result.
BibRef
Makrogiannis, S.,
Vanhamel, I.,
Sahli, H.,
Fotopoulos, S.,
Scale Space Segmentation of Color Images Using Watersheds and Fuzzy
Region Merging,
ICIP01(I: 734-737).
IEEE DOI
0108
BibRef
Makrogiannis, S.,
Economou, G.,
Fotopoulos, S.,
Region oriented compression of color images using fuzzy inference and
fast merging,
PR(35), No. 9, September 2002, pp. 1807-1820.
Elsevier DOI
0206
BibRef
Theoharatos, C.,
Pothos, V.K.,
Laskaris, N.A.,
Economou, G.,
Fotopoulos, S.,
Multivariate image similarity in the compressed domain using
statistical graph matching,
PR(39), No. 10, October 2006, pp. 1892-1904.
Elsevier DOI
0606
Image similarity; Multivariate statistics; Graph matching;
Minimal spanning tree (MST); Similarity measures;
Discrete cosine transform (DCT); JPEG image compression; Image retrieval
See also Combining self-organizing neural nets with multivariate statistics for efficient color image retrieval.
See also local spectral distribution approach to face recognition, A.
BibRef
Pothos, V.K.[Vasileios K.],
Theoharatos, C.[Christos],
Economou, G.[George],
Ifantis, A.[Apostolos],
Texture retrieval based on a non-parametric measure for multivariate
distributions,
CIVR07(502-509).
DOI Link
0707
BibRef
Makrogiannis, S.,
Schelkens, P.,
Fotopoulos, S.,
Cornelis, J.P.H.,
Region-oriented Compression of Color Images Using Fuzzy Inference and
Shape Adaptive DCT,
ICIP01(III: 478-481).
IEEE DOI
0108
BibRef
Makrogiannis, S.,
Theoharatos, C.,
Economou, G.,
Fotopoulos, S.,
Color image segmentation using multiscale fuzzy C-means and graph
theoretic merging,
ICIP03(I: 985-988).
IEEE DOI
0312
BibRef
Makrogiannis, S.,
Economou, G.,
Fotopoulos, S.,
A region dissimilarity relation that combines feature-space and spatial
information for color image segmentation,
SMC-B(35), No. 1, February 2005, pp. 44-53.
IEEE Abstract.
0501
See also Combining self-organizing neural nets with multivariate statistics for efficient color image retrieval.
BibRef
Patino, L.[Luis],
Fuzzy relations applied to minimize over segmentation in watershed
algorithms,
PRL(26), No. 6, 1 May 2005, pp. 819-828.
Elsevier DOI
0501
BibRef
Jung, C.R.[Cláudio Rosito],
Scharcanski, J.[Jacob],
Robust watershed segmentation using wavelets,
IVC(23), No. 7, 1 July 2005, pp. 661-669.
Elsevier DOI
0506
BibRef
Jung, C.R.[Cláudio Rosito],
Combining wavelets and watersheds for robust multiscale image
segmentation,
IVC(25), No. 1, January 2007, pp. 24-33.
Elsevier DOI
0611
Segmentation; Watersheds; Wavelets; Multiresolution; Denoising; Region merging
BibRef
Jung, C.R.[Cláudio Rosito],
Unsupervised multiscale segmentation of color images,
PRL(28), No. 4, 1 March 2007, pp. 523-533.
Elsevier DOI
0701
Watersheds; Wavelets; Multiresolution; Color images; Region merging
BibRef
Zhao, C.G.[Chen Guang],
Zhuang, T.G.[Tian Ge],
A hybrid boundary detection algorithm based on watershed and snake,
PRL(26), No. 9, 1 July 2005, pp. 1256-1265.
Elsevier DOI
0506
BibRef
Sun, H.[Han],
Yang, J.Y.[Jing-Yu],
Ren, M.[Mingwu],
A fast watershed algorithm based on chain code and its application in
image segmentation,
PRL(26), No. 9, 1 July 2005, pp. 1266-1274.
Elsevier DOI
0506
BibRef
Beare, R.,
A Locally Constrained Watershed Transform,
PAMI(28), No. 7, July 2006, pp. 1063-1074.
IEEE DOI
0606
Introduce border constraints by modifying the path definition of the watershed
transform.
BibRef
Osma-Ruiz, V.[Víctor],
Godino-Llorente, J.I.[Juan I.],
Sáenz-Lechón, N.[Nicolás],
Gómez-Vilda, P.[Pedro],
An improved watershed algorithm based on efficient computation of
shortest paths,
PR(40), No. 3, March 2007, pp. 1078-1090.
Elsevier DOI
0611
Watershed; Image segmentation; Arrowing
BibRef
de Carvalho, M.A.G.[Marco Antonio Garcia],
de Alencar Lotufo, R.[Roberto],
Couprie, M.[Michel],
Morphological segmentation of yeast by image analysis,
IVC(25), No. 1, January 2007, pp. 34-39.
Elsevier DOI
0611
Yeast; Watershed; Scale-space; Image analysis
BibRef
Frucci, M.[Maria],
Ramella, G.[Giuliana],
Sanniti di Baja, G.[Gabriella],
Using resolution pyramids for watershed image segmentation,
IVC(25), No. 6, 1 June 2007, pp. 1021-1031.
Elsevier DOI
0704
Segmentation; Watershed transformation; Resolution pyramid
See also Shape and topology preserving multi-valued image pyramids for multi-resolution skeletonization.
BibRef
Frucci, M.[Maria],
Perner, P.[Petra],
Sanniti di Baja, G.[Gabriella],
Watershed Segmentation Via Case-Based Reasoning,
BVAI07(244-253).
Springer DOI
0710
BibRef
Ramella, G.[Giuliana],
Sanniti di Baja, G.[Gabriella],
Detecting Foreground Components in Grey Level Images for Shift
Invariant and Topology Preserving Pyramids,
ICIAR04(I: 57-64).
Springer DOI
0409
BibRef
Frucci, M.[Maria],
di Baja, G.S.[Gabriella Sanniti],
A New Algorithm for Image Segmentation via Watershed Transformation,
CIAP11(II: 168-177).
Springer DOI
1109
BibRef
Audigier, R.[Romaric],
de Alencar Lotufo, R.[Roberto],
Uniquely-Determined Thinning of the Tie-Zone Watershed Based on Label
Frequency,
JMIV(27), No. 2, February 2007, pp. 157-173.
Springer DOI
0704
BibRef
Levner, I.[Ilya],
Zhang, H.[Hong],
Classification-Driven Watershed Segmentation,
IP(16), No. 5, May 2007, pp. 1437-1445.
IEEE DOI
0704
BibRef
Levner, I.[Ilya],
Greiner, R.[Russell],
Zhang, H.[Hong],
Supervised image segmentation via ground truth decomposition,
ICIP08(737-740).
IEEE DOI
0810
BibRef
Trieu, D.B.K.[Dang Ba Khac],
Maruyama, T.[Tsutomu],
Real-time image segmentation based on a parallel and pipelined
watershed algorithm,
RealTimeIP(2), No. 4, December 2007, pp. 319-329.
Springer DOI
0712
BibRef
Trieu, D.B.K.[Dang Ba Khac],
Maruyama, T.[Tsutomu],
Real-time color image segmentation based on mean shift algorithm using
an FPGA,
RealTimeIP(10), No. 2, June 2015, pp. 345-356.
WWW Link.
1506
BibRef
Sofou, A.,
Maragos, P.[Petros],
Generalized Flooding and Multicue PDE-Based Image Segmentation,
IP(17), No. 3, March 2008, pp. 364-376.
IEEE DOI
0802
BibRef
Earlier:
PDE-based modeling of image segmentation using volumic flooding,
ICIP03(II: 431-434).
IEEE DOI
0312
BibRef
Meyer, F.[Fernand],
Maragos, P.[Petros],
Multiscale Morphological Segmentations based on Watershed, Flooding,
and Eikonal PDE,
ScaleSpace99(351-362).
BibRef
9900
Meyer, F.[Fernand],
Watershed Segmentation with a Controlled Precision,
ISMM17(83-94).
Springer DOI
1706
BibRef
Earlier:
The Waterfall Hierarchy on Weighted Graphs,
ISMM15(325-336).
Springer DOI
1506
BibRef
And:
Flooding Edge on Node Weighted Graphs,
ISMM13(341-352).
Springer DOI
1305
BibRef
Meyer, F.[Fernand],
A Watershed Algorithm Progressively Unveiling Its Optimality,
ISMM15(717-728).
Springer DOI
1506
BibRef
Meyer, F.[Fernand],
Lerallut, R.[Romain],
Morphological Operators for Flooding, Leveling and Filtering Images
Using Graphs,
GbRPR07(158-167).
Springer DOI
0706
BibRef
Peter, Z.,
Bousson, V.,
Bergot, C.,
Peyrin, F.,
A constrained region growing approach based on watershed for the
segmentation of low contrast structures in bone micro-CT images,
PR(41), No. 7, July 2008, pp. 2358-2368.
Elsevier DOI
0804
Image segmentation; Anisotropic diffusion; Bones; X-ray tomography
BibRef
Dagher, I.[Issam],
El Tom, K.[Kamal],
WaterBalloons: A hybrid watershed Balloon Snake segmentation,
IVC(26), No. 7, 2 July 2008, pp. 905-912.
Elsevier DOI
0804
Watershed; Active contour model; Snake balloon; Segmentation; WaterBalloons
BibRef
Eom, S.[Seongeun],
Shin, V.[Vladimir],
Ahn, B.[Byungha],
Cellular Watersheds: A Parallel Implementation of the Watershed
Transform on the CNN Universal Machine,
IEICE(E90-D), No. 4, April 2007, pp. 791-794.
DOI Link
0704
BibRef
Rao, A.R.[A. Ramachandra],
Srinivas, V.V.,
Regionalization of Watersheds:
An Approach Based on Cluster Analysis,
Springer2008, ISBN: 978-1-4020-6851-5
WWW Link.
Buy this book: Regionalization of Watersheds: An Approach Based on Cluster Analysis (Water Science and Technology Library) (Water Science and Technology Library)
BibRef
0800
Hamarneh, G.[Ghassan],
Li, X.X.[Xiao-Xing],
Watershed segmentation using prior shape and appearance knowledge,
IVC(27), No. 1-2, January 2009, pp. 59-68.
Elsevier DOI
0811
BibRef
Earlier: A2, A1:
Modeling Prior Shape and Appearance Knowledge in Watershed Segmentation,
CRV05(27-33).
IEEE DOI
0505
Watershed transformation; Prior shape knowledge; Segmentation;
k-Means clustering
Medical applications.
BibRef
Rittner, L.[Leticia],
Flores, F.C.[Franklin César],
de Alencar Lotufo, R.[Roberto],
A tensorial framework for color images,
PRL(31), No. 4, 1 March 2010, pp. 277-296.
Elsevier DOI
1002
Color image; Gradient; Tensor; Mathematical morphology; Watershed
transform; Segmentation
BibRef
de Smet, P.[Patrick],
Optimized high speed pixel sorting and its application in watershed
based image segmentation,
PR(43), No. 7, July 2010, pp. 2359-2366.
Elsevier DOI
1003
Pixel sorting; Watershed; Optimization
BibRef
Audigier, R.[Romaric],
de Alencar Lotufo, R.[Roberto],
Relationships between some watershed definitions and their tie-zone
transforms,
IVC(28), No. 10, October 2010, pp. 1472-1482.
Elsevier DOI
1007
BibRef
Flores, F.C.[Franklin Cesar],
de Alencar Lotufo, R.[Roberto],
Watershed from propagated markers: An interactive method to
morphological object segmentation in image sequences,
IVC(28), No. 11, November 2010, pp. 1491-1514.
Elsevier DOI
1008
Morphological segmentation; Image sequences; Marker propagation;
Motion estimation; Watershed from markers; Interactive segmentation
BibRef
Li, D.,
Zhang, G.F.[Gui-Feng],
Wu, Z.C.[Zhao-Cong],
Yi, L.[Lina],
An Edge Embedded Marker-Based Watershed Algorithm for High Spatial
Resolution Remote Sensing Image Segmentation,
IP(19), No. 10, October 2010, pp. 2781-2787.
IEEE DOI
1003
BibRef
Earlier: A2, A3, A4, Only:
Marker-based watershed segmentation embedded with edge information,
IASP10(375-380).
IEEE DOI
1004
BibRef
Yi, L.[Lina],
Zhang, G.F.[Gui-Feng],
Wu, Z.C.[Zhao-Cong],
A Scale-Synthesis Method for High Spatial Resolution Remote Sensing
Image Segmentation,
GeoRS(50), No. 10, October 2012, pp. 4062-4070.
IEEE DOI
1210
BibRef
Derivaux, S.[Sébastien],
Forestier, G.[Germain],
Wemmert, C.[Cédric],
Lefevre, S.,
Supervised image segmentation using watershed transform, fuzzy
classification and evolutionary computation,
PRL(31), No. 15, 1 November 2010, pp. 2364-2374.
Elsevier DOI
1003
Supervised image segmentation; Watershed transform; Fuzzy
classification; Genetic algorithm
BibRef
Li, F.[Fang],
Ng, M.K.[Michael K.],
Zeng, T.Y.[Tie Yong],
Shen, C.L.[Chun-Li],
A Multiphase Image Segmentation Method Based on
Fuzzy Region Competition,
SIIMS(3), No. 3, 2010, pp. 277-299.
DOI Link multiphase; image segmentation; region competition; fuzzy membership
function; alternative minimization
BibRef
1000
Cai, X.H.[Xiao-Hao],
Chan, R.[Raymond],
Zeng, T.Y.[Tie-Yong],
A Two-Stage Image Segmentation Method Using a Convex Variant of the
Mumford-Shah Model and Thresholding,
SIIMS(6), No. 1, 2013, pp. 368-390.
DOI Link
1304
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Li, X.[Xu],
Yang, X.P.[Xiao-Ping],
Zeng, T.Y.[Tie-Yong],
A Three-Stage Variational Image Segmentation Framework Incorporating
Intensity Inhomogeneity Information,
SIIMS(13), No. 3, 2020, pp. 1692-1715.
DOI Link
2010
BibRef
Cai, X.H.[Xiao-Hao],
Variational image segmentation model coupled with image restoration
achievements,
PR(48), No. 6, 2015, pp. 2029-2042.
Elsevier DOI
1503
Image segmentation
BibRef
Duan, Y.P.[Yu-Ping],
Chang, H.B.[Hui-Bin],
Huang, W.M.[Wei-Min],
Zhou, J.Y.[Jia-Yin],
Lu, Z.K.[Zhong-Kang],
Wu, C.L.[Chun-Lin],
The L_0 Regularized Mumford-Shah Model for Bias Correction and
Segmentation of Medical Images,
IP(24), No. 11, November 2015, pp. 3927-3938.
IEEE DOI
1509
BibRef
Earlier: A1, A2, A3, A4, Only:
Simultaneous bias correction and image segmentation via L0
regularized Mumford-Shah model,
ICIP14(6-40)
IEEE DOI
1502
image segmentation.
Biomedical imaging
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Li, Y.T.[Yu-Tong],
Wu, C.L.[Chun-Lin],
Duan, Y.P.[Yu-Ping],
The TVp Regularized Mumford-Shah Model for Image Labeling and
Segmentation,
IP(29), 2020, pp. 7061-7075.
IEEE DOI
2007
BibRef
Earlier: A1, A3, Only:
Piecewise Smooth Segmentation with Sparse Prior,
ICIP18(2217-2221)
IEEE DOI
1809
Image segmentation, TV, Labeling, Minimization, Image edge detection,
Additives, Numerical models, Image labeling, segmentation.
Mathematical model, Brain modeling,
Nonhomogeneous media, ADMM
BibRef
Duan, Y.P.[Yu-Ping],
Huang, W.M.[Wei-Min],
Zhou, J.Y.[Jia-Yin],
Chang, H.B.[Hui-Bin],
Zeng, T.Y.[Tie-Yong],
A Two-Stage Image Segmentation Method Using Euler's Elastica
Regularized Mumford-Shah Model,
ICPR14(118-123)
IEEE DOI
1412
Approximation methods
BibRef
Suphalakshmi, A.,
Narendran, S.,
Anandhakumar, P.,
An improved fast watershed algorithm for image segmentation,
IJCVR(1), No. 3, 2010, pp. 251-260.
DOI Link
1102
BibRef
Najman, L.[Laurent],
On the Equivalence Between Hierarchical Segmentations and Ultrametric
Watersheds,
JMIV(40), No. 3, July 2011, pp. 231-247.
WWW Link.
1103
BibRef
Earlier:
Ultrametric Watersheds,
ISMM09(181-192).
Springer DOI
0908
BibRef
Couprie, C.[Camille],
Grady, L.[Leo],
Najman, L.[Laurent],
Talbot, H.[Hugues],
Power Watershed: A Unifying Graph-Based Optimization Framework,
PAMI(33), No. 7, July 2011, pp. 1384-1399.
IEEE DOI
1106
BibRef
Earlier:
Anisotropic diffusion using power watersheds,
ICIP10(4153-4156).
IEEE DOI
1009
BibRef
Earlier:
Power watersheds: A new image segmentation framework extending graph
cuts, random walker and optimal spanning forest,
ICCV09(731-738).
IEEE DOI
0909
Extend graph-based techniques includes graph cuts, random walk, shortest
path.
BibRef
Couprie, C.[Camille],
Grady, L.[Leo],
Talbot, H.[Hugues],
Najman, L.[Laurent],
Combinatorial Continuous Maximum Flow,
SIIMS(4), No. 3, 2011, pp. 905-930.
WWW Link.
1110
BibRef
Corcoran, P.[Padraig],
Winstanley, A.[Adam],
Mooney, P.[Peter],
Complementary texture and intensity gradient estimation and fusion for
watershed segmentation,
MVA(22), No. 6, November 2011, pp. 1027-1045.
WWW Link.
1110
BibRef
Bernander, K.B.[Karl B.],
Gustavsson, K.[Kenneth],
Selig, B.[Bettina],
Sintorn, I.M.[Ida-Maria],
Hendriks, C.L.L.[Cris L. Luengo],
Improving the stochastic watershed,
PRL(34), No. 9, July 2013, pp. 993-1000.
Elsevier DOI
1305
Mathematical morphology; Image segmentation; Random process; Stochastic
watershed; Seeded watershed; Uniform grid
BibRef
Selig, B.[Bettina],
Malmberg, F.[Filip],
Hendriks, C.L.L.[Cris L. Luengo],
Fast Evaluation of the Robust Stochastic Watershed,
ISMM15(705-716).
Springer DOI
1506
BibRef
Earlier: A2, A1, A3:
Exact Evaluation of Stochastic Watersheds: From Trees to General Graphs,
DGCI14(309-319).
Springer DOI
1410
BibRef
Singh, P.P.[Pankaj Pratap],
Garg, R.D.,
A Hybrid Approach for Information Extraction from High Resolution
Satellite Imagery,
IJIG(13), No. 2, April 2013, pp. 1340007.
DOI Link
1308
marker-controlled watershed transforms and a nonlinear derivative method.
BibRef
Golodetz, S.M.,
Nicholls, C.,
Voiculescu, I.D.,
Cameron, S.A.,
Two tree-based methods for the waterfall,
PR(47), No. 10, 2014, pp. 3276-3292.
Elsevier DOI
1406
Image segmentation
BibRef
Meyer, F.[Fernand],
Watersheds on weighted graphs,
PRL(47), No. 1, 2014, pp. 72-79.
Elsevier DOI
1408
Watershed
BibRef
Brun, L.[Luc],
Vautrot, P.[Philippe],
Meyer, F.[Fernand],
Hierarchical Watersheds with Inter-pixel Boundaries,
ICIAR04(I: 840-847).
Springer DOI
0409
BibRef
Malmberg, F.[Filip],
Luengo Hendriks, C.L.[Cris L.],
An efficient algorithm for exact evaluation of stochastic watersheds,
PRL(47), No. 1, 2014, pp. 80-84.
Elsevier DOI
1408
Mathematical morphology
BibRef
Baldacci, F.[Fabien],
Braquelaire, A.[Achille],
Oriented boundary graph: An efficient structuring model for
segmentation of 3D images,
CVIU(143), No. 1, 2016, pp. 92-103.
Elsevier DOI
1601
3D segmentation
See also Oriented Boundary Graph: A Framework to Design and Implement 3D Segmentation Algorithms.
BibRef
Baldacci, F.[Fabien],
An Unbiased and Intervoxel Watershed Algorithm for 3D Image
Segmentation,
ICIAR12(I: 330-337).
Springer DOI
1206
See also Oriented Boundary Graph: A Framework to Design and Implement 3D Segmentation Algorithms.
BibRef
Hodneland, E.,
Tai, X.C.,
Kalisch, H.,
PDE Based Algorithms for Smooth Watersheds,
MedImg(35), No. 4, April 2016, pp. 957-966.
IEEE DOI
1604
biomedical optical imaging
BibRef
Michaelsen, E.[Eckart],
Self-organizing maps and Gestalt organization as components of an
advanced system for remotely sensed data:
An example with thermal hyper-spectra,
PRL(83, Part 2), No. 1, 2016, pp. 169-177.
Elsevier DOI
1609
Hyperspectral data
BibRef
González-Betancourt, A.[Aniel],
Rodríguez-Ribalta, P.[Patricia],
Meneses-Marcel, A.[Alfredo],
Sifontes-Rodríguez, S.[Sergio],
Lorenzo-Ginori, J.V.[Juan Valentín],
Orozco-Morales, R.[Rubén],
Automated marker identification using the Radon transform for watershed
segmentation,
IET-IPR(11), No. 3, March 2017, pp. 183-189.
DOI Link
1703
BibRef
Chahine, C.[Chaza],
Vachier-Lagorre, C.[Corinne],
Chenoune, Y.[Yasmina],
El Berbari, R.[Racha],
El Fawal, Z.[Ziad],
Petit, E.[Eric],
Information fusion for unsupervised image segmentation using stochastic
watershed and Hessian matrix,
IET-IPR(12), No. 4, April 2018, pp. 525-531.
DOI Link
1804
BibRef
Chahine, C.[Chaza],
El Berbari, R.[Racha],
Vachier-Lagorre, C.[Corinne],
Nakib, A.,
Petit, E.[Eric],
Evidence theory for image segmentation using information from
stochastic Watershed and Hessian filtering,
WSSIP15(141-144)
IEEE DOI
1603
filtering theory
BibRef
Kakhani, N.[Nafiseh],
Mokhtarzade, M.[Mehdi],
Zouj, M.J.V.[Muhammad Javad Valadan],
Classification of very high-resolution remote sensing images by
applying a new edge-based marker-controlled watershed segmentation
method,
SIViP(13), No. 7, October 2019, pp. 1319-1327.
Springer DOI
1911
BibRef
Maia, D.S.[Deise Santana],
Cousty, J.[Jean],
Najman, L.[Laurent],
Perret, B.[Benjamin],
Properties of combinations of hierarchical watersheds,
PRL(128), 2019, pp. 513-520.
Elsevier DOI
1912
BibRef
Fehri, A.[Amin],
Velasco-Forero, S.[Santiago],
Meyer, F.[Fernand],
Combinatorial space of watershed hierarchies for image
characterization,
PRL(129), 2020, pp. 41-47.
Elsevier DOI
2001
Mathematical morphology, Hierarchies,
Gromov-Hausdorff distance, Combination of hierarchies
BibRef
Braham, Y.[Yosra],
Elloumi, Y.[Yaroub],
Akil, M.[Mohamed],
Bedoui, M.H.[Mohamed Hedi],
Parallel computation of Watershed Transform in weighted graphs on
shared memory machines,
RealTimeIP(17), No. 3, June 2020, pp. 527-542.
Springer DOI
2006
BibRef
Maia, D.S.[Deise Santana],
Cousty, J.[Jean],
Najman, L.[Laurent],
Perret, B.[Benjamin],
Characterization of Graph-Based Hierarchical Watersheds: Theory and
Algorithms,
JMIV(62), No. 5, June 2020, pp. 627-658.
Springer DOI
2007
BibRef
Yuan, Y.,
Zhu, Z.,
Yu, H.,
Zhang, W.,
Watershed-Based Superpixels With Global and Local Boundary Marching,
IP(29), 2020, pp. 7375-7388.
IEEE DOI
2007
Image color analysis, Image segmentation, Optimization,
Real-time systems, Education, Clustering algorithms, Merging,
boundary marching
BibRef
Wolf, S.[Steffen],
Bailoni, A.[Alberto],
Pape, C.[Constantin],
Rahaman, N.[Nasim],
Kreshuk, A.[Anna],
Köthe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
The Mutex Watershed and its Objective:
Efficient, Parameter-Free Graph Partitioning,
PAMI(43), No. 10, October 2021, pp. 3724-3738.
IEEE DOI
2109
BibRef
Earlier: A1, A2, A3, A4, A5, A6, A7:
The Mutex Watershed: Efficient, Parameter-Free Image Partitioning,
ECCV18(II: 571-587).
Springer DOI
1810
Clustering algorithms, Partitioning algorithms,
Image segmentation, Image edge detection, Merging, Correlation,
convolutional neural networks
BibRef
Wolf, S.[Steffen],
Li, Y.Y.[Yu-Yan],
Pape, C.[Constantin],
Bailoni, A.[Alberto],
Kreshuk, A.[Anna],
Hamprecht, F.A.[Fred A.],
The Semantic Mutex Watershed for Efficient Bottom-up Semantic Instance
Segmentation,
ECCV20(VI:208-224).
Springer DOI
2011
BibRef
Cerrone, L.[Lorenzo],
Zeilmann, A.[Alexander],
Hamprecht, F.A.[Fred A.],
End-To-End Learned Random Walker for Seeded Image Segmentation,
CVPR19(12551-12560).
IEEE DOI
2002
BibRef
Wolf, S.,
Schott, L.,
Köthe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Learned Watershed: End-to-End Learning of Seeded Segmentation,
ICCV17(2030-2038)
IEEE DOI
1802
computerised tomography, image segmentation,
learning (artificial intelligence), medical image processing,
Training
BibRef
Xia, J.H.[Jian-Hua],
Zhang, J.B.[Jin-Bing],
Wang, Y.[Yang],
Han, L.X.[Li-Xin],
Yan, H.[Hong],
WC-KNNG-PC: Watershed clustering based on k-nearest-neighbor graph
and Pauta Criterion,
PR(121), 2022, pp. 108177.
Elsevier DOI
2109
Watershed clustering, -nearest neighbor graph (KNNG),
Pauta criterion, Shared nearest neighbor (SNN)
BibRef
Chabardès, T.[Théodore],
Dokládal, P.[Petr],
Faessel, M.[Matthieu],
Bilodeau, M.[Michel],
A Parallel, O(n) Algorithm for an Unbiased, Thin Watershed,
IPOL(12), 2022, pp. 50-71.
DOI Link
2204
Code, Watershed.
BibRef
Earlier:
A parallel, O(N) algorithm for unbiased, thin watershed,
ICIP16(2569-2573)
IEEE DOI
1610
Computer architecture
BibRef
Soor, S.[Sampriti],
Sagar, B.S.D.[B. S. Daya],
Segmentation of Multi-Band Images Using Watershed Arcs,
SPLetters(29), 2022, pp. 2407-2411.
IEEE DOI
2212
Image segmentation, Image edge detection, Costs, Merging,
Target recognition, Pattern recognition, Object detection, region merging
BibRef
Mahmoudi, R.[Ramzi],
Ventricular segmentation and modeling using topological watershed
transformation and harmonic state model,
IJIST(33), No. 2, 2023, pp. 680-700.
DOI Link
2303
cardiac, harmonic model, Kalman filter, modeling, MRI,
right ventricle, segmentation, topological, watershed
BibRef
Figliuzzi, B.[Bruno],
Chang, K.W.[Kai-Wen],
Faessel, M.[Matthieu],
Hierarchical Segmentation Based Upon Multi-resolution Approximations
and the Watershed Transform,
ISMM17(185-195).
Springer DOI
1706
BibRef
Dias, F.[Fabio],
Mansour, M.R.[Moussa R.],
Valdivia, P.[Paola],
Cousty, J.[Jean],
Najman, L.[Laurent],
Watersheds on Hypergraphs for Data Clustering,
ISMM17(211-221).
Springer DOI
1706
BibRef
Zhang, C.[Chao],
Makrogiannis, S.[Sokratis],
Finding the N-cuts of Watershed Partitions for Image Segmentation,
ISVC15(I: 221-230).
Springer DOI
1601
BibRef
Hu, Z.W.[Zhong-Wen],
Zou, Q.[Qin],
Li, Q.Q.[Qing-Quan],
Watershed superpixel,
ICIP15(349-353)
IEEE DOI
1512
image segmentation; spatial constraint; superpixel; watershed
BibRef
Machairas, V.[Vaïa],
Decencière, E.[Etienne],
Walter, T.[Thomas],
Spatial Repulsion Between Markers Improves Watershed Performance,
ISMM15(194-202).
Springer DOI
1506
BibRef
Porter, R.[Reid],
Oyen, D.[Diane],
Zimmer, B.G.[Beate G.],
Learning Watershed Cuts Energy Functions,
ISMM15(497-508).
Springer DOI
1506
BibRef
Lopez-Mir, F.,
Naranjo, V.,
Morales, S.,
Angulo, J.,
Probability density function of object contours using regional
regularized stochastic watershed,
ICIP14(4762-4766)
IEEE DOI
1502
Image edge detection
BibRef
Duarte, K.T.N.[Kauê T. N.],
de Carvalho, M.A.G.[Marco A. G.],
Martins, P.S.[Paulo S.],
Adding GLCM Texture Analysis to a Combined Watershed Transform and
Graph Cut Model for Image Segmentation,
ACIVS17(569-580).
Springer DOI
1712
BibRef
Pinto, T.W.,
de Carvalho, M.A.G.[Marco A. G.],
Pedronette, D.C.G.,
Martins, P.S.[Paulo S.],
Image segmentation through combined methods:
Watershed transform, unsupervised distance learning and Normalized Cut,
Southwest14(153-156)
IEEE DOI
1406
graph theory
BibRef
Masi, G.[Giuseppe],
Scarpa, G.[Giuseppe],
A Watershed-Based Segmentation Technique for Multiresolution Data,
CIAP13(I:241-250).
Springer DOI
1311
BibRef
Yang, D.[Di],
Gould, S.[Stephen],
Hutter, M.[Marcus],
A Noise Tolerant Watershed Transformation with Viscous Force for Seeded
Image Segmentation,
ACCV12(I:775-789).
Springer DOI
1304
BibRef
Attig, A.[Anja],
Perner, P.[Petra],
Incremental Learning of the Model for Watershed-Based Image
Segmentation,
IWCIA12(209-222).
Springer DOI
1211
BibRef
Wang, D.D.[Da-Dong],
Vallotton, P.[Pascal],
Improved marker-controlled watershed segmentation with local boundary
priors,
IVCNZ10(1-6).
IEEE DOI
1203
BibRef
Shadkami, P.[Pasha],
Bonnier, N.[Nicolas],
Watershed Based Document Image Analysis,
ACIVS10(I: 114-124).
Springer DOI
1012
BibRef
Swiercz, M.[Michal],
Iwanowski, M.[Marcin],
Fast, Parallel Watershed Algorithm Based on Path Tracing,
ICCVG10(II: 317-324).
Springer DOI
1009
BibRef
Attia, D.,
Meurie, C.[Cyril],
Ruichek, Y.[Yassine],
Eigen Combination of Colour and Texture Informations for Image
Segmentation,
ICISP12(415-423).
Springer DOI
1208
BibRef
Meurie, C.[Cyril],
Cohen, A.[Andrea],
Ruichek, Y.[Yassine],
An Efficient Combination of Texture and Color Information for Watershed
Segmentation,
ICISP10(147-156).
Springer DOI
1006
BibRef
Chen, L.[Li],
Jiang, M.[Min],
Chen, J.X.[Jian-Xun],
Image segmentation using iterative watersheding plus ridge detection,
ICIP09(4033-4036).
IEEE DOI
0911
BibRef
Chen, D.F.[Dong-Fang],
Xu, T.[Tao],
Watershed Segmentation Using Curvelet and Morphological Filtering,
CISP09(1-5).
IEEE DOI
0910
BibRef
Hanselmann, M.[Michael],
Köthe, U.[Ullrich],
Renard, B.Y.[Bernhard Y.],
Kirchner, M.[Marc],
Heeren, R.M.A.[Ron M. A.],
Hamprecht, F.A.[Fred A.],
Multivariate Watershed Segmentation of Compositional Data,
DGCI09(180-192).
Springer DOI
0909
BibRef
Meine, H.[Hans],
Stelldinger, P.[Peer],
Köthe, U.[Ullrich],
Pixel Approximation Errors in Common Watershed Algorithms,
DGCI09(193-202).
Springer DOI
0909
BibRef
Monteiro, F.C.[Fernando C.],
Campilho, A.[Aurelio],
Watershed framework to region-based image segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kauffmann, C.[Claude],
Piche, N.[Nicolas],
Cellular automaton for ultra-fast watershed transform on GPU,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chef d'Hotel, C.[Christophe],
Sebbane, A.[Alexis],
Random Walk and Front Propagation on Watershed Adjacency Graphs for
Multilabel Image Segmentation,
ICV07(1-7).
IEEE DOI
0710
BibRef
Delest, S.[Sebastien],
Bone, R.[Romuald],
Cardot, H.[Hubert],
Automatically Computed Markers for the 3D Watershed Segmentation,
ICIP07(VI: 533-536).
IEEE DOI
0709
BibRef
Corcoran, P.[Padraig],
Winstanley, A.[Adam],
Watershed Segmentation Using a Multiscale Ramp Edge Merging Strategy,
IMVIP07(158-168).
IEEE DOI
0709
BibRef
Mory, B.[Benoit],
Ardon, R.[Roberto],
Thiran, J.P.[Jean-Philippe],
Variational Segmentation using Fuzzy Region Competition and Local
Non-Parametric Probability Density Functions,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Mory, B.[Benoit],
Ardon, R.[Roberto],
Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework,
SSVM07(214-226).
Springer DOI
0705
BibRef
Lefèvre, S.[Sébastien],
Knowledge from Markers in Watershed Segmentation,
CAIP07(579-586).
Springer DOI
0708
BibRef
de Bock, J.[Johan],
Philips, W.[Wilfried],
Line Segment Based Watershed Segmentation,
MIRAGE07(579-586).
Springer DOI
0703
BibRef
Huang, W.L.[Wen-Long],
Jiao, L.C.[Li-Cheng],
Unsupervised Texture Segmentation Based on Watershed and a Novel
Artificial Immune Antibody Competitive Network,
PSIVT06(495-503).
Springer DOI
0612
BibRef
Pina, P.[Pedro],
Saraiva, J.[José],
Bandeira, L.[Lourenço],
Barata, T.[Teresa],
Identification of Martian Polygonal Patterns Using the Dynamics of
Watershed Contours,
ICIAR06(II: 691-699).
Springer DOI
0610
BibRef
Macenko, M.[Marc],
Celenk, M.[Mehmet],
Ma, L.M.[Li-Min],
Lesion Detection Using Morphological Watershed Segmentation and
Modelbased Inverse Filtering,
ICPR06(IV: 679-682).
IEEE DOI
0609
BibRef
Climent, J.[Joan],
Sanfeliu, A.[Alberto],
Visually Significant Dynamics for Watershed Segmentation,
ICPR06(II: 341-344).
IEEE DOI
0609
BibRef
Pinidiyaarachchi, A.[Amalka],
Wählby, C.[Carolina],
Seeded Watersheds for Combined Segmentation and Tracking of Cells,
CIAP05(336-343).
Springer DOI
0509
BibRef
Holting, P.[Per],
Wählby, C.[Carolina],
Easy-to-Use Object Selection by Color Space Projections and Watershed
Segmentation,
CIAP05(269-276).
Springer DOI
0509
BibRef
Guerfi, S.,
Gambotto, J.P.,
Lelandais, S.,
Implementation of the watershed method in the HSI color space for the
face extraction,
AVSBS05(282-286).
IEEE DOI
0602
BibRef
Tek, H.[Huseyin],
Akova, F.[Ferit],
Ayvacy, A.[Alper],
Region Competition via Local Watershed Operators,
CVPR05(II: 361-368).
IEEE DOI
0507
BibRef
Huang, X.Q.[Xiao-Qiang],
Fisher, M.[Mark],
Zhu, Y.O.[Yan-Ong],
From Min Tree to Watershed Lake Tree: Theory and Implementation,
ICIAR04(I: 848-857).
Springer DOI
0409
BibRef
Huang, X.Q.[Xiao-Qiang],
Fisher, M.[Mark],
From Min Tree to Watershed Lake Tree: Evaluation,
ICIAR04(I: 858-865).
Springer DOI
0409
BibRef
Gies, V.,
Bernard, T.M.,
Statistical solution to watershed over-segmentation,
ICIP04(III: 1863-1866).
IEEE DOI
0505
BibRef
Hu, Y.[Yi],
Nagao, T.,
A matching method based on marker-controlled watershed segmentation,
ICIP04(I: 283-286).
IEEE DOI
0505
BibRef
Chen, Q.X.[Qiu-Xiao],
Zhou, C.H.[Cheng-Hu],
Luo, J.C.[Jian-Cheng],
Ming, D.P.[Dong-Ping],
Fast Segmentation of High-Resolution Satellite Images Using Watershed
Transform Combined with an Efficient Region Merging Approach,
IWCIA04(621-630).
Springer DOI
0505
BibRef
Park, C.B.[Chang-Beom],
Lee, K.W.[Kwang-Woo],
Lee, S.W.[Seong-Whan],
Automatic microarray image segmentation based on watershed
transformation,
ICPR04(III: 786-789).
IEEE DOI
0409
BibRef
Kazanov, M.,
A new color image segmentation algorithm based on watershed
transformation,
ICPR04(II: 590-593).
IEEE DOI
0409
BibRef
Soares, F.,
Muge, F.,
Watershed lines suppression by waterfall marker improvement and
lineneighbourhood analysis,
ICPR04(I: 604-607).
IEEE DOI
0409
BibRef
Kazanov, M.,
Modification of watershed transformation for images, containing small
objects,
ICPR04(I: 612-615).
IEEE DOI
0409
BibRef
Scheunders, P.,
Sijbers, J.,
Multiscale watershed segmentation of multivalued images,
ICPR02(III: 855-858).
IEEE DOI
0211
See also orthogonal wavelet representation of multivalued images, An.
BibRef
Scheunders, P.,
Multivalued image segmentation based on first fundamental form,
CIAP01(185-190).
IEEE DOI
0210
Combine edges and color info. Watershed.
BibRef
Eom, S.[Sungeun],
Chang, S.[Seokcheol],
Ahn, B.[Byungha],
Watershed-based region merging using conflicting regions,
ICIP02(II: 781-784).
IEEE DOI
0210
BibRef
Vanderstockt, Y.,
Whyte, R.N.,
Watershed Transfromation: Reducing the Over-Segmentation Problem by
Applying a Noice Reducer and a Region Merger,
WSCG02(POS-57).
HTML Version.
0209
BibRef
Mortensen, E.N.[Eric N.],
Jia, J.[Jin],
Real-Time Semi-Automatic Segmentation Using a Bayesian Network,
CVPR06(I: 1007-1014).
IEEE DOI
0606
BibRef
Earlier:
A Bayesian Network Framework for Real-Time Object Selection,
PercOrg04(44).
IEEE DOI
0502
BibRef
Blaffert, T.,
Dippel, S.,
Stahl, M.,
Wiemker, R.,
The Laplace Integral for a Watershed Segmentation,
ICIP00(Vol III: 444-447).
IEEE DOI
0008
BibRef
Yuan, Y.[Yu],
Barner, K.,
Color Image Segmentation Using Watersheds and Joint Homogeneity-Edge
Integrity Region Merging Criteria,
ICIP06(1117-1120).
IEEE DOI
0610
BibRef
Hernandez, S.,
Barner, K.,
Joint Region Merging Criteria for Watershed-based Image Segmentation,
ICIP00(Vol II: 108-111).
IEEE DOI
0008
BibRef
Sporring, J.[Jon],
Olsen, O.F.[Ole Fogh],
Segmenting by Compression using Linear Scale-Space and Watersheds,
ScaleSpace99(513-518).
BibRef
9900
Shiji, A.[Ayako],
Hamada, N.[Nozomu],
Color Image Segmentation Method using Watershed Algorithm and Contour
Information,
ICIP99(IV:305-309).
IEEE DOI
BibRef
9900
Patras, I.,
Hendriks, E.A.,
Lagendijk, R.L.,
An iterative motion estimation-segmentation method using watershed
segments,
ICIP98(II: 642-646).
IEEE DOI
9810
BibRef
Olsen, O.F.[Ole Fogh],
Nielsen, M.[Mads],
Multi-scale gradient magnitude watershed segmentation,
CIAP97(I: 6-13).
Springer DOI
9709
BibRef
Hagyard, D.,
Razaz, M.,
Atkin, P.,
Analysis of watershed algorithms for greyscale images,
ICIP96(III: 41-44).
IEEE DOI
9610
BibRef
Geraud, T.,
Mangin, J.F.,
Bloch, I.,
Maitre, H.,
Segmenting internal structures in 3D MR images of the brain by
Markovian relaxation on a watershed based adjacency graph,
ICIP95(III: 548-551).
IEEE DOI
9510
BibRef
Meijster, A.,
Roerdink, J.B.T.M.,
A proposal for the implementation of a parallel watershed algorithm,
CAIP95(790-795).
Springer DOI
9509
BibRef
Saarinen, K.,
Color image segmentation by a watershed algorithm and region adjacency
graph processing,
ICIP94(III: 1021-1025).
IEEE DOI
9411
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Segmentation by Split and Merge Techniques, Hierarchical .