4.10.1 Wavelet Representations

Chapter Contents (Back)
Wavelets. Representation, Wavelets. Wavelet transformations are generated by a smoothing filter and a wavelet filter. Different wavelet filters can be applied. One interpretation is that the wavelet transform is the same as applying quadrature mirror filters. The wavelet provides both time and frequency information. (Or in images space and frequency.) For general wavelet information see: Wavelet.Org:
WWW Link.
See also Wavelets for Watermarks.
See also Shearlet Based Restoration, Noise, Compressive Sensing.

Grosssmann, A., and Morlet, J.,
Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape,
SIAM_Math(15), 1984, pp. 723-736. The mathmatical introduction of wavelets. Later adopted by computer vision. BibRef 8400

Pentland, A.P.[Alex P.],
Interpolation Using Wavelet Bases,
PAMI(16), No. 4, April 1994, pp. 410-414.
IEEE DOI BibRef 9404
Earlier:
Surface Interpolation Using Wavelets,
ECCV92(615-619).
Springer DOI BibRef
And:
Spatial and Temporal Surface Interpolation Using Wavelet Bases,
SPIE(1570), 1991, pp. 43-62. Surface Reconstruction. Regularization. BibRef

Mann, S.[Steve],
Wavelets and 'Chirplets': Time-Frequence 'Perspectives' with Applications,
AMV Strategies921992, pp. 99-128. Both space and time domain sampling. BibRef 9200

Barrat, M., Lepetit, O.,
Recursive Wavelet Transform for 2D Signals,
GMIP(56), No. 1, January 1994, pp. 106-108. BibRef 9401

Wang, G.F., Zhang, J., Pan, G.W.,
Solution of Inverse Problems in Image-Processing by Wavelet Expansion,
IP(4), No. 5, May 1995, pp. 579-593.
IEEE DOI BibRef 9505
And: Corrections: IP(4), No. 9, September 1995, pp. 1340. BibRef

Haddad, Z.S., Simanca, S.R.,
Filtering Image Records Using Wavelets and the Zakai Equation,
PAMI(17), No. 11, November 1995, pp. 1069-1078.
IEEE DOI BibRef 9511

Hessnielsen, N., Wickerhauser, M.V.,
Wavelets and Time-Frequency Analysis,
PIEEE(84), No. 4, April 1996, pp. 523-540. BibRef 9604

Li, Y., Szu, H.H., Sheng, Y.L., Caulfield, H.J.,
Wavelet Processing and Optics,
PIEEE(84), No. 5, May 1996, pp. 720-732. 9605
BibRef

Mukherjee, S.[Shayan], Nayar, S.K.[Shree K.],
Automatic-Generation of RBF Networks Using Wavelets,
PR(29), No. 8, August 1996, pp. 1369-1383.
Elsevier DOI 9608
BibRef

Swanson, M.D., Tewfik, A.H.,
A Binary Wavelet Decomposition of Binary Images,
IP(5), No. 12, December 1996, pp. 1637-1650.
IEEE DOI 9701
BibRef
Earlier:
Wavelet decomposition of binary finite images,
ICIP94(I: 61-65).
IEEE DOI 9411
BibRef

Mohanty, K.K.,
The Wavelet Transform for Local Image-Enhancement,
JRS(18), No. 1, January 10 1997, pp. 213-219. 9701
Enhancement. BibRef

Polchlopek, H.M., Noonan, J.P.,
Wavelets, Detection, Estimation, and Sparsity,
DSP(7), No. 1, January 1997, pp. 28-36. 9703
BibRef

Benno, S.A., Moura, J.M.F.,
On Translation Invariant Subspaces and Critically Sampled Wavelet Transforms,
MultiSP(8), No. 1-2, January 1997, pp. 89-110. 9703
BibRef

Watson, G.H., Watson, S.K.,
Wavelet Transforms on Vector-Spaces as a Method of Multispectral Image Characterization,
VISP(144), No. 2, April 1997, pp. 89-97. 9706
BibRef

Cha, H.T., Chaparro, L.F.,
Adaptive Morphological Representation of Signals: Polynomial and Wavelet Methods,
MultiSP(8), No. 3, July 1997, pp. 249-271. 9707
BibRef

Lina, J.M.,
Image-Processing with Complex Daubechies Wavelets,
JMIV(7), No. 3, June 1997, pp. 211-223.
DOI Link 9708
BibRef

Matteau-Pelletier, C., Dehaes, M., Lesage, F., Lina, J.M.,
1/f Noise in Diffuse Optical Imaging and Wavelet-Based Response Estimation,
MedImg(28), No. 3, March 2009, pp. 415-422.
IEEE DOI 0903
BibRef

Chen, H., Kawai, Y., Maeda, H.,
Reduction of Gibbs Overshoot in Continuous Wavelet Transform,
IEICE(E80-A), No. 8, August 1997, pp. 1352-1361. 9709
BibRef

Chu, Y., Fang, W.H.,
An Efficient Approach for the Harmonic Retrieval Problem via Haar Wavelet Transform,
SPLetters(4), No. 12, December 1997, pp. 331-333.
IEEE Top Reference. 9801
BibRef

Hirchoren, G.A., Dattellis, C.E.,
On the Optimal Number of Scales in Estimation of Fractal Signals Using Wavelets and Filter Banks,
SP(63), No. 1, November 1997, pp. 55-63. 9801
BibRef

Evangelista, G., Cavaliere, S.,
Discrete Frequency Warped Wavelets: Theory and Applications,
TSP(46), No. 4, April 1998, pp. 874-885. 9804
BibRef

Chen, L.L., Chen, C.W., Parker, K.J.,
Adaptive Feature Enhancement for Mammographic Images with Wavelet Multiresolution Analysis,
JEI(6), No. 4, October 1997, pp. 467-478. 9807
BibRef

Wu, B.F., Su, Y.L.,
On Stationarizability for Nonstationary 2-D Random-Fields Using Discrete Wavelet Transforms,
IP(7), No. 9, September 1998, pp. 1359-1366.
IEEE DOI 9809
BibRef

Busch, C., Debes, E.,
Wavelet Transform for Analyzing fog Visibility,
IEEE_Expert(13), No. 6, November/December 1998, pp. 66-71. 9812
BibRef

Strela, V., Heller, P.N., Strang, G., Topiwala, P., Heil, C.,
The Application of Multiwavelet Filterbanks to Image Processing,
IP(8), No. 4, April 1999, pp. 548-563.
IEEE DOI BibRef 9904

Singh, H., Heller, P.N.,
WaveTool: an integrated software for wavelet and multirate signal processing,
ICIP95(I: 85-88).
IEEE DOI 9510
BibRef

Scheunders, P.,
A multivalued image wavelet representation based on multiscale fundamental forms,
IP(11), No. 5, May 2002, pp. 568-575.
IEEE DOI 0206

See also Fusion and merging of multispectral images with use of multiscale fundamental forms. BibRef

Scheunders, P.,
An orthogonal wavelet representation of multivalued images,
IP(12), No. 6, June 2003, pp. 718-725.
IEEE DOI 0307
BibRef

Scheunders, P.,
Multiscale fundamental forms: a multimodal image wavelet representation,
CIAP01(179-184).
IEEE DOI o 0210
BibRef

Segman, J.[Joseph], Zeevi, Y.Y.,
Image analysis by wavelet-type transforms: Group theoretic approach,
JMIV(3), No. 1, 1993, pp. 51-77. BibRef 9300

Sagiv, C.[Chen], Sochen, N.A.[Nir A.], Zeevi, Y.Y.[Yehoshua Y.],
The Uncertainty Principle: Group Theoretic Approach, Possible Minimizers and Scale-Space Properties,
JMIV(26), No. 1-2, November 2006, pp. 149-166.
Springer DOI 0701
BibRef
Earlier:
Scale-Space Generation via Uncertainty Principles,
ScaleSpace05(351-362).
Springer DOI 0505
BibRef

Ferdman, Y.[Yossi], Sagiv, C.[Chen], Sochen, N.A.[Nir A.],
Full Affine Wavelets Are Scale-Space with a Twist,
SSVM07(1-12).
Springer DOI 0705
BibRef

Zhu, H.X.[Hui-Xia], Ritter, G.X.,
The generalized matrix product and the wavelet transform,
JMIV(3), No. 1, 1993, pp. 95-104. BibRef 9300

Peyrin, F., Zaim, M., Goutte, R.,
Construction of wavelet decompositions for tomographic images,
JMIV(3), No. 1, 1993, pp. 105-121. BibRef 9300

Antoine, J.P., Carrette, P., Murenzi, R., Piette, B.,
Image analysis with 2-D continuous wavelet transform,
SP(31), No. 3, 1993, pp. 241-272. BibRef 9300
And: Correction. SP(35), No. 1, 1994, pp. 93. BibRef

Jansen, M., Bultheel, A.,
Multiple Wavelet Threshold Estimation by Generalized Cross Validation for Images with Correlated Noise,
IP(8), No. 7, July 1999, pp. 947-953.
IEEE DOI BibRef 9907

van Aerschot, W., Jansen, M., Bultheel, A.,
Normal mesh based geometrical image compression,
IVC(27), No. 4, 3 March 2009, pp. 459-468.
Elsevier DOI 0804
BibRef
Earlier:
A Nonlinear Contour Preserving Transform for Geometrical Image Compression,
IMVIP07(143-149).
IEEE DOI 0709
Normal multiresolution mesh, Image compression, Piecewise smooth, Wavelets BibRef

Crouse, M.S., Nowak, R.D., Baraniuk, R.G.,
Wavelet-Based Statistical Signal-Processing Using Hidden Markov-Models,
TSP(46), No. 4, April 1998, pp. 886-902. 9804
BibRef

Nowak, R.D., Baraniuk, R.G.,
Wavelet-Domain Filtering for Photon Imaging Systems,
IP(8), No. 5, May 1999, pp. 666-678.
IEEE DOI BibRef 9905

Romberg, J.K.[Justin K.], Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.[Richard G.],
Bayesian tree-structured image modeling using wavelet-domain hidden markov models,
IP(10), No. 7, July 2001, pp. 1056-1068.
IEEE DOI 0108
BibRef
Earlier:
Bayesian Wavelet-Domain Image Modeling using Hidden Markov Trees,
ICIP99(I:158-162).
IEEE DOI BibRef

Romberg, J.K.[Justin K.], Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.[Richard G.],
Multiscale Edge Grammars for Complex Wavelet Transforms,
ICIP01(I: 614-617).
IEEE DOI 0108
BibRef
Earlier:
Multiscale Classification Using Complex Wavelets and Hidden Markov Tree Models,
ICIP00(Vol II: 371-374).
IEEE DOI 0008
BibRef

Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.[Richard G.],
Multiscale image segmentation using wavelet-domain hidden Markov models,
IP(10), No. 9, September 2001, pp. 1309-1321.
IEEE DOI 0108
BibRef

Baraniuk, R.G.,
Wavelet soft-thresholding of time-frequency representations,
ICIP94(I: 71-74).
IEEE DOI 9411
BibRef

Berkner, K., Wells, Jr., R.O.,
A New Hierarchical Scheme for Approximating the Continuous Wavelet Transform with Applications to Edge Detection,
SPLetters(6), No. 8, August 1999, pp. 193.
IEEE Top Reference. BibRef 9908

Aldroubi, A.[Akram], Eden, M.[Murray], and Unser, M.[Michael],
Discrete Spline Filters for Multiresolutions and Wavelets of L2,
MathAnal(25), No 5, 1994, pp. 1412-1433. BibRef 9400

Unser, M.[Michael],
Vanishing moments and the approximation power of wavelet expansions,
ICIP96(I: 629-632).
IEEE DOI BibRef 9600

Unser, M.,
Multigrid adaptive image processing,
ICIP95(I: 49-52).
IEEE DOI 9510
BibRef

Blu, T., and Unser, M.,
Quantitative L2 Error Analysis for Interpolation Methods and Wavelet Expansions,
ICIP97(I: 663-666).
IEEE DOI BibRef 9700

Luisier, F., Blu, T.,
SURE-LET Multichannel Image Denoising: Interscale Orthonormal Wavelet Thresholding,
IP(17), No. 4, April 2008, pp. 482-492.
IEEE DOI 0803
BibRef

Luisier, F., Blu, T., Unser, M.,
A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding,
IP(16), No. 3, March 2007, pp. 593-606.
IEEE DOI 0703
BibRef
Earlier:
Sure-Based Wavelet Thresholding Integrating Inter-Scale Dependencies,
ICIP06(1457-1460).
IEEE DOI 0610
BibRef

Blu, T., Luisier, F.,
The SURE-LET Approach to Image Denoising,
IP(16), No. 11, November 2007, pp. 2778-2786.
IEEE DOI 0709
BibRef

Luisier, F., Blu, T., Unser, M.,
SURE-LET for Orthonormal Wavelet-Domain Video Denoising,
CirSysVideo(20), No. 6, June 2010, pp. 913-919.
IEEE DOI 1007
BibRef

Tafti, P.D.[Pouya Dehghani], van de Ville, D., Unser, M.[Michael],
Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes,
IP(18), No. 4, April 2009, pp. 689-702.
IEEE DOI 0903
Extend Blu and Unser to multivariate. BibRef

Unser, M., Sage, D., van de Ville, D.,
Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform,
IP(18), No. 11, November 2009, pp. 2402-2418.
IEEE DOI 0911
BibRef

Unser, M.[Michael], van de Ville, D.[Dimitri],
Wavelet Steerability and the Higher-Order Riesz Transform,
IP(19), No. 3, March 2010, pp. 636-652.
IEEE DOI 1003
BibRef
Earlier:
Higher-order riesz transforms and steerable wavelet frames,
ICIP09(3801-3804).
IEEE DOI 0911
BibRef

van de Ville, D.[Dimitri], Unser, M.[Michael],
The Marr wavelet pyramid,
ICIP08(2804-2807).
IEEE DOI 0810
BibRef

Kovacevic, J., Sweldens, W.,
Wavelet Families of Increasing Order in Arbitrary Dimensions,
IP(9), No. 3, March 2000, pp. 480-496.
IEEE DOI 0003
BibRef

Hilton, M.L., Panda, P., Jawerth, B., Sweldens, W.,
Wavelet-based cosine crossings of signals,
ICIP95(I: 57-60).
IEEE DOI 9510
BibRef

Hung, K.C.,
The Generalized Uniqueness Wavelet Descriptor for Planar Closed Curves,
IP(9), No. 5, May 2000, pp. 834-845.
IEEE DOI 0005
Curve Representations. BibRef

Hung, K.C.[King-Chu], Chen, C.L.[Chih-Liang], Kuo, J.M.[Jyh-Ming],
The Generalized Uniqueness Wavelet Descriptor,
ICIP99(I:600-604).
IEEE DOI BibRef 9900

Tang, Y.Y., Yang, L., Liu, J.,
Characterization of Dirac Structure Edges with Wavelet Transform,
SMC-B(30), No. 1, February 2000, pp. 93-109.
IEEE Top Reference. 0004
BibRef

He, W., Lai, M.J.,
Examples of Bivariate Nonseparable Compactly Supported Orthonormal Continuous Wavelets,
IP(9), No. 5, May 2000, pp. 949-953.
IEEE DOI 0005
BibRef

Liew, A.W.C., Law, N.F.,
Reconstruction from 2-D wavelet transform modulus maxima using projection,
VISP(147), No. 2, April 2000, pp. 176. 0005
BibRef

Duchowski, A.T.,
Acuity-Matching Resolution Degradation Through Wavelet Coefficient Scaling,
IP(9), No. 8, August 2000, pp. 1437-1440.
IEEE DOI 0008
BibRef

Chang, S.G., Yu, B., Vetterli, M.,
Wavelet Thresholding for Multiple Noisy Image Copies,
IP(9), No. 9, September 2000, pp. 1631-1635.
IEEE DOI 0008
BibRef

Chang, S.G., Yu, B.[Bin], Vetterli, M.,
Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising,
IP(9), No. 9, September 2000, pp. 1522-1531.
IEEE DOI 0008
BibRef
Earlier: ICIP98(I: 535-539).
IEEE DOI 9810
BibRef

Chang, S.G., Yu, B.[Bin], Vetterli, M.,
Adaptive Wavelet Thresholding for Image Denoising and Compression,
IP(9), No. 9, September 2000, pp. 1532-1546.
IEEE DOI 0008
BibRef
Earlier:
Multiple copy image denoising via wavelet thresholding,
ICIP98(I: 545-549).
IEEE DOI 9810
BibRef
Earlier:
Image Denoising via Lossy Compression and Wavelet Thresholding,
ICIP97(I: 604-607).
IEEE DOI BibRef

Chang, S.G., and Vetterli, M.,
Spatial Adaptive Wavelet Thresholding for Image Denoising,
ICIP97(II: 374-377).
IEEE DOI BibRef 9700

Dasgupta, N.[Nilanjan], Runkle, P.[Paul], Couchman, L.[Luise], Carin, L.[Lawrence],
Dual hidden Markov model for characterizing wavelet coefficients from multi-aspect scattering data,
SP(81), No. 6, June 2001, pp. 1303-1316.
Elsevier DOI 0106
BibRef

Shi, Z.[Zhuoer], Wei, G.W., Kouri, D.J., Hoffman, D.K., Bao, Z.[Zheng],
Lagrange wavelets for signal processing,
IP(10), No. 10, October 2001, pp. 1488-1508.
IEEE DOI 0110
BibRef

Liu, J.[Juan], Moulin, P.[Pierre],
Complexity-Regularized Image Denoising,
IP(10), No. 6, June 2001, pp. 841-851.
IEEE DOI 0106
BibRef
Earlier: ICIP97(II: 370-373).
IEEE DOI BibRef
And:
Complexity-regularized Denoising of Poisson-corrupted Data,
ICIP00(Vol III: 254-257).
IEEE DOI 0008
BibRef

Liu, J.[Juan], Moulin, P.,
Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients,
IP(10), No. 11, November 2001, pp. 1647-1658.
IEEE DOI 0201
BibRef
Earlier:
Approximation-Theoretic Analysis of Translation Invariant Wavelet Expansions,
ICIP01(I: 622-625).
IEEE DOI 0108
BibRef
And:
Statistical Image Restoration Based on Adaptive Wavelet Models,
ICIP01(II: 21-24).
IEEE DOI 0108
BibRef
Earlier:
Analysis of Interscale and Intrascale Dependencies Between Image Wavelet Coefficients,
ICIP00(Vol I: 669-672).
IEEE DOI 0008
BibRef
Earlier:
Complexity-regularized image restoration,
ICIP98(I: 555-559).
IEEE DOI 9810
BibRef

Simoncelli, E.P., and Olshausen, B.A.,
Natural Image statistics and neural representation,
AnnNeuro(24), May 2001, pp. 1193-1216 ICA. efficient coding, cortex, neurobiology,
HTML Version. BibRef 0105

Hyvarinen, A.[Aapo], Hurri, J.[Jarmo], Vayrynen, J.[Jaakko],
Bubbles: A Unifying Framework for Low-Level Statistical Properties of Natural Image Sequences,
JOSA-A(20), No. 7, July 2003, pp. 1237-1252.
WWW Link. 0307
BibRef

Hurri, J.[Jarmo], Hyvarinen, A.[Aapo], and Oja, E.[Erkki],
Wavelets And Natural Image Statistics,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Lo, S.C.B., Li, H.[Huai], Freedman, M.T.,
Optimization of wavelet decomposition for image compression and feature preservation,
MedImg(22), No. 9, September 2003, pp. 1141-1151.
IEEE Abstract. 0309
BibRef

Lo, S.C.B., Li, H.[Huai], Krasner, B.H., Freedman, M.T., Mun, S.K.,
A contour coding and full-frame compression of discrete wavelet and cosine transforms,
ICIP95(II: 9-12).
IEEE DOI 9510
BibRef

Li, X.[Xin],
On exploiting geometric constraint of image wavelet coefficients,
IP(12), No. 11, November 2003, pp. 1378-1387.
IEEE DOI 0311
BibRef
Earlier:
On exploiting phase constraint with image wavelet coefficients,
ICIP02(III: 221-224).
IEEE DOI 0210
BibRef

Ray, S., Mallick, B.K.,
A Bayesian transformation model for wavelet shrinkage,
IP(12), No. 12, December 2003, pp. 1512-1521.
IEEE DOI 0402
BibRef

Ray, S., Chan, A., Mallick, B.K.,
Bayesian wavelet shrinkage in transformation based normal models,
ICIP02(I: 876-879).
IEEE DOI 0210
BibRef

Meignen, S.,
Application of the convergence of the control points of B-splines to wavelet decomposition at rational scales and rational location,
SPLetters(12), No. 1, January 2005, pp. 29-32.
IEEE Abstract. 0501
BibRef

Meignen, S.,
Application of the Convergence of the Control Net of Box Splines to Scale-Space Filtering,
IP(16), No. 11, November 2007, pp. 2842-2848.
IEEE DOI 0709
BibRef

Spence, C.D.[Clay Douglas], Parra, L.C.[Lucas C.], Sajda, P.,
Varying Complexity in Tree-Structured Image Distribution Models,
IP(15), No. 2, February 2006, pp. 319-330.
IEEE DOI 0602
Variation on Hidden Markov Tree models.
See also Wavelet-Based Statistical Signal-Processing Using Hidden Markov-Models. BibRef

Spence, C.D.[Clay Douglas], Parra, L.C.[Lucas C.],
Method and apparatus for image processing by generating probability distribution of images,
US_Patent6,704,454, Mar 9, 2004
WWW Link. BibRef 0403

Bayro-Corrochano, E.[Eduardo],
The Theory and Use of the Quaternion Wavelet Transform,
JMIV(24), No. 1, January 2006, pp. 19-35.
Springer DOI 0605
BibRef

Moya-Sánchez, E.U.[E. Ulises], Bayro-Corrochano, E.[Eduardo],
Quaternion Atomic Function Wavelet for Applications in Image Processing,
CIARP10(346-353).
Springer DOI 1011
BibRef

Chaux, C.[Caroline], Duval, L., Pesquet, J.C.[Jean-Christophe],
Image Analysis Using a Dual-Tree M-Band Wavelet Transform,
IP(15), No. 8, August 2006, pp. 2397-2412.
IEEE DOI 0606

See also Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization. BibRef

Atkinson, I.C., Kamalabadi, F., Mohan, S., Jones, D.L.,
Asymptotically optimal blind estimation of multichannel images,
IP(15), No. 4, April 2006, pp. 992-1007.
IEEE DOI 0604
BibRef
Earlier:
Wavelet-based 2-d multichannel signal estimation,
ICIP03(II: 141-144).
IEEE DOI 0312
BibRef

Atkinson, I.C.[Ian C.], Kamalabadi, F.[Farzad],
Transform-domain penalized-likelihood filtering of tomographic data,
IJIST(18), No. 5-6, 2008, pp. 350-364.
DOI Link 0804
BibRef
Earlier:
Transform-Domain Penalized-Likelihood Filtering of Projection Data,
ICIP06(881-884).
IEEE DOI 0610
BibRef

Alnasser, M., Foroosh, H.,
Phase-Shifting for Nonseparable 2-D Haar Wavelets,
IP(17), No. 7, July 2008, pp. 1061-1068.
IEEE DOI 0806

See also Comments on Phase-Shifting for Nonseparable 2-D Haar Wavelets. BibRef

Andreopoulos, Y.,
Comments on 'Phase-Shifting for Nonseparable 2-D Haar Wavelets',
IP(18), No. 8, August 2009, pp. 1897-1898.
IEEE DOI 0907
BibRef
And: Erratum to Comments IP(18), No. 9, September 2009, pp. 2143-2143.
IEEE DOI 0909

See also Phase-Shifting for Nonseparable 2-D Haar Wavelets. BibRef

Held, S., Storath, M., Massopust, P., Forster, B.,
Steerable Wavelet Frames Based on the Riesz Transform,
IP(19), No. 3, March 2010, pp. 653-667.
IEEE DOI 1003
BibRef

Krommweh, J.[Jens],
Tetrolet transform: A new adaptive Haar wavelet algorithm for sparse image representation,
JVCIR(21), No. 4, May 2010, pp. 364-374.
Elsevier DOI 1006
Adaptive wavelet transform, Directional wavelets, Haar-type wavelets; Locally orthonormal wavelet basis, Tetromino tiling, Image approximation, Data compression, Sparse representation BibRef

Xu, J.[Jun], Yang, L.[Lei], Wu, D.P.[Da-Peng],
Ripplet: A new transform for image processing,
JVCIR(21), No. 7, October 2010, pp. 627-639.
Elsevier DOI 1003
Harmonic analysis, Fourier transform, Wavelet transform, Curvelet transform, Image representation, Image compression, Transform coding; Image denoising BibRef

Xu, J.[Jun], Wu, D.P.[Da-Peng],
Ripplet transform type II transform for feature extraction,
IET-IPR(6), No. 4, 2012, pp. 374-385.
DOI Link 1205
BibRef

Murthy, V.S., Gupta, S., Mohanta, D.K.,
Digital image processing approach using combined wavelet hidden markov model for well-being analysis of insulators,
IET-IPR(5), No. 2, April 2011, pp. 171-183.
DOI Link 1103
BibRef

Shi, H., Luo, S.,
The biorthogonal wavelets that are redundant-free and nearly shift-insensitive,
JIVP(2012), No. 1 2012, pp. xx-yy.
DOI Link 1209
BibRef

Mishiba, K.[Kazu], Ikehara, M.[Masaaki], Yoshitome, T.[Takeshi],
Improved Seam Merging for Content-Aware Image Resizing,
IEICE(E96-D), No. 2, February 2013, pp. 349-356.
WWW Link. 1301
BibRef

Mishiba, K.[Kazu], Ikehara, M.[Masaaki], Yoshitome, T.[Takeshi],
Content Aware Image Resizing with Constraint of Object Aspect Ratio Preservation,
IEICE(E96-D), No. 11, November 2013, pp. 2427-2436.
WWW Link. 1311
BibRef

Mishiba, K.[Kazu], Yoshitome, T.[Takeshi],
Image resizing with SIFT feature preservation,
ICIP13(991-995)
IEEE DOI 1402
Bidirectional control BibRef

Mishiba, K.[Kazu], Ikehara, M.[Masaaki],
Seam carving in wavelet transform domain,
ICIP11(1497-1500).
IEEE DOI 1201
BibRef

Ward, J.P.[John Paul], Chaudhury, K.N.[Kunal Narayan], Unser, M.[Michael],
Decay Properties of Riesz Transforms and Steerable Wavelets,
SIIMS(6), No. 2, 2013, pp. 984-998.
DOI Link 1307
BibRef

Ward, J.P.[John Paul], Pad, P., Unser, M.[Michael],
Optimal Isotropic Wavelets for Localized Tight Frame Representations,
SPLetters(22), No. 11, November 2015, pp. 1918-1921.
IEEE DOI 1509
signal representation BibRef

Pad, P., Uhlmann, V., Unser, M.,
Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames,
IP(25), No. 5, May 2016, pp. 2275-2287.
IEEE DOI 1604
Algorithm design and analysis BibRef

Easley, G.R.[Glenn R.], Labate, D.[Demetrio], Patel, V.M.[Vishal M.],
Directional Multiscale Processing of Images Using Wavelets with Composite Dilations,
JMIV(48), No. 1, January 2014, pp. 13-34.
Springer DOI 1402
BibRef

Traoré, A.[Albekaye], Carré, P.[Philippe], Olivier, C.[Christian],
Quaternionic wavelet coefficients modeling for a Reduced-Reference metric,
SP:IC(36), No. 1, 2015, pp. 127-139.
Elsevier DOI 1509
BibRef
Earlier:
Reduced-reference metric based on the quaternionic wavelet coefficients modeling by information criteria,
ICIP14(526-530)
IEEE DOI 1502
Quaternionic Wavelet Transform. Degradation BibRef

Liang, J.Z.[Jiu-Zhen], Hou, Z.J.[Zhen-Jie], Chen, C.[Chen], Xu, X.X.[Xiu-Xiu],
Supervised bilateral two-dimensional locality preserving projection algorithm based on Gabor wavelet,
SIViP(10), No. 8, November 2016, pp. 1441-1448.
WWW Link. 1610
BibRef

Deng, G.,
Guided Wavelet Shrinkage for Edge-Aware Smoothing,
IP(26), No. 2, February 2017, pp. 900-914.
IEEE DOI 1702
computational complexity BibRef

Li, H.H.[Hui-Hui], Zeng, Y.[Yan], Yang, N.[Ning],
Image reconstruction for compressed sensing based on joint sparse bases and adaptive sampling,
MVA(29), No. 1, January 2018, pp. 145-157.
Springer DOI 1801
2 sparse bases for representation. DCT and a double-density dual-tree complex wavelet transform were utilized as two different sparse bases. BibRef

Barina, D.[David], Kula, M.[Michal], Zemcik, P.[Pavel],
Parallel wavelet schemes for images,
RealTimeIP(16), No. 5, October 2019, pp. 1365-1381.
WWW Link. 1911
BibRef

Liu, X.[Xinwu],
Total generalized variation and wavelet frame-based adaptive image restoration algorithm,
VC(35), No. 12, December 2018, pp. 1883-1894.
WWW Link. 1912
BibRef

Sadri, A.R., Celebi, M.E., Rahnavard, N., Viswanath, S.E.,
Sparse Wavelet Networks,
SPLetters(27), 2020, pp. 111-115.
IEEE DOI 2001
Wavelet network, sparse representation, non-convex regularization, system identification BibRef

Wu, F.Z.[Fu-Zhi], Wu, J.[Jiasong], Shu, H.Z.[Hua-Zhong], Carrault, G.[Guy], Senhadji, L.[Lotfi],
Spatial-Enhanced Multi-Level Wavelet Patching in Vision Transformers,
SPLetters(31), 2024, pp. 446-450.
IEEE DOI 2402
Wavelet domain, Transformers, Frequency-domain analysis, Discrete wavelet transforms, Convolution, Standards, low-level feature BibRef


Yin, J.H.[Ji-Hao], Gao, C.[Chao], Wang, Y.F.[Yi-Fei], Wang, Y.S.[Yi-Song],
Hyperspectral image classification using wavelet packet analysis and gray prediction model,
IASP10(322-326).
IEEE DOI 1004
BibRef

Fernandes Mota, V.[Virginia], de Almeida Perez, E.[Eder], Knop de Castro, T.[Tassio], Chapiro, A.[Alexandre], Bernardes Vieira, M.[Marcelo],
Detection of high frequency regions in multiresolution,
ICIP09(2165-2168).
IEEE DOI 0911
Using wavelets. BibRef

Motwani, M.C.[Mukesh C.], Motwani, R.C.[Rakhi C.], Harris, F.C.[Frederick C.],
Wavelet based fuzzy perceptual mask for images,
ICIP09(4261-4264).
IEEE DOI 0911
BibRef

Tang, G.J.[Gui-Ji], Ye, J.S.[Jin-Sheng], Zhang, R.P.[Rong-Pei], Hu, A.J.[Ai-Jun],
Harmonic wavelet packets method and its application to signal analysis of rotating machinery,
IASP09(108-113).
IEEE DOI 0904
BibRef

Cen, H.Y.[Hai-Yan], Bao, Y.[Yidan], Huang, M.[Min], He, Y.[Yong],
Time Series Analysis of Grey Forecasting Based on Wavelet Transform and Its Prediction Applications,
SSPR06(349-357).
Springer DOI 0608
BibRef

Deng, G.[Guang],
Signal Estimation Using Multiple-Wavelet Representations and Gaussian Models,
ICIP05(I: 453-456).
IEEE DOI 0512
BibRef

Fletcher, A.K., Goyal, V.K., Rainchandran, K.,
On multivariate estimation by thresholding,
ICIP03(I: 61-64).
IEEE DOI 0312
Threshold to eliminate noise in Wavelets. BibRef

Bastys, A.,
The Gibbs phenomenon bounds in wavelet approximations,
ICIP03(I: 1017-1020).
IEEE DOI 0312
BibRef

Ma, K., Tang, X.,
Discrete Wavelet Face Graph Matching,
ICIP01(II: 217-220).
IEEE DOI 0108
BibRef

Dragotti, P.L.[Pier Luigi],
Wavelet Transform Footprints: Catching Singularities for Compression and Denoising,
ICIP00(Vol II: 363-366).
IEEE DOI 0008
BibRef

Dragotti, P.L.[Pier Luigi], Vetterli, M.,
Footprints and Edgeprints for Image Denoising and Compression,
ICIP01(II: 237-240).
IEEE DOI 0108
BibRef

Sze, C.J., Liao, H.Y., Huang, S.K., Lu, C.S.,
Dyadic Wavelet-based Nonlinear Conduction Equation: Theory and Applications,
ICIP00(Vol I: 880-883).
IEEE DOI 0008
BibRef

Wei, D., Evans, B.L., and Bovik, A.C.,
Biorthogonal Quincunx Coifman Wavelets,
ICIP97(II: 246-249).
IEEE DOI
PDF File. BibRef 9700

Moni, S.,
A Tree Structured, Wavelet-Based Stochastic Process for Fast Image Processing,
ICIP97(II: 227-229).
IEEE DOI BibRef 9700

Cheung, K.W., and Po, L.M.,
Preprocessing for Discrete Multiwavelet Transform of Two-Dimensional Signals,
ICIP97(II: 350-353).
IEEE DOI BibRef 9700

Chao, J.J., and Lin, C.C.,
Sea Clutter Rejection in Radar Image Using Wavelets and Fractals,
ICIP97(II: 354-357).
IEEE DOI BibRef 9700

Rodenas, J.A., Cabarrocas, D., and Garello, R.,
Wavelet Transform of SAR Images for Internal Wave Detection and Orientation,
ICIP97(I: 841-844).
IEEE DOI 9710
BibRef

Monro, D.M., and Sherlock, B.G.,
Space-Frequency Balance in Biorthogonal Wavelets,
ICIP97(I: 624-627).
IEEE DOI 9710
BibRef

Krongold, B., Ramchandran, K., and Jones, D.,
Frequency-Shift-Invariant Orthonormal Wavelet Packet Representations,
ICIP97(I: 628-631).
IEEE DOI BibRef 9700

Strobel, N., Mitra, S.K., and Manjunath, B.S.,
Model-Based Detection and Correction of Corrupted Wavelet Coefficients,
ICIP97(I: 925-928).
IEEE DOI
PDF File. BibRef 9700

Ho, W., Chang, W.,
Wavelet Representation for Multigrid Computation in Surface Interpolation Problem,
ICPR96(I: 740-744).
IEEE DOI 9608
(National Chiao-Tung Univ., ROC) BibRef

Sarkar, S.[Sandip], Poor, H.V.[H. Vincent],
Multiband cyclic wavelet transforms,
ICIP96(I: 589-592).
IEEE DOI 9610
BibRef

Kautsky, J.[Jaroslav], Turcajová, R.[Radka],
Adaptive wavelets for signal analysis,
CAIP95(906-911).
Springer DOI 9509
BibRef

Watanabe, S., Akimoto, Y., Komatsu, T., Saito, T.,
A new stabilized zero-crossing representation in the wavelet transform domain and signal reconstruction,
ICIP95(I: 37-40).
IEEE DOI 9510
BibRef

Hall, R.W., Kucuk, S., and Hamdi, M.,
Wavelet Transform Embeddings in Mesh Architectures,
CVPR93(596-597).
IEEE DOI BibRef 9300

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Wavelets, Surveys, Reviews, Overviews, Evaluations, General .


Last update:Nov 26, 2024 at 16:40:19