Grosssmann, A., and
Morlet, J.,
Decomposition of Hardy Functions into Square Integrable Wavelets of
Constant Shape,
SIAM_Math(15), 1984, pp. 723-736.
The mathmatical introduction of wavelets. Later adopted by computer
vision.
BibRef
8400
Pentland, A.P.[Alex P.],
Interpolation Using Wavelet Bases,
PAMI(16), No. 4, April 1994, pp. 410-414.
IEEE DOI
BibRef
9404
Earlier:
Surface Interpolation Using Wavelets,
ECCV92(615-619).
Springer DOI
BibRef
And:
Spatial and Temporal Surface Interpolation Using Wavelet Bases,
SPIE(1570), 1991, pp. 43-62.
Surface Reconstruction.
Regularization.
BibRef
Mann, S.[Steve],
Wavelets and 'Chirplets':
Time-Frequence 'Perspectives' with Applications,
AMV Strategies921992, pp. 99-128.
Both space and time domain sampling.
BibRef
9200
Barrat, M.,
Lepetit, O.,
Recursive Wavelet Transform for 2D Signals,
GMIP(56), No. 1, January 1994, pp. 106-108.
BibRef
9401
Wang, G.F.,
Zhang, J.,
Pan, G.W.,
Solution of Inverse Problems in Image-Processing by Wavelet Expansion,
IP(4), No. 5, May 1995, pp. 579-593.
IEEE DOI
BibRef
9505
And:
Corrections:
IP(4), No. 9, September 1995, pp. 1340.
BibRef
Haddad, Z.S.,
Simanca, S.R.,
Filtering Image Records Using Wavelets and the Zakai Equation,
PAMI(17), No. 11, November 1995, pp. 1069-1078.
IEEE DOI
BibRef
9511
Hessnielsen, N.,
Wickerhauser, M.V.,
Wavelets and Time-Frequency Analysis,
PIEEE(84), No. 4, April 1996, pp. 523-540.
BibRef
9604
Li, Y.,
Szu, H.H.,
Sheng, Y.L.,
Caulfield, H.J.,
Wavelet Processing and Optics,
PIEEE(84), No. 5, May 1996, pp. 720-732.
9605
BibRef
Mukherjee, S.[Shayan],
Nayar, S.K.[Shree K.],
Automatic-Generation of RBF Networks Using Wavelets,
PR(29), No. 8, August 1996, pp. 1369-1383.
Elsevier DOI
9608
BibRef
Swanson, M.D.,
Tewfik, A.H.,
A Binary Wavelet Decomposition of Binary Images,
IP(5), No. 12, December 1996, pp. 1637-1650.
IEEE DOI
9701
BibRef
Earlier:
Wavelet decomposition of binary finite images,
ICIP94(I: 61-65).
IEEE DOI
9411
BibRef
Mohanty, K.K.,
The Wavelet Transform for Local Image-Enhancement,
JRS(18), No. 1, January 10 1997, pp. 213-219.
9701
Enhancement.
BibRef
Polchlopek, H.M.,
Noonan, J.P.,
Wavelets, Detection, Estimation, and Sparsity,
DSP(7), No. 1, January 1997, pp. 28-36.
9703
BibRef
Benno, S.A.,
Moura, J.M.F.,
On Translation Invariant Subspaces and Critically Sampled
Wavelet Transforms,
MultiSP(8), No. 1-2, January 1997, pp. 89-110.
9703
BibRef
Watson, G.H.,
Watson, S.K.,
Wavelet Transforms on Vector-Spaces as a Method of
Multispectral Image Characterization,
VISP(144), No. 2, April 1997, pp. 89-97.
9706
BibRef
Cha, H.T.,
Chaparro, L.F.,
Adaptive Morphological Representation of Signals:
Polynomial and Wavelet Methods,
MultiSP(8), No. 3, July 1997, pp. 249-271.
9707
BibRef
Lina, J.M.,
Image-Processing with Complex Daubechies Wavelets,
JMIV(7), No. 3, June 1997, pp. 211-223.
DOI Link
9708
BibRef
Matteau-Pelletier, C.,
Dehaes, M.,
Lesage, F.,
Lina, J.M.,
1/f Noise in Diffuse Optical Imaging and Wavelet-Based Response
Estimation,
MedImg(28), No. 3, March 2009, pp. 415-422.
IEEE DOI
0903
BibRef
Chen, H.,
Kawai, Y.,
Maeda, H.,
Reduction of Gibbs Overshoot in Continuous Wavelet Transform,
IEICE(E80-A), No. 8, August 1997, pp. 1352-1361.
9709
BibRef
Chu, Y.,
Fang, W.H.,
An Efficient Approach for the Harmonic Retrieval Problem via
Haar Wavelet Transform,
SPLetters(4), No. 12, December 1997, pp. 331-333.
IEEE Top Reference.
9801
BibRef
Hirchoren, G.A.,
Dattellis, C.E.,
On the Optimal Number of Scales in Estimation of Fractal Signals Using
Wavelets and Filter Banks,
SP(63), No. 1, November 1997, pp. 55-63.
9801
BibRef
Evangelista, G.,
Cavaliere, S.,
Discrete Frequency Warped Wavelets: Theory and Applications,
TSP(46), No. 4, April 1998, pp. 874-885.
9804
BibRef
Chen, L.L.,
Chen, C.W.,
Parker, K.J.,
Adaptive Feature Enhancement for Mammographic Images with
Wavelet Multiresolution Analysis,
JEI(6), No. 4, October 1997, pp. 467-478.
9807
BibRef
Wu, B.F.,
Su, Y.L.,
On Stationarizability for Nonstationary 2-D Random-Fields
Using Discrete Wavelet Transforms,
IP(7), No. 9, September 1998, pp. 1359-1366.
IEEE DOI
9809
BibRef
Busch, C.,
Debes, E.,
Wavelet Transform for Analyzing fog Visibility,
IEEE_Expert(13), No. 6, November/December 1998, pp. 66-71.
9812
BibRef
Strela, V.,
Heller, P.N.,
Strang, G.,
Topiwala, P.,
Heil, C.,
The Application of Multiwavelet Filterbanks to Image Processing,
IP(8), No. 4, April 1999, pp. 548-563.
IEEE DOI
BibRef
9904
Singh, H.,
Heller, P.N.,
WaveTool: an integrated software for wavelet and multirate signal
processing,
ICIP95(I: 85-88).
IEEE DOI
9510
BibRef
Scheunders, P.,
A multivalued image wavelet representation based on multiscale
fundamental forms,
IP(11), No. 5, May 2002, pp. 568-575.
IEEE DOI
0206
See also Fusion and merging of multispectral images with use of multiscale fundamental forms.
BibRef
Scheunders, P.,
An orthogonal wavelet representation of multivalued images,
IP(12), No. 6, June 2003, pp. 718-725.
IEEE DOI
0307
BibRef
Scheunders, P.,
Multiscale fundamental forms: a multimodal image wavelet representation,
CIAP01(179-184).
IEEE DOI o
0210
BibRef
Segman, J.[Joseph],
Zeevi, Y.Y.,
Image analysis by wavelet-type transforms: Group theoretic approach,
JMIV(3), No. 1, 1993, pp. 51-77.
BibRef
9300
Sagiv, C.[Chen],
Sochen, N.A.[Nir A.],
Zeevi, Y.Y.[Yehoshua Y.],
The Uncertainty Principle: Group Theoretic Approach, Possible
Minimizers and Scale-Space Properties,
JMIV(26), No. 1-2, November 2006, pp. 149-166.
Springer DOI
0701
BibRef
Earlier:
Scale-Space Generation via Uncertainty Principles,
ScaleSpace05(351-362).
Springer DOI
0505
BibRef
Ferdman, Y.[Yossi],
Sagiv, C.[Chen],
Sochen, N.A.[Nir A.],
Full Affine Wavelets Are Scale-Space with a Twist,
SSVM07(1-12).
Springer DOI
0705
BibRef
Zhu, H.X.[Hui-Xia],
Ritter, G.X.,
The generalized matrix product and the wavelet transform,
JMIV(3), No. 1, 1993, pp. 95-104.
BibRef
9300
Peyrin, F.,
Zaim, M.,
Goutte, R.,
Construction of wavelet decompositions for tomographic images,
JMIV(3), No. 1, 1993, pp. 105-121.
BibRef
9300
Antoine, J.P.,
Carrette, P.,
Murenzi, R.,
Piette, B.,
Image analysis with 2-D continuous wavelet transform,
SP(31), No. 3, 1993, pp. 241-272.
BibRef
9300
And:
Correction.
SP(35), No. 1, 1994, pp. 93.
BibRef
Jansen, M.,
Bultheel, A.,
Multiple Wavelet Threshold Estimation by Generalized Cross Validation
for Images with Correlated Noise,
IP(8), No. 7, July 1999, pp. 947-953.
IEEE DOI
BibRef
9907
van Aerschot, W.,
Jansen, M.,
Bultheel, A.,
Normal mesh based geometrical image compression,
IVC(27), No. 4, 3 March 2009, pp. 459-468.
Elsevier DOI
0804
BibRef
Earlier:
A Nonlinear Contour Preserving Transform for Geometrical Image
Compression,
IMVIP07(143-149).
IEEE DOI
0709
Normal multiresolution mesh, Image compression, Piecewise smooth, Wavelets
BibRef
Crouse, M.S.,
Nowak, R.D.,
Baraniuk, R.G.,
Wavelet-Based Statistical Signal-Processing Using Hidden Markov-Models,
TSP(46), No. 4, April 1998, pp. 886-902.
9804
BibRef
Nowak, R.D.,
Baraniuk, R.G.,
Wavelet-Domain Filtering for Photon Imaging Systems,
IP(8), No. 5, May 1999, pp. 666-678.
IEEE DOI
BibRef
9905
Romberg, J.K.[Justin K.],
Choi, H.H.[Hyeok-Ho],
Baraniuk, R.G.[Richard G.],
Bayesian tree-structured image modeling using wavelet-domain hidden
markov models,
IP(10), No. 7, July 2001, pp. 1056-1068.
IEEE DOI
0108
BibRef
Earlier:
Bayesian Wavelet-Domain Image Modeling using Hidden Markov Trees,
ICIP99(I:158-162).
IEEE DOI
BibRef
Romberg, J.K.[Justin K.],
Choi, H.H.[Hyeok-Ho],
Baraniuk, R.G.[Richard G.],
Multiscale Edge Grammars for Complex Wavelet Transforms,
ICIP01(I: 614-617).
IEEE DOI
0108
BibRef
Earlier:
Multiscale Classification Using Complex Wavelets and Hidden Markov Tree
Models,
ICIP00(Vol II: 371-374).
IEEE DOI
0008
BibRef
Choi, H.H.[Hyeok-Ho],
Baraniuk, R.G.[Richard G.],
Multiscale image segmentation using wavelet-domain hidden Markov models,
IP(10), No. 9, September 2001, pp. 1309-1321.
IEEE DOI
0108
BibRef
Baraniuk, R.G.,
Wavelet soft-thresholding of time-frequency representations,
ICIP94(I: 71-74).
IEEE DOI
9411
BibRef
Berkner, K.,
Wells, Jr., R.O.,
A New Hierarchical Scheme for Approximating the Continuous Wavelet
Transform with Applications to Edge Detection,
SPLetters(6), No. 8, August 1999, pp. 193.
IEEE Top Reference.
BibRef
9908
Aldroubi, A.[Akram],
Eden, M.[Murray], and
Unser, M.[Michael],
Discrete Spline Filters for Multiresolutions and Wavelets of L2,
MathAnal(25), No 5, 1994, pp. 1412-1433.
BibRef
9400
Unser, M.[Michael],
Vanishing moments and the approximation power of wavelet expansions,
ICIP96(I: 629-632).
IEEE DOI
BibRef
9600
Unser, M.,
Multigrid adaptive image processing,
ICIP95(I: 49-52).
IEEE DOI
9510
BibRef
Blu, T., and
Unser, M.,
Quantitative L2 Error Analysis for Interpolation Methods and
Wavelet Expansions,
ICIP97(I: 663-666).
IEEE DOI
BibRef
9700
Luisier, F.,
Blu, T.,
SURE-LET Multichannel Image Denoising:
Interscale Orthonormal Wavelet Thresholding,
IP(17), No. 4, April 2008, pp. 482-492.
IEEE DOI
0803
BibRef
Luisier, F.,
Blu, T.,
Unser, M.,
A New SURE Approach to Image Denoising:
Interscale Orthonormal Wavelet Thresholding,
IP(16), No. 3, March 2007, pp. 593-606.
IEEE DOI
0703
BibRef
Earlier:
Sure-Based Wavelet Thresholding Integrating Inter-Scale Dependencies,
ICIP06(1457-1460).
IEEE DOI
0610
BibRef
Blu, T.,
Luisier, F.,
The SURE-LET Approach to Image Denoising,
IP(16), No. 11, November 2007, pp. 2778-2786.
IEEE DOI
0709
BibRef
Luisier, F.,
Blu, T.,
Unser, M.,
SURE-LET for Orthonormal Wavelet-Domain Video Denoising,
CirSysVideo(20), No. 6, June 2010, pp. 913-919.
IEEE DOI
1007
BibRef
Tafti, P.D.[Pouya Dehghani],
van de Ville, D.,
Unser, M.[Michael],
Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal
Processes,
IP(18), No. 4, April 2009, pp. 689-702.
IEEE DOI
0903
Extend Blu and Unser to multivariate.
BibRef
Unser, M.,
Sage, D.,
van de Ville, D.,
Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace
Wavelet Transform,
IP(18), No. 11, November 2009, pp. 2402-2418.
IEEE DOI
0911
BibRef
Unser, M.[Michael],
van de Ville, D.[Dimitri],
Wavelet Steerability and the Higher-Order Riesz Transform,
IP(19), No. 3, March 2010, pp. 636-652.
IEEE DOI
1003
BibRef
Earlier:
Higher-order riesz transforms and steerable wavelet frames,
ICIP09(3801-3804).
IEEE DOI
0911
BibRef
van de Ville, D.[Dimitri],
Unser, M.[Michael],
The Marr wavelet pyramid,
ICIP08(2804-2807).
IEEE DOI
0810
BibRef
Kovacevic, J.,
Sweldens, W.,
Wavelet Families of Increasing Order in Arbitrary Dimensions,
IP(9), No. 3, March 2000, pp. 480-496.
IEEE DOI
0003
BibRef
Hilton, M.L.,
Panda, P.,
Jawerth, B.,
Sweldens, W.,
Wavelet-based cosine crossings of signals,
ICIP95(I: 57-60).
IEEE DOI
9510
BibRef
Hung, K.C.,
The Generalized Uniqueness Wavelet Descriptor for Planar Closed Curves,
IP(9), No. 5, May 2000, pp. 834-845.
IEEE DOI
0005
Curve Representations.
BibRef
Hung, K.C.[King-Chu],
Chen, C.L.[Chih-Liang],
Kuo, J.M.[Jyh-Ming],
The Generalized Uniqueness Wavelet Descriptor,
ICIP99(I:600-604).
IEEE DOI
BibRef
9900
Tang, Y.Y.,
Yang, L.,
Liu, J.,
Characterization of Dirac Structure Edges with Wavelet Transform,
SMC-B(30), No. 1, February 2000, pp. 93-109.
IEEE Top Reference.
0004
BibRef
He, W.,
Lai, M.J.,
Examples of Bivariate Nonseparable Compactly Supported Orthonormal
Continuous Wavelets,
IP(9), No. 5, May 2000, pp. 949-953.
IEEE DOI
0005
BibRef
Liew, A.W.C.,
Law, N.F.,
Reconstruction from 2-D wavelet transform modulus maxima using
projection,
VISP(147), No. 2, April 2000, pp. 176.
0005
BibRef
Duchowski, A.T.,
Acuity-Matching Resolution Degradation Through Wavelet Coefficient
Scaling,
IP(9), No. 8, August 2000, pp. 1437-1440.
IEEE DOI
0008
BibRef
Chang, S.G.,
Yu, B.,
Vetterli, M.,
Wavelet Thresholding for Multiple Noisy Image Copies,
IP(9), No. 9, September 2000, pp. 1631-1635.
IEEE DOI
0008
BibRef
Chang, S.G.,
Yu, B.[Bin],
Vetterli, M.,
Spatially Adaptive Wavelet Thresholding with Context Modeling for Image
Denoising,
IP(9), No. 9, September 2000, pp. 1522-1531.
IEEE DOI
0008
BibRef
Earlier:
ICIP98(I: 535-539).
IEEE DOI
9810
BibRef
Chang, S.G.,
Yu, B.[Bin],
Vetterli, M.,
Adaptive Wavelet Thresholding for Image Denoising and Compression,
IP(9), No. 9, September 2000, pp. 1532-1546.
IEEE DOI
0008
BibRef
Earlier:
Multiple copy image denoising via wavelet thresholding,
ICIP98(I: 545-549).
IEEE DOI
9810
BibRef
Earlier:
Image Denoising via Lossy Compression and Wavelet Thresholding,
ICIP97(I: 604-607).
IEEE DOI
BibRef
Chang, S.G., and
Vetterli, M.,
Spatial Adaptive Wavelet Thresholding for Image Denoising,
ICIP97(II: 374-377).
IEEE DOI
BibRef
9700
Dasgupta, N.[Nilanjan],
Runkle, P.[Paul],
Couchman, L.[Luise],
Carin, L.[Lawrence],
Dual hidden Markov model for characterizing wavelet coefficients from
multi-aspect scattering data,
SP(81), No. 6, June 2001, pp. 1303-1316.
Elsevier DOI
0106
BibRef
Shi, Z.[Zhuoer],
Wei, G.W.,
Kouri, D.J.,
Hoffman, D.K.,
Bao, Z.[Zheng],
Lagrange wavelets for signal processing,
IP(10), No. 10, October 2001, pp. 1488-1508.
IEEE DOI
0110
BibRef
Liu, J.[Juan],
Moulin, P.[Pierre],
Complexity-Regularized Image Denoising,
IP(10), No. 6, June 2001, pp. 841-851.
IEEE DOI
0106
BibRef
Earlier:
ICIP97(II: 370-373).
IEEE DOI
BibRef
And:
Complexity-regularized Denoising of Poisson-corrupted Data,
ICIP00(Vol III: 254-257).
IEEE DOI
0008
BibRef
Liu, J.[Juan],
Moulin, P.,
Information-theoretic analysis of interscale and intrascale
dependencies between image wavelet coefficients,
IP(10), No. 11, November 2001, pp. 1647-1658.
IEEE DOI
0201
BibRef
Earlier:
Approximation-Theoretic Analysis of Translation Invariant Wavelet
Expansions,
ICIP01(I: 622-625).
IEEE DOI
0108
BibRef
And:
Statistical Image Restoration Based on Adaptive Wavelet Models,
ICIP01(II: 21-24).
IEEE DOI
0108
BibRef
Earlier:
Analysis of Interscale and Intrascale Dependencies Between Image
Wavelet Coefficients,
ICIP00(Vol I: 669-672).
IEEE DOI
0008
BibRef
Earlier:
Complexity-regularized image restoration,
ICIP98(I: 555-559).
IEEE DOI
9810
BibRef
Simoncelli, E.P., and
Olshausen, B.A.,
Natural Image statistics and neural representation,
AnnNeuro(24), May 2001, pp. 1193-1216
ICA. efficient coding, cortex, neurobiology,
HTML Version.
BibRef
0105
Hyvarinen, A.[Aapo],
Hurri, J.[Jarmo],
Vayrynen, J.[Jaakko],
Bubbles: A Unifying Framework for Low-Level Statistical Properties of
Natural Image Sequences,
JOSA-A(20), No. 7, July 2003, pp. 1237-1252.
WWW Link.
0307
BibRef
Hurri, J.[Jarmo],
Hyvarinen, A.[Aapo], and
Oja, E.[Erkki],
Wavelets And Natural Image Statistics,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Lo, S.C.B.,
Li, H.[Huai],
Freedman, M.T.,
Optimization of wavelet decomposition for image compression and feature
preservation,
MedImg(22), No. 9, September 2003, pp. 1141-1151.
IEEE Abstract.
0309
BibRef
Lo, S.C.B.,
Li, H.[Huai],
Krasner, B.H.,
Freedman, M.T.,
Mun, S.K.,
A contour coding and full-frame compression of discrete wavelet and
cosine transforms,
ICIP95(II: 9-12).
IEEE DOI
9510
BibRef
Li, X.[Xin],
On exploiting geometric constraint of image wavelet coefficients,
IP(12), No. 11, November 2003, pp. 1378-1387.
IEEE DOI
0311
BibRef
Earlier:
On exploiting phase constraint with image wavelet coefficients,
ICIP02(III: 221-224).
IEEE DOI
0210
BibRef
Ray, S.,
Mallick, B.K.,
A Bayesian transformation model for wavelet shrinkage,
IP(12), No. 12, December 2003, pp. 1512-1521.
IEEE DOI
0402
BibRef
Ray, S.,
Chan, A.,
Mallick, B.K.,
Bayesian wavelet shrinkage in transformation based normal models,
ICIP02(I: 876-879).
IEEE DOI
0210
BibRef
Meignen, S.,
Application of the convergence of the control points of B-splines to
wavelet decomposition at rational scales and rational location,
SPLetters(12), No. 1, January 2005, pp. 29-32.
IEEE Abstract.
0501
BibRef
Meignen, S.,
Application of the Convergence of the Control Net of Box Splines to
Scale-Space Filtering,
IP(16), No. 11, November 2007, pp. 2842-2848.
IEEE DOI
0709
BibRef
Spence, C.D.[Clay Douglas],
Parra, L.C.[Lucas C.],
Sajda, P.,
Varying Complexity in Tree-Structured Image Distribution Models,
IP(15), No. 2, February 2006, pp. 319-330.
IEEE DOI
0602
Variation on Hidden Markov Tree models.
See also Wavelet-Based Statistical Signal-Processing Using Hidden Markov-Models.
BibRef
Spence, C.D.[Clay Douglas],
Parra, L.C.[Lucas C.],
Method and apparatus for image processing by
generating probability distribution of images,
US_Patent6,704,454, Mar 9, 2004
WWW Link.
BibRef
0403
Bayro-Corrochano, E.[Eduardo],
The Theory and Use of the Quaternion Wavelet Transform,
JMIV(24), No. 1, January 2006, pp. 19-35.
Springer DOI
0605
BibRef
Moya-Sánchez, E.U.[E. Ulises],
Bayro-Corrochano, E.[Eduardo],
Quaternion Atomic Function Wavelet for Applications in Image Processing,
CIARP10(346-353).
Springer DOI
1011
BibRef
Chaux, C.[Caroline],
Duval, L.,
Pesquet, J.C.[Jean-Christophe],
Image Analysis Using a Dual-Tree M-Band Wavelet Transform,
IP(15), No. 8, August 2006, pp. 2397-2412.
IEEE DOI
0606
See also Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization.
BibRef
Atkinson, I.C.,
Kamalabadi, F.,
Mohan, S.,
Jones, D.L.,
Asymptotically optimal blind estimation of multichannel images,
IP(15), No. 4, April 2006, pp. 992-1007.
IEEE DOI
0604
BibRef
Earlier:
Wavelet-based 2-d multichannel signal estimation,
ICIP03(II: 141-144).
IEEE DOI
0312
BibRef
Atkinson, I.C.[Ian C.],
Kamalabadi, F.[Farzad],
Transform-domain penalized-likelihood filtering of tomographic data,
IJIST(18), No. 5-6, 2008, pp. 350-364.
DOI Link
0804
BibRef
Earlier:
Transform-Domain Penalized-Likelihood Filtering of Projection Data,
ICIP06(881-884).
IEEE DOI
0610
BibRef
Alnasser, M.,
Foroosh, H.,
Phase-Shifting for Nonseparable 2-D Haar Wavelets,
IP(17), No. 7, July 2008, pp. 1061-1068.
IEEE DOI
0806
See also Comments on Phase-Shifting for Nonseparable 2-D Haar Wavelets.
BibRef
Andreopoulos, Y.,
Comments on 'Phase-Shifting for Nonseparable 2-D Haar Wavelets',
IP(18), No. 8, August 2009, pp. 1897-1898.
IEEE DOI
0907
BibRef
And: Erratum to Comments
IP(18), No. 9, September 2009, pp. 2143-2143.
IEEE DOI
0909
See also Phase-Shifting for Nonseparable 2-D Haar Wavelets.
BibRef
Held, S.,
Storath, M.,
Massopust, P.,
Forster, B.,
Steerable Wavelet Frames Based on the Riesz Transform,
IP(19), No. 3, March 2010, pp. 653-667.
IEEE DOI
1003
BibRef
Krommweh, J.[Jens],
Tetrolet transform:
A new adaptive Haar wavelet algorithm for sparse image representation,
JVCIR(21), No. 4, May 2010, pp. 364-374.
Elsevier DOI
1006
Adaptive wavelet transform, Directional wavelets, Haar-type wavelets;
Locally orthonormal wavelet basis, Tetromino tiling, Image
approximation, Data compression, Sparse representation
BibRef
Xu, J.[Jun],
Yang, L.[Lei],
Wu, D.P.[Da-Peng],
Ripplet: A new transform for image processing,
JVCIR(21), No. 7, October 2010, pp. 627-639.
Elsevier DOI
1003
Harmonic analysis, Fourier transform, Wavelet transform, Curvelet
transform, Image representation, Image compression, Transform coding;
Image denoising
BibRef
Xu, J.[Jun],
Wu, D.P.[Da-Peng],
Ripplet transform type II transform for feature extraction,
IET-IPR(6), No. 4, 2012, pp. 374-385.
DOI Link
1205
BibRef
Murthy, V.S.,
Gupta, S.,
Mohanta, D.K.,
Digital image processing approach using combined wavelet hidden markov
model for well-being analysis of insulators,
IET-IPR(5), No. 2, April 2011, pp. 171-183.
DOI Link
1103
BibRef
Shi, H.,
Luo, S.,
The biorthogonal wavelets that are redundant-free and nearly
shift-insensitive,
JIVP(2012), No. 1 2012, pp. xx-yy.
DOI Link
1209
BibRef
Mishiba, K.[Kazu],
Ikehara, M.[Masaaki],
Yoshitome, T.[Takeshi],
Improved Seam Merging for Content-Aware Image Resizing,
IEICE(E96-D), No. 2, February 2013, pp. 349-356.
WWW Link.
1301
BibRef
Mishiba, K.[Kazu],
Ikehara, M.[Masaaki],
Yoshitome, T.[Takeshi],
Content Aware Image Resizing with Constraint of Object Aspect Ratio
Preservation,
IEICE(E96-D), No. 11, November 2013, pp. 2427-2436.
WWW Link.
1311
BibRef
Mishiba, K.[Kazu],
Yoshitome, T.[Takeshi],
Image resizing with SIFT feature preservation,
ICIP13(991-995)
IEEE DOI
1402
Bidirectional control
BibRef
Mishiba, K.[Kazu],
Ikehara, M.[Masaaki],
Seam carving in wavelet transform domain,
ICIP11(1497-1500).
IEEE DOI
1201
BibRef
Ward, J.P.[John Paul],
Chaudhury, K.N.[Kunal Narayan],
Unser, M.[Michael],
Decay Properties of Riesz Transforms and Steerable Wavelets,
SIIMS(6), No. 2, 2013, pp. 984-998.
DOI Link
1307
BibRef
Ward, J.P.[John Paul],
Pad, P.,
Unser, M.[Michael],
Optimal Isotropic Wavelets for Localized Tight Frame Representations,
SPLetters(22), No. 11, November 2015, pp. 1918-1921.
IEEE DOI
1509
signal representation
BibRef
Pad, P.,
Uhlmann, V.,
Unser, M.,
Maximally Localized Radial Profiles for Tight Steerable Wavelet
Frames,
IP(25), No. 5, May 2016, pp. 2275-2287.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Easley, G.R.[Glenn R.],
Labate, D.[Demetrio],
Patel, V.M.[Vishal M.],
Directional Multiscale Processing of Images Using Wavelets with
Composite Dilations,
JMIV(48), No. 1, January 2014, pp. 13-34.
Springer DOI
1402
BibRef
Traoré, A.[Albekaye],
Carré, P.[Philippe],
Olivier, C.[Christian],
Quaternionic wavelet coefficients modeling for a Reduced-Reference
metric,
SP:IC(36), No. 1, 2015, pp. 127-139.
Elsevier DOI
1509
BibRef
Earlier:
Reduced-reference metric based on the quaternionic wavelet
coefficients modeling by information criteria,
ICIP14(526-530)
IEEE DOI
1502
Quaternionic Wavelet Transform.
Degradation
BibRef
Liang, J.Z.[Jiu-Zhen],
Hou, Z.J.[Zhen-Jie],
Chen, C.[Chen],
Xu, X.X.[Xiu-Xiu],
Supervised bilateral two-dimensional locality preserving projection
algorithm based on Gabor wavelet,
SIViP(10), No. 8, November 2016, pp. 1441-1448.
WWW Link.
1610
BibRef
Deng, G.,
Guided Wavelet Shrinkage for Edge-Aware Smoothing,
IP(26), No. 2, February 2017, pp. 900-914.
IEEE DOI
1702
computational complexity
BibRef
Li, H.H.[Hui-Hui],
Zeng, Y.[Yan],
Yang, N.[Ning],
Image reconstruction for compressed sensing based on joint sparse bases
and adaptive sampling,
MVA(29), No. 1, January 2018, pp. 145-157.
Springer DOI
1801
2 sparse bases for representation.
DCT and a double-density dual-tree complex wavelet transform were
utilized as two different sparse bases.
BibRef
Barina, D.[David],
Kula, M.[Michal],
Zemcik, P.[Pavel],
Parallel wavelet schemes for images,
RealTimeIP(16), No. 5, October 2019, pp. 1365-1381.
WWW Link.
1911
BibRef
Liu, X.[Xinwu],
Total generalized variation and wavelet frame-based adaptive image
restoration algorithm,
VC(35), No. 12, December 2018, pp. 1883-1894.
WWW Link.
1912
BibRef
Sadri, A.R.,
Celebi, M.E.,
Rahnavard, N.,
Viswanath, S.E.,
Sparse Wavelet Networks,
SPLetters(27), 2020, pp. 111-115.
IEEE DOI
2001
Wavelet network, sparse representation,
non-convex regularization, system identification
BibRef
Wu, F.Z.[Fu-Zhi],
Wu, J.[Jiasong],
Shu, H.Z.[Hua-Zhong],
Carrault, G.[Guy],
Senhadji, L.[Lotfi],
Spatial-Enhanced Multi-Level Wavelet Patching in Vision Transformers,
SPLetters(31), 2024, pp. 446-450.
IEEE DOI
2402
Wavelet domain, Transformers, Frequency-domain analysis,
Discrete wavelet transforms, Convolution, Standards,
low-level feature
BibRef
Fernandes Mota, V.[Virginia],
de Almeida Perez, E.[Eder],
Knop de Castro, T.[Tassio],
Chapiro, A.[Alexandre],
Bernardes Vieira, M.[Marcelo],
Detection of high frequency regions in multiresolution,
ICIP09(2165-2168).
IEEE DOI
0911
Using wavelets.
BibRef
Motwani, M.C.[Mukesh C.],
Motwani, R.C.[Rakhi C.],
Harris, F.C.[Frederick C.],
Wavelet based fuzzy perceptual mask for images,
ICIP09(4261-4264).
IEEE DOI
0911
BibRef
Tang, G.J.[Gui-Ji],
Ye, J.S.[Jin-Sheng],
Zhang, R.P.[Rong-Pei],
Hu, A.J.[Ai-Jun],
Harmonic wavelet packets method and its application to signal analysis
of rotating machinery,
IASP09(108-113).
IEEE DOI
0904
BibRef
Cen, H.Y.[Hai-Yan],
Bao, Y.[Yidan],
Huang, M.[Min],
He, Y.[Yong],
Time Series Analysis of Grey Forecasting Based on Wavelet Transform and
Its Prediction Applications,
SSPR06(349-357).
Springer DOI
0608
BibRef
Deng, G.[Guang],
Signal Estimation Using Multiple-Wavelet Representations and Gaussian
Models,
ICIP05(I: 453-456).
IEEE DOI
0512
BibRef
Fletcher, A.K.,
Goyal, V.K.,
Rainchandran, K.,
On multivariate estimation by thresholding,
ICIP03(I: 61-64).
IEEE DOI
0312
Threshold to eliminate noise in Wavelets.
BibRef
Bastys, A.,
The Gibbs phenomenon bounds in wavelet approximations,
ICIP03(I: 1017-1020).
IEEE DOI
0312
BibRef
Ma, K.,
Tang, X.,
Discrete Wavelet Face Graph Matching,
ICIP01(II: 217-220).
IEEE DOI
0108
BibRef
Dragotti, P.L.[Pier Luigi],
Wavelet Transform Footprints: Catching Singularities for Compression
and Denoising,
ICIP00(Vol II: 363-366).
IEEE DOI
0008
BibRef
Dragotti, P.L.[Pier Luigi],
Vetterli, M.,
Footprints and Edgeprints for Image Denoising and Compression,
ICIP01(II: 237-240).
IEEE DOI
0108
BibRef
Sze, C.J.,
Liao, H.Y.,
Huang, S.K.,
Lu, C.S.,
Dyadic Wavelet-based Nonlinear Conduction Equation: Theory and
Applications,
ICIP00(Vol I: 880-883).
IEEE DOI
0008
BibRef
Wei, D.,
Evans, B.L., and
Bovik, A.C.,
Biorthogonal Quincunx Coifman Wavelets,
ICIP97(II: 246-249).
IEEE DOI
PDF File.
BibRef
9700
Moni, S.,
A Tree Structured, Wavelet-Based Stochastic Process for
Fast Image Processing,
ICIP97(II: 227-229).
IEEE DOI
BibRef
9700
Cheung, K.W., and
Po, L.M.,
Preprocessing for Discrete Multiwavelet Transform of
Two-Dimensional Signals,
ICIP97(II: 350-353).
IEEE DOI
BibRef
9700
Chao, J.J., and
Lin, C.C.,
Sea Clutter Rejection in Radar Image Using Wavelets and Fractals,
ICIP97(II: 354-357).
IEEE DOI
BibRef
9700
Rodenas, J.A.,
Cabarrocas, D., and
Garello, R.,
Wavelet Transform of SAR Images for Internal Wave Detection
and Orientation,
ICIP97(I: 841-844).
IEEE DOI
9710
BibRef
Monro, D.M., and
Sherlock, B.G.,
Space-Frequency Balance in Biorthogonal Wavelets,
ICIP97(I: 624-627).
IEEE DOI
9710
BibRef
Krongold, B.,
Ramchandran, K., and
Jones, D.,
Frequency-Shift-Invariant Orthonormal Wavelet Packet Representations,
ICIP97(I: 628-631).
IEEE DOI
BibRef
9700
Strobel, N.,
Mitra, S.K., and
Manjunath, B.S.,
Model-Based Detection and Correction of Corrupted Wavelet Coefficients,
ICIP97(I: 925-928).
IEEE DOI
PDF File.
BibRef
9700
Ho, W.,
Chang, W.,
Wavelet Representation for Multigrid Computation in
Surface Interpolation Problem,
ICPR96(I: 740-744).
IEEE DOI
9608
(National Chiao-Tung Univ., ROC)
BibRef
Sarkar, S.[Sandip],
Poor, H.V.[H. Vincent],
Multiband cyclic wavelet transforms,
ICIP96(I: 589-592).
IEEE DOI
9610
BibRef
Kautsky, J.[Jaroslav],
Turcajová, R.[Radka],
Adaptive wavelets for signal analysis,
CAIP95(906-911).
Springer DOI
9509
BibRef
Watanabe, S.,
Akimoto, Y.,
Komatsu, T.,
Saito, T.,
A new stabilized zero-crossing representation in the wavelet transform
domain and signal reconstruction,
ICIP95(I: 37-40).
IEEE DOI
9510
BibRef
Hall, R.W.,
Kucuk, S., and
Hamdi, M.,
Wavelet Transform Embeddings in Mesh Architectures,
CVPR93(596-597).
IEEE DOI
BibRef
9300
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Wavelets, Surveys, Reviews, Overviews, Evaluations, General .