Leymarie, F.F., and
Levine, M.D.,
Tracking Deformable Objects in the Plane Using an Active Contour Model,
PAMI(15), No. 6, June 1993, pp. 617-634.
IEEE DOI Segment the object in the noisy image and track it through frames.
Applied to MAT:
See also Simulating the Grassfire Transform Using an Active Contour Model.
BibRef
9306
Leymarie, F.F.,
Tracking and Describing Deformable Objects Using Active Contour Models,
McGill UniversityTR-CIM-90-9, McGill University, February 1990.
WWW Link.
9002
BibRef
Leymarie, F.F., and
Levine, M.D.,
Curvature Morphology,
McGill UniversityTR-CIM-88-26, McGill University, December 1988.
WWW Link.
8812
BibRef
Pei, S.C.[Soo-Chang],
Liou, L.G.[Lin-Gwo],
Using Moments To Acquire The Motion Parameters of a Deformable
Object without Correspondences,
IVC(12), No. 8, October 1994, pp. 475-485.
Elsevier DOI
BibRef
9410
Pei, S.C.[Soo-Chang],
Liou, L.G.[Lin-Gwo],
Tracking a Planar Patch in Three-Dimensional Space by
Affine Transformation in Monocular and Binocular Vision,
PR(26), No. 1, January 1993, pp. 23-31.
Elsevier DOI
BibRef
9301
Pei, S.C.[Soo-Chang],
Liou, L.G.[Lin-Gwo],
Finding the Motion, Position and Orientation of a Planar Patch
in 3D Space from Scaled-Orthographic Projection,
PR(27), No. 1, January 1994, pp. 9-25.
Elsevier DOI
BibRef
9401
Pei, S.C.[Soo-Chang],
Liou, L.G.[Lin-Gwo],
What Can Be Seen in a Noisy Optical-Flow Field Projected by a
Moving Planar Patch in 3D Space,
PR(30), No. 9, September 1997, pp. 1401-1413.
Elsevier DOI
9708
BibRef
Jain, A.K.,
Zhong, Y.,
Lakshmanan, S.,
Object Matching Using Deformable Templates,
PAMI(18), No. 3, March 1996, pp. 267-278.
IEEE DOI
Deformable Template. Object prototype gives prior knowledge of the shape. Using edges,
find a match with the image with coarse-to-fine matching.
BibRef
9603
Zhong, Y.[Yu],
Jain, A.K.[Anil K.], and
Dubuisson-Jolly, M.P.[Marie-Pierre],
Object Tracking Using Deformable Templates,
PAMI(22), No. 5, May 2000, pp. 544-549.
IEEE DOI
0008
BibRef
Earlier:
ICCV98(440-445).
IEEE DOI Combine frame-to-frame changes and model to image matches.
BibRef
Dubuisson-Jolly, M.P.[Marie-Pierre],
Gupta, A.[Alok],
Tracking Deformable Templates Using a Shortest Path Algorithm,
CVIU(81), No. 1, January 2001, pp. 26-45.
DOI Link
0102
BibRef
Dubuisson-Jolly, M.P.[Marie-Pierre],
Liang, C.C.[Cheng-Chung], and
Gupta, A.[Alok],
Optimal Polyline Tracking for Artery Motion Compensation in
Coronary Angiography,
ICCV98(414-419).
IEEE DOI
BibRef
9800
Marques, J.S.[Jorge S.],
Lemos, J.M.[Joao M.],
Optimal and suboptimal shape tracking based on multiple switched
dynamic models,
IVC(19), No. 8, May 2001, pp. 539-550.
Elsevier DOI
0106
BibRef
Earlier:
Shape Tracking Based on Switched Dynamical Models,
ICIP99(II:954-958).
IEEE DOI
BibRef
Cheikh, F.A.[Faouzi Alaya],
Cramariuc, B.[Bogdan],
Partio, M.[Mari],
Reijonen, P.[Pasi],
Gabbouj, M.[Moncef],
Ordinal-Measure Based Shape Correspondence,
JASP(2002), No. 4, 2002, pp. 362-371.
WWW Link.
0204
BibRef
Mech, R.[Roland],
Marqués, F.[Ferran],
Objective Evaluation Criteria for 2D-Shape Estimation Results of Moving
Objects,
JASP(2002), No. 4, 2002, pp. 401-409.
WWW Link.
0204
BibRef
Nascimento, J.C.,
Marques, J.S.,
Improving the robustness of parametric shape tracking with switched
multiple models,
PR(35), No. 12, December 2002, pp. 2711-2718.
Elsevier DOI
0209
See also Trajectory Classification Using Switched Dynamical Hidden Markov Models.
BibRef
Nascimento, J.C.,
Marques, J.S.,
An Adaptive Potential for Robust Shape Estimation,
IVC(21), No. 12-13, December 2003, pp. 1107-1116.
Elsevier DOI
0401
BibRef
Earlier:
BMVC01(Session 4: Segmentation).
HTML Version.
BibRef
Earlier:
Robust Shape Tracking in the Presence of Cluttered Background,
ICIP00(Vol III: 82-85).
IEEE DOI
0008
Instituto Superior Técnico
0110
Based on strokes detected in the image.
BibRef
Santiago, C.[Carlos],
Marques, J.S.[Jorge S.],
Robust Shape Tracking With Multiple Models in Ultrasound Images,
IP(17), No. 3, March 2008, pp. 392-406.
IEEE DOI
0802
BibRef
Santiago, C.[Carlos],
Nascimento, J.C.[Jacinto C.],
Marques, J.S.[Jorge S.],
Combining an Active Shape and Motion Models for Object Segmentation
in Image Sequences,
ICIP18(3703-3707)
IEEE DOI
1809
BibRef
Earlier:
A robust active shape model using an expectation-maximization
framework,
ICIP14(6076-6080)
IEEE DOI
1502
BibRef
Earlier:
Non-rigid Object Segmentation Using Robust Active Shape Models,
AMDO14(160-169).
Springer DOI
1407
Motion segmentation, Image segmentation, Shape, Trajectory,
Deformable models, Active shape model, Mathematical model,
Vector Field.
BibRef
Nascimento, J.C.,
Marques, J.S.,
Adaptive Snakes Using the EM Algorithm,
IP(14), No. 11, November 2005, pp. 1678-1686.
IEEE DOI
0510
BibRef
And:
Errata:
IP(15), No. 3, March 2006, pp. 788-788.
IEEE DOI
0604
BibRef
Medley, D.O.[Daniela O.],
Santiago, C.[Carlos],
Nascimento, J.C.[Jacinto C.],
Deep Active Shape Model for Robust Object Fitting,
IP(29), 2020, pp. 2380-2394.
IEEE DOI
2001
BibRef
Earlier:
Robust Feature Descriptors for Object Segmentation Using Active Shape
Models,
ACIVS18(163-174).
Springer DOI
1810
Feature extraction, Shape, Probabilistic logic,
Active appearance model, Image segmentation, active shape model
BibRef
Medley, D.O.[Daniela O.],
Santiago, C.[Carlos],
Nascimento, J.C.[Jacinto C.],
CyCoSeg: A Cyclic Collaborative Framework for Automated Medical Image
Segmentation,
PAMI(44), No. 11, November 2022, pp. 8167-8182.
IEEE DOI
2210
Image segmentation, Collaboration, Shape, Deformable models,
Semantics, Standards, Segmentation, semantic networks, machine learning
BibRef
Nascimento, J.C.[Jacinto C.],
Carneiro, G.[Gustavo],
Deep Learning on Sparse Manifolds for Faster Object Segmentation,
IP(26), No. 10, October 2017, pp. 4978-4990.
IEEE DOI
1708
BibRef
Earlier:
Towards reduction of the training and search running time
complexities for non-rigid object segmentation,
ICIP15(4713-4717)
IEEE DOI
1512
See also Fusion of Deep Learning Architectures and Particle Filtering Applied to Lip Tracking, The.
BibRef
Earlier:
Non-rigid Segmentation Using Sparse Low Dimensional Manifolds and
Deep Belief Networks,
CVPR14(288-295)
IEEE DOI
1409
BibRef
Earlier:
Top-Down Segmentation of Non-rigid Visual Objects Using
Derivative-Based Search on Sparse Manifolds,
CVPR13(1963-1970)
IEEE DOI
1309
Image segmentation, Manifolds, Robustness, Search problems, Shape,
Training, Visualization, Deep belief netwolks, defonnable objects,
non-rigid segmentation.
Sparse manifolds.
Non-rigid top-down segmentation; deep belief network; manifold learning
See also Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data.
BibRef
Nguyen, H.T.[Hieu Tat],
Worring, M.[Marcel],
van den Boomgaard, R.,
Smeulders, A.W.M.,
Tracking nonparameterized object contours in video,
IP(11), No. 9, September 2002, pp. 1081-1091.
IEEE DOI
0210
See also Watersnakes: Energy-Driven Watershed Segmentation.
BibRef
Nguyen, H.T.[Hieu T.],
Worring, M.[Marcel],
Multifeature Object Tracking using a Model-Free Approach,
CVPR00(I: 145-150).
IEEE DOI
0005
BibRef
Nguyen, H.T.[Hieu T.],
Worring, M.[Marcel],
van den Boomgaard, R.[Rein],
Occlusion Robust Adaptive Template Tracking,
ICCV01(I: 678-683).
IEEE DOI
0106
BibRef
Li, P.H.[Pei-Hua],
Zhang, T.W.[Tian-Wen],
Pece, A.E.C.[Arthur E.C.],
Visual contour tracking based on particle filters,
IVC(21), No. 1, January 2003, pp. 111-123.
Elsevier DOI
0301
BibRef
Li, P.H.[Pei-Hua],
Zhang, T.W.[Tian-Wen],
Ma, B.[Bo],
Unscented Kalman filter for visual curve tracking,
IVC(22), No. 2, 1 February 2004, pp. 157-164.
Elsevier DOI
0402
For each step, make multiple measurements
on appropriately chosen sample points, thus obtaining
the best observation according to the measurement density.
BibRef
Li, P.H.[Pei-Hua],
Zhang, T.W.[Tian-Wen],
Visual contour tracking based on sequential importance
sampling/resampling algorithm,
ICPR02(II: 564-568).
IEEE DOI
0211
BibRef
Li, P.H.[Pei-Hua],
Tensor-SIFT Based Earth Mover's Distance for Contour Tracking,
JMIV(46), No. 1, May 2013, pp. 44-65.
WWW Link.
1303
BibRef
Pece, A.E.C.[Arthur E.C.],
Worrall, A.D.[Anthony D.],
A comparison between feature-based and EM-based contour tracking,
IVC(24), No. 11, 1 November 2006, pp. 1218-1232.
Elsevier DOI
0610
BibRef
Earlier:
Tracking with the EM Contour Algorithm,
ECCV02(I: 3 ff.).
Springer DOI
0205
Active contour for pose refinement and tracking.
Generative model; EM algorithm; Kalman filter;
Empirical information matrix
BibRef
Pece, A.E.C.[Arthur E.C.],
Contour tracking based on marginalized likelihood ratios,
IVC(24), No. 3, 1 March 2006, pp. 301-317.
Elsevier DOI Generative model; Active contour; Particle filter; EM algorithm; Kalman filter
0604
BibRef
Earlier:
A Comparison of Active-Contour Models Based on Blurring and on
Marginalization,
PETS05(333-340).
IEEE DOI
0602
BibRef
Earlier:
Tracking of Non-Gaussian Clusters in the PETS2001 Image Sequences,
PETS01(xx-yy).
0110
BibRef
Nava, F.P.[Fernando Pérez],
Martel, A.F.[Antonio Falcón],
Wavelet modeling of contour deformations in Sobolev spaces for fitting
and tracking applications,
PR(36), No. 5, May 2003, pp. 1119-1130.
Elsevier DOI
0301
Fitting in bayesian terms.
BibRef
Zimmer, C.,
Labruyere, E.,
Meas-Yedid, V.[Vannary],
Guillen-Aghion, N.,
Olivo-Marin, J.C.[Jean-Christophe],
Segmentation and tracking of migrating cells in videomicroscopy with
parametric active contours: a tool for cell-based drug testing,
MedImg(21), No. 10, October 2002, pp. 1212-1221.
IEEE Top Reference.
0301
BibRef
And:
Improving active contours for segmentation and tracking of motile cells
in videomicroscopy,
ICPR02(II: 286-289).
IEEE DOI
0211
BibRef
Olivo-Marin, J.C.[Jean-Christophe],
Meas-Yedid, V.[Vannary],
Improving histology images segmentation through spatial constraints and
supervision,
ICIP10(3633-3636).
IEEE DOI
1009
BibRef
Meas-Yedid, V.[Vannary],
Olivo-Marin, J.C.[Jean-Christophe],
Active Contours for the Movement and Motility Analysis of Biological
Objects,
ICIP00(Vol I: 196-199).
IEEE DOI
0008
BibRef
Nguyn Ngoc, S.,
Briquet-Laugier, F.,
Boulin, C., and
Olivo-Marin, J.C.,
Adaptive Detection for Tracking Moving Biological Objects in
Video Microscopy Sequences,
ICIP97(III: 484-487).
IEEE DOI
BibRef
9700
Obando, D.F.G.[Daniel Felipe González],
Olivo-Marin, J.C.[Jean-Christophe],
Wendling, L.[Laurent],
Meas-Yedid, V.[Vannary],
Vector-Based Morphological Operations on Polygons Using Straight
Skeletons for Digital Pathology,
DGCI19(249-261).
Springer DOI
1905
BibRef
Zimmer, C.,
Olivo-Marin, J.C.,
Coupled Parametric Active Contours,
PAMI(27), No. 11, November 2005, pp. 1838-1842.
IEEE DOI
0510
Deal with occasional touching, contours do not merge.
BibRef
Pecreaux, J.,
Zimmer, C.,
Olivo-Marin, J.C.,
Biophysical Active Contours for Cell Tracking I: Tension and Bending,
ICIP06(1949-1952).
IEEE DOI
0610
BibRef
de Chaumont, F.,
Dufour, A.,
Olivo-Marin, J.C.,
Tracking articulated objects with physics engines,
ICIP09(885-888).
IEEE DOI
0911
BibRef
Dufour, A.,
Shinin, V.,
Tajbakhsh, S.,
Guillen-Aghion, N.,
Olivo-Marin, J.C.,
Zimmer, C.,
Segmenting and Tracking Fluorescent Cells in Dynamic 3-D Microscopy
With Coupled Active Surfaces,
IP(14), No. 9, September 2005, pp. 1396-1410.
IEEE DOI
0508
BibRef
Chenouard, N.[Nicolas],
Vernhettes, S.[Samantha],
Bloch, I.[Isabelle],
Olivo-Marin, J.C.[Jean-Christophe],
Morphological source separation for particle tracking in complex
biological environments,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chenouard, N.[Nicolas],
Bloch, I.[Isabelle],
Olivo-Marin, J.C.[Jean-Christophe],
Multiple Hypothesis Tracking for Cluttered Biological Image Sequences,
PAMI(35), No. 11, 2013, pp. 2736-3750.
IEEE DOI
1309
BibRef
Earlier:
Multiple hypothesis tracking in cluttered condition,
ICIP09(3621-3624).
IEEE DOI
0911
Feature Tracking.
BibRef
And:
Particle tracking in fluorescent microscopy images improved by
morphological source separation,
ICIP09(821-824).
IEEE DOI
0911
BibRef
Earlier:
Feature-aided particle tracking,
ICIP08(1796-1799).
IEEE DOI
0810
Particle tracking
BibRef
Koschan, A.F.[Andreas F.],
Kang, S.K.[Sang-Kyu],
Paik, J.K.[Joon-Ki],
Abidi, B.R.[Besma R.],
Abidi, M.A.[Mongi A.],
Color active shape models for tracking non-rigid objects,
PRL(24), No. 11, July 2003, pp. 1751-1765.
Elsevier DOI
0304
BibRef
Kang, S.K.[Sang-Kyu],
Koschan, A.F.[Andreas F.],
Zhang, H.S.,
Paik, J.K.[Joon-Ki],
Abidi, B.R.[Besma R.],
Abidi, M.A.[Mongi A.],
Hierarchical approach to enhanced active shape model for color video
tracking,
ICIP02(I: 888-891).
IEEE DOI
0210
BibRef
Feghali, R.,
Mitiche, A.,
Spatiotemporal Motion Boundary Detection and Motion Boundary Velocity
Estimation for Tracking Moving Objects With a Moving Camera:
A Level Sets PDEs Approach With Concurrent Camera Motion Compensation,
IP(13), No. 11, November 2004, pp. 1473-1490.
IEEE DOI
0411
BibRef
Earlier:
Tracking with simultaneous camera motion substraction by level set
spatio-temporal surface evolution,
ICIP03(III: 929-932).
IEEE DOI
0312
BibRef
Mitiche, A.,
Feghali, R.,
Mansouri, A.,
Tracking moving objects as spatio-temporal boundary detection,
Southwest02(106-110).
IEEE Top Reference.
0208
BibRef
Chung, D.[Desmond],
MacLean, W.J.[W. James],
Dickinson, S.J.[Sven J.],
Integrating region and boundary information for spatially coherent
object tracking,
IVC(24), No. 7, July 2006, pp. 680-692.
Elsevier DOI
PDF File.
0608
BibRef
Integrating Region and Boundary Information for Improved Spatial
Coherence in Object Tracking,
Non-Rigid04(3).
IEEE DOI
0502
Motion estimation; Boundary recovery; Parametric models; Motion layers
BibRef
Tsechpenakis, G.,
Rapantzikos, K.,
Tsapatsoulis, N.,
Kollias, S.D.,
A snake model for object tracking in natural sequences,
SP:IC(19), No. 3, March 2004, pp. 219-238.
Elsevier DOI
0402
BibRef
Rapantzikos, K.[Konstantinos],
Tsapatsoulis, N.[Nicolas],
Avrithis, Y.S.[Yannis S.],
Kollias, S.D.[Stefanos D.],
Bottom-up spatiotemporal visual attention model for video analysis,
IET-IPR(1), No. 2, June 2007, pp. 237-248.
DOI Link
0905
BibRef
Rapantzikos, K.[Konstantinos],
Tsapatsoulis, N.[Nicolas],
Avrithis, Y.S.[Yannis S.],
Kollias, S.D.[Stefanos D.],
Spatiotemporal saliency for video classification,
SP:IC(24), No. 7, August 2009, pp. 557-571.
Elsevier DOI
0909
Spatiotemporal visual saliency; Video classification
BibRef
Rapantzikos, K.[Konstantinos],
Avrithis, Y.S.[Yannis S.],
Kollias, S.D.[Stefanos D.],
Dense saliency-based spatiotemporal feature points for action
recognition,
CVPR09(1454-1461).
IEEE DOI
0906
BibRef
Earlier:
Spatiotemporal saliency for event detection and representation in the
3D wavelet domain: potential in human action recognition,
CIVR07(294-301).
DOI Link
0707
BibRef
Varytimidis, C.[Christos],
Rapantzikos, K.[Konstantinos],
Avrithis, Y.S.[Yannis S.],
Kollias, S.D.[Stefanos D.],
a-shapes for local feature detection,
PR(50), No. 1, 2016, pp. 56-73.
Elsevier DOI
1512
Local features
BibRef
Tolias, G.[Giorgos],
Avrithis, Y.S.[Yannis S.],
Speeded-up, relaxed spatial matching,
ICCV11(1653-1660).
IEEE DOI
1201
Determine the most appropriate matching model.
BibRef
Tsechpenakis, G.[Gabriel],
Tsapatsoulis, N.[Nicolas],
Kollias, S.D.[Stefanos D.],
Probabilistic Boundary-based Contour Tracking With Snakes In Natural
Cluttered Video Sequences,
IJIG(4), No. 3, July 2004, pp. 469-498.
0407
BibRef
Kapsalas, P.,
Kollias, S.D.,
Affine morphological shape stable boundary regions (SSBR) for image
representation,
ICIP11(3381-3384).
IEEE DOI
1201
BibRef
Tsechpenakis, G.[Gavriil],
Chatzis, S.P.[Sotirios P.],
Deformable probability maps:
Probabilistic shape and appearance-based object segmentation,
CVIU(115), No. 8, August 2011, pp. 1157-1169.
Elsevier DOI
1101
Segmentation; Deformable models; Graphical models
BibRef
Ristivojevic, M.,
Konrad, J.[Janusz],
Space-Time Image Sequence Analysis:
Object Tunnels and Occlusion Volumes,
IP(15), No. 2, February 2006, pp. 364-376.
IEEE DOI
0602
BibRef
Earlier: A2, A1:
Joint space-time image sequence segmentation based on volume
competition and level sets,
ICIP02(I: 573-576).
IEEE DOI
0210
Find the volumn carved by the object through time.
BibRef
Hsu, C.T.[Chiou-Ting],
Hsieh, M.S.[Ming-Shen],
Region tracking for non-rigid video objects in a non-parametric MAP
framework,
SP:IC(21), No. 3, March 2006, pp. 235-251.
Elsevier DOI
0604
BibRef
Earlier:
Segmentation of non-rigid object in a non-parametric MAP framework,
ICIP03(I: 997-1000).
IEEE DOI
0312
Map model; Non-parametric density estimation; Non-rigid motion; Curve evolution
BibRef
Xiong, G.L.[Guang-Lei],
Feng, C.[Chao],
Ji, L.[Liang],
Dynamical Gaussian mixture model for tracking elliptical living objects,
PRL(27), No. 7, May 2006, pp. 838-842.
Elsevier DOI Gaussian mixture model; EM algorithm; Kalman filtering; Tracking
0604
BibRef
Wilson, C.A.,
Theriot, J.A.,
A Correlation-Based Approach to Calculate Rotation and Translation of
Moving Cells,
IP(15), No. 7, July 2006, pp. 1939-1951.
IEEE DOI
0606
BibRef
Moreno-Noguer, F.[Francesc],
Sanfeliu, A.[Alberto],
Samaras, D.[Dimitris],
Integration of deformable contours and a multiple hypotheses Fisher
color model for robust tracking in varying illuminant environments,
IVC(25), No. 3, March 2007, pp. 285-296.
Elsevier DOI
0701
Tracking; Deformable contours; Color adaption; Particle filters
See also Dependent Multiple Cue Integration for Robust Tracking.
See also Integration of Conditionally Dependent Object Features for Robust Figure/Background Segmentation.
BibRef
Sum, K.W.,
Cheung, P.Y.S.[Paul Y.S.],
Boundary vector field for parametric active contours,
PR(40), No. 6, June 2007, pp. 1635-1645.
Elsevier DOI
0704
Parametric active contours; Snakes; External forces; Gradient vector flow;
Boundary vector field; Capture range; Concave object extraction;
Image segmentation; Medical image analysis
BibRef
Jiang, H.[Hao],
Drew, M.S.[Mark S.],
Shadow resistant tracking using inertia constraints,
PR(40), No. 7, July 2007, pp. 1929-1945.
Elsevier DOI
0704
BibRef
Earlier:
A predictive contour inertia snake model for general video tracking,
ICIP02(III: 413-416).
IEEE DOI
0210
Shadows; Tracking; Snakes; Active contours; Variational;
Illumination invariance; Inertia
BibRef
Allili, M.S.[Mohand Said],
Ziou, D.[Djemel],
Globally adaptive region information for automatic color-texture image
segmentation,
PRL(28), No. 15, 1 November 2007, pp. 1946-1956.
Elsevier DOI
0711
BibRef
Earlier:
Automatic Color-Texture Image Segmentation by Using Active Contours,
IWICPAS06(495-504).
Springer DOI
0608
BibRef
Earlier:
An Automatic Segmentation of Color Images by Using a Combination of
Mixture Modelling and Adaptive Region Information: A Level Set Approach,
ICIP05(I: 305-308).
IEEE DOI
0512
Color; Texture; Polarity; Level sets; Automatic segmentation
BibRef
Allili, M.S.[Mohand Said],
Wavelet Modeling Using Finite Mixtures of Generalized Gaussian
Distributions: Application to Texture Discrimination and Retrieval,
IP(21), No. 4, April 2012, pp. 1452-1464.
IEEE DOI
1204
BibRef
Earlier:
Wavelet-Based Texture Retrieval Using a Mixture of Generalized Gaussian
Distributions,
ICPR10(3143-3146).
IEEE DOI
1008
BibRef
Allili, M.S.[Mohand Saïd],
Baaziz, N.[Nadia],
Mejri, M.,
Texture Modeling Using Contourlets and Finite Mixtures of Generalized
Gaussian Distributions and Applications,
MultMed(16), No. 3, April 2014, pp. 772-784.
IEEE DOI
1405
Gaussian distribution
BibRef
Yapi, D.[Daniel],
Allili, M.S.[Mohand Said],
Multi-Band Texture Modeling Using Finite Mixtures of Multivariate
Generalized Gaussian Distributions,
ICPR22(464-469)
IEEE DOI
2212
Wavelet transforms, Correlation, Heavily-tailed distribution,
Graphical models, Image color analysis, Image retrieval, Layout,
color-texture retrieval
BibRef
Allili, M.S.[Mohand Saïd],
Baaziz, N.[Nadia],
Contourlet-Based Texture Retrieval Using a Mixture of Generalized
Gaussian Distributions,
CAIP11(II: 446-454).
Springer DOI
1109
BibRef
Nouboukpo, A.[Adama],
Allili, M.S.[Mohand Said],
Spatially-Coherent Segmentation Using Hierarchical Gaussian Mixture
Reduction Based on Cauchy-Schwarz Divergence,
ICIAR19(I:388-396).
Springer DOI
1909
BibRef
Boulmerka, A.[Aissa],
Allili, M.S.[Mohand Said],
Thresholding-Based Segmentation Revisited Using Mixtures of Generalized
Gaussian Distributions,
ICPR12(2894-2897).
WWW Link.
1302
See also Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation.
BibRef
Allili, M.S.[Mohand Saïd],
Effective object tracking by matching object and background models
using active contours,
ICIP09(873-876).
IEEE DOI
0911
BibRef
And:
Object Contour Tracking Using Foreground and Background Distribution
Matching,
CIARP09(954-961).
Springer DOI
0911
BibRef
Allili, M.S.[Mohand Saïd],
Ziou, D.[Djemel],
Active contours for video object tracking using region, boundary and
shape information,
SIViP(1), No. 2, June 2007, pp. 101-117.
Springer DOI
0707
BibRef
Earlier:
Adaptive Appearance Model for Object Contour Tracking in Videos,
CRV07(510-518).
IEEE DOI
0705
BibRef
Earlier:
A Robust Video Object Tracking by Using Active Contours,
OTCBVS06(135).
IEEE DOI
0609
BibRef
And:
Object Contour Tracking in Videos by Matching Finite Mixture Models,
AVSBS06(35-35).
IEEE DOI
0611
BibRef
Earlier:
An Automatic Segmentation Combining Mixture Analysis and Adaptive
Region Information: A Level Set Approach,
CRV05(73-80).
IEEE DOI
0505
See also Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture, A.
BibRef
Allili, M.S.[Mohand Said],
Ziou, D.[Djemel],
An approach for dynamic combination of region and boundary information
in segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Allili, M.S.[Mohand Said],
Ziou, D.[Djemel],
Object of Interest segmentation and Tracking by Using Feature Selection
and Active Contours,
OTCBVS07(1-8).
IEEE DOI
0706
BibRef
And:
Using Feature Selection For Object Segmentation and Tracking,
CRV07(191-200).
IEEE DOI
0705
BibRef
Seise, M.[Matthias],
McKenna, S.J.[Stephen J.],
Ricketts, I.W.[Ian W.],
Wigderowitz, C.A.[Carlos A.],
Learning Active Shape Models for Bifurcating Contours,
MedImg(26), No. 5, May 2007, pp. 666-677.
IEEE DOI
0705
BibRef
Earlier:
Double Contour Active Shape Models,
BMVC05(xx-yy).
HTML Version.
0509
Segmentation of tibial and femoral contours in knee X-ray images.
BibRef
Seise, M.[Matthias],
McKenna, S.J.[Stephen J.],
Ricketts, I.W.[Ian W.],
Wigderowitz, C.A.[Carlos A.],
Parts-based segmentation with overlapping part models using Markov
chain Monte Carlo,
IVC(27), No. 5, 2 April 2009, pp. 504-513.
Elsevier DOI
0904
BibRef
Earlier:
Segmenting Multiple Objects with Overlapping Appearance and Uncertainty,
BMVC06(II:839).
PDF File.
0609
Probabilistic segmentation; Model-based segmentation; Markov chain Monte Carlo
BibRef
McAllister, G.,
McKenna, S.J.,
Ricketts, I.W.,
MLESAC tracking with 2D revolute-prismatic articulated models,
ICPR02(II: 725-728).
IEEE DOI
0211
BibRef
Schreiber, D.[David],
Robust template tracking with drift correction,
PRL(28), No. 12, 1 September 2007, pp. 1483-1491.
Elsevier DOI
0707
Template tracking; The Lucas-Kanade algorithm; Robust least squares
BibRef
Schreiber, D.[David],
Generalizing the Lucas-Kanade algorithm for histogram-based tracking,
PRL(29), No. 7, 1 May 2008, pp. 852-861.
Elsevier DOI
0804
Template tracking; The Lucas-Kanade algorithm; Histogram-based tracking;
Kernel-based tracking; Robust least squares; Pedestrian tracking
See also Iterative Image Registration Technique with an Application to Stereo Vision, An.
BibRef
Schreiber, D.[David],
Incorporating symmetry into the Lucas-Kanade framework,
PRL(30), No. 7, 1 May 2009, pp. 690-698.
Elsevier DOI
0904
Template tracking; Region alignment; The Lucas-Kanade algorithm;
Bilateral symmetry; Symmetry detection; Symmetry tracking
BibRef
Shekhovtsov, A.[Alexander],
Kovtun, I.[Ivan],
Hlavac, V.[Vaclav],
Efficient MRF Deformation Model for Non-Rigid Image Matching,
CVIU(112), No. 1, October 2008, pp. 91-99.
Elsevier DOI
0810
BibRef
Earlier:
CVPR07(1-6).
IEEE DOI
0706
Markov random fields; MRF; Message passing; TRW-S; Energy
minimization; Motion estimation; Optical flow; Image registration
BibRef
Zaki, M.,
Youssef, M.,
TNRAC: a system for tracking multiple moving non-rigid objects using an
active camera,
SIViP(3), No. 2, June 2009, pp. xx-yy.
Springer DOI
0903
active contour models. Block matching, reject bad feature points.
BibRef
Garcia Trigo, P.[Pablo],
Johan, H.[Henry],
Imagire, T.[Takashi],
Nishita, T.[Tomoyuki],
Interactive Region Matching for 2D Animation Coloring Based on
Feature's Variation,
IEICE(E92-D), No. 6, June 2009, pp. 1289-1295.
WWW Link.
0907
Store the region and match regions through frames.
BibRef
Chung, C.Y.[Chih-Yuan],
Chen, H.H.,
Video Object Extraction via MRF-Based Contour Tracking,
CirSysVideo(20), No. 1, January 2010, pp. 149-155.
IEEE DOI
1002
BibRef
Dimitrios, A.[Arabadjis],
Rousopoulos, P.[Panayiotis],
Papaodysseus, C.[Constantin],
Panagopoulos, M.[Mihalis],
Loumou, P.[Panayiota],
Theodoropoulos, G.[Georgios],
A General Methodology for the Determination of 2D Bodies Elastic
Deformation Invariants: Application to the Automatic Identification of
Parasites,
PAMI(32), No. 5, May 2010, pp. 799-814.
IEEE DOI
1003
Use 2D image and deformation characteristics to get undeformed shape.
See also Identification of Geometrical Shapes in Paintings and its Application to Demonstrate the Foundations of Geometry in 1650 B.C..
BibRef
Goldin, I.[Ishay],
Delosme, J.M.[Jean-Marc],
Bruckstein, A.M.[Alfred M.],
Vesicles and Amoebae: On Globally Constrained Shape Deformation,
JMIV(37), No. 2, June 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Earlier:
Vesicles and amoebae: Globally constrained shape evolutions,
NORDIA08(1-8).
IEEE DOI
0806
BibRef
Mai, F.,
Chang, C.Q.,
Hung, Y.S.,
A subspace approach for matching 2D shapes under affine distortions,
PR(44), No. 2, February 2011, pp. 210-221.
Elsevier DOI
1011
BibRef
And:
Affine-invariant shape matching and recognition under partial occlusion,
ICIP10(4605-4608).
IEEE DOI
1009
Shape registration; Affine transformation; Subspace; 2D shape
BibRef
Michel, D.[Damien],
Oikonomidis, I.[Iasonas],
Argyros, A.A.[Antonis A.],
Scale invariant and deformation tolerant partial shape matching,
IVC(29), No. 7, June 2011, pp. 459-469.
Elsevier DOI
1101
BibRef
Earlier: A2, A3, Only:
Deformable 2D Shape Matching Based on Shape Contexts and Dynamic
Programming,
ISVC09(II: 460-469).
Springer DOI
0911
Partial shape matching; 2D shape descriptors; Dynamic programming
BibRef
Chiverton, J.[John],
Xie, X.H.[Xiang-Hua],
Mirmehdi, M.[Majid],
Automatic Bootstrapping and Tracking of Object Contours,
IP(21), No. 3, March 2012, pp. 1231-1245.
IEEE DOI
1203
BibRef
Earlier: A1, A3, A2:
On-line Learning of Shape Information for Object Segmentation and
Tracking,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Earlier: A1, A3, A2:
Variational Maximum A Posteriori model similarity and dissimilarity
matching,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And: A1, A2, A3:
Tracking with Active Contours Using Dynamically Updated Shape
Information,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Zhang, K.H.[Kai-Hua],
Song, H.H.[Hui-Hui],
Real-Time Visual Tracking Via Online Weighted Multiple Instance
Learning,
PR(46), No. 1, January 2013, pp. 397-411.
Elsevier DOI
1209
Visual tracking; Multiple instance learning; Tracking by detection;
Sliding window
See also Active Contours with Selective Local or Global Segmentation: A New Formulation and Level Set Method.
See also Real-Time Object Tracking Via Online Discriminative Feature Selection.
BibRef
Staneva, V.,
Younes, L.,
Modeling and Estimation of Shape Deformation for Topology-Preserving
Object Tracking,
SIIMS(7), No. 1, 2014, pp. 427-455.
DOI Link
1404
BibRef
Staneva, V.,
Younes, L.,
Learning Shape Trends: Parameter Estimation in Diffusions on Shape
Manifolds,
Diff-CVML17(717-725)
IEEE DOI
1709
Conferences, Diffusion processes, Estimation,
Manifolds, Mathematical model, Shape
BibRef
Sun, X.[Xin],
Yao, H.X.[Hong-Xun],
A refined particle filter based on determined level set model for
robust contour tracking,
MVA(25), No. 7, October 2014, pp. 1727-1736.
WWW Link.
1410
BibRef
Sun, X.[Xin],
Yao, H.X.[Hong-Xun],
Zhang, S.P.[Sheng-Ping],
Sun, M.[Mingui],
Non-rigid object tracking by adaptive data-driven kernel,
ICIP13(2958-2962)
IEEE DOI
1402
BibRef
Earlier: A1, A2, A3, Only:
A novel supervised level set method for non-rigid object tracking,
CVPR11(3393-3400).
IEEE DOI
1106
Object tracking;active contour;adaptive kernel;mean shift
BibRef
Sun, X.[Xin],
Yao, H.X.[Hong-Xun],
Zhang, S.P.[Sheng-Ping],
Li, D.[Dong],
Non-Rigid Object Contour Tracking via a Novel Supervised Level Set
Model,
IP(24), No. 11, November 2015, pp. 3386-3399.
IEEE DOI
1509
edge detection
BibRef
Sun, X.[Xin],
Yao, H.X.[Hong-Xun],
Zhang, S.P.[Sheng-Ping],
Contour tracking via on-line discriminative appearance modeling based
level sets,
ICIP11(2317-2320).
IEEE DOI
1201
BibRef
Moreno-Noguer, F.[Francesc],
Porta, J.M.[Josep M.],
A Bayesian approach to simultaneously recover camera pose and
non-rigid shape from monocular images,
IVC(52), No. 1, 2016, pp. 141-153.
Elsevier DOI
1609
BibRef
Earlier:
Probabilistic simultaneous pose and non-rigid shape recovery,
CVPR11(1289-1296).
IEEE DOI
1106
Deformable surfaces
BibRef
Agudo, A.[Antonio],
Moreno-Noguer, F.[Francesc],
Combining Local-Physical and Global-Statistical Models for Sequential
Deformable Shape from Motion,
IJCV(122), No. 2, April 2017, pp. 371-387.
Springer DOI
1704
BibRef
And:
Global Model with Local Interpretation for Dynamic Shape
Reconstruction,
WACV17(264-272)
IEEE DOI
1609
BibRef
Earlier:
Learning Shape, Motion and Elastic Models in Force Space,
ICCV15(756-764)
IEEE DOI
1602
BibRef
And:
Simultaneous pose and non-rigid shape with particle dynamics,
CVPR15(2179-2187)
IEEE DOI
1510
Computational modeling, Deformable models, Modal analysis, Shape,
Standards, Surface reconstruction,
See also Sequential Non-Rigid Structure from Motion Using Physical Priors.
See also scalable, efficient, and accurate solution to non-rigid structure from motion, A.
BibRef
Sanchez-Riera, J.[Jordi],
Ostlund, J.[Jonas],
Fua, P.[Pascal],
Moreno-Noguer, F.[Francesc],
Simultaneous pose, correspondence and non-rigid shape,
CVPR10(1189-1196).
IEEE DOI
1006
BibRef
Veeravasarapu, V.,
Goel, A.,
Mittal, D.,
Singh, M.,
ProAlignNet: Unsupervised Learning for Progressively Aligning Noisy
Contours,
CVPR20(9668-9676)
IEEE DOI
2008
Shape, Transforms, Loss measurement, Noise measurement,
Feature extraction, Training
BibRef
Moayedi, F.,
Azimifar, Z.,
Fieguth, P.W.,
Kazemi, A.,
Adaptive multi-resolution CRF-based contour tracking,
ICIP11(497-500).
IEEE DOI
1201
BibRef
Prakash, R.S.[R. Senthil],
Aravind, R.,
Invariance Properties of AM-FM Image Features with Application to
Template Tracking,
ICCVGIP08(614-620).
IEEE DOI
0812
BibRef
Srinivasan, P.[Praveen],
Zhu, Q.H.[Qi-Hui],
Shi, J.B.[Jian-Bo],
Many-to-one contour matching for describing and discriminating object
shape,
CVPR10(1673-1680).
IEEE DOI
1006
BibRef
Zhu, Q.H.[Qi-Hui],
Wang, L.M.[Li-Ming],
Wu, Y.[Yang],
Shi, J.B.[Jian-Bo],
Contour Context Selection for Object Detection:
A Set-to-Set Contour Matching Approach,
ECCV08(II: 774-787).
Springer DOI
0810
BibRef
Chen, H.Q.[Hui-Qiong],
Gao, Q.G.[Qi-Gang],
Integrating Color and Gradient into Real-time Curve Tracking,
CRV08(294-300).
IEEE DOI
0805
BibRef
Yan, J.H.[Jian-Hua],
Zhang, K.Q.[Ke-Qi],
Zhang, C.C.[Cheng-Cui],
Chen, S.C.[Shu-Ching],
Narasimhan, G.[Giri],
A Graph Reduction Method for 2D Snake Problems,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Yan, J.[Jun],
Zhou, X.B.[Xiao-Bo],
Yang, Q.[Qiong],
Liu, N.[Ning],
Cheng, Q.S.[Qian-Sheng],
Wong, S.T.C.,
An Effective System for Optical Microscopy Cell Image Segmentation,
Tracking and Cell Phase Identification,
ICIP06(1917-1920).
IEEE DOI
0610
BibRef
Husain, M.,
Saber, E.,
Misic, V.,
Joralemon, S.P.,
Dynamic Object Tracking by Partial Shape Matching for Video
Surveillance Applications,
ICIP06(2405-2408).
IEEE DOI
0610
BibRef
Wilson, R.C.,
Das, S.,
Finkel, L.H.,
Motion as Shape: A Novel Method for the Recognition and Prediction of
Biological Motion,
BMVC06(II:669).
PDF File.
0609
BibRef
Takeshima, H.[Hidenori],
Ida, T.[Takashi],
Kaneko, T.[Toshimitsu],
Object Contour Detection Using Spatio-temporal Self-similarity,
ICPR06(I: 613-617).
IEEE DOI
0609
BibRef
Shahrokni, A.[Ali],
Fleuret, F.,
Fua, P.[Pascal],
Classifier-based Contour Tracking for Rigid and Deformable Objects,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Metaxas, D.N.,
Qian, Z.[Zhen],
Huang, X.L.[Xiao-Lei],
Huang, R.[Rui],
Chen, T.[Ting],
Axel, L.,
Hybrid Deformable Models for Medical Segmentation and Registration,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Huang, X.L.[Xiao-Lei],
Qian, Z.[Zhen],
Huang, R.[Rui],
Metaxas, D.N.[Dimitris N.],
Deformable-Model Based Textured Object Segmentation,
EMMCVPR05(119-135).
Springer DOI
0601
BibRef
Gevers, T.,
Aldershoff, F.,
Color invariant density estimation for image segmentation and object
tracking,
ICIP04(V: 3029-3032).
IEEE DOI
0505
BibRef
Kawamoto, K.[Kazuhiko],
Hirota, K.[Kaoru],
Curve Tracking by Hypothesis Propagation and Voting-Based Verification,
IWCIA04(151-163).
Springer DOI
0505
BibRef
Xu, W.B.[Wei-Bing],
Amin, S.A.[Saad A.],
Haas, O.C.L.[Olivier C.L.],
Burnham, K.J.[Keith J.],
Mills, J.A.[John A.],
Snake-Aided Automatic Organ Delineation,
DAGM04(504-511).
Springer DOI
0505
BibRef
de Bruijne, M.,
Nielsen, M.,
Image segmentation by shape particle filtering,
ICPR04(III: 722-725).
IEEE DOI
0409
BibRef
da Fontoura Costa, L.,
Schubert, D.,
A framework for cell movement image analysis,
CIAP03(271-276).
IEEE DOI
0310
BibRef
Huang, F.Z.[Fu-Zhen],
Su, J.B.[Jian-Bo],
Moment-Based Shape Priors for Geometric Active Contours,
ICPR06(II: 56-59).
IEEE DOI
0609
BibRef
Earlier:
Multiple face contour detection based on geometric active contours,
AFGR04(385-390).
IEEE DOI
0411
BibRef
Earlier:
Deformable pedal curves with application to face contour extraction,
CVPR03(I: 328-333).
IEEE DOI
0307
BibRef
Wu, Y.[Ying],
Hua, G.[Gang],
Yu, T.[Ting],
Switching observation models for contour tracking in clutter,
CVPR03(I: 295-302).
IEEE DOI
0307
BibRef
Giebel, J.,
Gavrila, D.M.,
Multimodal Shape Tracking with Point Distribution Models,
DAGM02(1 ff.).
Springer DOI
0303
BibRef
Brandner, M.,
Pinz, A.,
Real-Time Tracking of Complex Objects Using Dynamic Interpretation Tree,
DAGM02(9 ff.).
Springer DOI
0303
BibRef
Abd-Almageed, W.,
Smith, C.E.,
Mixture models for dynamic statistical pressure snakes,
ICPR02(II: 721-724).
IEEE DOI
0211
BibRef
Izquierdo, D.,
Berthoumieu, Y.,
Region level segmentation based on a derivative approach for video
tracking process,
ICIP02(II: 321-324).
IEEE DOI
0210
BibRef
Kalafatic, Z.,
Ribaric, S.,
Stanisavljevic, V.,
A system for tracking laboratory animals based on optical flow and
active contours,
CIAP01(334-339).
IEEE DOI
0210
BibRef
Ieng, S.S.[Sio-Song],
Tarel, J.P.[Jean-Philippe],
Charbonnier, P.[Pierre],
Evaluation of Robust Fitting Based Detection,
ECCV04(Vol II: 341-352).
Springer DOI
0405
BibRef
Tarel, J.P.[Jean-Philippe],
Ieng, S.S.[Sio-Song],
Charbonnier, P.[Pierre],
Using Robust Estimation Algorithms for Tracking Explicit Curves,
ECCV02(I: 492 ff.).
Springer DOI
HTML Version.
0205
BibRef
Grazzini, J.,
Béréziat, D.,
Herlin, I.,
Analysis of Cloudy Structures Evolution on Meteorological Satellite
Acquisitions,
ICIP01(III: 760-763).
IEEE DOI
0108
BibRef
Hu, C.B.[Chang-Bo],
Li, Y.[Yi],
Ma, S.D.[Song-De],
Lu, H.Q.[Hang-Qing],
Region Based Parametric Motion Representation,
ICPR00(Vol III: 861-864).
IEEE DOI
IEEE DOI
0009
Motion of the regions.
BibRef
Mech, R.,
Robust 2D Shape Estimation of Moving Objects Considering Spatial and
Temporal Coherency in One MAP Detection Rule,
ICIP00(Vol I: 331-334).
IEEE DOI
0008
BibRef
Reynard, D.,
Blake, A.,
Azzawi, A.,
Styles, P.,
Radda, G.K.,
Computer Tracking of Tagged H MR Images for Motion Analysis,
CVRMed95(XX-YY)
BibRef
9500
Reynard, D.,
Wildenberg, A.,
Blake, A.,
Marchant, J.,
Learning Dynamics of Complex Motions from Image Sequences,
ECCV96(I:357-368).
Springer DOI
BibRef
9600
Kervrann, C.,
Heitz, F.,
Robust tracking of stochastic deformable models in long image sequences,
ICIP94(III: 88-92).
IEEE DOI
9411
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Snakes, Matching Deformable Contours .