Super-Resolution Code,
Online2007.
Code, Super-Resolution.
HTML Version. Matlab/C code.
See also Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?.
BibRef
0700
SuperTex136,
2016
WWW Link.
Dataset, Superresolution. Refer to:
See also Jointly Optimized Regressors for Image Super-resolution.
Stuller, J.A.,
Linear Resolution Enhancement,
CGIP(5), No. 3, September 1976, pp. 291-318.
Elsevier DOI
BibRef
7609
Koizumi, H.[Hideaki],
Sano, K.[Koichi],
Yokoyama, T.[Tetsuo],
Sukegawa, K.[Kazuya],
Method and apparatus for reducing image noises,
US_Patent5,113,137, May 12, 1992
WWW Link. multiple images, noise is not correlated between images.
BibRef
9205
Yamada, E.[Eiji],
Iwaki, T.[Tetsuo],
Imaging apparatus for obtaining a high resolution image,
US_Patent5,754,226, May 19, 1998
WWW Link.
BibRef
9805
Candocia, F.M., and
Principe, J.C.,
Super-resolution of images based on local correlations,
TNN(10), No. 2, March 1999, pp. 372-380.
BibRef
9903
Sabo, E.[Eran],
Zalevsky, Z.[Zeev],
Mendlovic, D.[David],
Konforti, N.[Naim],
Kiryuschev, I.[Irena],
Superresolution optical system using three fixed generalized gratings:
experimental results,
JOSA-A(18), No. 3, March 2001, pp. 514-520.
0105
BibRef
Zalevsky, Z.[Zeev], (Ed.)
Super-Resolved Imaging:
Geometrical and Diffraction Approaches,
Springer2011.
ISBN: 978-1-4614-0832-1
WWW Link.
1109
BibRef
Borkowski, A.[Amikam],
Zalevsky, Z.[Zeev],
Javidi, B.[Bahram],
Geometrical superresolved imaging using nonperiodic spatial masking,
JOSA-A(26), No. 3, March 2009, pp. 589-601.
WWW Link.
0903
BibRef
Borkowski, A.[Amikam],
Zalevsky, Z.[Zeev],
Marom, E.[Emanuel],
Javidi, B.[Bahram],
Enhanced geometrical superresolved imaging with moving binary random
mask,
JOSA-A(28), No. 4, April 2011, pp. 566-575.
WWW Link.
1104
BibRef
Lertrattanapanich, S.,
Bose, N.K.,
High resolution image formation from low resolution frames using
Delaunay triangulation,
IP(11), No. 12, December 2002, pp. 1427-1441.
IEEE DOI
0301
BibRef
Earlier:
HR Image from Multiframes by Delaunay Triangulation: A Synopsis,
ICIP02(II: 869-872).
IEEE DOI
0210
See also Superresolution with second generation wavelets.
BibRef
Yang, Q.[Qing],
Parvin, B.,
High-resolution reconstruction of sparse data from dense low-resolution
spatio-temporal data,
IP(12), No. 6, June 2003, pp. 671-677.
IEEE DOI
0307
BibRef
Earlier:
ICPR02(II: 261-264).
IEEE DOI
0211
BibRef
Nagahara, H.,
Yagi, Y.S.[Yasu-Shi],
Yachida, M.[Masahiko],
Superresolution modeling using an omnidirectional image sensor,
SMC-B(33), No. 4, August 2003, pp. 607-615.
IEEE Abstract.
0308
BibRef
Earlier:
Resolution Improving Method from Multi-focal Omnidirectional Images,
ICIP01(I: 654-657).
IEEE DOI
0108
BibRef
Makihara, Y.S.[Yasu-Shi],
Mori, A.[Atsushi],
Yagi, Y.S.[Yasu-Shi],
Temporal Super Resolution from a Single Quasi-periodic Image Sequence
Based on Phase Registration,
ACCV10(I: 107-120).
Springer DOI
1011
BibRef
Nieto-Vesperinas, M.[Manuel],
Problem of image superresolution with a negative-refractive-index slab,
JOSA-A(21), No. 4, April 2004, pp. 491-498.
WWW Link.
0409
BibRef
Trimeche, M.[Mejdi],
Bilcu, R.C.[Radu Ciprian],
Yrjänäinen, J.[Jukka],
Adaptive Outlier Rejection in Image Super-resolution,
JASP(2006), 2006, pp. 1-12.
WWW Link.
0603
BibRef
Trimeche, M.[Mejdi],
Yrjänäinen, J.[Jukka],
A Method for Simultaneous Outlier Rejection in Image Super-Resolution,
VLBV03(188-195).
Springer DOI
0310
BibRef
Humblot, F.[Fabrice],
Mohammad-Djafari, A.[Ali],
Super-Resolution Using Hidden Markov Model and Bayesian Detection
Estimation Framework,
JASP(2006), 2006, pp. 1-16.
WWW Link.
0603
BibRef
Zhang, S.Q.[Shu-Qun],
Application of Super-Resolution Image Reconstruction to Digital
Holography,
JASP(2006), 2006, pp. 1-7.
WWW Link.
0603
BibRef
Prasad, S.,
Torgersen, T.C.,
Pauca, V.P.,
Plemmons, R.J.,
van der Gracht, J.,
High-resolution imaging using integrated optical systems,
IJIST(14), No. 2, 2004, pp. 67-74.
DOI Link
0408
BibRef
Chan, R.H.[Raymond H.],
Riemenschneider, S.D.[Sherman D.],
Shen, L.X.[Li-Xin],
Shen, Z.W.[Zuo-Wei],
High-resolution image reconstruction with displacement errors:
A framelet approach,
IJIST(14), No. 3, 2004, pp. 91-104.
DOI Link
0408
BibRef
Li, Y.R.[Yan-Ran],
Dai, D.Q.[Dao-Qing],
Shen, L.X.[Li-Xin],
Multiframe Super-Resolution Reconstruction Using Sparse Directional
Regularization,
CirSysVideo(20), No. 7, July 2010, pp. 945-956.
IEEE DOI
1008
BibRef
MacDonald, A.[Adam],
Cain, S.[Stephen],
Oxley, M.[Mark],
Binary Weighted Averaging of an Ensemble of Coherently Collected Image
Frames,
IP(16), No. 4, April 2007, pp. 1085-1100.
IEEE DOI
0704
BibRef
Wei, L.[Lei],
Levi, D.M.[Dennis M.],
Li, R.W.[Roger W.],
Klein, S.A.[Stanley A.],
Feasibility Study on a Hyperacuity Device With Motion Uncertainty:
Two-Point Stimuli,
SMC-B(37), No. 2, April 2007, pp. 385-397.
IEEE DOI
0704
BibRef
Ni, K.S.,
Nguyen, T.Q.,
Image Superresolution Using Support Vector Regression,
IP(16), No. 6, June 2007, pp. 1596-1610.
IEEE DOI
0706
BibRef
Lukac, R.[Rastislav],
Plataniotis, K.N.[Konstantinos N.],
A new image sharpening approach for single-sensor digital cameras,
IJIST(17), No. 3, 2007, pp. 123-131.
DOI Link
0711
BibRef
Hardie, C.,
A Fast Image Super-Resolution Algorithm Using an Adaptive Wiener Filter,
IP(16), No. 12, December 2007, pp. 2953-2964.
IEEE DOI
0711
BibRef
Ben-Eliezer, E.[Eyal],
Marom, E.[Emanuel],
Aberration-free superresolution imaging via binary speckle pattern
encoding and processing,
JOSA-A(24), No. 4, April 2007, pp. 1003-1010.
WWW Link.
0801
BibRef
Mico, V.[Vicente],
Limon, O.[Ofer],
Gur, A.[Aviram],
Zalevsky, Z.[Zeev],
García, J.[Javier],
Transverse resolution improvement using rotating-grating
time-multiplexing approach,
JOSA-A(25), No. 5, May 2008, pp. 1115-1129.
WWW Link.
0711
BibRef
El-Yamany, N.A.[Noha A.],
Papamichalis, P.E.[Panos E.],
Robust Color Image Superresolution:
An Adaptive M-Estimation Framework,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0804
BibRef
Earlier:
Using bounded-influence M-estimators in multi-frame super-resolution
reconstruction: A comparative study,
ICIP08(337-340).
IEEE DOI
0810
BibRef
Kim, K.[Kio],
Neretti, N.[Nicola],
Intrator, N.[Nathan],
MAP fusion method for superresolution of images with locally varying
pixel quality,
IJIST(18), No. 4, 2008, pp. 242-250.
DOI Link
0810
BibRef
Helin, T.[Tapio],
Lassas, M.[Matti],
Siltanen, S.[Samuli],
Infinite Photography: New Mathematical Model for High-Resolution Images,
JMIV(36), No. 2, February 2010, pp. xx-yy.
Springer DOI
1002
BibRef
Yuan, Q.Q.[Qiang-Qiang],
Zhang, L.P.[Liang-Pei],
Shen, H.F.[Huan-Feng],
Li, P.X.[Ping-Xiang],
Adaptive Multiple-Frame Image Super-Resolution Based on U-Curve,
IP(19), No. 12, December 2010, pp. 3157-3170.
IEEE DOI
1011
Regularization parameter choices.
BibRef
Shi, G.M.[Guang-Ming],
Gao, D.[Dahua],
Song, X.X.[Xiao-Xia],
Xie, X.M.[Xue-Mei],
Chen, X.Y.[Xu-Yang],
Liu, D.H.[Dan-Hua],
High-Resolution Imaging Via Moving Random Exposure and Its Simulation,
IP(20), No. 1, January 2011, pp. 276-282.
IEEE DOI
1101
BibRef
Wu, X.L.[Xiao-Lin],
Gao, D.[Dahua],
Chen, Q.[Qin],
Zhang, K.W.[Kai-Wei],
High Joint Spectral-Spatial Resolution Imaging via Nanostructured
Random Broadband Filtering,
ICIP19(2911-2915)
IEEE DOI
1910
Multispectral imaging, random broadband filtering, surface plasmon polariton.
BibRef
Mansouri, M.,
Mohammad-Djafari, A.,
Joint super-resolution and segmentation from a set of low resolution
images using a Bayesian approach with a Gauss-Markov-Potts prior,
IJSISE(3). 2010, pp. 211-221.
DOI Link
Code:
See also Constrained and Unconstrained Inverse Potts Modelling for Joint Image Super-Resolution and Segmentation.
BibRef
0000
Zhang, L.P.[Liang-Pei],
Yuan, Q.Q.[Qiang-Qiang],
Shen, H.F.[Huan-Feng],
Li, P.X.[Ping-Xiang],
Multiframe image super-resolution adapted with local spatial
information,
JOSA-A(28), No. 3, March 2011, pp. 381-390.
WWW Link.
1103
BibRef
Shen, H.F.[Huan-Feng],
Peng, L.,
Yue, L.,
Yuan, Q.Q.[Qiang-Qiang],
Zhang, L.P.[Liang-Pei],
Adaptive Norm Selection for Regularized Image Restoration and
Super-Resolution,
Cyber(46), No. 6, June 2016, pp. 1388-1399.
IEEE DOI
1605
Adaptation models
BibRef
Kirmani, A.,
Jeelani, H.,
Montazerhodjat, V.,
Goyal, V.K.,
Diffuse Imaging: Creating Optical Images With Unfocused Time-Resolved
Illumination and Sensing,
SPLetters(19), No. 1, January 2012, pp. 31-34.
IEEE DOI
1112
BibRef
Nasir, H.[Haidawati],
Stankovic, V.[Vladimir],
Marshall, S.[Stephen],
Singular value decomposition based fusion for super-resolution image
reconstruction,
SP:IC(27), No. 2, February 2012, pp. 180-191.
Elsevier DOI
1202
Super-resolution, Image fusion
BibRef
Su, H.[Heng],
Tang, L.[Liang],
Wu, Y.,
Tretter, D.[Daniel],
Zhou, J.[Jie],
Spatially Adaptive Block-Based Super-Resolution,
IP(21), No. 3, March 2012, pp. 1031-1045.
IEEE DOI
1203
BibRef
Earlier: A1, A2, A4, A5, Only:
A practical and adaptive framework for super-resolution,
ICIP08(1236-1239).
IEEE DOI
0810
BibRef
Su, H.[Heng],
Wu, Y.,
Zhou, J.[Jie],
Super-Resolution Without Dense Flow,
IP(21), No. 4, April 2012, pp. 1782-1795.
IEEE DOI
1204
BibRef
Petrou, M.[Maria],
Jaward, M.H.[Mohamed H.],
Chen, S.Y.[Sheng-Yong],
Briers, M.[Mark],
Super-resolution in practice: the complete pipeline from image capture
to super-resolved subimage creation using a novel frame selection
method,
MVA(23), No. 3, May 2012, pp. 441-459.
WWW Link.
1204
Camera assumed to be on a vibrating platform, static scene.
BibRef
Kulkarni, N.,
Nagesh, P.,
Gowda, R.,
Li, B.,
Understanding Compressive Sensing and Sparse Representation-Based
Super-Resolution,
CirSysVideo(22), No. 5, May 2012, pp. 778-789.
IEEE DOI
1202
BibRef
Salari, E.,
Bao, G.,
Super-resolution using an enhanced Papoulis-Gerchberg algorithm,
IET-IPR(6), No. 7, 2012, pp. 959-965.
DOI Link
1211
BibRef
Salem, F.,
Yagle, A.E.,
Non-Parametric Super-Resolution Using a Bi-Sensor Camera,
MultMed(15), No. 1, January 2013, pp. 27-40.
IEEE DOI
1212
BibRef
Salem, F.,
Yagle, A.E.,
Super-Resolution of Dynamic Scenes Using Sampling Rate Diversity,
IP(25), No. 8, August 2016, pp. 3459-3474.
IEEE DOI
1608
Gaussian noise
BibRef
Iqbal, M.,
Chen, J.,
Unification of image fusion and super-resolution using jointly trained
dictionaries and local information contents,
IET-IPR(6), No. 9, 2012, pp. 1299-1310.
DOI Link
1302
BibRef
Faramarzi, E.[Esmaeil],
Rajan, D.[Dinesh],
Christensen, M.P.[Marc P.],
Unified Blind Method for Multi-Image Super-Resolution
and Single/Multi-Image Blur Deconvolution,
IP(22), No. 6, 2013, pp. 2101-2114.
IEEE DOI
1307
Markov processes, alternating minimization;
blur estimation process, Blind estimation, blur deconvolution;
image restoration, super-resolution
BibRef
Faramarzi, E.[Esmaeil],
Bhakta, V.R.[Vikrant R.],
Rajan, D.[Dinesh],
Christensen, M.P.[Marc P.],
Super Resolution results in PANOPTES, an adaptive multi-aperture folded
architecture,
ICIP10(2833-2836).
IEEE DOI
1009
BibRef
Yue, H.J.[Huan-Jing],
Sun, X.Y.[Xiao-Yan],
Yang, J.Y.[Jing-Yu],
Wu, F.[Feng],
Landmark Image Super-Resolution by Retrieving Web Images,
IP(22), No. 12, 2013, pp. 4865-4878.
IEEE DOI
1312
feature extraction
See also Image Denoising by Exploring External and Internal Correlations.
BibRef
Lenti, F.,
Nunziata, F.,
Estatico, C.,
Migliaccio, M.,
On the Spatial Resolution Enhancement of Microwave Radiometer Data in
Banach Spaces,
GeoRS(52), No. 3, March 2014, pp. 1834-1842.
IEEE DOI
1403
geophysical techniques
BibRef
Lenti, F.,
Nunziata, F.,
Estatico, C.,
Migliaccio, M.,
Conjugate Gradient Method in Hilbert and Banach Spaces to Enhance the
Spatial Resolution of Radiometer Data,
GeoRS(54), No. 1, January 2016, pp. 397-406.
IEEE DOI
1601
geophysical techniques
BibRef
Xu, H.L.[Hong-Liang],
Zhou, F.[Fei],
Yang, F.[Fan],
Liao, Q.M.[Qing-Min],
Parameterized Multisurface Fitting for Multi-Frame Superresolution,
IEICE(E97-D), No. 4, April 2014, pp. 1001-1003.
WWW Link.
1404
BibRef
Yang, W.M.[Wen-Ming],
Zhang, X.C.[Xue-Chen],
Tian, Y.P.[Ya-Peng],
Wang, W.[Wei],
Xue, J.H.[Jing-Hao],
Liao, Q.M.[Qing-Min],
LCSCNet: Linear Compressing-Based Skip-Connecting Network for Image
Super-Resolution,
IP(29), No. , 2020, pp. 1450-1464.
IEEE DOI
1911
Training, Neural networks, Image reconstruction,
Computer architecture, Image coding, Network architecture,
feature fusion
BibRef
Trinh, D.H.[Dinh-Hoan],
Luong, M.,
Dibos, F.,
Rocchisani, J.M.,
Pham, C.D.[Canh-Duong],
Nguyen, T.Q.,
Novel Example-Based Method for Super-Resolution and Denoising of
Medical Images,
IP(23), No. 4, April 2014, pp. 1882-1895.
IEEE DOI
1404
image denoising
BibRef
Yang, S.,
Wang, Z.,
Zhang, L.,
Wang, M.,
Dual-Geometric Neighbor Embedding for Image Super Resolution With
Sparse Tensor,
IP(23), No. 7, July 2014, pp. 2793-2803.
IEEE DOI
1407
Dictionaries
BibRef
Lee, D.G.[Dae Gwan],
Ferreira, P.J.S.G.,
Superoscillations with Optimal Numerical Stability,
SPLetters(21), No. 12, December 2014, pp. 1443-1447.
IEEE DOI
1410
bandlimited signals oscillate faster than bandlimit.
BibRef
Li, T.[Tao],
He, X.H.[Xiao-Hai],
Teng, Q.Z.[Qi-Zhi],
Wang, Z.Y.[Zheng-Yong],
Ren, C.[Chao],
Space-time super-resolution with patch group cuts prior,
SP:IC(30), No. 1, 2015, pp. 147-165.
Elsevier DOI
1412
Super-resolution
BibRef
Sajjad, M.[Muhammad],
Mehmood, I.[Irfan],
Baik, S.W.[Sung Wook],
Image super-resolution using sparse coding over redundant dictionary
based on effective image representations,
JVCIR(26), No. 1, 2015, pp. 50-65.
Elsevier DOI
1502
Super-resolution
BibRef
Sajjad, M.[Muhammad],
Mehmood, I.[Irfan],
Abbas, N.[Naveed],
Baik, S.W.[Sung Wook],
Basis pursuit denoising-based image superresolution using a redundant
set of atoms,
SIViP(10), No. 1, January 2016, pp. 181-188.
Springer DOI
1601
BibRef
He, L.[Lei],
Tan, J.Q.[Jie-Qing],
Su, Z.[Zhuo],
Luo, X.N.[Xiao-Nan],
Xie, C.J.[Cheng-Jun],
Super-resolution by polar Newton-Thiele's rational kernel in
centralized sparsity paradigm,
SP:IC(31), No. 1, 2015, pp. 86-99.
Elsevier DOI
1502
BibRef
And:
Corrigendum:
SP:IC(35), No. 1, 2015, pp. 85-86.
Elsevier DOI
1506
Continued fractions
BibRef
Du, X.[Xian],
Kojimoto, N.[Nigel],
Anthony, B.W.[Brian W.],
Concentric circular trajectory sampling for super-resolution and
image mosaicing,
JOSA-A(32), No. 2, February 2015, pp. 293-304.
DOI Link
1502
Industrial inspection
BibRef
Shao, W.Z.[Wen-Ze],
Deng, H.S.[Hai-Song],
Wei, Z.H.[Zhi-Hui],
A posterior mean approach for MRF-based spatially adaptive multi-frame
image super-resolution,
SIViP(9), No. 2, February 2015, pp. 437-449.
WWW Link.
1503
BibRef
Traonmilin, Y.[Yann],
Ladjal, S.[Saïd],
Almansa, A.[Andrés],
Robust Multi-Image Processing with Optimal Sparse Regularization,
JMIV(51), No. 3, March 2015, pp. 413-429.
WWW Link.
1504
BibRef
Earlier:
Outlier Removal Power of the L1-Norm Super-Resolution,
SSVM13(198-209).
Springer DOI
1305
Optical Flow and 3D Reconstruction
BibRef
Polatkan, G.,
Zhou, M.Y.,
Carin, L.,
Blei, D.,
Daubechies, I.,
A Bayesian Nonparametric Approach to Image Super-Resolution,
PAMI(37), No. 2, February 2015, pp. 346-358.
IEEE DOI
1502
Bayes methods
BibRef
Pérez, F.,
Pérez, A.,
Rodríguez, M.,
Magdaleno, E.,
Super-Resolved Fourier-Slice Refocusing in Plenoptic Cameras,
JMIV(52), No. 2, June 2015, pp. 200-217.
Springer DOI
1505
BibRef
Earlier:
Fourier Slice Super-resolution in plenoptic cameras,
ICCP12(1-11).
IEEE DOI
1208
BibRef
Kim, A.[Aram],
Park, J.[Junhee],
Lee, B.U.[Byung-Uk],
Removing Boundary Effect of a Patch-Based Super-Resolution Algorithm,
IEICE(E98-D), No. 4, April 2015, pp. 976-979.
WWW Link.
1505
BibRef
Laghrib, A.[Amine],
Hakim, A.[Abdelilah],
Raghay, S.[Said],
A combined total variation and bilateral filter approach for image
robust super resolution,
JIVP(2015), No. 1, 2015, pp. 19.
DOI Link
1507
BibRef
Laghrib, A.[Amine],
Ezzaki, M.[Mahmoud],
El Rhabi, M.[Mohammed],
Hakim, A.[Abdelilah],
Monasse, P.[Pascal],
Raghay, S.[Said],
Simultaneous deconvolution and denoising using a second order
variational approach applied to image super resolution,
CVIU(168), 2018, pp. 50-63.
Elsevier DOI
1804
Multiframe super resolution, Bilateral TV filter,
Bounded hessian space, Second order regularization, Relaxed function
BibRef
Laghrib, A.[Amine],
Ben-Loghfyry, A.,
Hadri, A.,
Hakim, A.[Abdelilah],
A nonconvex fractional order variational model for multi-frame image
super-resolution,
SP:IC(67), 2018, pp. 1-11.
Elsevier DOI
1808
Multi-frame super-resolution, Nonconvex fidelity term,
Fractional order regularization, Optimization
BibRef
Chen, C.B.[Chuan-Bo],
Liang, H.[Hu],
Zhao, S.R.[Sheng-Rong],
Lyu, Z.[Zehua],
Sarem, M.[Mudar],
A novel multi-image super-resolution reconstruction method using
anisotropic fractional order adaptive norm,
VC(31), No. 9, September 2015, pp. 1217-1231.
Springer DOI
1508
BibRef
Lenti, F.,
Nunziata, F.,
Migliaccio, M.,
Rodriguez, G.,
Two-Dimensional TSVD to Enhance the Spatial Resolution of Radiometer
Data,
GeoRS(52), No. 5, May 2014, pp. 2450-2458.
IEEE DOI
1403
Antennas
BibRef
Liang, M.,
Du, J.,
Cao, S.,
Li, L.,
Super-resolution reconstruction based on multisource bidirectional
similarity and non-local similarity matching,
IET-IPR(9), No. 11, 2015, pp. 931-942.
DOI Link
1511
image matching
BibRef
Zhang, D.X.[Dong-Xiao],
Jodoin, P.M.,
Li, C.[Cuihua],
Wu, Y.D.[Yun-Dong],
Cai, G.R.[Guo-Rong],
Novel Graph Cuts Method for Multi-Frame Super-Resolution,
SPLetters(22), No. 12, December 2015, pp. 2279-2283.
IEEE DOI
1512
Markov processes
BibRef
Cho, M.[Myung],
Mishra, K.V.,
Cai, J.F.[Jian-Feng],
Xu, W.Y.[Wei-Yu],
Block Iterative Reweighted Algorithms for Super-Resolution of
Spectrally Sparse Signals,
SPLetters(22), No. 12, December 2015, pp. 2319-2313.
IEEE DOI
1512
compressed sensing
BibRef
Chainais, P.,
Leray, A.,
Statistical Performance Analysis of a Fast Super-Resolution Technique
Using Noisy Translations,
IP(25), No. 4, April 2016, pp. 1699-1712.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Chen, Y.J.[Yun-Jin],
Higher-order MRFs based image super resolution: why not MAP?,
IET-IPR(10), No. 4, 2016, pp. 297-303.
DOI Link
1604
Markov processes
BibRef
Pérez-Pellitero, E.[Eduardo],
Salvador, J.[Jordi],
Ruiz-Hidalgo, J.[Javier],
Rosenhahn, B.[Bodo],
Antipodally Invariant Metrics for Fast Regression-Based
Super-Resolution,
IP(25), No. 6, June 2016, pp. 2456-2468.
IEEE DOI
1605
BibRef
And:
PSyCo: Manifold Span Reduction for Super Resolution,
CVPR16(1837-1845)
IEEE DOI
1612
BibRef
Earlier:
Bayesian region selection for adaptive dictionary-based
Super-Resolution,
BMVC13(xx-yy).
DOI Link
1402
image resolution
See also Patch-based spatio-temporal super-resolution for video with non-rigid motion.
BibRef
Pérez-Pellitero, E.[Eduardo],
Salvador, J.[Jordi],
Torres-Xirau, I.[Iban],
Ruiz-Hidalgo, J.[Javier],
Rosenhahn, B.[Bodo],
Fast Super-Resolution via Dense Local Training and Inverse Regressor
Search,
ACCV14(III: 346-359).
Springer DOI
1504
BibRef
Han, N.N.[Ning-Ning],
Song, Z.J.[Zhan-Jie],
Li, Y.[Ying],
Cluster-based image super-resolution via jointly low-rank and sparse
representation,
JVCIR(38), No. 1, 2016, pp. 175-185.
Elsevier DOI
1605
Image super-resolution
BibRef
Yoo, J.S.[Jun-Sang],
Choi, J.H.[Ji-Hoon],
Choi, K.S.[Kang-Sun],
Lee, D.Y.[Dae-Yeol],
Kim, H.Y.[Hui-Yong],
Kim, J.O.[Jong-Ok],
Fast Search of a Similar Patch for Self-Similarity Based Image Super
Resolution,
IEICE(E99-D), No. 8, August 2016, pp. 2194-2198.
WWW Link.
1608
BibRef
d'Acunto, M.[Mario],
Righi, M.[Marco],
Salvetti, O.[Ovidio],
A new method combining enhanced resolution and pattern identification,
SIViP(10), No. 7, October 2016, pp. 1303-1310.
WWW Link.
1609
BibRef
Xiao, J.S.[Jin-Sheng],
Pang, G.L.[Guan-Lin],
Zhang, Y.Q.[Yong-Qin],
Kuang, Y.[Yuli],
Yan, Y.C.[Yu-Chen],
Wang, Y.X.[Yi-Xiang],
Adaptive shock filter for image super-resolution and enhancement,
JVCIR(40, Part A), No. 1, 2016, pp. 168-177.
Elsevier DOI
1609
Image enhancement
BibRef
Jin, R.C.[Ren-Chao],
Zhao, S.R.[Sheng-Rong],
Xu, X.Y.[Xiang-Yang],
Song, E.[Enmin],
Multiframe super-resolution based on half-quadratic prior with
artifacts suppress,
JVCIR(40, Part B), No. 1, 2016, pp. 656-670.
Elsevier DOI
1610
Super-resolution
BibRef
Xiao, J.S.[Jin-Sheng],
Liu, E.[Enyu],
Zhao, L.[Ling],
Wang, Y.F.[Yuan-Fang],
Jiang, W.B.[Wen-Bin],
Detail enhancement of image super-resolution based on detail
synthesis,
SP:IC(50), No. 1, 2017, pp. 21-33.
Elsevier DOI
1612
Super resolution
BibRef
Liu, J.Y.[Jia-Ying],
Yang, W.H.[Wen-Han],
Zhang, X.F.[Xin-Feng],
Guo, Z.M.[Zong-Ming],
Retrieval Compensated Group Structured Sparsity for Image
Super-Resolution,
MultMed(19), No. 2, February 2017, pp. 302-316.
IEEE DOI
1702
image coding
BibRef
Yang, W.H.[Wen-Han],
Liu, J.Y.[Jia-Ying],
Yang, S.[Saboya],
Quo, Z.M.[Zong-Ming],
Image super-resolution via nonlocal similarity and group structured
sparse representation,
VCIP15(1-4)
IEEE DOI
1605
Adaptation models
BibRef
Wang, Z.W.[Zi-Wen],
Feng, G.R.[Guo-Rui],
Fan, L.Y.[Ling-Yan],
Wang, J.W.[Jin-Wei],
Sparse Representation for Color Image Super-Resolution with Image
Quality Difference Evaluation,
IEICE(E100-D), No. 1, January 2017, pp. 150-159.
WWW Link.
1701
BibRef
Sundar, K.J.A.[K. Joseph Abraham],
Vaithiyanathan, V.,
Multi-frame super-resolution using adaptive normalized convolution,
SIViP(11), No. 2, February 2017, pp. 357-362.
WWW Link.
1702
BibRef
Graba, F.[Fares],
Comby, F.[Frederic],
Strauss, O.[Olivier],
Non-Additive Imprecise Image Super-Resolution in a Semi-Blind Context,
IP(26), No. 3, March 2017, pp. 1379-1392.
IEEE DOI
1703
BibRef
Earlier:
Non-additive imprecise image super-resolution,
ICIP14(3882-3886)
IEEE DOI
1502
image reconstruction.
Additives
BibRef
Wang, Y.,
Wang, L.,
Wang, H.,
Li, P.,
Information-Compensated Downsampling for Image Super-Resolution,
SPLetters(25), No. 5, May 2018, pp. 685-689.
IEEE DOI
1805
convolution, feature extraction, image denoising,
image enhancement, image reconstruction, image representation,
super-resolution
BibRef
Wang, X.F.[Xiao-Feng],
Zhou, D.D.[Di-Dong],
Zeng, N.L.[Neng-Liang],
Yu, X.[Xina],
Hu, S.L.[Shao-Lin],
Super-resolution image reconstruction using surface fitting with
hierarchical structure,
JVCIR(53), 2018, pp. 65-75.
Elsevier DOI
1805
Super-resolution image reconstruction, Neighborhood expansion,
Multi-surface fitting, Hierarchical structure, MAP estimation
BibRef
Laghrib, A.[Amine],
Alahyane, M.[Mohamed],
Ghazdali, A.[Abdelghani],
Hakim, A.[Abdelilah],
Raghay, S.[Said],
Multiframe super-resolution based on a high-order spatially weighted
regularisation,
IET-IPR(12), No. 6, June 2018, pp. 928-940.
DOI Link
1805
BibRef
Xu, K.[Ke],
Wang, X.[Xin],
Yang, X.[Xin],
He, S.F.[Sheng-Feng],
Zhang, Q.A.[Qi-Ang],
Yin, B.C.[Bao-Cai],
Wei, X.P.[Xiao-Peng],
Lau, R.W.H.[Rynson W. H.],
Efficient image super-resolution integration,
VC(34), No. 6-8, June 2018, pp. 1065-1076.
Springer DOI
1806
BibRef
Lal, A.,
Shan, C.,
Zhao, K.,
Liu, W.,
Huang, X.,
Zong, W.,
Chen, L.,
Xi, P.,
A Frequency Domain SIM Reconstruction Algorithm Using Reduced Number
of Images,
IP(27), No. 9, September 2018, pp. 4555-4570.
IEEE DOI
1807
image reconstruction, image resolution, iterative methods,
least squares approximations, medical image processing,
super-resolution
BibRef
Liu, X.,
Chen, L.,
Wang, W.,
Zhao, J.,
Robust Multi-Frame Super-Resolution Based on Spatially Weighted
Half-Quadratic Estimation and Adaptive BTV Regularization,
IP(27), No. 10, October 2018, pp. 4971-4986.
IEEE DOI
1808
Bayes methods, image reconstruction, image resolution,
matrix algebra, robust multiframe super-resolution,
adaptive bilateral total variation (ABTV)
BibRef
Quevedo, E.,
Sánchez, L.,
Callicó, G.M.,
Tobajas, F.,
de la Cruz, J.,
de Armas, V.,
Sarmiento, R.,
Super-resolution with selective filter based on adaptive window and
variable macro-block size,
RealTimeIP(15), No. 2, August 2018, pp. 389-406.
Springer DOI
1808
BibRef
Aoki, R.[Reo],
Imamura, K.[Kousuke],
Hirano, A.[Akihiro],
Matsuda, Y.[Yoshio],
High-Performance Super-Resolution via Patch-Based Deep Neural Network
for Real-Time Implementation,
IEICE(E101-D), No. 11, November 2018, pp. 2808-2817.
WWW Link.
1811
BibRef
Zhu, H.[Hong],
Gao, X.M.[Xiao-Ming],
Tang, X.M.[Xin-Ming],
Xie, J.F.[Jun-Feng],
Song, W.D.[Wei-Dong],
Mo, F.[Fan],
Jia, D.[Di],
Super-Resolution Reconstruction and Its Application Based on
Multilevel Main Structure and Detail Boosting,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Li, H.L.[Hai-Liang],
Lam, K.M.[Kin-Man],
Wang, M.[Miaohui],
Image super-resolution via feature-augmented random forest,
SP:IC(72), 2019, pp. 25-34.
Elsevier DOI
1902
Random forest, Gradient magnitude filter,
Clustering and regression, Image super-resolution, Weighted ridge regression
BibRef
Nandi, D.[Debashis],
Karmakar, J.[Jayashree],
Kumar, A.[Amish],
Mandal, M.K.[Mrinal Kanti],
Sparse representation based multi-frame image super-resolution
reconstruction using adaptive weighted features,
IET-IPR(13), No. 4, March 2019, pp. 663-672.
DOI Link
1903
BibRef
Shamsolmoali, P.[Pourya],
Zareapoor, M.[Masoumeh],
Zhang, J.H.[Jun-Hao],
Yang, J.[Jie],
Image super resolution by dilated dense progressive network,
IVC(88), 2019, pp. 9-18.
Elsevier DOI
1908
Image supper resolution, Dense network, Dilated convolution
BibRef
Noor, D.F.[Dewan Fahim],
Li, Y.[Yue],
Li, Z.[Zhu],
Bhattacharyya, S.[Shuvra],
York, G.[George],
Multi-Scale Gradient Image Super-Resolution for Preserving SIFT Key
Points in Low-Resolution Images,
SP:IC(78), 2019, pp. 236-245.
Elsevier DOI
1909
Image super-resolution, Difference of Gaussian, Gradient image,
SIFT repeatability
BibRef
Yoo, J.S.[Jun-Sang],
Kim, J.O.[Jong-Ok],
Noise-Robust Iterative Back-Projection,
IP(29), No. , 2020, pp. 1219-1232.
IEEE DOI
1911
Image reconstruction, Noise measurement, Principal component analysis,
Image resolution, Noise robustness, cost optimization
BibRef
Catala, P.[Paul],
Duval, V.[Vincent],
Peyré, G.[Gabriel],
A Low-Rank Approach to Off-the-Grid Sparse Superresolution,
SIIMS(12), No. 3, 2019, pp. 1464-1500.
DOI Link
1911
BibRef
Yang, X.M.[Xiao-Mei],
Zhang, J.W.[Jia-Wei],
Liu, Y.[Yanan],
Zheng, X.J.[Xiu-Juan],
Liu, K.[Kai],
Super-resolution image reconstruction using fractional-order total
variation and adaptive regularization parameters,
VC(35), No. 12, December 2018, pp. 1755-1768.
WWW Link.
1912
BibRef
Wang, D.Y.[Dao-Yong],
Yang, X.M.[Xiao-Min],
Pu, Q.[Qin],
Jeon, G.G.[Gwang-Gil],
Liu, K.[Kai],
PSAM: Progressive Spatial Adaptive Matching for Reference-Based Super
Resolution,
SPLetters(30), 2023, pp. 1717-1721.
IEEE DOI
2312
BibRef
Bhandari, A.[Ayush],
Conde, M.H.[Miguel Heredia],
Loffeld, O.[Otmar],
One-Bit Time-Resolved Imaging,
PAMI(42), No. 7, July 2020, pp. 1630-1641.
IEEE DOI
2006
Imaging, Time measurement, Image resolution, Sensors,
Quantization (signal), Current measurement, Photonics,
sparse recovery and time-resolved imaging
BibRef
Li, F.,
Bai, H.,
Zhao, Y.,
FilterNet: Adaptive Information Filtering Network for Accurate and
Fast Image Super-Resolution,
CirSysVideo(30), No. 6, June 2020, pp. 1511-1523.
IEEE DOI
2006
Image reconstruction, Image resolution, Convolution,
Information filters, Convolutional neural networks, Training,
adaptive information fusion
BibRef
Köhler, T.[Thomas],
Bätz, M.[Michel],
Naderi, F.[Farzad],
Kaup, A.[André],
Maier, A.[Andreas],
Riess, C.[Christian],
Toward Bridging the Simulated-to-Real Gap:
Benchmarking Super-Resolution on Real Data,
PAMI(42), No. 11, November 2020, pp. 2944-2959.
IEEE DOI
2010
Benchmark testing, Databases, Spatial resolution, Observers, Cameras,
Hardware, Super-resolution, ground truth, simulated-to-real gap,
observer study
BibRef
Nayak, R.[Rajashree],
Patra, D.[Dipti],
Balabantaray, B.K.[Bunil Ku],
Super-resolution image reconstruction using molecular docking,
IET-IPR(14), No. 12, October 2020, pp. 2922-2936.
DOI Link
2010
BibRef
Qiao, H.,
A Universal Technique for Analysing Discrete Super-Resolution
Algorithms,
SPLetters(27), 2020, pp. 1829-1833.
IEEE DOI
2011
Signal resolution, Image resolution,
Signal processing algorithms, Eigenvalues and eigenfunctions,
dantzig selector
BibRef
Yang, Y.[Yue],
Qi, Y.[Yong],
Image super-resolution via channel attention and spatial graph
convolutional network,
PR(112), 2021, pp. 107798.
Elsevier DOI
2102
Image super-resolution, Graph convolutional, Adjacent matrix
BibRef
Zhang, X.Y.[Xin-Yan],
Gao, P.[Peng],
Liu, S.X.Y.[Sun-Xiang-Yu],
Zhao, K.Y.[Kong-Ya],
Li, G.T.[Gui-Tao],
Yin, L.G.[Liu-Guo],
Chen, C.W.[Chang Wen],
Accurate and Efficient Image Super-Resolution via Global-Local
Adjusting Dense Network,
MultMed(23), 2021, pp. 1924-1937.
IEEE DOI
2107
Feature extraction, Image reconstruction, Computational modeling,
Task analysis, Computational efficiency, Data mining, refinement structure
BibRef
Chow, Y.T.[Yat Tin],
Deng, Y.J.[You-Jun],
He, Y.Z.[You-Zi],
Liu, H.Y.[Hong-Yu],
Wang, X.C.[Xian-Chao],
Surface-Localized Transmission Eigenstates, Super-resolution Imaging,
and Pseudo Surface Plasmon Modes,
SIIMS(14), No. 3, 2021, pp. 946-975.
DOI Link
2108
BibRef
Prajapati, K.[Kalpesh],
Chudasama, V.[Vishal],
Upla, K.[Kishor],
Raia, K.[Kiran],
Ramachandra, R.[Raghavendra],
Busch, C.[Christoph],
Channel Split Convolutional Neural Network for Single Image
Super-Resolution (CSISR),
FG21(1-8)
IEEE DOI
2303
Performance evaluation, Training, Image synthesis,
Computational modeling, Superresolution, Memory management,
Computational efficiency
BibRef
Prajapati, K.[Kalpesh],
Chudasama, V.[Vishal],
Patel, H.[Heena],
Sarvaiya, A.[Anjali],
Upla, K.[Kishor],
Raja, K.[Kiran],
Ramachandra, R.[Raghavendra],
Busch, C.[Christoph],
Channel Split Convolutional Neural Network (ChaSNet) for Thermal
Image Super-Resolution,
PBVS21(4363-4372)
IEEE DOI
2109
BibRef
Earlier: A2, A3, A1, A5, A7, A6, A8, Only:
TherISuRNet:
A Computationally Efficient Thermal Image Super-Resolution Network,
PBVS20(388-397)
IEEE DOI
2008
Image sensors, Visualization, Thermal factors, Superresolution,
Thermal sensors, Optical imaging, Thermal noise.
Cameras, Spatial resolution, Feature extraction, Training, Computer architecture
BibRef
Pu, X.F.[Xiao-Feng],
Wang, Z.M.[Zeng-Mao],
Multistage reaction-diffusion equation network for image
super-resolution,
IET-IPR(15), No. 12, 2021, pp. 2926-2936.
DOI Link
2109
BibRef
Mehta, N.[Nancy],
Murala, S.[Subrahmanyam],
MSAR-Net: Multi-scale attention based light-weight image
super-resolution,
PRL(151), 2021, pp. 215-221.
Elsevier DOI
2110
Multi-scale attention residual block,
Up and down-sampling projection block, Image super-resolution
BibRef
Tan, Y.[Yang],
Zheng, H.T.[Hai-Tian],
Zhu, Y.H.[Yin-Heng],
Yuan, X.Y.[Xiao-Yun],
Lin, X.[Xing],
Brady, D.[David],
Fang, L.[Lu],
CrossNet++: Cross-Scale Large-Parallax Warping for Reference-Based
Super-Resolution,
PAMI(43), No. 12, December 2021, pp. 4291-4305.
IEEE DOI
2112
Cameras, Spatial resolution, Signal resolution, Superresolution,
Light fields, Training data, Photography, Noise reduction, Decoding,
optical flow
BibRef
Zheng, H.T.[Hai-Tian],
Ji, M.Q.[Meng-Qi],
Wang, H.Q.[Hao-Qian],
Liu, Y.B.[Ye-Bin],
Fang, L.[Lu],
CrossNet: An End-to-End Reference-Based Super Resolution Network Using
Cross-Scale Warping,
ECCV18(VI: 87-104).
Springer DOI
1810
BibRef
Xu, X.Y.[Xiang-Yu],
Ma, Y.R.[Yong-Rui],
Sun, W.X.[Wen-Xiu],
Yang, M.H.[Ming-Hsuan],
Exploiting Raw Images for Real-Scene Super-Resolution,
PAMI(44), No. 4, April 2022, pp. 1905-1921.
IEEE DOI
2203
BibRef
Earlier: A1, A2, A3, Only:
Towards Real Scene Super-Resolution With Raw Images,
CVPR19(1723-1731).
IEEE DOI
2002
Image color analysis, Cameras, Image restoration, Color, Pipelines,
Data models, Super-resolution, raw image, training data generation,
convolutional neural network (CNN)
BibRef
Jiang, J.[Jie],
Liu, J.[Jing],
Fu, J.[Jun],
Wang, W.N.[Wei-Ning],
Lu, H.Q.[Han-Qing],
Super-Resolution Semantic Segmentation with Relation Calibrating
Network,
PR(124), 2022, pp. 108501.
Elsevier DOI
2203
Image semantic segmentation,
Super-resolution semantic segmentation, Relation calibrating
BibRef
Song, L.[Li],
Ge, Z.[Zhou],
Lam, E.Y.[Edmund Y.],
Dual Alternating Direction Method of Multipliers for Inverse Imaging,
IP(31), 2022, pp. 3295-3308.
IEEE DOI
2205
Imaging, Convex functions, Optimization, Superresolution,
Convergence, Minimization, Linear programming, Inverse imaging,
image super-resolution
BibRef
Bhandari, A.[Ayush],
Back in the US-SR: Unlimited Sampling and Sparse Super-Resolution
With Its Hardware Validation,
SPLetters(29), 2022, pp. 1047-1051.
IEEE DOI
2205
Hardware, Imaging, Superresolution, Signal resolution, Sensors, Kernel,
Heuristic algorithms, Analog-to-digital, modulo sampling,
super-resolution
BibRef
Zheng, Y.P.[Yan-Ping],
Zeng, G.[Guang],
Li, H.[Haisheng],
Cai, Q.[Qiang],
Du, J.P.[Jun-Ping],
Colorful 3D reconstruction at high resolution using multi-view
representation,
JVCIR(85), 2022, pp. 103486.
Elsevier DOI
2205
3D reconstruction, Colorful volumes, Super resolution, Multi-view representation
BibRef
Mylonopoulos, D.[Dario],
Cascarano, P.[Pasquale],
Calatroni, L.[Luca],
Piccolomini, E.L.[Elena Loli],
Constrained and Unconstrained Inverse Potts Modelling for Joint Image
Super-Resolution and Segmentation,
IPOL(12), 2022, pp. 92-110.
DOI Link
2205
Code, Superresolution.
See also Joint super-resolution and segmentation from a set of low resolution images using a Bayesian approach with a Gauss-Markov-Potts prior.
BibRef
Ma, C.[Cheng],
Yu, P.Q.[Pei-Qi],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Recovering Realistic Details for Magnification-Arbitrary Image
Super-Resolution,
IP(31), 2022, pp. 3669-3683.
IEEE DOI
2206
Superresolution, Image edge detection, Signal resolution, Training,
Spatial resolution, Optimization, photo-realistic
BibRef
He, Z.Y.[Zong-Yao],
Jin, Z.[Zhi],
Zhao, Y.[Yao],
SRDRL: A Blind Super-Resolution Framework With Degradation
Reconstruction Loss,
MultMed(24), 2022, pp. 2877-2889.
IEEE DOI
2206
Degradation, Kernel, Image reconstruction, Feature extraction,
Noise level, Mathematical model, Training, multiple degradations
BibRef
Wu, H.J.[Hong-Jun],
Qi, H.R.[Hao-Ran],
Zhang, H.R.[Huan-Rong],
Jin, Z.[Zhi],
Salihu, D.[Driton],
Hu, J.F.[Jian-Fang],
Reconstruction with robustness: A semantic prior guided face
super-resolution framework for multiple degradations,
IVC(140), 2023, pp. 104857.
Elsevier DOI
2312
Face super-resolution, Robustness, Multiple degradations, Semantic prior
BibRef
Duan, P.Q.[Pei-Qi],
Wang, Z.W.[Zihao W.],
Shi, B.X.[Bo-Xin],
Cossairt, O.[Oliver],
Huang, T.J.[Tie-Jun],
Katsaggelos, A.K.[Aggelos K.],
Guided Event Filtering: Synergy Between Intensity Images and
Neuromorphic Events for High Performance Imaging,
PAMI(44), No. 11, November 2022, pp. 8261-8275.
IEEE DOI
2210
Sensors, Optical sensors, Spatial resolution, Optical imaging,
High-speed optical techniques, Image reconstruction,
joint filtering
BibRef
Ma, C.[Cheng],
Rao, Y.M.[Yong-Ming],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Structure-Preserving Image Super-Resolution,
PAMI(44), No. 11, November 2022, pp. 7898-7911.
IEEE DOI
2210
Feature extraction, Image edge detection, Superresolution,
Distortion, Task analysis, Generative adversarial networks,
generative adversarial network
BibRef
Zhou, B.J.[Bi-Jun],
Yan, H.B.[Hui-Bin],
Wang, S.Y.[Shuo-Yao],
Structure and Texture Preserving Network for Real-World Image
Super-Resolution,
SPLetters(29), 2022, pp. 2173-2177.
IEEE DOI
2212
Degradation, Tensors, Image reconstruction, Superresolution,
Task analysis, Periodic structures, Image restoration,
generative adversarial network
BibRef
Cheng, D.Q.[De-Qiang],
Chen, L.L.[Liang-Liang],
Lv, C.[Chen],
Guo, L.[Lin],
Kou, Q.Q.[Qi-Qi],
Light-Guided and Cross-Fusion U-Net for Anti-Illumination Image
Super-Resolution,
CirSysVideo(32), No. 12, December 2022, pp. 8436-8449.
IEEE DOI
2212
Lighting, Image reconstruction, Image enhancement, Robustness,
Interference, Estimation, Superresolution, Image super-resolution,
cross-fusion
BibRef
Wang, S.[Shuang],
Sun, Z.X.[Zheng-Xing],
Li, Q.[Qian],
Image super-resolution based on self-similarity generative
adversarial networks,
IET-IPR(17), No. 1, 2023, pp. 157-165.
DOI Link
2301
BibRef
Nguyen, N.L.[Ngoc-Long],
A Brief Analysis of the SwinIR Image Super-Resolution,
IPOL(12), 2022, pp. 582-589.
DOI Link
2301
See also SwinIR: Image Restoration Using Swin Transformer.
BibRef
Li, H.[Hui],
Zhang, K.B.[Kai-Bing],
Niu, Z.X.[Zhen-Xing],
Shi, H.Y.[Hong-Yu],
C^2MT: A Credible and Class-Aware Multi-Task Transformer for SR-IQA,
SPLetters(29), 2022, pp. 2662-2666.
IEEE DOI
2301
Super resolution, Quality Awareness.
Redible and Class-Aware Multi-Task Transformer.
Transformers, Task analysis, Prediction algorithms,
Signal processing algorithms, Head, Multitasking, Training,
patch-wise pseudo label generation
BibRef
Saharia, C.[Chitwan],
Ho, J.[Jonathan],
Chan, W.[William],
Salimans, T.[Tim],
Fleet, D.J.[David J.],
Norouzi, M.[Mohammad],
Image Super-Resolution via Iterative Refinement,
PAMI(45), No. 4, April 2023, pp. 4713-4726.
IEEE DOI
2303
Noise reduction, Superresolution, Task analysis, Iterative methods,
Data models, Faces, Diffusion processes, Image super-resolution,
deep generative models
BibRef
Dahl, R.,
Norouzi, M.,
Shlens, J.,
Pixel Recursive Super Resolution,
ICCV17(5449-5458)
IEEE DOI
1802
image reconstruction, image resolution,
given low resolution image, high magnification factors,
Training
BibRef
Chi, Y.C.[Yi-Chen],
Yang, W.M.[Wen-Ming],
Tian, Y.[Yapeng],
GDSSR: Toward Real-World Ultra-High-Resolution Image Super-Resolution,
SPLetters(30), 2023, pp. 95-99.
IEEE DOI
2303
Degradation, Image restoration, Training, Feature extraction,
Superresolution, Visualization, Measurement,
generative adversarial network
BibRef
Zhang, P.[Ping],
Zhang, Y.C.[Yong-Chao],
Mao, D.Q.[De-Qing],
Yan, J.A.[Jian-An],
Liu, S.D.[Shuai-Di],
Fast Resolution Enhancement for Real Beam Mapping Using the Parallel
Iterative Deconvolution Method,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
real beam mapping imagery.
BibRef
Hockmann, M.[Mathias],
Kunis, S.[Stefan],
Short Communication: Weak Sparse Superresolution is Well-Conditioned,
SIIMS(16), No. 1, 2023, pp. SC1-SC13.
DOI Link
2303
BibRef
Shao, D.G.[Dang-Guo],
Qin, L.[Li],
Xiang, Y.[Yan],
Ma, L.[Lei],
Xu, H.[Hui],
Medical image blind super-resolution based on improved degradation
process,
IET-IPR(17), No. 5, 2023, pp. 1615-1625.
DOI Link
2304
image reconstruction, medical image processing, visual perception
BibRef
Jiang, X.W.[Xin-Wei],
Yang, J.[Jie],
Ma, L.[Lei],
Yang, Y.P.[Yi-Ping],
Multi-task Gaussian Process Regression-based Image Super Resolution,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Jiang, Y.M.[Yu-Ming],
Chan, K.C.K.[Kelvin C.K.],
Wang, X.T.[Xin-Tao],
Loy, C.C.[Chen Change],
Liu, Z.W.[Zi-Wei],
Reference-Based Image and Video Super-Resolution via C^2-Matching,
PAMI(45), No. 7, July 2023, pp. 8874-8887.
IEEE DOI
2306
BibRef
Earlier:
Robust Reference-based Super-Resolution via C2-Matching,
CVPR21(2103-2112)
IEEE DOI
2111
Superresolution, Feature extraction, Task analysis, Correlation,
Fuses, Bridges, Image super-resolution, video super-resolution.
Knowledge engineering, Visualization,
Impedance matching, Benchmark testing, Robustness
BibRef
Hong, J.H.[Jong-Hwan],
Lee, B.[Bokyeung],
Ko, K.[Kyungdeuk],
Ko, H.S.[Han-Seok],
Fast Non-Local Attention network for light super-resolution,
JVCIR(95), 2023, pp. 103861.
Elsevier DOI
2309
Single Image Super-Resolution, Non-Local Attention, Light model
BibRef
Deng, X.[Xin],
Wang, H.[Hao],
Xu, M.[Mai],
Li, L.[Li],
Wang, Z.[Zulin],
Omnidirectional Image Super-Resolution via Latitude Adaptive Network,
MultMed(25), 2023, pp. 4108-4120.
IEEE DOI
2310
BibRef
Deng, X.[Xin],
Wang, H.[Hao],
Xu, M.[Mai],
Guo, Y.C.[Yi-Chen],
Song, Y.H.[Yu-Hang],
Yang, L.[Li],
LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional
Image Super-resolution,
CVPR21(9185-9194)
IEEE DOI
2111
Image segmentation, Adaptive systems, Laplace equations,
Superresolution, Network architecture
BibRef
Katz, R.[Rami],
Diab, N.[Nuha],
Batenkov, D.[Dmitry],
Decimated Prony's Method for Stable Super-Resolution,
SPLetters(30), 2023, pp. 1467-1471.
IEEE DOI
2310
BibRef
Luo, Z.X.[Zheng-Xiong],
Huang, Y.[Yan],
Li, S.[Shang],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
End-to-End Alternating Optimization for Real-World Blind Super
Resolution,
IJCV(131), No. 12, December 2023, pp. 3152-3169.
Springer DOI
2311
BibRef
Shu, R.[Rui],
Zhao, C.R.[Cai-Rong],
Feng, S.Y.[Shu-Yang],
Zhu, L.[Liang],
Miao, D.Q.[Duo-Qian],
Text-Enhanced Scene Image Super-Resolution via Stroke Mask and
Orthogonal Attention,
CirSysVideo(33), No. 11, November 2023, pp. 6317-6330.
IEEE DOI
2311
BibRef
Hao, Y.K.[Yu-Kun],
Yu, F.H.[Fei-Hong],
Super-Resolution Degradation Model: Converting High-Resolution
Datasets to Optical Zoom Datasets,
CirSysVideo(33), No. 11, November 2023, pp. 6374-6389.
IEEE DOI
2311
BibRef
Fei, Z.[Zetao],
Zhang, H.[Hai],
IFF: A Superresolution Algorithm for Multiple Measurements,
SIIMS(16), No. 4, 2023, pp. 2175-2201.
DOI Link
2312
BibRef
Wang, H.[Hang],
Ding, Z.Y.[Zhen-Yu],
Cheng, C.[Cheng],
Li, Y.[Yuhai],
Sun, H.B.[Hong-Bin],
MDC-Net: Multi-domain constrained kernel estimation network for blind
image super resolution,
CVIU(238), 2024, pp. 103865.
Elsevier DOI
2312
Blind super-resolution, Deep learning,
Degradation kernel estimation, Multi-domain constraints
BibRef
Chen, Q.P.[Qiang-Pu],
Qin, J.H.[Jing-Hui],
Wen, W.S.[Wu-Shao],
ALAN: Self-Attention Is Not All You Need for Image Super-Resolution,
SPLetters(31), 2024, pp. 11-15.
IEEE DOI
2401
BibRef
Zhu, L.Z.[Lin-Zhen],
Wu, R.J.[Ren-Jie],
Lee, B.G.[Boon-Giin],
Nkenyereye, L.[Lionel],
Chung, W.Y.[Wan-Young],
Xu, G.[Gen],
FEGAN: A Feature-Oriented Enhanced GAN for Enhancing Thermal Image
Super-Resolution,
SPLetters(31), 2024, pp. 541-545.
IEEE DOI
2402
Training, Feature extraction, Iron, Image reconstruction,
Image edge detection, Imaging, Measurement, thermal imaging
BibRef
Xiong, Q.M.[Qi-Ming],
Gao, Z.R.[Zhi-Rong],
Ma, J.Y.[Jia-Yi],
Ma, Y.[Yong],
Multi-image super-resolution based low complexity deep network for
image compressive sensing reconstruction,
JVCIR(99), 2024, pp. 104071.
Elsevier DOI
2403
Compressive sensing reconstruction, Deep learning,
Grouping initial reconstruction, Image super-resolution, Low complexity
BibRef
Zhou, X.Q.[Xiao-Qiang],
Huang, H.B.[Huai-Bo],
Wang, Z.[Zilei],
He, R.[Ran],
RISTRA: Recursive Image Super-Resolution Transformer With
Relativistic Assessment,
MultMed(26), 2024, pp. 6475-6487.
IEEE DOI
2404
Transformers, Image restoration, Superresolution,
Feature extraction, Task analysis, Quality assessment, parameter sharing
BibRef
Li, X.[Xiyao],
Zhao, X.Q.[Xiao-Qiang],
MCFPN: Multi-Path Cross Fusion Pyramid-Like Network for Image
Super-Resolution Reconstruction,
SPLetters(31), 2024, pp. 2265-2269.
IEEE DOI
2410
Feature extraction, Image reconstruction, Superresolution,
Convolution, Training, Data mining, Remote sensing,
super-resolution reconstruction
BibRef
Lee, H.[Hongjae],
Yoo, J.S.[Jun-Sang],
Jung, S.W.[Seung-Won],
RefQSR: Reference-Based Quantization for Image Super-Resolution
Networks,
IP(33), 2024, pp. 2823-2834.
IEEE DOI
2405
Quantization (signal), Superresolution, Computational efficiency,
Task analysis, Image reconstruction, Upper bound, Limiting,
reference-based quantization
BibRef
Zhao, Y.Q.[Yao-Qian],
Teng, Q.Z.[Qi-Zhi],
Chen, H.G.[Hong-Gang],
Zhang, S.J.[Shu-Jiang],
He, X.H.[Xiao-Hai],
Li, Y.[Yi],
Sheriff, R.E.[Ray E.],
Activating More Information in Arbitrary-Scale Image Super-Resolution,
MultMed(26), 2024, pp. 7946-7961.
IEEE DOI
2405
Feature extraction, Image reconstruction, Task analysis, Adaptation models,
Kernel, Superresolution, Information filters, deformable convolution
BibRef
Zhang, D.C.[Da-Cheng],
Zhang, W.[Wei],
Lei, W.M.[Wei-Min],
Chen, X.[Xinyi],
Diverse branch feature refinement network for efficient multi-scale
super-resolution,
IET-IPR(18), No. 6, 2024, pp. 1475-1490.
DOI Link
2405
convolutional neural nets, image enhancement, image processing,
image resolution, image restoration
BibRef
Yang, C.[Cheng],
Lu, G.M.[Guan-Ming],
Unsupervised Image Blind Super Resolution via Real Degradation
Feature Learning,
IET-CV(18), No. 4, 2024, pp. 485-498.
DOI Link
2406
convolutional neural nets, feature extraction,
image processing, image reconstruction, image restoration, neural nets
BibRef
Xu, Y.M.[Yi-Min],
Gao, N.X.[Nan-Xi],
Chao, F.[Fei],
Ji, R.R.[Rong-Rong],
An efficient blur kernel estimation method for blind image
Super-Resolution,
PR(154), 2024, pp. 110590.
Elsevier DOI Code:
WWW Link.
2406
Blind super-resolution reconstruction, Efficient inference,
Kernel detection and reconstruction
BibRef
Chen, G.Y.[Guang-Yong],
Weng, W.D.[Wu-Ding],
Su, J.N.[Jian-Nan],
Gan, M.[Min],
Chen, C.L.P.[C. L. Philip],
Dynamic Degradation Intensity Estimation for Adaptive Blind
Super-Resolution: A Novel Approach and Benchmark Dataset,
CirSysVideo(34), No. 6, June 2024, pp. 4762-4772.
IEEE DOI
2406
Degradation, Estimation, Adaptation models, Kernel, Data models,
Training, Image reconstruction, Blind super-resolution,
benchmark dataset
BibRef
Chen, X.H.[Xiao-Hui],
Chen, L.[Lin],
Chen, L.J.[Ling-Jun],
Chen, P.[Peng],
Sheng, G.Q.[Guan-Qun],
Yu, X.S.[Xiao-Sheng],
Zou, Y.B.[Yao-Bin],
Modeling Thermal Infrared Image Degradation and Real-World
Super-Resolution Under Background Thermal Noise and Streak
Interference,
CirSysVideo(34), No. 7, July 2024, pp. 6194-6206.
IEEE DOI
2407
Degradation, Thermal noise, Interference, Feature extraction,
Superresolution, Image reconstruction, Thermal degradation, streak interference
BibRef
Sun, L.C.[Ling-Chen],
Liang, J.[Jie],
Liu, S.Z.[Shuai-Zheng],
Yong, H.W.[Hong-Wei],
Zhang, L.[Lei],
Perception-Distortion Balanced Super-Resolution:
A Multi-Objective Optimization Perspective,
IP(33), 2024, pp. 4444-4458.
IEEE DOI Code:
WWW Link.
2408
BibRef
Xu, T.S.[Tian-Shuo],
Li, L.J.[Li-Jiang],
Mi, P.[Peng],
Zheng, X.[Xiawu],
Chao, F.[Fei],
Ji, R.R.[Rong-Rong],
Tian, Y.H.[Yong-Hong],
Shen, Q.[Qiang],
Uncovering the Over-Smoothing Challenge in Image Super-Resolution:
Entropy-Based Quantification and Contrastive Optimization,
PAMI(46), No. 9, September 2024, pp. 6199-6215.
IEEE DOI
2408
Entropy, Superresolution, Self-supervised learning, Distortion,
Analytical models, Optimization, Image restoration, information entropy
BibRef
Lin, H.[Hai],
Yang, J.[JunJie],
Image super-resolution reconstruction based on implicit image
functions,
IET-IPR(18), No. 10, 2024, pp. 2690-2701.
DOI Link
2408
convolutional neural nets, image reconstruction, multilayer perceptrons
BibRef
Guan, W.X.[Wen-Xue],
Li, H.[Haobo],
Xu, D.W.[Da-Wei],
Liu, J.X.[Jia-Xin],
Gong, S.H.[Sheng-Hua],
Liu, J.[Jun],
Frequency Generation for Real-World Image Super-Resolution,
CirSysVideo(34), No. 8, August 2024, pp. 7029-7040.
IEEE DOI
2408
Feature extraction, Superresolution, Degradation, Convolution,
Circuits and systems, Kernel, Image reconstruction,
adaptive feature fusion
BibRef
Ma, Z.C.[Zhi-Cheng],
Liu, Z.X.[Zhao-Xiang],
Wang, K.[Kai],
Lian, S.[Shiguo],
Hybrid attention transformer with re-parameterized large kernel
convolution for image super-resolution,
IVC(149), 2024, pp. 105162.
Elsevier DOI
2408
Image super-resolution, Transformer, Hybrid attention,
Large kernel convolution, Re-parameterization
BibRef
Liu, Y.H.[Yu-Hao],
Chu, Z.Z.[Zhen-Zhong],
Wei, L.F.[Li-Fei],
A Channel Contrastive Attention-Based Local-Nonlocal Mutual Block on
Super-Resolution,
IEICE(E108-D), No. 9, September 2024, pp. 1219-1227.
WWW Link.
2410
BibRef
Ravi, N.S.[Neethu S.],
Kumar, R.[Rakesh],
Ratliff, B.M.[Bradley M.],
A Digital Superresolution Method With Minimal Sensitivity to Shift
Estimation Error,
SPLetters(31), 2024, pp. 2700-2704.
IEEE DOI
2410
Accuracy, Image reconstruction, Superresolution, Interpolation,
Sensor arrays, Performance analysis, Fourier transforms,
superresolution (SR)
BibRef
Yao, M.[Mingde],
Xu, R.K.[Rui-Kang],
Guan, Y.S.[Yuan-Shen],
Huang, J.[Jie],
Xiong, Z.W.[Zhi-Wei],
Neural Degradation Representation Learning for All-in-One Image
Restoration,
IP(33), 2024, pp. 5408-5423.
IEEE DOI Code:
WWW Link.
2410
Degradation, Image restoration, Training, Tensors, Noise reduction,
Decoding, Computational modeling, All-in-one image restoration,
super-resolution
BibRef
Xu, R.K.[Rui-Kang],
Yao, M.[Mingde],
Xiong, Z.W.[Zhi-Wei],
Zero-Shot Dual-Lens Super-Resolution,
CVPR23(9130-9139)
IEEE DOI
2309
BibRef
Kazerouni, A.[Amirhossein],
Azad, R.[Reza],
Hosseini, A.[Alireza],
Merhof, D.[Dorit],
Bagci, U.[Ulas],
INCODE: Implicit Neural Conditioning with Prior Knowledge Embeddings,
WACV24(1287-1296)
IEEE DOI
2404
Knowledge engineering, Shape, Superresolution, Noise reduction,
Noise, Robustness, Algorithms, Image recognition and understanding
BibRef
Daultani, D.[Dinesh],
Larochelle, H.[Hugo],
Consolidating Separate Degradations Model via Weights Fusion and
Distillation,
VAQuality24(440-449)
IEEE DOI Code:
WWW Link.
2404
Degradation, Training, Computational modeling,
Semantic segmentation, Noise, Superresolution
BibRef
Zhang, L.[Lin],
Li, X.[Xin],
He, D.L.[Dong-Liang],
Li, F.[Fu],
Ding, E.[Errui],
Zhang, Z.X.[Zhao-Xiang],
LMR: A Large-Scale Multi-Reference Dataset for Reference-based
Super-Resolution,
ICCV23(13072-13081)
IEEE DOI Code:
WWW Link.
2401
BibRef
Yin, Z.[Zhicun],
Liu, M.[Ming],
Li, X.M.[Xiao-Ming],
Yang, H.[Hui],
Xiao, L.[Longan],
Zuo, W.M.[Wang-Meng],
MetaF2N: Blind Image Super-Resolution by Learning Efficient Model
Adaptation from Faces,
ICCV23(12987-12998)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, A.[Ao],
Zhang, L.[Le],
Liu, Y.[Yun],
Zhu, C.[Ce],
Feature Modulation Transformer: Cross-Refinement of Global
Representation via High-Frequency Prior for Image Super-Resolution,
ICCV23(12480-12490)
IEEE DOI Code:
WWW Link.
2401
BibRef
Chen, Z.[Zheng],
Zhang, Y.[Yulun],
Gu, J.J.[Jin-Jin],
Kong, L.[Linghe],
Yang, X.K.[Xiao-Kang],
Yu, F.[Fisher],
Dual Aggregation Transformer for Image Super-Resolution,
ICCV23(12278-12287)
IEEE DOI Code:
WWW Link.
2401
BibRef
An, H.Y.[Hong-Yu],
Zhang, X.F.[Xin-Feng],
Perception-Oriented Omnidirectional Image Super-Resolution Based on
Transformer Network,
ICIP23(3583-3587)
IEEE DOI
2312
BibRef
Jena, S.[Swastik],
Panda, S.[Saptarshi],
Balabantaray, B.K.[Bunil Kumar],
Nayak, R.[Rajashree],
Uncertainty Aware Implicit Image Function for Arbitrary-Scale
Super-Resolution,
ICIP23(2440-2444)
IEEE DOI
2312
BibRef
Liu, Z.S.[Zhi-Song],
Wang, Z.[Zijia],
Jia, Z.[Zhen],
Soft-IntroVAE for Continuous Latent Space Image Super-Resolution,
ICIP23(1460-1464)
IEEE DOI
2312
BibRef
Sun, X.P.[Xiao-Peng],
Li, W.Q.[Wei-Qi],
Zhang, Z.Y.[Zhen-Yu],
Ma, Q.[Qiufang],
Sheng, X.[Xuhan],
Cheng, M.[Ming],
Ma, H.Y.[Hao-Yu],
Zhao, S.J.[Shi-Jie],
Zhang, J.[Jian],
Li, J.L.[Jun-Lin],
Zhang, L.[Li],
OPDN: Omnidirectional Position-aware Deformable Network for
Omnidirectional Image Super-Resolution,
NTIRE23(1293-1301)
IEEE DOI
2309
BibRef
Kasliwal, A.[Aditya],
Seth, P.[Pratinav],
Rallabandi, S.[Sriya],
Singhal, S.[Sanchit],
CoReFusion: Contrastive Regularized Fusion for Guided Thermal
Super-Resolution,
PBVS23(507-514)
IEEE DOI
2309
BibRef
Liu, T.[Tao],
Cheng, J.[Jun],
Tan, S.[Shan],
Spectral Bayesian Uncertainty for Image Super-Resolution,
CVPR23(18166-18175)
IEEE DOI
2309
BibRef
Pak, B.[Byeonghyun],
Lee, J.W.[Jae-Won],
Jin, K.H.[Kyong Hwan],
B-Spline Texture Coefficients Estimator for Screen Content Image
Super-Resolution,
CVPR23(10062-10071)
IEEE DOI
2309
BibRef
Gao, S.C.[Si-Cheng],
Liu, X.[Xuhui],
Zeng, B.[Bohan],
Xu, S.[Sheng],
Li, Y.J.[Yag-Jing],
Luo, X.Y.[Xiao-Yan],
Liu, J.Z.[Jian-Zhuang],
Zhen, X.T.[Xian-Tong],
Zhang, B.C.[Bao-Chang],
Implicit Diffusion Models for Continuous Super-Resolution,
CVPR23(10021-10030)
IEEE DOI
2309
BibRef
Grosche, S.[Simon],
Regensky, A.[Andy],
Seiler, J.[Jürgen],
Kaup, A.[André],
Image Super-Resolution Using T-Tetromino Pixels,
CVPR23(9989-9998)
IEEE DOI
2309
BibRef
Chen, D.[Du],
Liang, J.[Jie],
Zhang, X.D.[Xin-Dong],
Liu, M.[Ming],
Zeng, H.[Hui],
Zhang, L.[Lei],
Human Guided Ground-Truth Generation for Realistic Image
Super-Resolution,
CVPR23(14082-14091)
IEEE DOI
2309
BibRef
Zou, H.[Han],
Xu, L.[Liang],
Okatani, T.[Takayuki],
Geometry Enhanced Reference-based Image Super-resolution,
IMW23(6124-6133)
IEEE DOI
2309
BibRef
Li, Y.[Yawei],
Zhang, K.[Kai],
Liang, J.Y.[Jing-Yun],
Cao, J.[Jiezhang],
Liu, C.[Ce],
Gong, R.[Rui],
Zhang, Y.[Yulun],
Tang, H.[Hao],
Liu, Y.[Yun],
Demandolx, D.[Denis],
Ranjan, R.[Rakesh],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
LSDIR: A Large Scale Dataset for Image Restoration,
NTIRE23(1775-1787)
IEEE DOI
2309
BibRef
Wang, Y.[Yue],
Ming, J.[Jiawen],
Jia, X.[Xu],
Elder, J.H.[James H.],
Lu, H.C.[Hu-Chuan],
Blind Image Super-Resolution with Degradation-aware Adaptation,
ACCV22(III:69-85).
Springer DOI
2307
BibRef
Zhuge, Y.Z.[Yun-Zhi],
Jia, X.[Xu],
Multi-granularity Transformer for Image Super-Resolution,
ACCV22(III:138-154).
Springer DOI
2307
BibRef
Li, L.[Lei],
Tang, J.Z.[Jing-Zhu],
Chen, M.[Ming],
Zhao, S.J.[Shi-Jie],
Li, J.L.[Jun-Lin],
Zhang, L.[Li],
Multi-patch Learning: Looking More Pixels in the Training Phase,
AIM22(549-560).
Springer DOI
2304
Compressed image super-resolution.
BibRef
Lian, W.[Wenyi],
Lian, W.J.[Wen-Jing],
Sliding Window Recurrent Network for Efficient Video Super-resolution,
AIM22(591-601).
Springer DOI
2304
BibRef
Yue, S.J.[Shi-Jie],
Li, C.H.[Cheng-Hua],
Zhuge, Z.Y.[Zheng-Yang],
Song, R.X.[Rui-Xia],
Eesrnet: A Network for Energy Efficient Super-resolution,
AIM22(602-618).
Springer DOI
2304
BibRef
Luo, Z.W.[Zi-Wei],
Li, Y.[Youwei],
Yu, L.[Lei],
Wu, Q.[Qi],
Wen, Z.H.[Zhi-Hong],
Fan, H.Q.[Hao-Qiang],
Liu, S.C.[Shuai-Cheng],
Fast Nearest Convolution for Real-time Efficient Image Super-resolution,
AIM22(561-572).
Springer DOI
2304
BibRef
Zhou, L.[Lin],
Cai, H.M.[Hao-Ming],
Gu, J.J.[Jin-Jin],
Li, Z.[Zheyuan],
Liu, Y.Q.[Ying-Qi],
Chen, X.Y.[Xiang-Yu],
Qiao, Y.[Yu],
Dong, C.[Chao],
Efficient Image Super-resolution Using Vast-Receptive-Field Attention,
AIM22(256-272).
Springer DOI
2304
BibRef
Gao, S.[Si],
Zheng, C.J.[Cheng-Jian],
Zhang, X.F.[Xiao-Feng],
Liu, S.L.[Shao-Li],
Wu, B.[Biao],
Lu, K.D.[Kai-Di],
Zhang, D.[Diankai],
Wang, N.[Ning],
RCBSR: Re-parameterization Convolution Block for Super-resolution,
AIM22(540-548).
Springer DOI
2304
BibRef
Qin, X.R.[Xiao-Ran],
Zhu, Y.[Yu],
Li, C.H.[Cheng-Hua],
Wang, P.S.[Pei-Song],
Cheng, J.[Jian],
Cidbnet: A Consecutively-interactive Dual-branch Network for Jpeg
Compressed Image Super-resolution,
AIM22(458-474).
Springer DOI
2304
BibRef
Mahapatra, D.[Dwarikanath],
Bozorgtabar, B.[Behzad],
Reyes, M.[Mauricio],
Medical Image Super Resolution by Preserving Interpretable and
Disentangled Features,
MIA-COVID19D22(709-721).
Springer DOI
2304
BibRef
Georgescu, M.I.[Mariana-Iuliana],
Ionescu, R.T.[Radu Tudor],
Miron, A.I.[Andreea-Iuliana],
Savencu, O.[Olivian],
Ristea, N.C.[Nicolae-Catalin],
Verga, N.[Nicolae],
Khan, F.S.[Fahad Shahbaz],
Multimodal Multi-Head Convolutional Attention with Various Kernel
Sizes for Medical Image Super-Resolution,
WACV23(2194-2204)
IEEE DOI
2302
Convolutional codes, Head, Magnetic resonance imaging,
Computed tomography, Superresolution, Magnetic heads, Data models,
Biomedical/healthcare/medicine
BibRef
Qin, Y.G.[Ye-Guang],
Tuerxun, P.[Palidan],
Tang, F.X.[Feng-Xiao],
Qian, Y.R.[Yu-Rong],
Zhao, M.[Ming],
Zhu, Y.[Yusen],
Feature Fusion Super Resolution Network with Gradient Guidance,
ICPR22(147-153)
IEEE DOI
2212
Visualization, PSNR, Image edge detection, Computational modeling,
Superresolution, Feature extraction, Image restoration
BibRef
Hong, C.[Cheeun],
Baik, S.[Sungyong],
Kim, H.[Heewon],
Nah, S.[Seungjun],
Lee, K.M.[Kyoung Mu],
CADyQ: Content-Aware Dynamic Quantization for Image Super-Resolution,
ECCV22(VII:367-383).
Springer DOI
2211
BibRef
Chen, B.[Bohong],
Lin, M.[Mingbao],
Sheng, K.[Kekai],
Zhang, M.[Mengdan],
Chen, P.X.[Pei-Xian],
Li, K.[Ke],
Cao, L.J.[Liu-Juan],
Ji, R.R.[Rong-Rong],
ARM: Any-Time Super-Resolution Method,
ECCV22(XIX:254-270).
Springer DOI
2211
BibRef
Li, Y.[Youwei],
Huang, H.B.[Hai-Bin],
Jia, L.[Lanpeng],
Fan, H.Q.[Hao-Qiang],
Liu, S.C.[Shuai-Cheng],
D2C-SR: A Divergence to Convergence Approach for Real-World Image
Super-Resolution,
ECCV22(XIX:379-394).
Springer DOI
2211
BibRef
Laroche, C.[Charles],
Tassano, M.[Matias],
Bridging the Domain Gap in Real World Super-Resolution,
ICIP22(2476-2480)
IEEE DOI
2211
Degradation, Training, Computational modeling, Superresolution,
Pipelines, Neural networks, Training data, Super-resolution, CNN,
Real-world data
BibRef
Blattmann, A.[Andreas],
Rombach, R.[Robin],
Ling, H.[Huan],
Dockhorn, T.[Tim],
Kim, S.W.[Seung Wook],
Fidler, S.[Sanja],
Kreis, K.[Karsten],
Align Your Latents: High-Resolution Video Synthesis with Latent
Diffusion Models,
CVPR23(22563-22575)
IEEE DOI
2309
BibRef
Rombach, R.[Robin],
Blattmann, A.[Andreas],
Lorenz, D.[Dominik],
Esser, P.[Patrick],
Ommer, B.[Björn],
High-Resolution Image Synthesis with Latent Diffusion Models,
CVPR22(10674-10685)
IEEE DOI
2210
Training, Visualization, Image synthesis, Computational modeling,
Noise reduction, Superresolution, Process control,
Image and video synthesis and generation
BibRef
Kong, X.T.[Xiang-Tao],
Liu, X.[Xina],
Gu, J.J.[Jin-Jin],
Qiao, Y.[Yu],
Dong, C.[Chao],
Reflash Dropout in Image Super-Resolution,
CVPR22(5992-6002)
IEEE DOI
2210
Superresolution, Pattern recognition, Task analysis, Low-level vision
BibRef
Huang, Y.X.[Yi-Xuan],
Zhang, X.Y.[Xiao-Yun],
Fu, Y.[Yu],
Chen, S.[Siheng],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
He, D.[Dazhi],
Task Decoupled Framework for Reference-based Super-Resolution,
CVPR22(5921-5930)
IEEE DOI
2210
Design methodology, Superresolution, Interference,
Benchmark testing, Feature extraction, Pattern recognition, Low-level vision
BibRef
Yoon, Y.[Youngho],
Chung, I.[Inchul],
Wang, L.[Lin],
Yoon, K.J.[Kuk-Jin],
SphereSR: 360° Image Super-Resolution with Arbitrary Projection via
Continuous Spherical Image Representation,
CVPR22(5667-5676)
IEEE DOI
2210
Surface reconstruction, Superresolution, Image representation,
Benchmark testing, Network architecture, Feature extraction,
Image and video synthesis and generation
BibRef
Lee, J.W.[Jae-Won],
Jin, K.H.[Kyong Hwan],
Local Texture Estimator for Implicit Representation Function,
CVPR22(1919-1928)
IEEE DOI
2210
Visualization, Image texture, Superresolution,
Computer architecture, Feature extraction, Frequency estimation,
Explainable computer vision
BibRef
Song, K.U.[Ki-Ung],
Shim, D.[Dongseok],
Kim, K.W.[Kang-Wook],
Lee, J.Y.[Jae-Young],
Kim, Y.G.[Young-Geun],
FS-NCSR: Increasing Diversity of the Super-Resolution Space via
Frequency Separation and Noise-Conditioned Normalizing Flow,
NTIRE22(967-976)
IEEE DOI
2210
Degradation, Training, Image quality, Visualization, Superresolution,
Prediction algorithms, Information filters
BibRef
Li, J.J.[Jiao-Jiao],
Du, S.C.[Song-Cheng],
Wu, C.X.[Chao-Xiong],
Leng, Y.H.[Yi-Hong],
Song, R.[Rui],
Li, Y.S.[Yun-Song],
DRCR Net: Dense Residual Channel Re-calibration Network with
Non-local Purification for Spectral Super Resolution,
NTIRE22(1258-1267)
IEEE DOI
2210
Image resolution, Image coding, Purification,
Customer relationship management, Lighting, Interference
BibRef
Wang, L.[Li],
Li, D.[Dong],
Tian, L.[Lu],
Shan, Y.[Yi],
Efficient Image Super-Resolution with Collapsible Linear Blocks,
NTIRE22(816-822)
IEEE DOI
2210
Training, Costs, Network topology, Convolution,
Superresolution, Computer architecture
BibRef
Li, Z.Y.[Zhe-Yuan],
Liu, Y.Q.[Ying-Qi],
Chen, X.Y.[Xiang-Yu],
Cai, H.M.[Hao-Ming],
Gu, J.J.[Jin-Jin],
Qiao, Y.[Yu],
Dong, C.[Chao],
Blueprint Separable Residual Network for Efficient Image
Super-Resolution,
NTIRE22(832-842)
IEEE DOI
2210
Performance evaluation, Convolution, Computational modeling,
Superresolution, Redundancy, Complexity theory, Pattern recognition
BibRef
Du, Z.[Zongcai],
Liu, D.[Ding],
Liu, J.[Jie],
Tang, J.[Jie],
Wu, G.S.[Gang-Shan],
Fu, L.[Lean],
Fast and Memory-Efficient Network Towards Efficient Image
Super-Resolution,
NTIRE22(852-861)
IEEE DOI
2210
Runtime, Codes, Convolution, Memory management, Superresolution
BibRef
Zhang, W.L.[Wen-Long],
Shi, G.Y.[Guang-Yuan],
Liu, Y.H.[Yi-Hao],
Dong, C.[Chao],
Wu, X.M.[Xiao-Ming],
A Closer Look at Blind Super-Resolution:
Degradation Models, Baselines, and Performance Upper Bounds,
NTIRE22(526-535)
IEEE DOI
2210
Degradation, Analytical models, Upper bound, Superresolution, Logic gates
BibRef
Magid, S.A.[Salma Abdel],
Lin, Z.[Zudi],
Wei, D.L.[Dong-Lai],
Zhang, Y.[Yulun],
Gu, J.J.[Jin-Jin],
Pfister, H.[Hanspeter],
Texture-based Error Analysis for Image Super-Resolution,
CVPR22(2108-2117)
IEEE DOI
2210
Measurement, Error analysis, Computational modeling,
Biological system modeling, Superresolution, Semantics,
Vision applications and systems
BibRef
Magid, S.A.[Salma Abdel],
Zhang, Y.L.[Yu-Lun],
Wei, D.L.[Dong-Lai],
Jang, W.D.[Won-Dong],
Lin, Z.[Zudi],
Fu, Y.[Yun],
Pfister, H.[Hanspeter],
Dynamic High-Pass Filtering and Multi-Spectral Attention for Image
Super-Resolution,
ICCV21(4268-4277)
IEEE DOI
2203
Visualization, Image texture, Filtering, Frequency-domain analysis,
Superresolution, Convolutional neural networks,
Vision applications and systems
BibRef
Fuoli, D.[Dario],
Van Gool, L.J.[Luc J.],
Timofte, R.[Radu],
Fourier Space Losses for Efficient Perceptual Image Super-Resolution,
ICCV21(2340-2349)
IEEE DOI
2203
Training, Image quality, Time-frequency analysis, Runtime,
Superresolution, Generators, Image restoration,
Image and video synthesis
BibRef
Wang, T.F.[Teng-Fei],
Xie, J.X.[Jia-Xin],
Sun, W.X.[Wen-Xiu],
Yan, Q.[Qiong],
Chen, Q.F.[Qi-Feng],
Dual-Camera Super-Resolution with Aligned Attention Modules,
ICCV21(1981-1990)
IEEE DOI
2203
Training, Bridges, Visualization, Codes, Computational modeling,
Superresolution, Computational photography, Image and video synthesis
BibRef
Korkmaz, C.[Cansu],
Tekalp, A.M.[A.Murat],
Dogan, Z.[Zafer],
Two-Stage Domain Adapted Training for Better Generalization In
Real-World Image Restoration and Super-Resolution,
ICIP21(569-573)
IEEE DOI
2201
Training, Degradation, Adaptation models, Inverse problems,
Superresolution, Image restoration, image super-resolution,
overfitting degradation model
BibRef
Rad, M.S.[Mohammad Saeed],
Yu, T.[Thomas],
Bozorgtabar, B.[Behzad],
Thiran, J.P.[Jean-Philippe],
Test-Time Adaptation for Super-Resolution:
You Only Need to Overfit on a Few More Images,
AIM21(1845-1854)
IEEE DOI
2112
Training, Radio frequency, Correlation, Image color analysis, Superresolution
BibRef
Jo, Y.[Younghyun],
Oh, S.W.[Seoung Wug],
Vajda, P.[Peter],
Kim, S.J.[Seon Joo],
Tackling the Ill-Posedness of Super-Resolution through Adaptive
Target Generation,
CVPR21(16231-16240)
IEEE DOI
2111
Training, Adaptive systems, Impedance matching,
Superresolution, Training data, Network architecture
BibRef
Kim, S.Y.[Soo Ye],
Sim, H.[Hyeonjun],
Kim, M.C.[Mun-Churl],
KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local
Adjustment,
CVPR21(10606-10615)
IEEE DOI
2111
Degradation, Codes, Filtering, Superresolution,
Cameras, Data models
BibRef
Wang, L.G.[Long-Guang],
Wang, Y.Q.[Ying-Qian],
Lu, L.Y.[Li-Ying],
Li, W.B.[Wen-Bo],
Tao, X.[Xin],
Lu, J.B.[Jiang-Bo],
Jia, J.Y.[Jia-Ya],
MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution,
CVPR21(6364-6373)
IEEE DOI
2111
Adaptation models, Computational modeling,
Superresolution, Feature extraction, Robustness, Computational efficiency
BibRef
Huang, Z.W.[Zhe-Wei],
Huang, A.[Ailin],
Hu, X.T.[Xiao-Tao],
Hu, C.[Chen],
Xu, J.[Jun],
Zhou, S.C.[Shu-Chang],
Scale-Adaptive Feature Aggregation for Efficient Space-Time Video
Super-Resolution,
WACV24(4216-4227)
IEEE DOI
2404
Training, Visualization, Superresolution, Pipelines, Estimation,
Training data, Streaming media, Algorithms,
image and video synthesis
BibRef
Xu, G.[Gang],
Xu, J.[Jun],
Li, Z.[Zhen],
Wang, L.[Liang],
Sun, X.[Xing],
Cheng, M.M.[Ming-Ming],
Temporal Modulation Network for Controllable Space-Time Video
Super-Resolution,
CVPR21(6384-6393)
IEEE DOI
2111
Training, Interpolation, Convolution, Superresolution, Modulation,
Bidirectional control, Benchmark testing
BibRef
Gutierrez, N.B.[Nolan B.],
Beksi, W.J.[William J.],
Thermal Image Super-Resolution Using Second-Order Channel Attention
with Varying Receptive Fields,
CVS21(3-13).
Springer DOI
2109
BibRef
Helminger, L.[Leonhard],
Bernasconi, M.[Michael],
Djelouah, A.[Abdelaziz],
Gross, M.[Markus],
Schroers, C.[Christopher],
Generic Image Restoration with Flow Based Priors,
NTIRE21(334-343)
IEEE DOI
2109
Degradation, Training, Noise reduction, Neural networks,
Superresolution, Image restoration, Complexity theory
BibRef
Lazzaretti, M.[Marta],
Rebegoldi, S.[Simone],
Calatroni, L.[Luca],
Estatico, C.[Claudio],
A Scaled and Adaptive Fista Algorithm for Signal-dependent Sparse Image
Super-resolution Problems,
SSVM21(242-253).
Springer DOI
2106
BibRef
Pragliola, M.[Monica],
Calatroni, L.[Luca],
Lanza, A.[Alessandro],
Sgallari, F.[Fiorella],
Residual Whiteness Principle for Automatic Parameter Selection in l2-l2
Image Super-Resolution Problems,
SSVM21(476-488).
Springer DOI
2106
BibRef
Li, L.X.[Long-Xi],
Feng, H.[Hesen],
Zheng, B.[Bing],
Ma, L.H.[Li-Hong],
Tian, J.[Jing],
DID: A Nested Dense in Dense Structure with Variable Local Dense
Blocks for Super-Resolution Image Reconstruction,
ICPR21(2582-2589)
IEEE DOI
2105
Multiplexing, Chaos, Visualization, Dictionaries, Superresolution,
Feature extraction, Explosions, High X SR, RDN, Dense in Dense (DID),
Feature aggregation
BibRef
Zhou, L.G.[Li-Guo],
Chen, G.[Guang],
Feng, M.Y.[Ming-Yue],
Knoll, A.[Alois],
Improving Low-Resolution Image Classification by Super-Resolution
with Enhancing High-Frequency Content,
ICPR21(1972-1978)
IEEE DOI
2105
Training, Degradation, Visualization, Superresolution,
Noise reduction, High frequency
BibRef
Li, Q.[Qiang],
Dai, T.[Tao],
Xia, S.T.[Shu-Tao],
Progressive Splitting and Upscaling Structure for Super-Resolution,
ICPR21(8885-8891)
IEEE DOI
2105
Image quality, Convolution, Aggregates, Superresolution,
Network architecture, Feature extraction, Computational efficiency
BibRef
Liang, J.Y.[Jing-Yun],
Sun, G.[Guolei],
Zhang, K.[Kai],
Van Gool, L.J.[Luc J.],
Timofte, R.[Radu],
Mutual Affine Network for Spatially Variant Kernel Estimation in
Blind Image Super-Resolution,
ICCV21(4076-4085)
IEEE DOI
2203
Degradation, Training, Visualization, Convolution,
Computational modeling, Superresolution, Estimation,
BibRef
Lugmayr, A.[Andreas],
Danelljan, M.[Martin],
Yu, F.[Fisher],
Van Gool, L.J.[Luc J.],
Timofte, R.[Radu],
Normalizing Flow as a Flexible Fidelity Objective for Photo-Realistic
Super-resolution,
WACV22(874-883)
IEEE DOI
2202
Visualization, Codes, Superresolution,
Context modeling, Computational Photography, Image and Video Synthesis
BibRef
Bühler, M.C.[Marcel C.],
Romero, A.[Andrés],
Timofte, R.[Radu],
Deepsee: Deep Disentangled Semantic Explorative Extreme
Super-resolution,
ACCV20(IV:624-642).
Springer DOI
2103
BibRef
Kim, S.J.[Si-Jin],
Ahn, N.[Namhyuk],
Sohn, K.A.[Kyung-Ah],
Restoring Spatially-heterogeneous Distortions Using Mixture of Experts
Network,
ACCV20(II:185-201).
Springer DOI
2103
BibRef
El Helou, M.[Majed],
Zhou, R.F.[Ruo-Fan],
Süsstrunk, S.[Sabine],
Stochastic Frequency Masking to Improve Super-resolution and Denoising
Networks,
ECCV20(XVI: 749-766).
Springer DOI
2010
BibRef
Li, H.X.[Hui-Xia],
Yan, C.Q.[Chen-Qian],
Lin, S.H.[Shao-Hui],
Zheng, X.W.[Xia-Wu],
Zhang, B.C.[Bao-Chang],
Yang, F.[Fan],
Ji, R.R.[Rong-Rong],
PAMS: Quantized Super-resolution via Parameterized Max Scale,
ECCV20(XXV:564-580).
Springer DOI
2011
BibRef
Park, J.Y.,
Choi, D.Y.,
Song, B.C.,
Slice-Based Super-Resolution Using Light-Weight Network With Relation
Loss,
ICIP20(503-507)
IEEE DOI
2011
Convolution, Image resolution, Visualization, Radio frequency,
Computer architecture, Degradation, Training, Light-weight,
relation loss
BibRef
Hyun, S.[Sangeek],
Heo, J.P.[Jae-Pil],
Varsr: Variational Super-resolution Network for Very Low Resolution
Images,
ECCV20(XXIII:431-447).
Springer DOI
2011
BibRef
Jiang, Y.,
Lu, Y.,
Dong, L.,
Xu, W.,
Multi-frame Image Super-Resolution Algorithm Based on Small Amount of
Data,
ICIVC20(118-122)
IEEE DOI
2009
Image reconstruction, Spatial resolution, Kernel, Interpolation,
Estimation, Filtering, multi-frame, super-resolution,
image details
BibRef
Shim, G.,
Park, J.,
Kweon, I.S.,
Robust Reference-Based Super-Resolution With Similarity-Aware
Deformable Convolution,
CVPR20(8422-8431)
IEEE DOI
2008
Feature extraction, Convolution, Image reconstruction,
Image resolution, Degradation, Robustness, Kernel
BibRef
Shang, T.,
Dai, Q.,
Zhu, S.,
Yang, T.,
Guo, Y.,
Perceptual Extreme Super Resolution Network with Receptive Field
Block,
NTIRE20(1778-1787)
IEEE DOI
2008
Image resolution, Feature extraction, Convolution, Kernel,
Time complexity, Interpolation, Image reconstruction
BibRef
Shoeiby, M.,
Petersson, L.,
Armin, M.A.,
Aliakbarian, S.,
Robles-Kelly, A.,
Super-resolved Chromatic Mapping of Snapshot Mosaic Image Sensors via
a Texture Sensitive Residual Network,
WACV20(2793-2802)
IEEE DOI
2006
Spatial resolution, Sensors, Cameras, Image sensors, Image color analysis
BibRef
Lutio, R.D.,
d'Aronco, S.,
Wegner, J.D.,
Schindler, K.,
Guided Super-Resolution As Pixel-to-Pixel Transformation,
ICCV19(8828-8836)
IEEE DOI
2004
image resolution, multilayer perceptrons,
guided super-resolution, pixel-to-pixel transformation, Vegetation
BibRef
Gu, J.J.[Jin-Jin],
Lu, H.N.[Han-Nan],
Zuo, W.M.[Wang-Meng],
Dong, C.[Chao],
Blind Super-Resolution With Iterative Kernel Correction,
CVPR19(1604-1613).
IEEE DOI
2002
BibRef
Chen, C.[Chang],
Xiong, Z.W.[Zhi-Wei],
Tian, X.M.[Xin-Mei],
Zha, Z.J.[Zheng-Jun],
Wu, F.[Feng],
Camera Lens Super-Resolution,
CVPR19(1652-1660).
IEEE DOI
2002
BibRef
Xiao, J.,
Zhao, R.,
Lai, S.,
Jia, W.,
Lam, K.,
Deep Progressive Convolutional Neural Network for Blind
Super-Resolution With Multiple Degradations,
ICIP19(2856-2860)
IEEE DOI
1910
blind super-resolution, deep progressive network
BibRef
Bian, J.Y.[Jun-Yi],
Lin, B.[Baojun],
Zhang, K.[Ke],
Hybrid Function Sparse Representation Towards Image Super Resolution,
CAIP19(II:27-37).
Springer DOI
1909
BibRef
Dai, D.X.[Deng-Xin],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Jointly Optimized Regressors for Image Super-resolution,
EuroGraphics15(xx-yy).
PDF File.
Dataset:
See also SuperTex136.
BibRef
1500
Michelini, P.N.[Pablo Navarrete],
Zhu, D.[Dan],
Liu, H.[Hanwen],
Multi-scale Recursive and Perception-Distortion Controllable Image
Super-Resolution,
PerceptualRest18(V:3-19).
Springer DOI
1905
BibRef
Unni, V.S.,
Chaudhury, K.N.,
Non-Local Patch-Based Regularization for Image Restoration,
ICIP18(1108-1112)
IEEE DOI
1809
TV, Computational modeling, Noise reduction, Image restoration,
Optimization, Image resolution, Standards, regularization, patch, ADMM,
super-resolution
BibRef
Chang, C.Y.[Chia-Yang],
Tu, W.C.[Wei-Chih],
Chien, S.Y.[Shao-Yi],
Optimized Regressor Forest for Image Super-Resolution,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Cuellar-Fierro, J.F.[Jhon F.],
Vargas-Cardona, H.D.[Hernán Darío],
Álvarez, A.M.[Andrés M.],
Orozco, Á.A.[Álvaro A.],
Álvarez, M.A.[Mauricio A.],
Non-stationary Generalized Wishart Processes for Enhancing Resolution
over Diffusion Tensor Fields,
ISVC18(371-381).
Springer DOI
1811
BibRef
Earlier: A1, A2, A5, A3, A4:
Non-stationary Multi-output Gaussian Processes for Enhancing Resolution
over Diffusion Tensor Fields,
CIARP17(168-176).
Springer DOI
1802
BibRef
Vargas-Cardona, H.D.[Hernán Darío],
Álvarez, M.A.[Mauricio A.],
Orozco, Á.A.[Álvaro A.],
Generalized Wishart Processes for Interpolation Over Diffusion Tensor
Fields,
ISVC15(II: 499-508).
Springer DOI
1601
BibRef
Gao, Q.Q.[Qin-Quan],
Zhao, Y.[Yan],
Li, G.[Gen],
Tong, T.[Tong],
Image Super-Resolution Using Knowledge Distillation,
ACCV18(II:527-541).
Springer DOI
1906
BibRef
Klatzer, T.[Teresa],
Soukup, D.[Daniel],
Kobler, E.[Erich],
Hammernik, K.[Kerstin],
Pock, T.[Thomas],
Trainable Regularization for Multi-frame Superresolution,
GCPR17(90-100).
Springer DOI
1711
BibRef
Malczewski, K.[Krzysztof],
Motion artifacts free image resolution enhancement exploiting image
priors,
WSSIP17(1-4)
IEEE DOI
1707
Algorithm design and analysis, Estimation, Kernel,
Signal resolution, Spatial resolution, image enhancement, super-resolution
BibRef
Bodduna, K.[Kireeti],
Weickert, J.[Joachim],
Cárdenas, M.[Marcelo],
Multi-frame Super-resolution from Noisy Data,
SSVM21(565-577).
Springer DOI
2106
BibRef
Bodduna, K.[Kireeti],
Weickert, J.[Joachim],
Evaluating Data Terms for Variational Multi-frame Super-Resolution,
SSVM17(590-601).
Springer DOI
1706
BibRef
Chen, X.,
Zhai, G.,
Wang, J.,
Hu, C.,
Chen, Y.,
Color guided thermal image super resolution,
VCIP16(1-4)
IEEE DOI
1701
Cameras
BibRef
Gupta, A.,
Johnson, J.[Justin],
Alahi, A.[Alexandre],
Fei-Fei, L.[Li],
Characterizing and Improving Stability in Neural Style Transfer,
ICCV17(4087-4096)
IEEE DOI
1802
matrix algebra, recurrent neural nets, video signal processing,
Gram matrix representing style, neural style transfer,
Videos
BibRef
Johnson, J.[Justin],
Alahi, A.[Alexandre],
Fei-Fei, L.[Li],
Perceptual Losses for Real-Time Style Transfer and Super-Resolution,
ECCV16(II: 694-711).
Springer DOI
1611
BibRef
Tao, Y.,
Muller, J.P.,
Quantitative Assessment Of A Novel Super-resolution Restoration
Technique Using Hirise With Navcam Images: How Much Resolution
Enhancement Is Possible From Repeat-pass Observations,
ISPRS16(B4: 503-509).
DOI Link
1610
BibRef
Qu, C.,
Luo, D.,
Monari, E.,
Schuchert, T.,
Beyerer, J.,
Capturing ground truth super-resolution data,
ICIP16(2812-2816)
IEEE DOI
1610
Cameras
BibRef
Bätz, M.,
Eichenseer, A.,
Kaup, A.,
Multi-image super-resolution using a dual weighting scheme based on
Voronoi tessellation,
ICIP16(2822-2826)
IEEE DOI
1610
Image restoration
BibRef
Dai, D.,
Wang, Y.,
Chen, Y.,
Van Gool, L.J.,
Is image super-resolution helpful for other vision tasks?,
WACV16(1-9)
IEEE DOI
1606
Image resolution
BibRef
Bai, Y.,
Jia, H.,
Xie, X.,
Chen, R.,
Jiang, M.,
Gao, W.,
A fast super-resolution method based on sparsity properties,
VCIP15(1-4)
IEEE DOI
1605
Estimation
BibRef
Hirao, D.[Daiki],
Iyatomi, H.[Hitoshi],
Prototype of Super-Resolution Camera Array System,
ISVC15(I: 911-920).
Springer DOI
1601
BibRef
Markopoulos, P.P.[Panos P.],
Kundu, S.[Sandipan],
Pados, D.A.[Dimitris A.],
L1-fusion:
Robust linear-time image recovery from few severely corrupted copies,
ICIP15(1225-1229)
IEEE DOI
1512
Image recovery
BibRef
Tang, H.X.[Hui-Xuan],
Zhang, X.P.[Xiao-Peng],
Zhuo, S.J.[Shao-Jie],
Chen, F.[Feng],
Kutulakos, K.N.,
Shen, L.[Liang],
High Resolution Photography with an RGB-Infrared Camera,
ICCP15(1-10)
IEEE DOI
1511
colour photography
BibRef
Prasoon, A.[Adhish],
Chaubey, H.[Himanshu],
Gupta, A.[Abhinav],
Garg, R.[Rohit],
Chaudhury, S.[Santanu],
A Novel Approach for Image Super Resolution Using Kernel Methods,
PReMI15(126-135).
Springer DOI
1511
BibRef
Lee, H.S.[Hyun-Seung],
A new image super resolution by texture transfer,
ICIP14(3915-3918)
IEEE DOI
1502
Discrete cosine transforms
BibRef
Xu, J.[Jian],
Qi, C.[Chun],
Chang, Z.G.[Zhi-Guo],
Coupled K-SVD dictionary training for super-resolution,
ICIP14(3910-3914)
IEEE DOI
1502
Approximation algorithms
BibRef
Lin, S.[Sina],
Qin, Z.C.[Zeng-Chang],
Liao, R.J.[Ren-Jie],
Wan, T.[Tao],
A confidence growing model for super-resolution,
ICIP14(3929-3933)
IEEE DOI
1502
Dictionaries
BibRef
Hu, W.[Wei],
Cheung, G.[Gene],
Li, X.[Xin],
Au, O.C.[Oscar C.],
Graph-based joint denoising and super-resolution of generalized
piecewise smooth images,
ICIP14(2056-2060)
IEEE DOI
1502
Image resolution
BibRef
Cho, C.H.[Chang-Hun],
Jeon, J.H.[Jae-Hwan],
Paik, J.[Joonki],
Example-based super-resolution using self-patches and approximated
constrained least squares filter,
ICIP14(2140-2144)
IEEE DOI
1502
Degradation
BibRef
Hidane, M.,
Aujol, J.F.,
Berthoumieu, Y.,
Deledalle, C.A.,
Super-resolution from a low- and partial high-resolution image pair,
ICIP14(2145-2149)
IEEE DOI
1502
Image reconstruction
BibRef
Singh, A.[Abhishek],
Ahuja, N.[Narendra],
Super-Resolution Using Sub-Band Self-Similarity,
ACCV14(II: 552-568).
Springer DOI
1504
BibRef
And:
Sub-band Energy Constraints for Self-Similarity Based
Super-resolution,
ICPR14(4447-4452)
IEEE DOI
1412
Attenuation
BibRef
Goto, T.[Tomio],
Fukuoka, T.[Takafumi],
Nagashima, F.[Fumiya],
Hirano, S.[Satoshi],
Sakurai, M.[Masaru],
Super-resolution System for 4K-HDTV,
ICPR14(4453-4458)
IEEE DOI
1412
Electric shock
BibRef
Hsiao, W.T.[Wei-Tsung],
Leou, J.J.[Jing-Jang],
Hsiao, H.H.[Han-Hui],
Super-resolution Reconstruction for Binocular 3D Data,
ICPR14(4206-4211)
IEEE DOI
1412
Computational modeling
BibRef
Oberdorster, A.,
Favaro, P.,
Lensch, H.P.A.,
Anamorphic pixels for multi-channel superresolution,
ICCP14(1-10)
IEEE DOI
1411
image reconstruction
BibRef
Shi, B.X.[Bo-Xin],
Zhao, H.[Hang],
Ben-Ezra, M.[Moshe],
Yeung, S.K.[Sai-Kit],
Fernandez-Cull, C.[Christy],
Shepard, R.H.[R. Hamilton],
Barsi, C.[Christopher],
Raskar, R.[Ramesh],
Sub-pixel Layout for Super-Resolution with Images in the Octic Group,
ECCV14(I: 250-264).
Springer DOI
1408
BibRef
Wang, Z.Y.[Zhang-Yang],
Yang, Y.,
Yang, J.C.[Jian-Chao],
Huang, T.S.[Thomas S.],
Designing a composite dictionary adaptively from joint examples,
VCIP15(1-4)
IEEE DOI
1605
Adaptation models
BibRef
Wang, Z.Y.[Zhang-Yang],
Wang, Z.W.[Zhao-Wen],
Chang, S.Y.[Shi-Yu],
Yang, J.C.[Jian-Chao],
Huang, T.S.[Thomas S.],
A joint perspective towards image super-resolution:
Unifying external- and self-examples,
WACV14(596-603)
IEEE DOI
1406
BibRef
Bahat, Y.,
Michaeli, T.[Tomer],
Explorable Super Resolution,
CVPR20(2713-2722)
IEEE DOI
2008
Image resolution, Image reconstruction,
Heart rate, Graphical user interfaces, Neural networks, Impedance matching
BibRef
Michaeli, T.[Tomer],
Irani, M.[Michal],
Nonparametric Blind Super-resolution,
ICCV13(945-952)
IEEE DOI
1403
BibRef
Ho-Phuoc, T.[Tien],
Dupret, A.[Antoine],
Alacoque, L.[Laurent],
Super resolution method adapted to spatial contrast,
ICIP13(976-980)
IEEE DOI
1402
Image reconstruction
BibRef
Sakurai, M.[Masaru],
Sakuta, Y.[Yasuhiro],
Watanabe, M.[Masashi],
Goto, T.[Tomio],
Hirano, S.[Satoshi],
Super-resolution through non-linear enhancement filters,
ICIP13(854-858)
IEEE DOI
1402
Electric shock
BibRef
Ono, S.[Shunsuke],
Yamada, I.[Isao],
Optimized JPEG image decompression with super-resolution
interpolation using multi-order total variation,
ICIP13(474-478)
IEEE DOI
1402
Discrete cosine transforms
BibRef
Gao, J.B.[Jun-Bin],
Guo, Y.[Yi],
Yin, M.[Ming],
Restricted Boltzmann machine approach to couple dictionary training
for image super-resolution,
ICIP13(499-503)
IEEE DOI
1402
Dictionaries
BibRef
Sun, L.B.[Li-Bin],
Hays, J.,
Super-resolution from internet-scale scene matching,
ICCP12(1-12).
IEEE DOI
1208
BibRef
Park, Y.J.[Young-Jin],
Yoo, S.I.[Suk I.],
Isotropic Huber MRFS for structure super-resolution,
ICIP11(1137-1140).
IEEE DOI
1201
BibRef
Sroubek, F.[Filip],
Kamenicky, J.[Jan],
Milanfar, P.[Peyman],
Superfast superresolution,
ICIP11(1153-1156).
IEEE DOI
1201
BibRef
Zhao, Y.[Ying],
Shen, J.B.[Jian-Bing],
He, Y.[Ying],
Subband Architecture Based Exposure Fusion,
PSIVT10(501-506).
IEEE DOI
1011
BibRef
Ploquin, M.[Marie],
Kouame, D.[Denis],
Improvement of medical image resolution using an extended 2D factorized
form complex number parametric model,
ICIP10(601-604).
IEEE DOI
1009
BibRef
Harmeling, S.[Stefan],
Sra, S.[Suvrit],
Hirsch, M.[Michael],
Scholkopf, B.[Bernhard],
Multiframe blind deconvolution, super-resolution, and saturation
correction via incremental EM,
ICIP10(3313-3316).
IEEE DOI
1009
See also Fast removal of non-uniform camera shake.
BibRef
Hirsch, M.[Michael],
Sra, S.[Suvrit],
Scholkopf, B.[Bernhard],
Harmeling, S.[Stefan],
Efficient filter flow for space-variant multiframe blind deconvolution,
CVPR10(607-614).
IEEE DOI
1006
BibRef
Earlier: A4, A1, A2, A3:
Online blind deconvolution for astronomical imaging,
ICCP09(1-7).
IEEE DOI
1208
BibRef
Ozcelikkale, A.[Ayca],
Akar, G.B.[Gozde B.],
Ozaktas, H.M.[Haldun M.],
Super-resolution using multiple quantized images,
ICIP10(2029-2032).
IEEE DOI
1009
BibRef
Sun, J.[Jian],
Zhu, J.J.[Jie-Jie],
Tappen, M.F.[Marshall F.],
Context-constrained hallucination for image super-resolution,
CVPR10(231-238).
IEEE DOI
1006
Given initial set of high-low resolution image segments.
BibRef
Shi, G.M.[Guang-Ming],
Gao, D.H.[Da-Hua],
Liu, D.H.[Dan-Hua],
Wang, L.J.[Liang-Jun],
High resoluton image reconstruction:
A new imager via movable random exposure,
ICIP09(1177-1180).
IEEE DOI
0911
Randomly fluttering shutter, moving camera.
BibRef
Turgay, E.[Emre],
Akar, G.B.[Gozde B.],
Directionally adaptive super-resolution,
ICIP09(1201-1204).
IEEE DOI
0911
BibRef
Buades, T.,
Lou, Y.,
Morel, J.M.,
Tang, Z.W.[Zhong-Wei],
A note on multi-image denoising,
LNLA09(1-15).
IEEE DOI
0908
BibRef
Ebrahimi, M.,
Vrscay, E.R.,
Martel, A.L.,
Coupled multi-frame super-resolution with diffusive motion model and
total variation regularization,
LNLA09(62-69).
IEEE DOI
0908
BibRef
Mudugamuwa, D.J.[Damith J.],
He, X.J.[Xiang-Jian],
Ahn, C.H.[Chung-Hyun],
Yang, J.[Jie],
Higher order prediction for sub-pixel motion estimation,
ICIP09(1585-1588).
IEEE DOI
0911
BibRef
Mudugamuwa, D.J.,
He, X.J.[Xiang-Jian],
Wei, D.M.[Da-Ming],
Ahn, C.H.[Chung-Hyun],
Super-resolution by prediction based sub-pel motion estimation,
IVCNZ09(282-287).
IEEE DOI
0911
BibRef
Mudugamuwa, D.J.[Damith J.],
Jia, W.J.[Wen-Jing],
He, X.J.[Xiang-Jian],
Asymmetric, Non-unimodal Kernel Regression for Image Processing,
DICTA10(141-145).
IEEE DOI
1012
BibRef
Zhan, Q.F.[Qiu-Fang],
Gao, X.M.[Xiu-Min],
Li, J.S.[Jin-Song],
Zhuang, S.L.[Song-Lin],
Resolution Enhancement in High Numerical Aperture Optical System,
CISP09(1-5).
IEEE DOI
0910
BibRef
Ma, Y.J.[Yan-Jie],
Zhang, H.[Hua],
Xue, Y.B.[Yan-Bing],
A Novel Super-Resolution Image Reconstruction Based on MRF,
CISP09(1-4).
IEEE DOI
0910
BibRef
Jin, Z.[Zhang],
Zhong, W.[Wang],
Hui, Z.G.[Zhou Guang],
Hua, Y.S.[Ye Sheng],
Research of Super-Resolution Reconstruction Based on Multi-Images of
Random Micro-Offset,
CISP09(1-5).
IEEE DOI
0910
BibRef
Hou, P.[Peng],
Xu, W.H.[Wen-Hai],
Super Resolution Time Delay Estimation for Underwater Acoustic
Sinusoidal Signals,
CISP09(1-6).
IEEE DOI
0910
BibRef
Ebrahimi, M.[Mehran],
Martel, A.L.[Anne L.],
A PDE Approach to Coupled Super-Resolution with Non-parametric Motion,
EMMCVPR09(112-125).
Springer DOI
0908
BibRef
Toronto, N.[Neil],
Morse, B.S.[Bryan S.],
Seppi, K.[Kevin],
Ventura, D.[Dan],
Super-resolution via recapture and Bayesian effect modeling,
CVPR09(2388-2395).
IEEE DOI
0906
BibRef
Liu, Y.[Ying],
Fieguth, P.W.[Paul W.],
Parallel Hidden Hierarchical Fields for Multi-scale Reconstruction,
EMMCVPR09(70-83).
Springer DOI
0908
BibRef
And:
Image Resolution Enhancement with Hierarchical Hidden Fields,
ICIAR09(73-82).
Springer DOI
0907
BibRef
Ni, K.S.[Karl S.],
Nguyen, T.Q.[Truong Q.],
Color Image Superresolution Based on a Stochastic Combinational
Classification-Regression Algorithm,
ICIP07(II: 89-92).
IEEE DOI
0709
BibRef
Qiao, J.P.[Jian-Ping],
Liu, J.[Ju],
HOS-Based Image Super-Resolution Reconstruction,
MCAM07(213-222).
Springer DOI
0706
BibRef
Chatterjee, P.[Priyam],
Namboodiri, V.P.[Vinay P.],
Chaudhuri, S.[Subhasis],
Super-Resolution Using Sub-band Constrained Total Variation,
SSVM07(616-627).
Springer DOI
0705
BibRef
Damera-Venkata, N.[Niranjan],
hang, N.L.C.[Nelson L.C],
On the Resolution Limits of Superimposed Projection,
ICIP07(V: 373-376).
IEEE DOI
0709
BibRef
And:
Realizing Super-Resolution with Superimposed Projection,
PROCAMS07(1-8).
IEEE DOI
0706
BibRef
Lv, J.Y.[Jie-Yong],
Hao, P.W.[Peng-Wei],
In-Focus Imaging by Mosaicking and Super-Resolution,
ICIP06(2689-2692).
IEEE DOI
0610
BibRef
van Eekeren, A.,
Schutte, K.,
Dijk, J.,
de Lange, D.J.J.,
van Vliet, L.J.,
Super-Resolution on Moving Objects and Background,
ICIP06(2709-2712).
IEEE DOI
0610
BibRef
Lian, H.[Heng],
Variational Local Structure Estimation for Image Super-Resolution,
ICIP06(1721-1724).
IEEE DOI
0610
BibRef
El-Hakim, S.,
A sequential approach to capture fine geometric details from images,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Sasahara, R.,
Hasegawa, H.,
Yamada, I.,
Sakaniwa, K.,
A Color Super-Resolution with Multiple Nonsmooth Constraints by Hybrid
Steepest Descent Method,
ICIP05(I: 857-860).
IEEE DOI
0512
BibRef
Chen, M.[Mei],
Dynamic Content Adaptive Super-Resolution,
ICIAR04(I: 220-227).
Springer DOI
0409
BibRef
Yoakeim, R.,
Taubman, D.S.,
Quantitative analysis of resolution synthesis,
ICIP04(III: 1645-1648).
IEEE DOI
0505
BibRef
Zhao, W.Y.[Wen-Yi],
Super-resolution with significant illumination change,
ICIP04(III: 1771-1774).
IEEE DOI
0505
BibRef
Wagner, R.,
Nowak, R.D.,
Baraniuk, R.G.,
Distributed image compression for sensor networks using correspondence
analysis and super-resolution,
ICIP03(I: 597-600).
IEEE DOI
0312
BibRef
Zhao, W.,
Sawhney, H.,
Hansen, M.W.,
Samarasekera, S.,
Super-fusion: a super-resolution method based on fusion,
ICPR02(II: 269-272).
IEEE DOI
0211
BibRef
Kämpke, T.[Thomas],
Elfes, A.[Alberto],
Schiekel, C.[Christian],
Estimation of Superresolution Images Using Causal Networks:
The One-dimensional Case,
ICPR00(Vol I: 584-587).
IEEE DOI
0009
BibRef
Burt, P.J., and
Kolczynski, R.J.,
Enhanced Image Capture Through Fusion,
ICCV93(173-182).
IEEE DOI Get better images using the multiple frames
and fusing the series of images.
BibRef
9300
Singh, A.,
Incremental Image Sequence Enhancement with
Implicit Motion Compensation,
ICCV93(314-319).
IEEE DOI
BibRef
9300
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Handheld, Burst Super Resolution .