19.4.3.6 Super Resolution for Infrared Data, Thermal Data

Chapter Contents (Back)
Super Resolution. Thermal. Infrared.
See also Super Resolution for Remote Sensing Applications.

Gupta, H.[Honey], Mitra, K.[Kaushik],
Toward Unaligned Guided Thermal Super-Resolution,
IP(31), 2022, pp. 433-445.
IEEE DOI 2112
Superresolution, Cameras, Image resolution, Feature extraction, Task analysis, Imaging, Thermal sensors, Unaligned, thermal, deep neural network BibRef

Zhu, L.Z.[Lin-Zhen], Wu, R.J.[Ren-Jie], Lee, B.G.[Boon-Giin], Nkenyereye, L.[Lionel], Chung, W.Y.[Wan-Young], Xu, G.[Gen],
FEGAN: A Feature-Oriented Enhanced GAN for Enhancing Thermal Image Super-Resolution,
SPLetters(31), 2024, pp. 541-545.
IEEE DOI 2402
Training, Feature extraction, Iron, Image reconstruction, Image edge detection, Imaging, Measurement, thermal imaging BibRef

Chen, X.H.[Xiao-Hui], Chen, L.[Lin], Chen, L.J.[Ling-Jun], Chen, P.[Peng], Sheng, G.Q.[Guan-Qun], Yu, X.S.[Xiao-Sheng], Zou, Y.B.[Yao-Bin],
Modeling Thermal Infrared Image Degradation and Real-World Super-Resolution Under Background Thermal Noise and Streak Interference,
CirSysVideo(34), No. 7, July 2024, pp. 6194-6206.
IEEE DOI 2407
Degradation, Thermal noise, Interference, Feature extraction, Superresolution, Image reconstruction, Thermal degradation, streak interference BibRef

Huang, J.X.[Jia-Xin], Wang, H.[Huicong], Li, Y.H.[Yu-Han], Liu, S.J.[Shi-Jian],
A Feature-Driven Inception Dilated Network for Infrared Image Super-Resolution Reconstruction,
RS(16), No. 21, 2024, pp. 4033.
DOI Link 2411
BibRef

Quero, C.O.[Carlos Osorio], Durini, D.[Daniel], Rangel-Magdaleno, J.[Jose], Martinez-Carranza, J.[Jose], Ramos-Garcia, R.[Ruben],
Deep-learning blurring correction of images obtained from NIR single-pixel imaging,
JOSA-A(40), No. 8, August 2023, pp. 1491-1499.
DOI Link 2503
Lidar, Machine vision, Radar, Single pixel imaging, Spatial light modulators, Spatial resolution BibRef

Huang, Y.S.[Yong-Song], Miyazaki, T.[Tomo], Liu, X.F.[Xiao-Feng], Dong, Y.F.[Ya-Fei], Omachi, S.[Shinichiro],
Texture and noise dual adaptation for infrared image super-resolution,
PR(163), 2025, pp. 111449.
Elsevier DOI Code:
WWW Link. 2503
Super-resolution, Infrared imaging, Domain adaptation, Deep learning BibRef


Li, X.Y.[Xing-Yuan], Liu, J.Y.[Jin-Yuan], Chen, Z.X.[Zhi-Xin], Zou, Y.[Yang], Ma, L.[Long], Fan, X.[Xin], Liu, R.S.[Ri-Sheng],
Contourlet Residual for Prompt Learning Enhanced Infrared Image Super-Resolution,
ECCV24(III: 270-288).
Springer DOI 2412
BibRef

Shyam, P.[Pranjay], Yoo, H.[HyunJin],
Lightweight Thermal Super-Resolution and Object Detection for Robust Perception in Adverse Weather Conditions,
WACV24(7456-7467)
IEEE DOI 2404
Weather. Image sensors, Superresolution, Lighting, Object detection, Detectors, Thermal sensors, Autonomous Driving BibRef

Puttagunta, R.S.[Raghunath Sai], Kathariya, B.[Birendra], Li, Z.[Zhu], York, G.[George],
Multi-Scale Feature Fusion using Channel Transformers for Guided Thermal Image Super Resolution,
PBVS24(3086-3095)
IEEE DOI 2410
Visualization, Limiting, Superresolution, Imaging, Transformer cores, Transformers, Guided Super Resolution, Channel Transformer BibRef

Jiang, H.C.[Hong-Cheng], Chen, Z.[ZhiQiang],
Flexible Window-based Self-attention Transformer in Thermal Image Super-Resolution,
PBVS24(3076-3085)
IEEE DOI Code:
WWW Link. 2410
Attention mechanisms, Superresolution, Semantics, Noise, Landsat, Transformers, Thermal noise BibRef

Cortés-Mendez, C.[Carlos], Hayet, J.B.[Jean-Bernard],
Exploring the usage of diffusion models for thermal image super-resolution: a generic, uncertainty-aware approach for guided and non-guided schemes,
PBVS24(3123-3130)
IEEE DOI 2410
Uncertainty, Frequency-domain analysis, Superresolution, Refining, Imaging, Diffusion models, Diffusion models, Super-resolution, Thermal images BibRef

Kasliwal, A.[Aditya], Seth, P.[Pratinav], Rallabandi, S.[Sriya], Singhal, S.[Sanchit],
CoReFusion: Contrastive Regularized Fusion for Guided Thermal Super-Resolution,
PBVS23(507-514)
IEEE DOI 2309
BibRef

Wang, K.[Kai], Sun, Q.G.[Qi-Gong], Wang, Y.C.[Yi-Cheng], Wei, H.Y.[Hui-Yuan], Lv, C.H.[Chong-Hua], Tian, X.L.[Xiao-Lin], Liu, X.[Xu],
CIPPSRNet: A Camera Internal Parameters Perception Network Based Contrastive Learning for Thermal Image Super-Resolution,
PBVS22(341-348)
IEEE DOI 2210
Training, Degradation, Visualization, Superresolution, Cameras, Robustness BibRef

Gutierrez, N.B.[Nolan B.], Beksi, W.J.[William J.],
Thermal Image Super-Resolution Using Second-Order Channel Attention with Varying Receptive Fields,
CVS21(3-13).
Springer DOI 2109
BibRef

Prajapati, K.[Kalpesh], Chudasama, V.[Vishal], Patel, H.[Heena], Sarvaiya, A.[Anjali], Upla, K.[Kishor], Raja, K.[Kiran], Ramachandra, R.[Raghavendra], Busch, C.[Christoph],
Channel Split Convolutional Neural Network (ChaSNet) for Thermal Image Super-Resolution,
PBVS21(4363-4372)
IEEE DOI 2109
BibRef
Earlier: A2, A3, A1, A5, A7, A6, A8, Only:
TherISuRNet: A Computationally Efficient Thermal Image Super-Resolution Network,
PBVS20(388-397)
IEEE DOI 2008
Image sensors, Visualization, Thermal factors, Superresolution, Thermal sensors, Optical imaging, Thermal noise. Cameras, Spatial resolution, Feature extraction, Training, Computer architecture BibRef

Prajapati, K.[Kalpesh], Chudasama, V.[Vishal], Upla, K.[Kishor], Raia, K.[Kiran], Ramachandra, R.[Raghavendra], Busch, C.[Christoph],
Channel Split Convolutional Neural Network for Single Image Super-Resolution (CSISR),
FG21(1-8)
IEEE DOI 2303
Performance evaluation, Training, Image synthesis, Computational modeling, Superresolution, Memory management, Computational efficiency BibRef

Nathan, S.[Sabari], Kansal, P.[Priya],
Leveraging Multi scale Backbone with Multilevel supervision for Thermal Image Super Resolution,
PBVS21(4327-4333)
IEEE DOI 2109
BibRef
Earlier: A2, A1:
A Multi-Level Supervision Model: A novel approach for Thermal Image Super Resolution,
PBVS20(426-431)
IEEE DOI 2008
Training, Convolution, Superresolution, Robustness. Spatial resolution, Training, Task analysis, Image edge detection, Convolution BibRef

Rivadeneira, R.E.[Rafael E.], Suárez, P.L.[Patricia L.], Sappa, A.D.[Angel D.], Vintimilla, B.X.[Boris X.],
Thermal Image Super-Resolution Through Deep Convolutional Neural Network,
ICIAR19(II:417-426).
Springer DOI 1909
BibRef

Chen, X., Zhai, G., Wang, J., Hu, C., Chen, Y.,
Color guided thermal image super resolution,
VCIP16(1-4)
IEEE DOI 1701
Cameras BibRef

Tang, H.X.[Hui-Xuan], Zhang, X.P.[Xiao-Peng], Zhuo, S.J.[Shao-Jie], Chen, F.[Feng], Kutulakos, K.N., Shen, L.[Liang],
High Resolution Photography with an RGB-Infrared Camera,
ICCP15(1-10)
IEEE DOI 1511
colour photography BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Learning for Super Resolution .


Last update:Jul 7, 2025 at 14:35:55