19.4.3.2 Lightweight Super Resolution

Chapter Contents (Back)
Super Resolution. Lightweight Super Resolution.

Zhang, L.[Lei], Wang, P.[Peng], Shen, C.H.[Chun-Hua], Liu, L.Q.[Ling-Qiao], Wei, W.[Wei], Zhang, Y.N.[Yan-Ning], van den Hengel, A.J.[Anton J.],
Adaptive Importance Learning for Improving Lightweight Image Super-Resolution Network,
IJCV(128), No. 2, February 2020, pp. 479-499.
Springer DOI 2002
BibRef

Sun, W., Gong, D., Shi, Q., van den Hengel, A.J.[Anton J.], Zhang, Y.N.[Yan-Ning],
Learning to Zoom-In via Learning to Zoom-Out: Real-World Super-Resolution by Generating and Adapting Degradation,
IP(30), 2021, pp. 2947-2962.
IEEE DOI 2102
Degradation, Training, Kernel, Superresolution, Sun, Learning systems, Cameras, Super resolution (SR), domain adaptation, unpaired learning BibRef

Wang, Y.T.[Yun-Tao], Zhao, L.[Lin], Liu, L.M.[Li-Man], Hu, H.F.[Huai-Fei], Tao, W.B.[Wen-Bing],
URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Wang, L.[Li], Shen, J.[Jie], Tang, E., Zheng, S.N.[Sheng-Nan], Xu, L.Z.[Li-Zhong],
Multi-scale attention network for image super-resolution,
JVCIR(80), 2021, pp. 103300.
Elsevier DOI 2110
Super-resolution, Multi-scale, Attention mechanism, Lightweight BibRef

Gupta, H.[Honey], Mitra, K.[Kaushik],
Toward Unaligned Guided Thermal Super-Resolution,
IP(31), 2022, pp. 433-445.
IEEE DOI 2112
Superresolution, Cameras, Image resolution, Feature extraction, Task analysis, Imaging, Thermal sensors, Unaligned, thermal, deep neural network BibRef

Qin, Z.[Zhu], Zhang, T.P.[Tai-Ping],
Explore Connection Pattern and Attention Mechanism for Lightweight Image Super-Resolution,
ICIP21(1799-1803)
IEEE DOI 2201
Convolution, Design methodology, Superresolution, Stacking, Feature extraction, Convolutional neural networks, Super-resolution BibRef

Zhu, X.Y.[Xiang-Yuan], Guo, K.[Kehua], Ren, S.[Sheng], Hu, B.[Bin], Hu, M.[Min], Fang, H.[Hui],
Lightweight Image Super-Resolution With Expectation-Maximization Attention Mechanism,
CirSysVideo(32), No. 3, March 2022, pp. 1273-1284.
IEEE DOI 2203
Superresolution, Feature extraction, Degradation, Task analysis, Image reconstruction, Convolutional neural networks, expectation-maximization attention BibRef

Wang, H.[Huan], Zhang, Y.[Yulun], Qin, C.[Can], Van Gool, L.J.[Luc J.], Fu, Y.[Yun],
Global Aligned Structured Sparsity Learning for Efficient Image Super-Resolution,
PAMI(45), No. 9, September 2023, pp. 10974-10989.
IEEE DOI 2309
BibRef

Wang, J.[Jiamian], Wang, H.[Huan], Zhang, Y.[Yulun], Fu, Y.[Yun], Tao, Z.Q.[Zhi-Qiang],
Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution,
ICCV23(12556-12565)
IEEE DOI Code:
WWW Link. 2401
BibRef

Xia, B.[Bin], He, J.W.[Jing-Wen], Zhang, Y.[Yulun], Wang, Y.T.[Yi-Tong], Tian, Y.[Yapeng], Yang, W.M.[Wen-Ming], Van Gool, L.J.[Luc J.],
Structured Sparsity Learning for Efficient Video Super-Resolution,
CVPR23(22638-22647)
IEEE DOI 2309
BibRef

Luo, X.T.[Xiao-Tong], Xie, Y.[Yuan], Zhang, Y.[Yulun], Qu, Y.Y.[Yan-Yun], Li, C.H.[Cui-Hua], Fu, Y.[Yun],
Latticenet: Towards Lightweight Image Super-resolution with Lattice Block,
ECCV20(XXII:272-289).
Springer DOI 2011
BibRef

Xie, F.[Feng], Lu, P.[Pei], Liu, X.Y.[Xiao-Yong],
Multi-scale convolutional attention network for lightweight image super-resolution,
JVCIR(95), 2023, pp. 103889.
Elsevier DOI 2309
Image super-resolution, Convolutional neural network, Lightweight, Attention mechanism BibRef

Liu, F.Q.[Fei-Qiang], Yang, X.M.[Xiao-Min], de Baets, B.[Bernard],
A Deep Recursive Multi-Scale Feature Fusion Network for Image Super-Resolution,
JVCIR(90), 2023, pp. 103730.
Elsevier DOI 2301
Single Image Super-Resolution (SISR), Recursive networks, Multi-scale features, Progressive feature fusion BibRef

Liu, F.Q.[Fei-Qiang], Yang, X.M.[Xiao-Min], de Baets, B.[Bernard],
Lightweight image super-resolution with a feature-refined network,
SP:IC(111), 2023, pp. 116898.
Elsevier DOI 2301
Single image super-resolution, Lightweight network, Feature similarity, Linear transformation, Feature-refined network BibRef

Chen, Y.Z.[Yu-Zhen], Wang, G.C.[Gen-Cheng], Chen, R.[Rong],
Efficient Multi-Scale Cosine Attention Transformer for Image Super-Resolution,
SPLetters(30), 2023, pp. 1442-1446.
IEEE DOI 2310
BibRef

Wang, Y.[Yan], Su, T.T.[Tong-Tong], Li, Y.[Yusen], Cao, J.W.[Jiu-Wen], Wang, G.[Gang], Liu, X.G.[Xiao-Guang],
DDistill-SR: Reparameterized Dynamic Distillation Network for Lightweight Image Super-Resolution,
MultMed(25), 2023, pp. 7222-7234.
IEEE DOI 2311
BibRef

Xue, L.X.[Li-Xia], Shen, J.H.[Jun-Hui], Wang, R.G.[Rong-Gui], Yang, J.[Juan],
MFFN: Multi-Path Feedback Fusion Network for Lightweight Image Super Resolution,
IET-IPR(17), No. 14, 2023, pp. 4190-4201.
DOI Link 2312
image reconstruction, image resolution, image restoration BibRef

Wang, F.[Fengsui], Chu, X.[Xi],
HorSR: High-order spatial interactions and residual global filter for efficient image super-resolution,
SP:IC(127), 2024, pp. 117148.
Elsevier DOI 2408
Super-resolution, Lightweight, Recursive gated convolution, Residual global filtering BibRef

Khan, A.H.[Asif Hussain], Micheloni, C.[Christian], Martinel, N.[Niki],
Lightweight Prompt Learning Implicit Degradation Estimation Network for Blind Super Resolution,
IP(33), 2024, pp. 4556-4567.
IEEE DOI 2408
Degradation, Kernel, Wiener filters, Deconvolution, Superresolution, Estimation, Image reconstruction, Image super-resolution, prompt learning BibRef

Khan, A.H.[Asif Hussain], Umer, R.M.[Rao Muhammad], Dunnhofer, M.[Matteo], Micheloni, C.[Christian], Martinel, N.[Niki],
LBKENET: lightweight Blur Kernel Estimation Network for Blind Image Super-resolution,
CIAP23(II:209-222).
Springer DOI 2312
BibRef

Xu, K.[Ke], Pan, L.[Lulu], Peng, G.H.[Guo-Hua], Zhang, W.B.[Wen-Bo], Lv, Y.H.[Yan-Heng], Li, G.[Guo], Li, L.X.[Ling-Xiao], Lei, L.[Le],
Multi-scale strip-shaped convolution attention network for lightweight image super-resolution,
SP:IC(128), 2024, pp. 117166.
Elsevier DOI 2409
Image super-resolution, Strip convolution, Attention mechanism, Lightweight, Convolutional neural network BibRef


Jeevan, P.[Pranav], Srinidhi, A.[Akella], Prathiba, P.[Pasunuri], Sethi, A.[Amit],
WaveMixSR: Resource-efficient Neural Network for Image Super-resolution,
WACV24(5872-5880)
IEEE DOI 2404
Wavelet transforms, Computational modeling, Superresolution, Neural networks, Training data, Transformers, Data models, Social good BibRef

Conde, M.V.[Marcos V.], Vasluianu, F.[Florin], Timofte, R.[Radu],
BSRAW: Improving Blind RAW Image Super-Resolution,
WACV24(8485-8495)
IEEE DOI 2404
Degradation, Training, Superresolution, Pipelines, Transforms, Cameras, Optics, Applications, Smartphones / end user devices, Applications, Embedded sensing / real-time techniques BibRef

Sun, L.[Long], Dong, J.X.[Jiang-Xin], Tang, J.H.[Jin-Hui], Pan, J.S.[Jin-Shan],
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution,
ICCV23(13144-13153)
IEEE DOI Code:
WWW Link. 2401
BibRef

Li, X.[Xiang], Dong, J.X.[Jiang-Xin], Tang, J.H.[Jin-Hui], Pan, J.S.[Jin-Shan],
DLGSANet: Lightweight Dynamic Local and Global Self-Attention Network for Image Super-Resolution,
ICCV23(12746-12755)
IEEE DOI Code:
WWW Link. 2401
BibRef

Zhang, A.P.[Ai-Ping], Ren, W.Q.[Wen-Qi], Liu, Y.[Yi], Cao, X.C.[Xiao-Chun],
Lightweight Image Super-Resolution with Superpixel Token Interaction,
ICCV23(12682-12691)
IEEE DOI Code:
WWW Link. 2401
BibRef

Liu, G.[Guandu], Ding, Y.[Yukang], Li, M.[Mading], Sun, M.[Ming], Wen, X.[Xing], Wang, B.[Bin],
Reconstructed Convolution Module Based Look-Up Tables for Efficient Image Super-Resolution,
ICCV23(12183-12192)
IEEE DOI Code:
WWW Link. 2401
BibRef

Wang, W.[Wei], Lei, X.J.[Xue-Jing], Chen, Y.[Yueru], Lee, M.S.[Ming-Sui], Kuo, C.C.J.[C.C. Jay],
LSR: A Light-Weight Super-Resolution Method,
ICIP23(1955-1959)
IEEE DOI 2312
BibRef

Yu, L.[Lei], Li, X.P.[Xin-Peng], Li, Y.[Youwei], Jiang, T.[Ting], Wu, Q.[Qi], Fan, H.Q.[Hao-Qiang], Liu, S.C.[Shuai-Cheng],
DIPNet: Efficiency Distillation and Iterative Pruning for Image Super-Resolution,
NTIRE23(1692-1701)
IEEE DOI 2309
BibRef

Lin, J.[Jin], Luo, X.T.[Xiao-Tong], Hong, M.[Ming], Qu, Y.[Yanyun], Xie, Y.[Yuan], Wu, Z.Z.[Zong-Ze],
Memory-Friendly Scalable Super-Resolution via Rewinding Lottery Ticket Hypothesis,
CVPR23(14398-14407)
IEEE DOI 2309
BibRef

Li, G.[Gen], Ji, J.[Jie], Qin, M.[Minghai], Niu, W.[Wei], Ren, B.[Bin], Afghah, F.[Fatemeh], Guo, L.[Linke], Ma, X.L.[Xiao-Long],
Towards High-Quality and Efficient Video Super-Resolution via Spatial-Temporal Data Overfitting,
CVPR23(10259-10269)
IEEE DOI 2309
BibRef

Mao, Y.[Yanyu], Zhang, N.H.[Ni-Hao], Wang, Q.[Qian], Bai, B.[Bendu], Bai, W.Y.[Wan-Ying], Fang, H.N.[Hao-Nan], Liu, P.[Peng], Li, M.Y.[Ming-Yue], Yan, S.[Shengbo],
Multi-level Dispersion Residual Network for Efficient Image Super-Resolution,
NTIRE23(1660-1669)
IEEE DOI 2309
BibRef

Zamfir, E.[Eduard], Conde, M.V.[Marcos V.], Timofte, R.[Radu],
Towards Real-Time 4K Image Super-Resolution,
NTIRE23(1522-1532)
IEEE DOI 2309
BibRef

Guo, J.M.[Jia-Ming], Zou, X.[Xueyi], Chen, Y.[Yuyi], Liu, Y.[Yi], Hao, J.[Jia], Liu, J.Z.[Jian-Zhuang], Yan, Y.[Youliang],
AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled Convolutions,
NTIRE23(1582-1592)
IEEE DOI 2309
BibRef

Choi, H.[Haram], Lee, J.[Jeongmin], Yang, J.[Jihoon],
N-Gram in Swin Transformers for Efficient Lightweight Image Super-Resolution,
CVPR23(2071-2081)
IEEE DOI 2309
BibRef

Guo, W.J.[Wen-Jin], Xie, W.Y.[Wei-Ying], Jiang, K.[Kai], Li, Y.S.[Yun-Song], Lei, J.[Jie], Fang, L.Y.[Le-Yuan],
Toward Stable, Interpretable, and Lightweight Hyperspectral Super-Resolution,
CVPR23(22272-22281)
IEEE DOI 2309
BibRef

Wang, X.H.[Xiao-Hang], Chen, X.H.[Xuan-Hong], Ni, B.B.[Bing-Bing], Wang, H.[Hang], Tong, Z.Y.[Zheng-Yan], Liu, Y.T.[Yu-Tian],
Deep Arbitrary-Scale Image Super-Resolution via Scale-Equivariance Pursuit,
CVPR23(1786-1795)
IEEE DOI 2309
BibRef

Cao, J.Z.[Jie-Zhang], Wang, Q.[Qin], Xian, Y.Q.[Yong-Qin], Li, Y.[Yawei], Ni, B.B.[Bing-Bing], Pi, Z.M.[Zhi-Ming], Zhang, K.[Kai], Zhang, Y.[Yulun], Timofte, R.[Radu], Van Gool, L.J.[Luc J.],
CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution,
CVPR23(1796-1807)
IEEE DOI 2309
BibRef

Wang, H.[Hang], Chen, X.H.[Xuan-Hong], Ni, B.B.[Bing-Bing], Liu, Y.T.[Yu-Tian], Liu, J.F.[Jin-Fan],
Omni Aggregation Networks for Lightweight Image Super-Resolution,
CVPR23(22378-22387)
IEEE DOI 2309
BibRef

Deng, W.J.[Wei-Jian], Yuan, H.J.[Hong-Jie], Deng, L.[Lunhui], Lu, Z.[Zengtong],
Reparameterized Residual Feature Network For Lightweight Image Super-Resolution,
NTIRE23(1712-1721)
IEEE DOI 2309
BibRef

Gankhuyag, G.[Ganzorig], Yoon, K.[Kihwan], Park, J.M.[Jin-Man], Son, H.S.[Haeng Seon], Min, K.[Kyoungwon],
Lightweight Real-Time Image Super-Resolution Network for 4K Images,
NTIRE23(1746-1755)
IEEE DOI 2309
BibRef

Gendy, G.[Garas], Sabor, N.[Nabil], Hou, J.C.[Jing-Chao], He, G.H.[Guang-Hui],
Mixer-based Local Residual Network for Lightweight Image Super-resolution,
NTIRE23(1593-1602)
IEEE DOI 2309
BibRef
And:
A Simple Transformer-style Network for Lightweight Image Super-resolution,
NTIRE23(1484-1494)
IEEE DOI 2309
BibRef

Dong, T.X.T.[Ting-Xing Tim], Yan, H.[Hao], Parasar, M.[Mayank], Krisch, R.[Raun],
RenderSR: A Lightweight Super-Resolution Model for Mobile Gaming Upscaling,
MobileAI22(3086-3094)
IEEE DOI 2210
Image quality, Interpolation, Visualization, Image color analysis, Superresolution, Buildings, Graphics processing units BibRef

Fang, J.S.[Jin-Sheng], Lin, H.J.[Han-Jiang], Chen, X.Y.[Xin-Yu], Zeng, K.[Kun],
A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution,
NTIRE22(1102-1111)
IEEE DOI 2210
Codes, Superresolution, Memory management, Transformers, Feature extraction BibRef

Zong, Z.K.[Zhi-Kai], Zha, L.[Lin], Jiang, J.[Jiande], Liu, X.X.[Xiao-Xiao],
Asymmetric Information Distillation Network for Lightweight Super Resolution,
NTIRE22(1248-1257)
IEEE DOI 2210
Multiplexing, Measurement, Image resolution, Computational modeling, Feature extraction BibRef

Li, W.[Wen], Li, S.M.[Su-Mei], Liu, A.Q.[An-Qi],
Lightweight Image Super-Resolution Reconstruction With Hierarchical Feature-Driven Network,
ICIP20(573-577)
IEEE DOI 2011
Pattern recognition, Europe, Indexes, Machine vision, Surface treatment, Super resolution, attention BibRef

Shi, Y.L.[Yong-Lian], Li, S.M.[Su-Mei], Li, W.[Wen], Liu, A.Q.[An-Qi],
Fast and Lightweight Image Super-Resolution Based on Dense Residuals Two-Channel Network,
ICIP19(2826-2830)
IEEE DOI 1910
Super-resolution reconstruction, grouped convolution, lightweight construction, residual BibRef

Ahn, N.[Namhyuk], Kang, B.[Byungkon], Sohn, K.A.[Kyung-Ah],
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network,
ECCV18(X: 256-272).
Springer DOI 1810
BibRef
And:
Image Super-Resolution via Progressive Cascading Residual Network,
Restoration18(904-9048)
IEEE DOI 1812
Training, Image resolution, Task analysis, Convolution, Image reconstruction, Automobiles BibRef

Chang, C.Y.[Chia-Yang], Chien, S.Y.[Shao-Yi],
Back-Projection Lightweight Network for Accurate Image Super Resolution,
ACCV18(V:135-151).
Springer DOI 1906
BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Challenges for Mosaic Generation, Super Resolution and Stabilization .


Last update:Sep 28, 2024 at 17:47:54