CGAL: Computational Geometry Algorithms Library,
2016
Code, Computational Geometry.
WWW Link.
1611
Do Carmo, M.P.,
Differential Geometry of Curves and Surfaces,
Prentice-Hall1976.
BibRef
7600
Posdamer, J.L.[Jeffrey L.],
A Vector Development of the Fundamentals of Computational Geometry,
CGIP(6), No. 4, August 1977, pp. 382-393.
Elsevier DOI
0501
From work of Forrest.
BibRef
Franklin, W.R.[W. Randolph],
An exact hidden sphere algorithm that operates in linear time,
CGIP(15), No. 4, April 1981, pp. 364-379.
Elsevier DOI
0501
Hidden line algorithm, linear time.
BibRef
Boehm, W.[Wolfgang],
On Cubics: a Survey,
CGIP(19), No. 3, July 1982, pp. 201-226.
Elsevier DOI
Survey, Cubics.
BibRef
8207
Rosenfeld, A.,
Three-Dimensional Digital Topology,
InfoControl(50), 1981, pp. 119-127.
BibRef
8100
Earlier:
UMD-TR-936, September 1980.
See also Digital Topology: Introduction and Survey.
BibRef
Edelsbrunner, H.,
Overmars, M.H.,
Seidel, R.,
Some methods of computational geometry applied to computer graphics,
CVGIP(28), No. 1, October 1984, pp. 92-108.
Elsevier DOI
0501
Windowing 2D picture.
BibRef
Fisher, R.B.[Robert B.],
Orr, M.J.L.[Mark J.L.],
Solving Geometric Constraints in a Parallel Network,
IVC(6), No. 2, May 1988, pp. 100-106.
Elsevier DOI
BibRef
8805
EdinburghSolving sets of inequalities.
BibRef
Bribiesca, E.[Ernesto],
A Geometric Structure for Two-Dimensional Shapes and
Three-Dimensional Surfaces,
PR(25), No. 5, May 1992, pp. 483-496.
Elsevier DOI Uses a representation called Slope Change notation (SCN) which
is invariant to translation and rotation. (Angles between adjacent
segments in the contour for 2D).
BibRef
9205
Lee, C.N.[Chung-Nim],
Rosenfeld, A.[Azriel],
Simple Connectivity Is not Locally Computable for Connected 3D Images,
CVGIP(51), No. 1, July 1990, pp. 87-95.
Elsevier DOI simply connected and contractible are locally computable in 2D, but not 3D.
BibRef
9007
Kovalevsky, V.A.[Vladimir A.],
Finite Topology as Applied to Image Analysis,
CVGIP(46), No. 2, May 1989, pp. 141-161.
Elsevier DOI
BibRef
8905
Kovalevsky, V.A.[Vladimir A.],
Axiomatic Digital Topology,
JMIV(26), No. 1-2, November 2006, pp. 41-58.
Springer DOI
0701
BibRef
Earlier:
Algorithms in Digital Geometry Based on Cellular Topology,
IWCIA04(366-393).
Springer DOI
0505
See also New Concept for Digital Geometry, A.
BibRef
Koenderink, J.J.,
van Doorn, A.J.,
Two-Plus-One-Dimensional Differential Geometry,
PRL(15), No. 5, May 1994, pp. 439-443.
Differential Geometry. Multi-scale ridge detection.
BibRef
9405
Saha, P.K.,
Chaudhuri, B.B.,
Chanda, B.,
Majumder, D.D.[D. Dutta],
Topology Preservation in 3D Digital Space,
PR(27), No. 2, February 1994, pp. 295-300.
Elsevier DOI 3D topology operations.
BibRef
9402
Kong, T.Y.,
Rosenfeld, A.,
Special Issue on Topology and Geometry in Computer Vision,
JMIV(6), No. 2-3, June 1996, pp. 107-107.
9608
BibRef
Rothwell, C.A.[Charlie A.],
Mundy, J.L.[Joe L.],
Hoffman, W.[William],
Representing Objects Using Topology,
ORCV96(79)
9611
BibRef
Hall, R.W.,
Hu, C.Y.,
Time-Efficient Computation of 3D Topological Functions,
PRL(17), No. 9, August 1 1996, pp. 1017-1033.
9609
BibRef
Bezdek, J.C.[James C.],
Pal, N.R.[Nikhil R.],
An Index of Topological Preservation for Feature-Extraction,
PR(28), No. 3, March 1995, pp. 381-391.
Elsevier DOI PCA, Sammon and Kohonen self-organizing feature map and preserving order.
BibRef
9503
Verri, A.[Alessandro],
Uras, C.[Claudio],
Metric-Topological Approach to Shape Representation and Recognition,
IVC(14), No. 3, April 1996, pp. 189-207.
Elsevier DOI
9607
Theory of Size functions.
BibRef
Uras, C.[Claudio],
Verri, A.[Alessandro],
Computing Size Functions From Edge Maps,
IJCV(23), No. 2, June 1997, pp. 169-183.
DOI Link
9708
BibRef
Earlier:
Studying Shape Through Size Functions,
MDSG94(81).
BibRef
Toussaint, G.T.,
Special Issue on Computational Geometry,
PIEEE(80), No. 9, September 1992, pp. 1347-1517.
BibRef
9209
And:
PRL(14), No. 9, September 1993, pp. 697-748.
Editor.
BibRef
Dobkin, D.P.,
Computational Geometry and Computer Graphics,
PIEEE(80), No. 9, September 1992, pp. 1400-1411.
BibRef
9209
Chiang, Y.J.,
Tamassia, R.,
Dynamic Algorithms in Computational Geometry,
PIEEE(80), No. 9, September 1992, pp. 1412-1434.
BibRef
9209
Atallah, M.J.,
Parallel Techniques For Computational Geometry,
PIEEE(80), No. 9, September 1992, pp. 1435-1448.
BibRef
9209
Skiena, S.S.,
Interactive Reconstruction via Geometric Probing,
PIEEE(80), 1992, pp. 1364-1383.
BibRef
9200
Goh, S.C.,
Lee, C.N.,
Counting Minimal 18-Paths in 3D Digital Space,
PRL(14), 1993, pp. 39-52.
BibRef
9300
Biswas, S.S.,
Ray, A.,
Region Merging in 3-D Images Using Morphological Operators,
PRL(14), 1993, pp. 23-30.
BibRef
9300
Goh, S.C.,
Lee, C.N.,
Counting Minimal Paths in 3D Digital Geometry,
PRL(13), 1992, pp. 765-771.
BibRef
9200
Chaudhuri, B.B.,
Some Shape Definitions in Fuzzy Geometry of Space,
PRL(12), 1991, pp. 531-535.
BibRef
9100
Lee, D.T.,
Preparata, F.P.,
Computational Geometry: A Survey,
TC(33), 1984, pp. 1072-1101.
Survey, Computational Geometry.
BibRef
8400
Tang, Y.Y.,
Suen, C.Y.,
New Algorithms for Fixed and Elastic Geometric Transformation Models,
IP(3), No. 4, July 1994, pp. 355-366.
IEEE DOI
BibRef
9407
Latecki, L.J.[Longin Jan],
Discrete Representation of Spatial Objects in Computer Vision,
KluwerJanuary 1998, ISBN 0-7923-4912-1.
WWW Link.
BibRef
9801
Latecki, L.J.,
3D Well-Composed Pictures,
GMIP(59), No. 3, May 1997, pp. 164-172.
9708
See also Well-Composed Sets.
BibRef
Stelldinger, P.[Peer],
Latecki, L.J.[Longin Jan],
Siqueira, M.[Marcelo],
Topological Equivalence between a 3D Object and the Reconstruction of
Its Digital Image,
PAMI(29), No. 1, January 2007, pp. 126-140.
IEEE DOI
0701
Topological distortions from digitization.
Use overlapping balls rather than cubes.
BibRef
Stelldinger, P.[Peer],
Tcherniavski, L.[Leonid],
Provably correct reconstruction of surfaces from sparse noisy samples,
PR(42), No. 8, August 2009, pp. 1650-1659.
Elsevier DOI
0904
BibRef
Earlier: A1, Only:
Topologically correct surface reconstruction using alpha shapes and
relations to ball-pivoting,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And: A1, Only:
Topologically Correct 3D Surface Reconstruction and Segmentation from
Noisy Samples,
IWCIA08(xx-yy).
Springer DOI
0804
Surface reconstruction; Topology preservation; Alpha-shapes; Delaunay
triangulation
BibRef
Stelldinger, P.[Peer],
Tcherniavski, L.[Leonid],
Contour Reconstruction for Multiple 2D Regions Based on Adaptive
Boundary Samples,
IWCIA09(266-279).
Springer DOI
0911
BibRef
Tcherniavski, L.[Leonid],
Bähnisch, C.[Christian],
Meine, H.[Hans],
Stelldinger, P.[Peer],
How to define a locally adaptive sampling criterion for topologically
correct reconstruction of multiple regions,
PRL(33), No. 11, 1 August 2012, pp. 1451-1459.
Elsevier DOI
1206
Nonmanifold surface reconstruction; Topology preservation; Sampling
criteria; Point set decimation
BibRef
Siqueira, M.[Marcelo],
Latecki, L.J.[Longin Jan],
Tustison, N.J.[Nicholas J.],
Gallier, J.[Jean],
Gee, J.C.[James C.],
Topological Repairing of 3D Digital Images,
JMIV(30), No. 3, March 2008, pp. 249-274.
Springer DOI
0802
BibRef
Tustison, N.J.,
Avants, B.B.,
Siqueira, M.,
Gee, J.C.,
Topological Well-Composedness and Glamorous Glue: A Digital Gluing
Algorithm for Topologically Constrained Front Propagation,
IP(20), No. 6, June 2011, pp. 1756-1761.
IEEE DOI
1106
BibRef
Stelldinger, P.[Peer],
Terzic, K.[Kasim],
Digitization of non-regular shapes in arbitrary dimensions,
IVC(26), No. 10, 1 October 2008, pp. 1338-1346.
Elsevier DOI
0804
Shape; Digitization; Repairing; Topology; Reconstruction; Irregular grid
BibRef
Stelldinger, P.[Peer],
Latecki, L.J.[Longin Jan],
3D Object Digitization: Majority Interpolation and Marching Cube,
ICPR06(I: 71-74).
IEEE DOI
0609
BibRef
And:
3D Object Digitization: Majority Interpolation and Marching Cubes,
ICPR06(II: 1173-1176).
IEEE DOI
0609
BibRef
And:
3D Object Digitization: Topology Preserving Reconstruction,
ICPR06(III: 693-696).
IEEE DOI
0609
BibRef
Hartley, R.I.[Richard I.], and
Zisserman, A.[Andrew],
Multiple View Geometry in Computer Vision,
Cambridge University PressJune 2004. ISBN: 978-0521540518.
Second Edition.
HTML Version.
Camera Calibration. Epipolar geometry, trifocal tensors.
Projective geometry. Single view, 3 view.
Buy this book: Multiple View Geometry in Computer Vision
BibRef
0406
Stelldinger, P.[Peer],
Köthe, U.[Ullrich],
Towards a general sampling theory for shape preservation,
IVC(23), No. 2, 1 February 2004, pp. 237-248.
Elsevier DOI
0412
BibRef
Earlier:
Shape Preservation during Digitization:
Tight Bounds Based on the Morphing Distance,
DAGM03(108-115).
Springer DOI
0310
Shape similarity related to human perception, sampling for
arbitrary dimensional spaces.
BibRef
Stelldinger, P.[Peer],
Shape Preserving Sampling and Reconstruction of Grayscale Images,
IWCIA04(522-533).
Springer DOI
0505
Reconstruct the true image after various samplings.
BibRef
Strand, R.[Robin],
Stelldinger, P.[Peer],
Topology Preserving Marching Cubes-like Algorithms on the Face-Centered
Cubic Grid,
CIAP07(781-788).
IEEE DOI
0709
BibRef
Earlier: A2, A1:
Topology Preserving Digitization with FCC and BCC Grids,
IWCIA06(226-240).
Springer DOI
0606
BibRef
Jonas, A.[Amnon],
Kiryati, N.[Nahum],
Digital Representation Schemes for 3D Curves,
PR(30), No. 11, November 1997, pp. 1803-1816.
Elsevier DOI
9801
Compare various descriptions.
BibRef
Jonas, A.[Amnon],
Kiryati, N.[Nahum],
Length Estimation in 3-D Using Cube Quantization,
JMIV(8), No. 3, May 1998, pp. 215-238.
DOI Link
9804
BibRef
Mohr, R.[Roger],
Wu, C.K.[Cheng-Ke],
Geometry Based Computer Vision,
IVC(16), No. 1, January 30 1998, pp. 1-2.
Elsevier DOI
9803
Intro to special issue.
BibRef
Boufama, B.S.[Boubakeur S.],
Mohr, R.[Roger],
Morin, L.[Luce],
Using Geometric-Properties For Automatic Object Positioning,
IVC(16), No. 1, January 30 1998, pp. 27-33.
Elsevier DOI
9803
Position relative to another, e.g. a tool.
BibRef
Bertrand, G.[Gilles],
Malgouyres, R.[Rémy],
Some Topological Properties of Surfaces in Z3,
JMIV(11), No. 3, December 1999, pp. 207-221.
DOI Link
BibRef
9912
Malgouyres, R.[Rémy],
Francés, A.R.[Angel R.],
Determining Whether a Simplicial 3-Complex Collapses to a 1-Complex Is
NP-Complete,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Adán, A.[Antonio],
Cerrada, C.[Carlos],
Feliu, V.[Vicente],
Modeling Wave Set: Definition and Application of a New Topological
Organization for 3D Object Modeling,
CVIU(79), No. 2, August 2000, pp. 281-307.
DOI Link
0008
BibRef
Adán, A.[Antonio],
Cerrada, C.[Carlos],
Feliu, V.[Vicente],
Automatic pose determination of 3D shapes based on modeling wave sets:
a new data structure for object modeling,
IVC(19), No. 12, October 2001, pp. 867-890.
Elsevier DOI
0110
Shperical data structure.
BibRef
González, E.[Elizabeth],
Adán, A.[Antonio],
Feliú, V.[Vicente],
2D shape representation and similarity measurement for 3D recognition
problems: An experimental analysis,
PRL(33), No. 2, 15 January 2012, pp. 199-217.
Elsevier DOI
1112
3D object recognition; Shape representation; Similarity measures;
Shape recognition
See also Active object recognition based on Fourier descriptors clustering.
See also Global shape invariants: a solution for 3D free-form object discrimination/identification problem.
BibRef
Fielding, G.[Gabriel],
Kam, M.[Moshe],
Computing the Cost of Occlusion,
CVIU(79), No. 2, August 2000, pp. 324-329.
DOI Link
0008
BibRef
Saha, P.K.[Punam K.],
Rosenfeld, A.[Azriel],
Determining Simplicity and Computing Topological Change in
Strongly Normal Partial Tilings of R^2 or R^3,
PR(33), No. 1, January 2000, pp. 105-118.
Elsevier DOI
0005
BibRef
Earlier:
UMD--TR3877, February 1998.
WWW Link.
BibRef
Lachaud, J.O.[Jacques-Olivier],
Montanvert, A.[Annick],
Continuous Analogs of Digital Boundaries:
A Topological Approach to Iso-Surfaces,
GM(62), No. 3, May 2000, pp. 129-164.
0005
BibRef
Earlier:
Digital surfaces as a basis for building isosurfaces,
ICIP98(II: 977-981).
IEEE DOI
9810
BibRef
Alayrangues, S.[Sylvie],
Daragon, X.[Xavier],
Lachaud, J.O.[Jacques-Olivier],
Lienhardt, P.[Pascal],
Equivalence between Closed Connected n-G-Maps without
Multi-Incidence and n-Surfaces,
JMIV(32), No. 1, September 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Earlier:
Equivalence Between Regular n-G-Maps and n-Surfaces,
IWCIA04(122-136).
Springer DOI
0505
n-G-Maps from geometric modeling and computational geometry.
n-Surfaces from discrete imagery.
BibRef
Alayrangues, S.[Sylvie],
Peltier, S.[Samuel],
Damiand, G.[Guillaume],
Lienhardt, P.[Pascal],
Border Operator for Generalized Maps,
DGCI09(300-312).
Springer DOI
0909
See also Removal Operations in nD Generalized Maps for Efficient Homology Computation.
BibRef
Peternell, M.[Martin],
Geometric Properties of Bisector Surfaces,
GM(62), No. 3, May 2000, pp. 202-236.
0005
BibRef
Zhu, Q.M.[Qiu-Ming],
On the Geometries of Conic Section Representation of Noisy Object
Boundaries,
JVCIR(10), No. 2, June 1999, pp. 130-154.
0010
BibRef
Sommer, G.,
Geometric Computing with Clifford Algebras:
Theoretical Foundations and Applications in Computer Vision and Robotics,
Springer-Verlag2001.
ISBN 3-540-41198-4.
Clifford or Geometric algebra.
BibRef
0100
Bülow, T.[Thomas],
Klette, R.[Reinhard],
Digital Curves in 3D Space and a Linear-Time Length Estimation
Algorithm,
PAMI(24), No. 7, July 2002, pp. 962-970.
IEEE Abstract.
0207
The curve is a set of cubes in 3 space, what is the shortest
polygonal curve
BibRef
Bülow, T.[Thomas],
Klette, R.[Reihnard],
Rubber Band Algorithm for Estimating the Length of Digitized
Space-curves,
ICPR00(Vol III: 547-551).
IEEE DOI
0009
BibRef
Klette, R.[Reinhard],
Yip, B.[Ben],
Evaluation of Curve Length Measurements,
ICPR00(Vol I: 610-613).
IEEE DOI
0009
BibRef
Park, I.K.[In Kyu],
Lee, K.M.[Kyoung Mu],
Lee, S.U.[Sang Uk],
Models and algorithms for efficient multiresolution topology estimation
of measured 3-D range data,
SMC-B(33), No. 4, August 2003, pp. 706-711.
IEEE Abstract.
0308
BibRef
Elad, A.[Asi],
Kimmel, R.[Ron],
On bending invariant signatures for surfaces,
PAMI(25), No. 10, October 2003, pp. 1285-1295.
IEEE Abstract.
0310
BibRef
Earlier:
Bending Invariant Representations for Surfaces,
CVPR01(I:168-174).
IEEE DOI
0110
Description invariant to bending. Iosmetric surfaces.
Deform the object by bending.
BibRef
Sun, M.M.,
Yang, J.,
Topology Description for Data Distributions Using a Topology Graph With
Divide-and-Combine Learning Strategy,
SMC-B(36), No. 6, December 2006, pp. 1296-1305.
IEEE DOI
0701
BibRef
de Berg, M.,
van Kreveld, M.,
Overmars, M.,
Schwarzkopf, O.,
Computational Geometry: Algorithms and Applications,
Springer-VerlagBerlin and Heidelberg GmbH & Co., January 2000.
ISBN: 3540656200.
WWW Link.
BibRef
0001
Boissonnat, J.D.,
Teillaud, M., (Eds.),
Effective Computational Geometry for Curves and Surfaces,
Springer2006, ISBN 978-3-540-33258-9.
WWW Link. Voronoi surfaces, meshing, triangulation. Differential geometry on surfaces.
BibRef
0600
Ciria, J.C.,
de Miguel, A.,
Domínguez, E.,
Francés, A.R.,
Quintero, A.,
Local characterization of a maximum set of digital (26, 6)-surfaces,
IVC(25), No. 10, 1 October 2007, pp. 1685-1697.
Elsevier DOI
0709
BibRef
Earlier:
A Maximum Set of (26,6)-Connected Digital Surfaces,
IWCIA04(291-306).
Springer DOI
0505
Discrete surface; (26, 6)-Adjacency; Strongly separating; Continuous analogue
BibRef
Ciria, J.C.,
Domínguez, E.,
Francés, A.R.,
Quintero, A.,
A plate-based definition of discrete surfaces,
PRL(33), No. 11, 1 August 2012, pp. 1485-1494.
Elsevier DOI
1206
BibRef
Earlier:
Universal Spaces for (k,kbar)-Surfaces,
DGCI09(385-396).
Springer DOI
0909
Digital Topology; Discrete surface; Combinatorial surface; Continuous
analogue; Strong separation
BibRef
Ciria, J.C.,
Domínguez, E.,
Francés, A.R.,
Quintero, A.,
Generalized Simple Surface Points,
DGCI13(59-70).
Springer DOI
1304
Discrete and Combinatorial Topology
BibRef
Melin, E.[Erik],
Digital Surfaces and Boundaries in Khalimsky Spaces,
JMIV(28), No. 2, June 2007, pp. 169-177.
Springer DOI
0710
BibRef
Earlier:
How to Find a Khalimsky-Continuous Approximation of a Real-Valued
Function,
IWCIA04(351-365).
Springer DOI
0505
BibRef
Melin, E.[Erik],
Digital Khalimsky Manifolds,
JMIV(33), No. 3, March 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Brimkov, V.E.[Valentin E.],
Klette, R.[Reinhard],
Border and Surface Tracing: Theoretical Foundations,
PAMI(30), No. 4, April 2008, pp. 577-590.
IEEE DOI
0803
BibRef
Earlier:
Curves, Hypersurfaces, and Good Pairs of Adjacency Relations,
IWCIA04(276-290).
Springer DOI
0505
BibRef
Brimkov, V.E.[Valentin E.],
Maimone, A.[Angelo],
Nordo, G.[Giorgio],
Counting Gaps in Binary Pictures,
IWCIA06(16-24).
Springer DOI
0606
BibRef
Brimkov, V.E.[Valentin E.],
Maimone, A.[Angelo],
Nordo, G.[Giorgio],
Barneva, R.P.[Reneta P.],
Klette, R.[Reinhard],
The Number of Gaps in Binary Pictures,
ISVC05(35-42).
Springer DOI
0512
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.],
Brimkov, B.[Boris],
Minimal Offsets That Guarantee Maximal or Minimal Connectivity of
Digital Curves in nD,
DGCI09(337-349).
Springer DOI
0909
BibRef
Heyden, A.[Anders], and
Pollefeys, M.[Marc],
Multiple View Geometry,
ETCV04(Chapter 3).
Survey, Projective Geometry.
BibRef
0400
Inselberg, A.[Alfred],
Parallel Coordinates:
Visual Multidimensional Geometry and Its Applications,
Springer2009, ISBN: 978-0-387-21507-5
WWW Link.
Visualization. Buy this book: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications
0911
BibRef
Ziegel, J.[Johanna],
Kiderlen, M.[Markus],
Estimation of surface area and surface area measure of
three-dimensional sets from digitizations,
IVC(28), No. 1, Januray 2010, pp. 64-77.
Elsevier DOI
1001
Surface area; Surface area measure; Anisotropy; 3D binary image;
Configuration; Gauss digitization; Local method; Rose of normal
directions
BibRef
Brlek, S.[Srecko],
Provencal, X.[Xavier],
Discrete geometry for computer imagery,
PRL(32), No. 9, 1 July 2011, pp. 1355.
Elsevier DOI
1101
Section introduction.
BibRef
Gonzalez-Diaz, R.[Rocio],
José Jiménez, M.[María],
Medrano, B.[Belén],
Real Jurado, P.[Pedro],
A tool for integer homology computation: lambda-AT-model,
IVC(27), No. 7, 4 June 2009, pp. 837-845.
Elsevier DOI
0904
BibRef
Earlier:
Extending the Notion of AT-Model for Integer Homology Computation,
GbRPR07(330-339).
Springer DOI
0706
BibRef
And:
A Graph-with-Loop Structure for a Topological Representation of 3D
Objects,
CAIP07(506-513).
Springer DOI
0708
Algebraic topological model; nD digital image; Integer homology; Chain complex
BibRef
Boutry, N.[Nicolas],
Gonzalez-Diaz, R.[Rocio],
Jimenez, M.J.[Maria-Jose],
One More Step Towards Well-Composedness of Cell Complexes over nD
Pictures,
DGCI19(101-114).
Springer DOI
1905
BibRef
Gonzalez-Diaz, R.[Rocio],
Ion, A.[Adrian],
Jose Jimenez, M.[Maria],
Poyatos, R.[Regina],
Incremental-Decremental Algorithm for Computing AT-Models and
Persistent Homology,
CAIP11(I: 286-293).
Springer DOI
1109
BibRef
Gonzalez-Diaz, R.[Rocio],
Jose Jimenez, M.[Maria],
Medrano, B.[Belen],
Cubical Cohomology Ring of 3D Photographs,
IJIST(21), No. 1, 2011, pp. 76-85.
DOI Link cohomology ring, cubical complexes, 3D digital images
BibRef
1100
Gonzalez-Diaz, R.[Rocio],
Jimenez, M.J.[Maria-Jose],
Medrano, B.[Belen],
Efficiently Storing Well-Composed Polyhedral Complexes Computed Over 3D
Binary Images,
JMIV(59), No. 1, September 2017, pp. 106-122.
Springer DOI
1708
BibRef
Earlier:
Encoding Specific 3D Polyhedral Complexes Using 3D Binary Images,
DGCI16(268-281).
WWW Link.
1606
BibRef
Gonzalez-Diaz, R.[Rocio],
Jose Jimenez, M.[Maria],
Medrano, B.[Belen],
Molina-Abril, H.[Helena],
Real Jurado, P.[Pedro],
Integral Operators for Computing Homology Generators at Any Dimension,
CIARP08(356-363).
Springer DOI
0809
BibRef
Gonzalez-Diaz, R.[Rocio],
Ion, A.[Adrian],
Iglesias-Ham, M.[Mabel],
Kropatsch, W.G.[Walter G.],
Invariant Representative Cocycles of Cohomology Generators Using
Irregular Graph Pyramids,
CVIU(115), No. 7, July 2011, pp. 1011-1022.
Elsevier DOI
1106
BibRef
Earlier:
Irregular Graph Pyramids and Representative Cocycles of Cohomology
Generators,
GbRPR09(263-272).
Springer DOI
0905
Graph pyramids; Representative cocycles of cohomology generators
See also Directly computing the generators of image homology using graph pyramids.
BibRef
Gonzalez-Diaz, R.[Rocio],
Lamar, J.[Javier],
Umble, R.[Ronald],
Cup Products on Polyhedral Approximations of 3D Digital Images,
IWCIA11(107-119).
Springer DOI
1105
BibRef
Gonzalez-Diaz, R.[Rocio],
Jose Jimenez, M.[Maria],
Medrano, B.[Belen],
Well-Composed Cell Complexes,
DGCI11(153-162).
Springer DOI
1104
transform the cubical complex of a 3D binary digital image
into a cell complex that is homotopy equivalent to the first
and whose boundary surface is composed by 2D manifolds.
BibRef
Perriollat, M.[Mathieu],
Hartley, R.I.[Richard I.],
Bartoli, A.E.[Adrien E.],
Monocular Template-based Reconstruction of Inextensible Surfaces,
IJCV(95), No. 2, November 2011, pp. 124-137.
WWW Link.
1109
BibRef
Earlier:
BMVC08(xx-yy).
PDF File.
0809
Use point correspondence between the image and deformed surface.
BibRef
Malti, A.[Abed],
Herzet, C.,
Elastic Shape-from-Template with Spatially Sparse Deforming Forces,
CVPR17(143-151)
IEEE DOI
1711
Force, Minimization, Shape, Strain,
Transmission, line, matrix, methods
BibRef
Malti, A.[Abed],
Hartley, R.I.[Richard I.],
Bartoli, A.E.[Adrien E.],
Kim, J.H.[Jae-Hak],
Monocular Template-Based 3D Reconstruction of Extensible Surfaces
with Local Linear Elasticity,
CVPR13(1522-1529)
IEEE DOI
1309
BibRef
Brunet, F.[Florent],
Bartoli, A.E.[Adrien E.],
Hartley, R.I.[Richard I.],
Monocular template-based 3D surface reconstruction: Convex
inextensible and nonconvex isometric methods,
CVIU(125), No. 1, 2014, pp. 138-154.
Elsevier DOI
1406
3D reconstruction
BibRef
Brunet, F.[Florent],
Hartley, R.I.[Richard I.],
Bartoli, A.E.[Adrien E.],
Navab, N.[Nassir],
Malgouyres, R.[Remy],
Monocular Template-Based Reconstruction of Smooth and Inextensible
Surfaces,
ACCV10(III: 52-66).
Springer DOI
1011
BibRef
Abate, M.,
Tovena, F.,
Curves and Surfaces,
SpringerNew-York, 2012.
Wu, C.J.[Chih-Jen],
Tsai, W.H.[Wen-Hsiang],
A Space-Mapping Method for Object Location Estimation Adaptive to
Camera Setup Changes for Vision-Based Automation Applications,
CirSysVideo(22), No. 1, January 2012, pp. 157-162.
IEEE DOI
1201
Map object locations based on camera changes.
BibRef
Micheli, M.[Mario],
Michor, P.W.[Peter W.],
Mumford, D.[David],
Sectional Curvature in Terms of the Cometric, with Applications to the
Riemannian Manifolds of Landmarks,
SIIMS(5), No. 1 2012, pp. 394.
DOI Link
1203
BibRef
Micheli, M.[Mario],
Effects of curvature on the analysis of landmark shape manifolds,
ICIP08(1164-1167).
IEEE DOI
0810
BibRef
Baerentzen, J.A.,
Gravesen, J.,
Anton, F.,
Aanaes, H.,
Guide to Computational Geometry Processing:
Foundations, Algorithms, and Methods,
Springer2012.
ISBN 978-1-4471-4074-0
Wagner, H.[Hubert],
Dlotko, P.[Pawel],
Towards topological analysis of high-dimensional feature spaces,
CVIU(121), No. 1, 2014, pp. 21-26.
Elsevier DOI
1404
Computational topology
BibRef
Gutierrez, A.[Antonio],
Jimenez, M.J.[Maria Jose],
Monaghan, D.[David],
O'Connor, N.E.[Noel E.],
Topological evaluation of volume reconstructions by voxel carving,
CVIU(121), No. 1, 2014, pp. 27-35.
Elsevier DOI
1404
Voxel carving
BibRef
Cabalar, P.[Pedro],
Santos, P.E.[Paulo E.],
A qualitative spatial representation of string loops as holes,
AI(238), No. 1, 2016, pp. 1-10.
Elsevier DOI
1608
Spatial representation
BibRef
Comic, L.[Lidija],
Nagy, B.[Benedek],
A topological 4-coordinate system for the face centered cubic grid,
PRL(83, Part 1), No. 1, 2016, pp. 67-74.
Elsevier DOI
1609
Topological coordinate system
BibRef
Kurlin, V.[Vitaliy],
A fast persistence-based segmentation of noisy 2D clouds with
provable guarantees,
PRL(83, Part 1), No. 1, 2016, pp. 3-12.
Elsevier DOI
1609
BibRef
Earlier:
A Homologically Persistent Skeleton is a Fast and Robust Descriptor of
Interest Points in 2D Images,
CAIP15(I:606-617).
Springer DOI
1511
BibRef
Earlier:
A Fast and Robust Algorithm to Count Topologically Persistent Holes
in Noisy Clouds,
CVPR14(1458-1463)
IEEE DOI
1409
Delaunay triangulation
BibRef
Zeppelzauer, M.[Matthias],
Zielinski, B.[Bartosz],
Juda, M.[Mateusz],
Seidl, M.[Markus],
A study on topological descriptors for the analysis of 3D surface
texture,
CVIU(167), 2018, pp. 74-88.
Elsevier DOI
1804
BibRef
Earlier:
Topological Descriptors for 3D Surface Analysis,
CTIC16(77-87).
Springer DOI
1608
Surface texture analysis, 3D surface classification,
Surface topology analysis, Surface representation,
Persistence image
BibRef
Gonzalez-Lorenzo, A.[Aldo],
Juda, M.[Mateusz],
Bac, A.[Alexandra],
Mari, J.L.[Jean-Luc],
Real, P.[Pedro],
Fast, Simple and Separable Computation of Betti Numbers on
Three-Dimensional Cubical Complexes,
CTIC16(130-139).
Springer DOI
1608
Betti Numbers: count the number of holes of each dimension in a space
BibRef
Gonzalez-Lorenzo, A.[Aldo],
Bac, A.[Alexandra],
Mari, J.L.[Jean-Luc],
Real, P.[Pedro],
Two Measures for the Homology Groups of Binary Volumes,
DGCI16(154-165).
WWW Link.
1606
Topology.
BibRef
Alderson, T.[Troy],
Mahdavi-Amiri, A.[Ali],
Samavati, F.F.[Faramarz F.],
Offsetting spherical curves in vector and raster form,
VC(34), No. 6-8, June 2018, pp. 973-984.
Springer DOI
1806
inside/outside testing for vectors.
BibRef
Molina-Abril, H.[Helena],
Real, P.[Pedro],
Díaz-del-Río, F.[Fernando],
Generating (co)homological information using boundary scale,
PRL(133), 2020, pp. 240-246.
Elsevier DOI
2005
Geometric cell complex, Algebraic-topological model,
Scale-space model, Homology groups, Hierarchical graph
BibRef
Real, P.[Pedro],
Molina-Abril, H.[Helena],
Díaz del Río, F.[Fernando],
Onchis, D.M.[Darian M.],
Generating Second Order (Co)homological Information within AT-Model
Context,
CTIC19(68-81).
Springer DOI
1901
Algebraic Topological Model.
BibRef
Zheng, P.F.[Peng-Fei],
Liu, Q.[Qing],
Lou, J.J.[Jing-Jing],
Lian, C.J.[Cheng-Jie],
Lin, D.J.[Da-Jun],
A free-form surface flattening algorithm that minimizes geometric
deformation energy,
IET-IPR(16), No. 9, 2022, pp. 2544-2556.
DOI Link
2206
Surface flatening -- more commone in mechanical, manufacturing engineering
areas.
BibRef
Nagy, B.[Benedek],
Saadat, M.R.[Mohammad-Reza],
Digital geometry on a cubic stair-case mesh,
PRL(164), 2022, pp. 140-147.
Elsevier DOI
2212
Cubic mesh, Semi-regular grids, Nontraditional grids,
Digital distance, Rhombille tessellation, Path-based distance, Pixel geometry
BibRef
Reani, Y.[Yohai],
Bobrowski, O.[Omer],
Cycle Registration in Persistent Homology With Applications in
Topological Bootstrap,
PAMI(45), No. 5, May 2023, pp. 5579-5593.
IEEE DOI
2304
Measurement, Point cloud compression, Shape, Kernel,
Machine learning, Data analysis, Viterbi algorithm,
wasserstein distance.
BibRef
Aumentado-Armstrong, T.[Tristan],
Tsogkas, S.[Stavros],
Dickinson, S.J.[Sven J.],
Jepson, A.D.[Allan D.],
Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models,
IJCV(131), No. 7, July 2023, pp. 1611-1641.
Springer DOI
2307
BibRef
Earlier: A1, A2, A4, A3:
Geometric Disentanglement for Generative Latent Shape Models,
ICCV19(8180-8189)
IEEE DOI
2004
computational geometry, image representation,
neural nets, shape recognition, solid modelling, Geometry
BibRef
Aumentado-Armstrong, T.[Tristan],
Tsogkas, S.[Stavros],
Dickinson, S.J.[Sven J.],
Jepson, A.D.[Allan D.],
Representing 3D Shapes with Probabilistic Directed Distance Fields,
CVPR22(19321-19332)
IEEE DOI
2210
Surface reconstruction, Solid modeling, Shape, Scalability,
Rendering (computer graphics), Probabilistic logic,
Vision + graphics
BibRef
Bhardwaj, K.[Kartikeya],
Li, G.H.[Gui-Hong],
Marculescu, R.[Radu],
How does topology influence gradient propagation and model
performance of deep networks with DenseNet-type skip connections?,
CVPR21(13493-13502)
IEEE DOI
2111
Measurement, Training, Image coding,
Artificial neural networks, Mathematical models, Topology
BibRef
Pang, J.H.[Jia-Hao],
Li, D.S.[Duan-Shun],
Tian, D.[Dong],
TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations,
CVPR21(7449-7458)
IEEE DOI
2111
Deep learning, Surface reconstruction, Network topology, Shape,
Topology, Pattern recognition, Proposals
BibRef
Boutry, N.[Nicolas],
Gonzalez-Diaz, R.[Rocio],
Najman, L.[Laurent],
Géraud, T.[Thierry],
A 4d Counter-example Showing that DWCNess Does Not Imply CWCness in nD,
IWCIA20(73-87).
Springer DOI
2009
Continuous Well-Composedness.
Digital Well-Composedness
BibRef
Chibane, J.,
Alldieck, T.,
Pons-Moll, G.,
Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion,
CVPR20(6968-6979)
IEEE DOI
2008
Shape, Image reconstruction, Topology,
Feature extraction, Tensile stress
BibRef
Haim, N.,
Segol, N.,
Ben-Hamu, H.,
Maron, H.,
Lipman, Y.,
Surface Networks via General Covers,
ICCV19(632-641)
IEEE DOI
2004
convolutional neural nets, image representation,
learning (artificial intelligence), neural net architecture,
Topology
BibRef
Trager, M.[Matthew],
Hebert, M.[Martial],
Ponce, J.[Jean],
Coordinate-Free Carlsson-Weinshall Duality and Relative Multi-View
Geometry,
CVPR19(225-233).
IEEE DOI
2002
BibRef
Biswas, R.[Ranita],
Largeteau-Skapin, G.[Gaëlle],
Zrour, R.[Rita],
Andres, E.[Eric],
Rhombic Dodecahedron Grid: Coordinate System and 3D Digital Object
Definitions,
DGCI19(27-37).
Springer DOI
1905
Non-orthogonal basis to express the 3D Euclidean space
in terms of a regular grid.
BibRef
Dey, T.K.[Tamal K.],
Hou, T.[Tao],
Mandal, S.[Sayan],
Persistent 1-Cycles: Definition, Computation, and Its Application,
CTIC19(123-136).
Springer DOI
1901
BibRef
Liao, Y.,
Donné, S.,
Geiger, A.[Andreas],
Deep Marching Cubes: Learning Explicit Surface Representations,
CVPR18(2916-2925)
IEEE DOI
1812
Shape, Surface reconstruction, Topology, Face, Surface treatment, Solid modeling
BibRef
Thopalli, K.[Kowshik],
Devi, S.,
Thiagarajan, J.J.[Jayaraman J.],
InterAug: A Tuning-Free Augmentation Policy for Data-Efficient and
Robust Object Detection,
VIPriors23(253-261)
IEEE DOI Code:
WWW Link.
2401
BibRef
Som, A.[Anirudh],
Thopalli, K.[Kowshik],
Ramamurthy, K.N.[Karthikeyan Natesan],
Venkataraman, V.[Vinay],
Shukla, A.[Ankita],
Turaga, P.[Pavan],
Perturbation Robust Representations of Topological Persistence Diagrams,
ECCV18(VII: 638-659).
Springer DOI
1810
BibRef
Ulm, M.[Michael],
Brändle, N.[Norbert],
Learning tubes,
ICPR16(3655-3660)
IEEE DOI
1705
Clustering algorithms, Computational modeling, Electron tubes,
Manifolds, Mathematical model, Noise level, Probes
BibRef
Itoh, H.[Hayato],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Mathematical Aspects of Tensor Subspace Method,
SSSPR16(37-48).
Springer DOI
1611
BibRef
Yu, L.F.,
Duncan, N.,
Yeung, S.K.,
Fill and Transfer:
A Simple Physics-Based Approach for Containability Reasoning,
ICCV15(711-719)
IEEE DOI
1602
liquid containability. From depth data.
Cognition
BibRef
Zulkifli, N.A.,
Rahman, A.A.,
van Oosterom, P.,
An Overview of 3D Topology for LADM-Based Objects,
GeoInfo15(71-73).
DOI Link
1602
BibRef
Boutry, N.[Nicolas],
Geraud, T.[Thierry],
Najman, L.[Laurent],
How to make nD images well-composed without interpolation,
ICIP15(2149-2153)
IEEE DOI
1512
Digital Topology; Mathematical Morphology; Well-Composed Sets; nD images
BibRef
Stühmer, J.[Jan],
Cremers, D.[Daniel],
A Fast Projection Method for Connectivity Constraints in Image
Segmentation,
EMMCVPR15(183-196).
Springer DOI
1504
BibRef
Oswald, M.R.[Martin Ralf],
Stühmer, J.[Jan],
Cremers, D.[Daniel],
Generalized Connectivity Constraints for Spatio-temporal 3D
Reconstruction,
ECCV14(IV: 32-46).
Springer DOI
1408
BibRef
Gueorguieva, S.,
Synave, R.,
Couture-Veschambre, C.,
Teaching Geometric Modeling Algorithms and Data Structures through
Laser Scanner Acquisition Pipeline,
ISVC10(II: 416-428).
Springer DOI
1011
BibRef
Lenz, R.[Reiner],
Mochizuki, R.[Rika],
Chao, J.H.[Jin-Hui],
Iwasawa Decomposition and Computational Riemannian Geometry,
ICPR10(4472-4475).
IEEE DOI
1008
BibRef
Kafai, M.[Mehran],
Miao, Y.[Yiyi],
Okada, K.[Kazunori],
Directional mean shift and its application for topology classification
of local 3D structures,
MMBIA10(170-177).
IEEE DOI
1006
Transform the 3D problem into 2D clustering problem.
BibRef
Song, D.J.[Dong-Jin],
Tao, D.C.[Da-Cheng],
Discrminative Geometry Preserving Projections,
ICIP09(2457-2460).
IEEE DOI
0911
BibRef
Berciano, A.[Ainhoa],
Molina-Abril, H.[Helena],
Pacheco, A.[Ana],
Pilarczyk, P.[Pawel],
Real Jurado, P.[Pedro],
Decomposing Cavities in Digital Volumes into Products of Cycles,
DGCI09(263-274).
Springer DOI
0909
BibRef
Amari, S.I.[Shun-Ichi],
Information Geometry and Its Applications:
Convex Function and Dually Flat Manifold,
ETVC08(75-102).
Springer DOI
0811
BibRef
Matsuzoe, H.[Hiroshi],
Computational Geometry from the Viewpoint of Affine Differential
Geometry,
ETVC08(103-123).
Springer DOI
0811
BibRef
Rémi, S.[Synave],
Stefka, G.[Gueorguieva],
Pascal, D.[Desbarats],
Constraint Shortest Path Computation on Polyhedral Surfaces,
ICCVGIP08(366-373).
IEEE DOI
0812
BibRef
Mercat, C.[Christian],
Discrete Complex Structure on Surfel Surfaces,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Cardoze, D.E.[David E.],
Miller, G.L.[Gary L.],
Phillips, T.[Todd],
Representing Topological Structures Using Cell-Chains,
GMP06(248-266).
Springer DOI
0607
Surface representation.
BibRef
Åström, K.,
Geometrical Computer Vision from Chasles to Today,
SCIA05(182-183).
Springer DOI
0506
From projective geometry and photogrammetry to algebraic geometry.
BibRef
Fourey, S.[Sébastien],
Simple Points and Generic Axiomatized Digital Surface-Structures,
IWCIA04(307-317).
Springer DOI
0505
BibRef
Kopperman, R.[Ralph],
Pfaltz, J.L.[John L.],
Jordan Surfaces in Discrete Antimatroid Topologies,
IWCIA04(334-350).
Springer DOI
0505
BibRef
Yang, L.[Li],
Tetrahedron mapping of points from n-space to three-space,
ICPR02(IV: 343-346).
IEEE DOI
0211
BibRef
Kenmochi, Y.[Yukiko],
Imiya, A.[Atsushi],
Nomura, T.[Toshiaki],
Kotani, K.[Kazunori],
Extraction of Topological Features from Sequential Volume Data,
VF01(333 ff.).
Springer DOI
0209
BibRef
Kolcun, A.,
NonConformity Problem in 3D Grid Decompositions,
WSCG02(249).
HTML Version.
0209
BibRef
Aguilera Ramírez, A.[Antonio],
Pérez Aguila, R.[Ricardo],
A Method for Obtaining the Tesseract by Unraveling the 4D Hypercube,
WSCG02(1).
HTML Version.
0209
BibRef
Aloimonos, Y.,
Harmonic Computational Geometry: A new tool for visual correspondence,
BMVC02(Invited Talk).
0208
BibRef
Yui, S.,
Hara, K.,
Zha, H.B.[Hong-Bin],
Hasegawa, T.,
A fast narrow band method and its application in topology-adaptive 3-D
modeling,
ICPR02(IV: 122-125).
IEEE DOI
0211
BibRef
Chao, J.H.[Jin-Hui],
Nakajima, M.[Masaki],
Okada, S.[Shintaro],
A Hierarchical Invariant Representation of Spatial Topology of 3D
Objects and Its Application to Object Recognition,
ICPR00(Vol I: 920-923).
IEEE DOI
0009
BibRef
Faugeras, O.D.,
From Geometry to Variational Calculus: Theory and Applications of
Three-Dimensional Vision,
CVVRHC98(Merging CG and Real Images, Augmented Reality).
BibRef
9808
Pennec, X.[Xavier],
Ayache, N.J.[Nicholas J.],
Randomness and Geometric Figures in Computer Vision,
CVPR96(484-491).
IEEE DOI
BibRef
9600
Choi, Y.[Young],
Vertex-Based Boundary Representations of Non-Manifold Geometric Models,
Ph.D.Dept of Mechanical Engineering, Carnegie Mellon University,
August, 1989
BibRef
8908
Uray, P.,
Pinz, A.J.,
Topological Investigations of Object Models,
ICPR96(I: 110-114).
IEEE DOI
9608
(TU Graz, A)
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Virtual View Generation, View Synthesis, Image Based Rendering, IBR .