Johnston, E.G.,
Rosenfeld, A.,
Geometrical Operations on Digitized Pictures,
PPP70(xx), 1970.
BibRef
7000
Rosenfeld, A.,
A Note on Perimeter and Diameter in Digital Pictures,
InfoControl(24), No. 4, April 1974, pp. 384-388.
BibRef
7404
Rosenfeld, A.,
Compact Figures in Digital Pictures,
SMC(4), 1974, pp. 221-223.
BibRef
7400
Rosenfeld, A.,
A Converse to the Jordan Curve Theorem for Digital Curves,
InfoControl(29), No. 3, November 1975, pp. 292-293.
BibRef
7511
Rosenfeld, A.,
Geodesics in Digital Pictures,
InfoControl(36), No. 1, January 1978, pp. 74-84.
BibRef
7801
Rosenfeld, A.,
Clusters in Digital Pictures,
InfoControl(39), No. 1, October 1978, pp. 19-34.
BibRef
7810
Pavlidis, T.[Theo],
Filling Algorithms for Raster Graphics,
CGIP(10), No. 2, June 1979, pp. 126-141.
Elsevier DOI Filling irregular polygons.
BibRef
7906
Davis, L.S.[Larry S.],
Benedikt, M.L.[Michael L.],
Computational Models of Space:
Isovists and Isovist Fields,
CGIP(11), No. 1, September 1979, pp. 49-72.
Elsevier DOI
BibRef
7909
Kim, C.E.,
Digital Disks,
PAMI(6), No. 3, May, 1984, pp. 372-374.
BibRef
8405
Bennett, J.R.,
MacDonald, J.S.,
On the Measurement of Curvature in a Quantized Environment,
TC(24), 1975, pp. 803-820.
BibRef
7500
Eccles, M.J.,
McQueen, M.P.C.,
Rosen, D.,
Analysis of the Digitized Boundaries of Planar Objects,
PR(9), No. 1, January 1977, pp. 31-41.
Elsevier DOI points, or directions, or curvatures for boundary.
BibRef
7701
Jagoe, R.[Roger],
Paton, K.[Keith],
Generalized Counting in digital Pictures,
CGIP(7), No. 1, February 1978, pp. 52-66.
Elsevier DOI Evaluate chest x ray anaysis.
BibRef
7802
Wiejak, J.S.,
Region Digitization and Boundary Estimation,
IVC(1), No. 2, May 1983, pp. 99-102.
Elsevier DOI
BibRef
8305
Melter, R.A.[Robert A.],
Tomescu, I.[Ioan],
Metric Bases in Digital Geometry,
CVGIP(25), No. 1, January 1984, pp. 113-121.
Elsevier DOI
BibRef
8401
Harary, F.,
Melter, R.A.,
Tomescu, I.,
Digital Metrics: A Graph-Theoretical Approach,
PRL(2), 1984, pp. 159-163.
BibRef
8400
Medek, V.,
Culling Hidden Edges of Rectangular Parallelpipeds,
CVGIP(28), No. 2, November 1984, pp. 263-268.
Elsevier DOI
BibRef
8411
Kanatani, K.I.[Ken-Ichi],
Constraints on Length and Angle,
CVGIP(41), No. 1, January 1988, pp. 28-42.
Elsevier DOI Perspective projection of line segments on image plane.
BibRef
8801
Sarnak, N.,
Tarjan, R.E.,
Planar Point Location Using Persistent Search Trees,
CACM(29), No. 7, July 1986, pp. 669-679.
BibRef
8607
Toussaint, G.T.[Godfried T.],
The Relative Neighbourhood Graph of a Finite Planar Set,
PR(12), No. 4, 1980, pp. 261-268.
Elsevier DOI
0309
Graph for structure. related to MST.
BibRef
Houle, M.E.,
Toussaint, G.T.,
Computing the Width of a Set,
PAMI(10), No. 5, September 1988, pp. 761-765.
IEEE DOI
BibRef
8809
Bogomolny, A.,
Digital Geometry May Not Be Discrete,
CVGIP(43), No. 2, August 1988, pp. 205-220. image part number.
Elsevier DOI
BibRef
8808
Wolfson, E.,
Schwartz, E.L.,
Computing Minimal Distance on Polyhedral Surfaces,
PAMI(11), No. 9, September 1989, pp. 1001-1005.
IEEE DOI
BibRef
8909
Schwartz, E.L.,
Shaw, A.,
Wolfson, E.,
A Numerical Solution to the Generalized Mapmaker's Problem:
Flattening Nonconvex Polyhedral Surfaces,
PAMI(11), No. 9, September 1989, pp. 1005-1008.
IEEE DOI
BibRef
8909
Ansari, N.[Nirwan],
Delp, E.J.[Edward J.],
On the Distribution of a Deforming Triangle,
PR(23), No. 12, 1990, pp. 1333-1341.
Elsevier DOI Sphericity. Similarity between triangles.
BibRef
9000
Nakamura, A.,
Continuous-Functions on Fuzzy Digital Pictures,
PRL(17), No. 5, May 1 1996, pp. 557-563.
9606
BibRef
Zunic, J.,
A Representation of Digital Hyperbolas Y=1/X Alpha+Beta,
PRL(17), No. 9, August 1 1996, pp. 975-983.
9609
BibRef
Rosenfeld, A.,
Haber, S.,
The Perimeter of a Fuzzy Set,
PR(18), No. 2, 1985, pp. 125-130.
Elsevier DOI
BibRef
8500
Earlier:
summary:
PR(17), No. 6, 1984, pp. Page 678.
Elsevier DOI Set is not crisp, what is really the boundary?
BibRef
Rosenfeld, A.[Azriel],
Klette, R.[Reinhard],
Degree of Adjacency or Surroundedness,
PR(18), No. 2, 1985, pp. 169-177.
Elsevier DOI
BibRef
8500
Earlier:
Abstract:
PR(17), No. 6, 1984, pp. 678.
Elsevier DOI How adjacent are 2 regions?
BibRef
Ching, Y.T.,
Lee, D.T.,
Finding the Diameter of a Set of Lines,
PR(18), No. 3-4, 1985, pp. 249-255.
Elsevier DOI n straight lines. O(n log n) for diameter.
BibRef
8500
Rosenfeld, A.,
Fuzzy Plane Geometry: Triangles,
PRL(15), 1994, pp. 1261-1264.
BibRef
9400
Kulkarni, S.R.,
Mitter, S.K.,
Richardson, T.J.,
Tsitsiklis, J.N.,
Local Versus Nonlocal Computation of Length of Digitized-Curves,
PAMI(16), No. 7, July 1994, pp. 711-718.
IEEE DOI
BibRef
9407
Maio, D.,
Maltoni, D.,
Razzi, S.,
Topological Clustering of Maps Using a Genetic Algorithm,
PRL(16), 1995, pp. 89-96.
BibRef
9500
Rosenfeld, A.,
Geometric Properties of Sets of Lines,
PRL(16), 1995, pp. 549-556.
BibRef
9500
Veelaert, P.[Peter],
Periodic Differences of Digitized Curves,
PRL(14), 1993, pp. 169-172.
BibRef
9300
Veelaert, P.[Peter],
Selecting Appropriate Difference Operators for Digital Images by
Local Feature Detection,
JEI(6), No. 4, October 1997, pp. 415-425.
9807
BibRef
Veelaert, P.[Peter],
Teelen, K.[Kristof],
Adaptive and optimal difference operators in image processing,
PR(42), No. 10, October 2009, pp. 2317-2326.
Elsevier DOI
0906
BibRef
Earlier:
Optimal Difference Operator Selection,
DGCI08(xx-yy).
Springer DOI
0804
Difference operator; Grobner basis; Local feature detector; Tangent; Laplacian
BibRef
Cimikowski, R.J.,
Properties of Some Euclidean Proximity Graphs,
PRL(13), 1992, pp. 417-423.
BibRef
9200
Rhodes, F.,
Discrete Euclidean Metrics,
PRL(13), 1992, pp. 623-628.
BibRef
9200
Parui, S.K.,
Some Geometric Operations on Binary Pictures and
Their Shape Preserving Properties,
PRL(11), 1990, pp. 355-361.
BibRef
9000
Earlier:
Shape preserving properties of some operations on binary pictures,
ICPR88(II: 773-775).
IEEE DOI
8811
BibRef
van Vliet, L.J.,
Verwer, B.J.H.,
A Contour Processing Method for Fast Binary Neighbourhood Operations,
PRL(7), 1988, pp. 27-36.
BibRef
8800
Rosenfeld, A.,
'Continuous' Functions on Digital Pictures,
PRL(4), 1986, pp. 177-184.
BibRef
8600
Melter, R.A.,
You Can (Sometimes) Tell an Image by Its Cover,
PRL(3), 1985, pp. 59-64.
BibRef
8500
Rosenfeld, A.,
The Fuzzy Geometry Of Image Subsets,
PRL(2), 1984, pp. 311-317.
BibRef
8400
Dyer, C.R.[Charles R.],
Rosenfeld, A.,
Parallel Image Processing by Memory-Augmented Cellular Automata,
PAMI(3), No. 1, January 1981, pp. 29-41.
Cellular Automata.
BibRef
8101
Dyer, C.R.[Charles R.],
Rosenfeld, A.,
Triangle Cellular Automata,
InfoControl(48), No. 1, January 1981, pp. 54-69.
BibRef
8101
Latecki, L.J.[Longin Jan],
Eckhardt, U.,
Rosenfeld, A.,
Well-Composed Sets,
CVIU(61), No. 1, January 1995, pp. 70-83.
DOI Link
See also 3D Well-Composed Pictures.
BibRef
9501
Latecki, L.J.[Longin Jan],
Prokop, F.,
Semi-Proximity Continuous-Functions in Digital Images,
PRL(16), No. 11, November 1995, pp. 1175-1187.
BibRef
9511
Latecki, L.J.[Longin Jan],
Rosenfeld, A.[Azriel],
Supportedness and Tameness Differentialless Geometry of Plane-Curves,
PR(31), No. 5, May 1998, pp. 607-622.
Elsevier DOI
9805
Planar arcs to describe parts of boundaries.
BibRef
Giraldo, A.[Antonio],
Gross, A.D.[Ari D.],
Latecki, L.J.[Longin Jan],
Digitizations preserving shape,
PR(32), No. 3, March 1999, pp. 365-376.
Elsevier DOI
BibRef
9903
Rieger, J.H.,
Topographical Properties of Generic Images,
IJCV(23), No. 1, May 1997, pp. 79-92.
DOI Link
9708
BibRef
Kenmochi, Y.[Yukiko],
Imiya, A.[Atsushi],
Ichikawa, A.[Akira],
Discrete Combinatorial Geometry,
PR(30), No. 10, October 1997, pp. 1719-1728.
Elsevier DOI
9712
BibRef
Daragon, X.[Xavier],
Couprie, M.[Michel],
Bertrand, G.[Gilles],
Discrete Surfaces and Frontier Orders,
JMIV(23), No. 3, November 2005, pp. 379-399.
Springer DOI
0510
BibRef
Couprie, M.[Michel],
Bertrand, G.[Gilles],
Kenmochi, Y.[Yukiko],
Discretization in 2D and 3D orders,
GM(65), No. 1-3, May 2003, pp. 77-91.
Elsevier DOI
0309
BibRef
Bertrand, G.[Gilles],
Completions and Simple Homotopy,
DGCI14(63-74).
Springer DOI
1410
BibRef
Earlier:
New Structures Based on Completions,
DGCI13(83-94).
Springer DOI
1304
BibRef
Earlier:
Completions and Simplicial Complexes,
DGCI11(129-140).
Springer DOI
1104
See also On Topological Watersheds.
BibRef
Kenmochi, Y.[Yukiko],
Imiya, A.[Atsushi],
Combinatorial boundary of a 3D lattice point set,
JVCIR(17), No. 4, August 2006, pp. 738-766.
Elsevier DOI
0711
Boundary extraction; Combinatorial surface; Polyhedral complex
BibRef
Kenmochi, Y.[Yukiko],
Nomura, Y.[Yusuke],
Local configurations in discrete combinatorial surfaces,
IVC(25), No. 10, 1 October 2007, pp. 1657-1670.
Elsevier DOI
0709
Discrete surface; Local configurations; Polyhedral complex
BibRef
Thibault, Y.[Yohan],
Sugimoto, A.[Akihiro],
Kenmochi, Y.[Yukiko],
Hinge Angles for 3D Discrete Rotations,
IWCIA09(122-134).
Springer DOI
0911
BibRef
Mecke, J.,
On the relationship between the 0-cell and the typical cell of a
stationary random tessellation,
PR(32), No. 9, September 1999, pp. 1645-1648.
Elsevier DOI the O-cell is larger than average -- analysis.
BibRef
9909
Worboys, M.[Michael],
Imprecision in Finite Resolution Spatial Data,
GeoInfo(2), No. 3, October 1998, pp. 257-279.
DOI Link
BibRef
9810
Holbling, W.[Werner],
Kuhn, W.[Werner],
Frank, A.U.[Andrew U.],
Finite-Resolution Simplicial Complexes,
GeoInfo(2), No. 3, October 1998, pp. 281-298.
DOI Link
BibRef
9810
Bykov, A.I.[Alexander I.],
Zerkalov, L.G.[Leonid G.],
Pineda, M.A.R.[Mario A. Rodríguez],
Index of a point of 3-D digital binary image and algorithm for
computing its Euler characteristic,
PR(32), No. 5, May 1999, pp. 845-850.
Elsevier DOI Characterization of simple points in 3D
BibRef
9905
van Lieshout, M.N.M.,
Size-biased random closed sets,
PR(32), No. 9, September 1999, pp. 1631-1644.
Elsevier DOI Analysis of random sets.
BibRef
9909
Brass, P.[Peter],
On strongly normal tesselations,
PRL(20), No. 8, August 1999, pp. 957-960.
BibRef
9908
Kendall, W.S.[Wilfrid S.],
Thoennes, E.[Elke],
Perfect simulation in stochastic geometry,
PR(32), No. 9, September 1999, pp. 1569-1586.
Elsevier DOI Simulation. Kinds of samples.
BibRef
9909
Rosenfeld, A.[Azriel],
Saha, P.K.[Punam K.],
Nakamura, A.[Akira],
Interchangeable pairs of pixels in two-valued digital images,
PR(34), No. 9, September 2001, pp. 1853-1865.
Elsevier DOI
0108
reversing adjacent values preserves topology. Prove one exists in
simply connected sets.
BibRef
Kong, T.Y.[T. Yung],
Saha, P.K.[Punam Kumar],
Rosenfeld, A.[Azriel],
Strongly normal sets of contractible tiles in N dimensions,
PR(40), No. 2, February 2007, pp. 530-543.
Elsevier DOI
0611
Strongly normal; n-Dimensional; Contractible; Shared subset
BibRef
Saha, P.K.[Punam K.],
Kong, T.Y.[T. Yung],
Rosenfeld, A.[Azriel],
Strongly Normal Sets of Tiles in N Dimensions,
UMD--TR4242, April 2001.
WWW Link. Tiles, generalizations of pixels.
BibRef
0104
Rosenfeld, A.[Azriel],
Saha, P.K.[Punam K.],
Interchangeable Pairs of Pixels in Digital Images,
UMD--TR4057, September 1999.
WWW Link. Topology of binary images (2 valued) where pixel values are interchanged.
BibRef
9909
Klette, R.[Reinhard],
Digital Geometry: The Birth of a New Discipline,
FIU01(Chapter 2).
BibRef
0100
Ronse, C.[Christian],
Tajine, M.[Mohamed],
Discretization in Hausdorff Space,
JMIV(12), No. 3, June 2000, pp. 219-242.
DOI Link
0003
BibRef
Ronse, C.[Christian],
Tajine, M.[Mohamed],
Hausdorff Discretization for Cellular Distances and Its Relation to
Cover and Supercover Discretizations,
JVCIR(12), No. 2, June 2001, pp. 169-200.
DOI Link
0201
BibRef
Tajine, M.[Mohamed],
Digital Segments and Hausdorff Discretization,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Mercer, R.E.,
Barron, J.L.,
Bruen, A.A.,
Cheng, D.,
Fuzzy points: algebra and application,
PR(35), No. 5, May 2002, pp. 1153-1166.
Elsevier DOI
0202
BibRef
Udupa, J.K.[Jayaram K.],
Grevera, G.J.[George J.],
Go digital, go fuzzy,
PRL(23), No. 6, April 2002, pp. 743-754.
Elsevier DOI
0202
BibRef
Borgefors, G.[Gunilla],
Nyström, I.[Ingela],
Sanniti di Baja, G.[Gabriella],
Special Issue: Discrete Geometry for Computer Imagery,
PRL(23), No. 6, April 2002, pp. 621.
Elsevier DOI
0202
BibRef
Nyström, I.[Ingela],
Sanniti di Baja, G.[Gabriella],
Svensson, S.[Stina],
Discrete Geometry for Computer Imagery Introduction,
IVC(23), No. 2, 1 February 2004, pp. 87-88.
Elsevier DOI
0412
Intro.
BibRef
Grossmann, R.[Ruth],
Kiryati, N.[Nahum],
Kimmel, R.[Ron],
Computational Surface Flattening: A Voxel-Based Approach,
PAMI(24), No. 4, April 2002, pp. 433-441.
IEEE DOI
0204
BibRef
Earlier:
VF01(196-204).
Springer DOI Turning a voxel surface into 2-D. Use to map 2-D textures onto the
surface. Also related cortex analysis papers.
See also Estimating Shortest Paths and Minimal Distances on Digitized Three-Dimensional Surfaces.
See also Length Estimation in 3-D Using Cube Quantization.
BibRef
Hajdu, A.[András],
Geometry of neighbourhood sequences,
PRL(24), No. 15, November 2003, pp. 2597-2606.
Elsevier DOI
0308
Generalize results of (
See also Octagonal Distances For Digital Pictures. ) about
geometric properties of two-dimensional periodic neighbourhood sequences.
BibRef
Fazekas, A.[Attila],
Hajdu, A.[András],
Hajdu, L.[Lajos],
Metrical neighborhood sequences in Zn,
PRL(26), No. 13, 1 October 2005, pp. 2022-2032.
Elsevier DOI
0509
BibRef
Hajdu, A.,
Nagy, B.,
Zorgo, Z.,
Indexing and segmenting colour images using neighbourhood sequences,
ICIP03(I: 957-960).
IEEE DOI
0312
BibRef
Fazekas, A.,
Hajdu, A.,
Sánta, I.,
Tóth, T.,
Neighborhood Sequences and Their Applications in the Digital Image
Processing,
CAIP05(766).
Springer DOI
0509
See also Skeletonization Based on Metrical Neighborhood Sequences.
BibRef
Hajdu, A.[Andras],
Toth, T.[Tamas],
Approximating non-metrical Minkowski distances in 2D,
PRL(29), No. 6, 15 April 2008, pp. 813-821.
Elsevier DOI
0803
Minkowski distance; Discrete approximation; Neighborhood sequence;
Chamfering; Geometry
BibRef
Lachaud, J.O.[Jacques-Olivier],
Vialard, A.[Anne],
10th International Conference on Discrete Geometry for Computer Imagery:
Discrete topology and geometry for image and object representation,
GM(65), No. 1-3, May 2003, pp. Page 1.
Elsevier DOI
0309
Overview of issue.
BibRef
Coeurjolly, D.[David],
Miguet, S.,
Tougne, L.,
2D and 3D Visibility in Discrete Geometry:
An Application to Discrete Geodesic Paths,
PRL(25), No. 5, 5 April 2004, pp. 561-570.
Elsevier DOI
0403
Visibility definintion.
BibRef
Ricard, J.,
Coeurjolly, D.,
Baskurt, A.[Atilla],
Generalization of angular radial transform,
ICIP04(IV: 2211-2214).
IEEE DOI
0505
BibRef
Zunic, J.[Jovisa],
On the Number of Digital Discs,
JMIV(21), No. 3, November 2004, pp. 199-204.
DOI Link
0410
Disc is a set of N integer points inside a real disc.
BibRef
Huxley, M.N.[Martin N.],
unic, J.[Jovia],
The Number of N-Point Digital Discs,
PAMI(29), No. 1, January 2007, pp. 159-161.
IEEE DOI
0701
BibRef
Earlier:
On the Number of Digitizations of a Disc Depending on Its Position,
IWCIA04(219-231).
Springer DOI
0505
Refine the upper bound on the number.
BibRef
Huxley, M.N.[Martin N.],
unic, J.[Jovia],
The Number of Different Digital N-Discs,
JMIV(56), No. 3, November 2016, pp. 403-408.
WWW Link.
1609
BibRef
di Mambro, E.[Emmanuel],
Haďdar, R.[Riad],
Guérineau, N.[Nicolas],
Primot, J.[Jérôme],
Sharpness limitations in the projection of thin lines by use of the
Talbot experiment,
JOSA-A(21), No. 12, December 2004, pp. 2276-2282.
WWW Link.
0501
BibRef
Pavlidis, T.[Theo],
Discrete geometry and Azriel Rosenfeld,
PRL(26), No. 3, February 2005, pp. 235-238.
Elsevier DOI
0501
Reflection on Azriel Rosenfeld's life work.
BibRef
Xu, D.,
Do, M.N.,
On the Number of Rectangular Tilings,
IP(15), No. 10, October 2006, pp. 3225-3230.
IEEE DOI
0609
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Analysis of the rubberband algorithm,
IVC(25), No. 10, 1 October 2007, pp. 1588-1598.
Elsevier DOI
0709
BibRef
And:
Euclidean Shortest Paths in Simple Cube Curves at a Glance,
CAIP07(661-668).
Springer DOI
0708
BibRef
Earlier:
Finding the Shortest Path Between Two Points in a Simple Polygon by
Applying a Rubberband Algorithm,
PSIVT06(280-291).
Springer DOI
0612
BibRef
Earlier:
Shortest Paths in a Cuboidal World,
IWCIA06(415-429).
Springer DOI
0606
Digital geometry; Shortest Euclidean path; Cube-curves;
Minimum-length polygonal curve
See also Decomposing a Simple Polygon into Trapezoids.
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Approximate Shortest Paths in Simple Polyhedra,
DGCI11(513-524).
Springer DOI
1104
BibRef
Earlier:
An Approximate Algorithm for Solving the Watchman Route Problem,
RobVis08(189-206).
Springer DOI
0802
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Calculating the Number of Tunnels,
CIARP08(421-428).
Springer DOI
0809
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Fu, X.[Xue],
Approximate ESPs on Surfaces of Polytopes Using a Rubberband Algorithm,
PSIVT07(236-247).
Springer DOI
0712
Euclidean shortest path.
BibRef
Deng, M.[Min],
Cheng, T.[Tao],
Chen, X.Y.[Xiao-Yong],
Li, Z.L.[Zhi-Lin],
Multi-level Topological Relations Between Spatial Regions Based Upon
Topological Invariants,
GeoInfo(11), No. 2, June 2007, pp. 239-267.
Springer DOI
0709
BibRef
Deng, M.[Min],
Li, Z.L.[Zhi-Lin],
A Statistical Model for Directional Relations Between Spatial Objects,
GeoInfo(12), No. 2, June 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Suhadolnik, A.[Alojz],
Petrisic, J.[Joze],
Kosel, F.[Franc],
Numerical calculation of digital curve length by using anchored
discrete convolution,
IVC(26), No. 7, 2 July 2008, pp. 990-999.
Elsevier DOI
0804
Digital curve; Curve length; Anchored discrete convolution; Digital image
BibRef
Skala, V.[Vaclav],
Length, Area And Volume Computation In Homogeneous Coordinates,
IJIG(6), No. 4, October 2006, pp. 625-639.
0610
BibRef
Skala, V.[Vaclav],
Intersection Computation In Projective Space Using Homogeneous
Coordinates,
IJIG(8), No. 4, October 2008, pp. 615-628.
0804
BibRef
Balasubramanian, M.[Mukund],
Polimeni, J.R.[Jonathan R.],
Schwartz, E.L.[Eric L.],
Exact Geodesics and Shortest Paths on Polyhedral Surfaces,
PAMI(31), No. 6, June 2009, pp. 1006-1016.
IEEE DOI
0904
Computing distances along convex and non-convex polyhedral surfaces.
Either exact minimal-geodesic paths or shortest paths.
Runtime is Cubic or less.
Apply to mesh generation for brain data.
BibRef
Gerard, Y.[Yan],
Coeurjolly, D.[David],
Feschet, F.[Fabien],
Gift-Wrapping Based Preimage Computation Algorithm,
PR(42), No. 10, October 2009, pp. 2255-2264.
Elsevier DOI
0906
BibRef
Earlier: A1, A3, A2:
DGCI08(xx-yy).
Springer DOI
0804
Digital geometry; Convex hull; Gift-wrapping; Visibility cone; Chords set
BibRef
Gerard, Y.[Yan],
Reconstructing a Matrix with a Given List of Coefficients and
Prescribed Row and Column Sums Is NP-Hard,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Faure, A.[Alexandre],
Buzer, L.[Lilian],
Feschet, F.[Fabien],
Tangential Cover for Thick Digital Curves,
PR(42), No. 10, October 2009, pp. 2279-2287.
Elsevier DOI
0906
BibRef
Earlier: A1, A3, Only:
DGCI08(xx-yy).
Springer DOI
0804
Digital geometry; Tangential cover; Digital segments; Alpha-thickness; Convex hull; Thick digital curves
BibRef
Faure, A.[Alexandre],
Feschet, F.[Fabien],
Linear Decomposition of Planar Shapes,
ICPR10(1096-1099).
IEEE DOI
1008
BibRef
Faure, A.[Alexandre],
Feschet, F.[Fabien],
Multi-primitive Analysis of Digital Curves,
IWCIA09(30-42).
Springer DOI
0911
BibRef
Earlier:
Robust Decomposition of Thick Digital Shapes,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Feschet, F.[Fabien],
Multiscale Analysis from 1D Parametric Geometric Decomposition of
Shapes,
ICPR10(2102-2105).
IEEE DOI
1008
BibRef
Feschet, F.[Fabien],
The lattice width and quasi-straightness in digital spaces,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
The Exact Lattice Width of Planar Sets and Minimal Arithmetical
Thickness,
IWCIA06(25-33).
Springer DOI
0606
BibRef
Chollet, A.,
Wallet, G.,
Fuchs, L.,
Largeteau-Skapin, G.[Gaëlle],
Andres, É.[Éric],
Insight in discrete geometry and computational content of a discrete
model of the continuum,
PR(42), No. 10, October 2009, pp. 2220-2228.
Elsevier DOI
0906
Discrete geometry; Nonstandard analysis; Arithmetization; Constructive
mathematics
BibRef
Suhadolnik, A.[Alojz],
Petriic, J.[Joe],
Kosel, F.[Franc],
Digital Curve Length Calculation by Using B-spline,
JMIV(38), No. 2, October 2010, pp. 132-138.
WWW Link.
1011
BibRef
Srijuntongsiri, G.[Gun],
An iterative/subdivision hybrid algorithm for curve/curve intersection,
VC(27), No. 5, May 2011, pp. 365-371.
WWW Link.
1101
BibRef
Ahmad, O.S.[Ola Suleiman],
Debayle, J.[Johan],
Pinoli, J.C.[Jean-Charles],
A geometric-based method for recognizing overlapping polygonal-shaped
and semi-transparent particles in gray tone images,
PRL(32), No. 15, 1 November 2011, pp. 2068-2079.
Elsevier DOI
1112
Salient corner detection; Contour detection; Clustering method;
Overlapping particles recognition
BibRef
Pinoli, J.C.[Jean-Charles],
Debayle, J.[Johan],
General adaptive distance transforms on gray tone images: Application
to image segmentation,
ICIP11(2845-2848).
IEEE DOI
1201
BibRef
Rivollier, S.[Séverine],
Debayle, J.[Johan],
Pinoli, J.C.[Jean-Charles],
Adaptive Shape Diagrams for Multiscale Morphometrical Image Analysis,
JMIV(49), No. 1, May 2014, pp. 51-68.
Springer DOI
1404
BibRef
Earlier:
Shape representation and analysis of 2D compact sets by shape diagrams,
IPTA10(411-416).
IEEE DOI
1007
BibRef
Presles, B.[Benoît],
Debayle, J.[Johan],
Pinoli, J.C.[Jean-Charles],
Shape recognition from shadows of 3-D convex geometrical objects,
ICIP12(509-512).
IEEE DOI
1302
BibRef
Presles, B.[Benoît],
Debayle, J.[Johan],
Maillot, Y.[Yvan],
Pinoli, J.C.[Jean-Charles],
Automatic Recognition of 2D Shapes from a Set of Points,
ICIAR11(I: 183-192).
Springer DOI
1106
See also Shape Reconstruction from an Unorganized Point Cloud with Outliers.
BibRef
Lagarrigue, M.[Marthe],
Debayle, J.[Johan],
Jacquier, S.[Sandra],
Gruy, F.[Frédéric],
Pinoli, J.C.[Jean-Charles],
Geometrical Characterization of Various Shaped 3D-Aggregates of Primary
Spherical Particules by Radial Distribution Functions,
ICIAR10(II: 434-443).
Springer DOI
1006
BibRef
Presles, B.[Benoit],
Debayle, J.[Johan],
Cameirao, A.[Ana],
Fevotte, G.[Gilles],
Pinoli, J.C.[Jean-Charles],
Volume estimation of 3D particles with known convex shapes from its
projected areas,
IPTA10(399-404).
IEEE DOI
1007
BibRef
Vural, E.[Elif],
Frossard, P.[Pascal],
Discretization of Parametrizable Signal Manifolds,
IP(20), No. 12, December 2011, pp. 3621-3633.
IEEE DOI
1112
BibRef
Earlier:
Curvature analysis of pattern transformation manifolds,
ICIP10(2689-2692).
IEEE DOI
1009
For transformation invariant analysis.
One discretizzation for multiple patterns to minimize error distances.
BibRef
Vural, E.[Elif],
Frossard, P.[Pascal],
Learning Smooth Pattern Transformation Manifolds,
IP(22), No. 4, April 2013, pp. 1311-1325.
IEEE DOI
1303
BibRef
Earlier:
Learning pattern transformation manifolds for classification,
ICIP12(1165-1168).
IEEE DOI
1302
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.], (Eds.)
Digital Geometry Algorithms,
Springer2012, ISBN: 978-94-007-4173-7
Chen, L.M.[Li M.],
Digital Functions and Data Reconstruction:
Digital-Discrete Methods,
Springer2013.
ISBN: 978-1-4614-5637-7
Li, X.W.[Xiao-Wu],
Xin, Q.[Qiao],
Wu, Z.N.[Zhi-Nan],
Zhang, M.S.[Ming-Sheng],
Zhang, Q.[Qian],
A geometric strategy for computing intersections of two spatial
parametric curves,
VC(29), No. 11, November 2013, pp. 1151-1158.
Springer DOI
1310
BibRef
Eisa, S.A.N.[Sameh Abdelwahab Nasr],
Numerical Curve Length Calculation Using Polynomial Interpolation,
JMIV(49), No. 2, June 2014, pp. 377-383.
WWW Link.
1405
BibRef
Edelsbrunner, H.[Herbert],
Pausinger, F.[Florian],
Stable Length Estimates of Tube-Like Shapes,
JMIV(50), No. 1-2, September 2014, pp. 164-177.
WWW Link.
1408
BibRef
Fabbri, R.[Ricardo],
Kimia, B.B.[Benjamin B.],
Multiview Differential Geometry of Curves,
IJCV(120), No. 3, December 2016, pp. 324-346.
Springer DOI
1609
BibRef
Earlier:
High-Order Differential Geometry of Curves for Multiview Reconstruction
and Matching,
EMMCVPR05(645-660).
Springer DOI
0601
BibRef
Usumezbas, A.[Anil],
Fabbri, R.[Ricardo],
Kimia, B.B.[Benjamin B.],
From Multiview Image Curves to 3D Drawings,
ECCV16(IV: 70-87).
Springer DOI
1611
BibRef
Soto Sánchez, J.E.[José Ezequiel],
Medeiros e Sá, A.[Asla],
de Figueiredo, L.H.[Luiz Henrique],
Acquiring periodic tilings of regular polygons from images,
VC(35), No. 6-8, June 2018, pp. 899-907.
Springer DOI
1906
BibRef
Boutry, N.[Nicolas],
Géraud, T.[Thierry],
Najman, L.[Laurent],
How to Make n-D Plain Maps Defined on Discrete Surfaces
Alexandrov-Well-Composed in a Self-Dual Way,
JMIV(61), No. 6, July 2019, pp. 849-873.
Springer DOI
1907
BibRef
Earlier:
How to Make nD Functions Digitally Well-Composed in a Self-dual Way,
ISMM15(561-572).
Springer DOI
1506
See also Well-Composed Sets.
BibRef
Fernique, T.[Thomas],
Hashemi, A.[Amir],
Sizova, O.[Olga],
Compact Packings of the Plane with Three Sizes of Discs,
DGCI19(420-431).
Springer DOI
1905
BibRef
Aveneau, L.[Lilian],
Fuchs, L.[Laurent],
Andres, E.[Eric],
Digital Geometry from a Geometric Algebra Perspective,
DGCI14(358-369).
Springer DOI
1410
BibRef
Li, F.J.[Fa-Jie],
Pan, X.[Xiuxia],
An Approximation Algorithm for Computing Minimum-Length Polygons in 3D
Images,
ACCV10(IV: 641-652).
Springer DOI
1011
Euclidean shortest path (ESP) to be calculated in a loop of
face-connected grid cubes in the 3D orthogonal grid, which are defined
by minimum-length polygonal (MLP) curves. How to compute the MLP
See also Analysis of the rubberband algorithm.
BibRef
Chollet, A.[Agathe],
Wallet, G.[Guy],
Andres, E.[Eric],
Fuchs, L.[Laurent],
Largeteau-Skapin, G.[Gaëlle],
Richard, A.[Aurélie],
Omega-Arithmetization of Ellipses,
CompIMAGE10(24-35).
Springer DOI
1006
BibRef
Chollet, A.[Agathe],
Wallet, G.[Guy],
Fuchs, L.[Laurent],
Andres, E.[Eric],
Largeteau-Skapin, G.[Gaëlle],
Omega-Arithmetization:
A Discrete Multi-resolution Representation of Real Functions,
IWCIA09(316-329).
Springer DOI
0911
BibRef
Said, M.[Mouhammad],
Lachaud, J.O.[Jacques-Olivier],
Feschet, F.[Fabien],
Multiscale Analysis of Digital Segments by Intersection of 2D Digital
Lines,
ICPR10(4097-4100).
IEEE DOI
1008
BibRef
Earlier:
Multiscale Discrete Geometry,
DGCI09(118-131).
Springer DOI
0909
BibRef
Kock, A.[Anders],
Affine Connections, and Midpoint Formation,
DGCI09(13-21).
Springer DOI
0909
Synthetic differential geometry.
BibRef
Chen, L.[Li],
Rong, Y.[Yongwu],
Linear time recognition algorithms for topological invariants in 3D,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Guru, D.S.,
Prakash, H.N.,
Vikram, T.N.,
Spatial Topology of Equitemporal Points on Signatures for Retrieval,
PReMI07(128-135).
Springer DOI
0712
BibRef
Herley, C.,
Efficient inscribing of noisy rectangular objects in scanned images,
ICIP04(IV: 2399-2402).
IEEE DOI
0505
BibRef
Nouvel, B.[Bertrand],
Self-similar Discrete Rotation Configurations and Interlaced Sturmian
Words,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Nouvel, B.[Bertrand],
Rémila, É.[Éric],
Incremental and Transitive Discrete Rotations,
IWCIA06(199-213).
Springer DOI
0606
BibRef
Earlier:
Characterization of Bijective Discretized Rotations,
IWCIA04(248-259).
Springer DOI
0505
BibRef
Malandain, G.[Gregoire],
Boissonnat, J.D.[Jean-Danie],
Computing the Diameter of a Point Set,
INRIARR-4233, July 2001.
HTML Version.
0211
BibRef
Chassery, J.M.,
Dupont, F.,
Sivignon, I.,
Vittone, J.,
Digital geometry fundaments: application to plane recognition,
CIAP01(622-636).
IEEE DOI
0210
BibRef
Klette, R.[Reinhard],
Zunic, J.[Jovisa],
Multigrid Error Bounds for Moments of Arbitrary Order,
ICPR00(Vol III: 782-785).
IEEE DOI
0009
Errors for quantization errors in computing moments.
BibRef
Khuller, S.[Samir],
Rosenfeld, A.[Azriel],
Wu, A.[Angela],
Centers of Pixels,
UMD--TR3866, January 1998.
WWW Link.
BibRef
9801
Wagner, D.[Daniel],
Distance de Hausdorff et probleme discret-continu,
MastersThesis (in French), 1997. Universite Louis Pasteur.
PS File.
BibRef
9700
Baratoff, G.[Gregory],
Distortions of stereoscopic visual space and quadratic Cremona
transformations,
CAIP97(239-246).
Springer DOI
9709
BibRef
Leite, J.A.F.[José A. F.],
Hancock, E.R.[Edwin R.],
A linear discriminator of width,
CIAP95(477-482).
Springer DOI
9509
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Digital Geometry -- Lines, Curves and Contours .