Fayolle, J.[Jacques],
Riou, L.[Laurence],
Ducottet, C.[Christophe],
Robustness of a multiscale scheme of feature points detection,
PR(33), No. 9, September 2000, pp. 1437-1453.
Elsevier DOI
0005
BibRef
Fayolle, J.,
Ducottet, C.,
Riou, L.,
Coudert, S.,
A Wavelet Based Multiscale Detection Scheme of Feature Points,
ICPR00(Vol III: 421-424).
IEEE DOI
0009
BibRef
Mikolajczyk, K.[Krystian],
Schmid, C.[Cordelia],
Scale and Affine Invariant Interest Point Detectors,
IJCV(60), No. 1, October 2004, pp. 63-86.
DOI Link
0405
BibRef
Earlier:
An Affine Invariant Interest Point Detector,
ECCV02(I: 128 ff.).
Springer DOI
0205
See also Comparison of Affine Region Detectors, A.
BibRef
Mikolajczyk, K.[Krystian],
Detection of local features invariant to affine transformations,
Ph.D.Thesis, Institut National Polytechnique de Grenoble, France, 2002.
BibRef
0200
Mikolajczyk, K.[Krystian],
Schmid, C.[Cordelia],
Indexing Based on Scale Invariant Interest Points,
ICCV01(I: 525-531).
IEEE DOI
0106
Interest point computation.
BibRef
Mikolajczyk, K.,
Zisserman, A.,
Schmid, C.,
Shape recognition with edge-based features,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Koniusz, P.[Piotr],
Mikolajczyk, K.[Krystian],
Soft assignment of visual words as Linear Coordinate Coding and
optimisation of its reconstruction error,
ICIP11(2413-2416).
IEEE DOI
1201
BibRef
And:
Spatial Coordinate Coding to reduce histogram representations, Dominant
Angle and Colour Pyramid Match,
ICIP11(661-664).
IEEE DOI
1201
BibRef
Earlier:
On a Quest for Image Descriptors Based on Unsupervised Segmentation
Maps,
ICPR10(762-765).
IEEE DOI
1008
BibRef
Earlier:
Segmentation Based Interest Points and Evaluation of Unsupervised Image
Segmentation Methods,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Bay, H.[Herbert],
Ess, A.[Andreas],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Speeded-Up Robust Features (SURF),
CVIU(110), No. 3, June 2008, pp. 346-359.
Elsevier DOI
0711
Award, CVIU, Most Cited. (2008-2010)
BibRef
Earlier: A1, A3, A4, Only:
SURF: Speeded Up Robust Features,
ECCV06(I: 404-417).
Springer DOI
0608
Award, Koenderink Prize. Interest points; Local features; Feature description; Camera calibration;
Object recognition.
Use essential parts of features to simplify for speed.
See also Comparison of Affine Region Detectors, A.
BibRef
Tuytelaars, T.[Tinne],
Dense interest points,
CVPR10(2281-2288).
IEEE DOI
1006
BibRef
Willems, G.[Geert],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point
Detector,
ECCV08(II: 650-663).
Springer DOI
0810
BibRef
Carneiro, G.[Gustavo],
Jepson, A.D.[Allan D.],
Flexible Spatial Configuration of Local Image Features,
PAMI(29), No. 12, December 2007, pp. 2089-2104.
IEEE DOI
0711
BibRef
Earlier:
The Distinctiveness, Detectability, and Robustness of Local Image
Features,
CVPR05(II: 296-301).
IEEE DOI
0507
BibRef
Earlier:
Flexible spatial models for grouping local image features,
CVPR04(II: 747-754).
IEEE DOI
0408
BibRef
Earlier:
Phase-Based Local Features,
ECCV02(I: 282 ff.).
Springer DOI
0205
Local features are intended to be reliable under various transformations,
but this is not always the case.
Introduce two geometric filters, based on semilocal spatial
configuration of local features robust to rigid and non-rigid transformations.
BibRef
Carneiro, G.,
Jepson, A.D.,
Pruning local feature correspondences using shape context,
ICPR04(III: 16-19).
IEEE DOI
0409
BibRef
Earlier:
Multi-scale phase-based local features,
CVPR03(I: 736-743).
IEEE DOI
0307
Where: interest point location; What: feature detection.
Quantitative evaluation of both the where and the
what for
a) phase-based local features (Carneiro and Jepson, 2002),
See also Flexible Spatial Configuration of Local Image Features. b) differential invariants (Schmid and Mohr, 1997),
See also Local Grayvalue Invariants for Image Retrieval. c) the scale invariant feature transform (SIFT) (Lowe, 1999).
See also Distinctive Image Features from Scale-Invariant Keypoints. The first comes out best.
BibRef
Carneiro, G.[Gustavo],
The automatic design of feature spaces for local image descriptors
using an ensemble of non-linear feature extractors,
CVPR10(3509-3516).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Carneiro, G.[Gustavo],
Lowe, D.G.[David G.],
Sparse Flexible Models of Local Features,
ECCV06(III: 29-43).
Springer DOI
0608
BibRef
Carneiro, G.[Gustavo],
Jepson, A.D.[Allan D.],
The quantitative characterization of the distinctiveness and robustness
of local image descriptors,
IVC(27), No. 8, 2 July 2009, pp. 1143-1156.
Elsevier DOI
0906
Visual object recognition; Local image descriptors; Discriminant
classifier; Regression models
BibRef
Mukherjee, A.,
Velez-Reyes, M.,
Roysam, B.,
Interest Points for Hyperspectral Image Data,
GeoRS(47), No. 3, March 2009, pp. 748-760.
IEEE DOI
0903
BibRef
Dorado-Munoz, L.P.,
Velez-Reyes, M.,
Mukherjee, A.,
Roysam, B.,
A Vector SIFT Detector for Interest Point Detection in Hyperspectral
Imagery,
GeoRS(50), No. 11, November 2012, pp. 4521-4533.
IEEE DOI
1210
BibRef
Li, C.L.[Can-Lin],
Ma, L.Z.[Li-Zhuang],
A new framework for feature descriptor based on SIFT,
PRL(30), No. 5, 1 April 2009, pp. 544-557.
Elsevier DOI
0903
Feature descriptor; SIFT; Distinctiveness; Invariance; Elliptical
neighboring region; Log-polar histogram
BibRef
Cheung, W.,
Hamarneh, G.[Ghassan],
n-SIFT: n-Dimensional Scale Invariant Feature Transform,
IP(18), No. 9, September 2009, pp. 2012-2021.
IEEE DOI
0909
BibRef
Kawewong, A.[Aram],
Tangruamsub, S.[Sirinart],
Hasegawa, O.[Osamu],
Position-Invariant Robust Features for Long-Term Recognition of Dynamic
Outdoor Scenes,
IEICE(E93-D), No. 9, September 2010, pp. 2587-2601.
WWW Link.
1003
BibRef
Earlier:
Wide-Baseline Visible Features for Highly Dynamic Scene Recognition,
CAIP09(723-731).
Springer DOI
0909
Find features (SIFT, SURF) that are widely visible.
BibRef
Ai, D.N.[Dan-Ni],
Han, X.H.[Xian-Hua],
Ruan, X.[Xiang],
Chen, Y.W.[Yen-Wei],
Color Independent Components Based SIFT Descriptors for Object/Scene
Classification,
IEICE(E93-D), No. 9, September 2010, pp. 2577-2586.
WWW Link.
1003
BibRef
And:
Adaptive Color Independent Components Based SIFT Descriptors for Image
Classification,
ICPR10(2436-2439).
IEEE DOI
1008
BibRef
Ai, D.N.[Dan-Ni],
Han, X.H.[Xian-Hua],
Duan, G.F.[Gui-Fang],
Ruan, X.[Xiang],
Chen, Y.W.[Yen-Wei],
Global Selection vs Local Ordering of Color SIFT Independent Components
for Object/Scene Classification,
IEICE(E94-D), No. 9, September 2011, pp. 1800-1808.
WWW Link.
1110
BibRef
Gao, J.[Jian],
Huang, X.H.[Xin-Han],
Liu, B.[Bo],
A quick scale-invariant interest point detecting approach,
MVA(21), No. 3, April 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Cui, C.H.[Chun-Hui],
Ngan, K.N.[King Ngi],
Scale- and Affine-Invariant Fan Feature,
IP(20), No. 6, June 2011, pp. 1627-1640.
IEEE DOI
1106
Dealing with surface boundaries.
BibRef
Cui, C.H.[Chun-Hui],
Ngan, K.N.[King Ngi],
Global Propagation of Affine Invariant Features for Robust Matching,
IP(22), No. 7, 2013, pp. 2876-2888.
IEEE DOI
1307
filtering theory; rendering (computer graphics);
affine invariant features; image based rendering;
nonrigid deformation
BibRef
Dickscheid, T.[Timo],
Schindler, F.[Falko],
Förstner, W.[Wolfgang],
Coding Images with Local Features,
IJCV(94), No. 2, September 2011, pp. 154-174.
WWW Link.
1101
BibRef
Earlier: A3, A1, A2:
Detecting interpretable and accurate scale-invariant keypoints,
ICCV09(2256-2263).
IEEE DOI
0909
Describing images with local features, consider in terms usually used for
coding.
Junction type features, scale space version of Forstner detector
(
See also Framework For Low Level Feature Extraction, A. ), and spiral
feature of Bigun (
See also Structure Feature for Image Processing Applications Based on Spiral Functions, A. ).
BibRef
Schindler, F.[Falko],
Förstner, W.[Wolfgang],
DijkstraFPS: Graph Partitioning in Geometry and Image Processing,
PFG(2013), No. 4, 2013, pp. 285-296.
DOI Link
1309
BibRef
Roscher, R.[Ribana],
Schindler, F.[Falko],
Förstner, W.[Wolfgang],
High Dimensional Correspondences from Low Dimensional Manifolds:
An Empirical Comparison of Graph-Based Dimensionality Reduction Algorithms,
Subspace10(334-343).
Springer DOI
1109
correspondence on lower dimensional space.
BibRef
Olague, G.[Gustavo],
Trujillo, L.[Leonardo],
Evolutionary-computer-assisted design of image operators that detect
interest points using genetic programming,
IVC(29), No. 7, June 2011, pp. 484-498.
Elsevier DOI
1101
BibRef
Earlier: A2, A1:
Scale Invariance for Evolved Interest Operators,
EvoIASP07(423-430).
Springer DOI
0704
BibRef
Earlier: A2, A1:
Using Evolution to Learn How to Perform Interest Point Detection,
ICPR06(I: 211-214).
IEEE DOI
0609
Interest points; Computer assisted design; Evolutionary computation;
Genetic programming; Evolutionary computer vision
BibRef
Trujillo, L.[Leonardo],
Olague, G.[Gustavo],
Fernandez, F.,
Lutton, E.,
Evolutionary feature selection for probabilistic object recognition,
novel object detection and object saliency estimation using GMMs,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Bradley, P.,
Jutzi, B.,
Improved Feature Detection in Fused Intensity-Range Images with Complex
SIFT (CSIFT),
RS(3), No. 9, September 2011, pp. 2076-2088.
DOI Link
1203
BibRef
Sadek, R.,
Constantinopoulos, C.,
Meinhardt, E.,
Ballester, C.,
Caselles, V.,
On Affine Invariant Descriptors Related to SIFT,
SIIMS(5), No. 2, 2012, pp. 652-687.
DOI Link
1206
BibRef
Chang, L.[Leonardo],
Hernández-Palancar, J.[José],
Sucar, L.E.[L. Enrique],
Arias-Estrada, M.[Miguel],
FPGA-based detection of SIFT interest keypoints,
MVA(24), No. 2, February 2013, pp. 371-392.
WWW Link.
1302
BibRef
Park, H.[Hanhoon],
Mitsumine, H.[Hideki],
Fujii, M.[Mahito],
Fast Detection of Robust Features by Reducing the Number of Box
Filtering in SURF,
IEICE(E94-D), No. 3, March 2011, pp. 725-728.
WWW Link.
1103
BibRef
Chi, Y.[Yitao],
Xiong, Z.[Zhang],
Chang, Q.[Qing],
Li, C.[Chao],
Sheng, H.[Hao],
Improving Hessian Matrix Detector for SURF,
IEICE(E94-D), No. 4, April 2011, pp. 921-925.
WWW Link.
1104
BibRef
Liao, C.[Chao],
Wang, G.J.[Gui-Jin],
Miao, Q.[Quan],
Wang, Z.G.[Zhi-Guo],
Shi, C.B.[Chen-Bo],
Lin, X.G.[Xing-Gang],
DSP-Based Parallel Implementation of Speeded-Up Robust Features,
IEICE(E94-D), No. 4, April 2011, pp. 930-933.
WWW Link.
1104
SURF
BibRef
Ehsan, S.[Shoaib],
Kanwal, N.[Nadia],
Clark, A.F.[Adrian F.],
McDonald-Maier, K.D.[Klaus D.],
An Algorithm for the Contextual Adaption of SURF Octave Selection With
Good Matching Performance: Best Octaves,
IP(21), No. 1, January 2012, pp. 297-304.
IEEE DOI
1112
BibRef
Earlier:
Measuring the Coverage of Interest Point Detectors,
ICIAR11(I: 253-261).
Springer DOI
1106
BibRef
Kanwal, N.[Nadia],
Ehsan, S.[Shoaib],
Clark, A.F.[Adrian F.],
Are Performance Differences of Interest Operators Statistically
Significant?,
CAIP11(II: 429-436).
Springer DOI
1109
Evaluation, Interest Points.
BibRef
Alcantarilla, P.F.[Pablo F.],
Bergasa, L.M.[Luis M.],
Davison, A.J.[Andrew J.],
Gauge-SURF descriptors,
IVC(31), No. 1, January 2013, pp. 103-116.
Elsevier DOI
1302
Gauge coordinates; Scale space; Feature descriptors; Integral image
BibRef
Alcantarilla, P.F.[Pablo Fernández],
Bartoli, A.E.[Adrien E.],
Davison, A.J.[Andrew J.],
KAZE Features,
ECCV12(VI: 214-227).
Springer DOI
1210
BibRef
Alcantarilla, P.F.[Pablo F.],
Nuevo, J.[Jesus],
Bartoli, A.E.[Adrien E.],
Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale
Spaces,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Jing, H.[Huiyun],
He, X.[Xin],
Han, Q.[Qi],
Niu, X.[Xiamu],
CBRISK: Colored Binary Robust Invariant Scalable Keypoints,
IEICE(E96-D), No. 2, February 2013, pp. 392-395.
WWW Link.
1301
BRISK faster than SIFT/SURF. Extend BRISK to include color information.
See also BRISK: Binary Robust invariant scalable keypoints.
BibRef
Chiu, L.C.[Liang-Chi],
Chang, T.S.[Tian-Sheuan],
Chen, J.Y.[Jiun-Yen],
Chang, N.Y.C.,
Fast SIFT Design for Real-Time Visual Feature Extraction,
IP(22), No. 8, 2013, pp. 3158-3167.
IEEE DOI
1307
CMOS integrated circuits; fast SIFT design;
BibRef
Han, H.[Hong],
Han, Q.Q.[Qi-Qiang],
Li, X.J.[Xiao-Jun],
Gu, J.Y.[Jian-Yin],
Hierarchical spatial pyramid max pooling based on SIFT features
and sparse coding for image classification,
IET-CV(7), No. 2, 2013, pp. 144-150.
DOI Link
1307
BibRef
Sima, A.A.[Aleksandra A.],
Buckley, S.J.[Simon J.],
Optimizing SIFT for Matching of Short Wave Infrared
and Visible Wavelength Images,
RS(5), No. 5, 2013, pp. 2037-2056.
DOI Link
1307
BibRef
Liao, K.Y.[Kai-Yang],
Liu, G.Z.[Gui-Zhong],
Hui, Y.S.[You-Shi],
An improvement to the SIFT descriptor for image representation and
matching,
PRL(34), No. 11, 1 August 2013, pp. 1211-1220.
Elsevier DOI
1306
Local descriptor; SIFT; Point matching
BibRef
Mainali, P.[Pradip],
Lafruit, G.[Gauthier],
Yang, Q.[Qiong],
Geelen, B.[Bert],
Van Gool, L.J.[Luc J.],
Lauwereins, R.[Rudy],
SIFER: Scale-Invariant Feature Detector with Error Resilience,
IJCV(104), No. 2, September 2013, pp. 172-197.
Springer DOI
1308
See also Robust Low Complexity Corner Detector.
BibRef
Mainali, P.[Pradip],
Lafruit, G.[Gauthier],
Tack, K.,
Van Gool, L.J.[Luc J.],
Lauwereins, R.[Rudy],
Derivative-Based Scale Invariant Image Feature Detector With Error
Resilience,
IP(23), No. 5, May 2014, pp. 2380-2391.
IEEE DOI
1405
Approximation methods
BibRef
Huang, W.,
Wu, L.D.[Ling-Da],
Song, H.C.[Han-Chen],
Wei, Y.M.[Ying-Mei],
RBRIEF: a robust descriptor based on random binary comparisons,
IET-CV(7), No. 1, 2013, pp. 29-35.
DOI Link
1307
Compare to SURF, BRIEF, ORB. Robust descriptor.
BibRef
Krajník, T.[Tomá],
váb, J.[Jan],
Pedre, S.[Sol],
Cíek, P.[Petr],
Preucil, L.[Libor],
FPGA-based module for SURF extraction,
MVA(25), No. 3, April 2014, pp. 787-800.
Springer DOI
1404
BibRef
Sun, Y.B.[Yan-Biao],
Zhao, L.[Liang],
Huang, S.D.[Shou-Dong],
Yan, L.[Lei],
Dissanayake, G.[Gamini],
L2-SIFT: SIFT feature extraction and matching for large images in
large-scale aerial photogrammetry,
PandRS(91), No. 1, 2014, pp. 1-16.
Elsevier DOI
1404
Aerial photogrammetry
BibRef
Sun, Y.B.[Yan-Biao],
Zhao, L.[Liang],
Huang, S.D.[Shou-Dong],
Yan, L.[Lei],
Dissanayake, G.[Gamini],
Line matching based on planar homography for stereo aerial images,
PandRS(104), No. 1, 2015, pp. 1-17.
Elsevier DOI
1505
Line matching
BibRef
Tian, X.L.[Xiao-Lin],
Jiao, L.C.[Li-Cheng],
Liu, X.L.[Xian-Long],
Zhang, X.H.[Xiao-Hua],
Feature integration of EODH and Color-SIFT:
Application to image retrieval based on codebook,
SP:IC(29), No. 4, 2014, pp. 530-545.
Elsevier DOI
1404
Image retrieval
BibRef
Yang, Z.X.[Zhou-Xin],
Kurita, T.[Takio],
Improvements of Local Descriptor in HOG/SIFT by BOF Approach,
IEICE(E97-D), No. 5, May 2014, pp. 1293-1303.
WWW Link.
1405
BibRef
Earlier:
Improvements to the Descriptor of SIFT by BOF Approaches,
ACPR13(95-99)
IEEE DOI
1408
computer vision
BibRef
Bai, S.[Shuang],
Hou, J.J.[Jian-Jun],
Ohnishi, N.[Noboru],
Combining LBP and SIFT in Sparse Coding for Categorizing Scene Images,
IEICE(E97-D), No. 9, September 2014, pp. 2563-2566.
WWW Link.
1410
BibRef
Dellinger, F.,
Delon, J.,
Gousseau, Y.,
Michel, J.,
Tupin, F.,
SAR-SIFT: A SIFT-Like Algorithm for SAR Images,
GeoRS(53), No. 1, January 2015, pp. 453-466.
IEEE DOI
1410
image registration
BibRef
Baber, J.[Junaid],
Dailey, M.N.[Matthew N.],
Satoh, S.[Shin'ichi],
Afzulpurkar, N.[Nitin],
Bakhtyar, M.[Maheen],
BIG-OH: BInarization of Gradient Orientation Histograms,
IVC(32), No. 11, 2014, pp. 940-953.
Elsevier DOI
1410
Gradient orientation histograms
Quantized SIFT.
BibRef
Liu, R.Z.[Run Zong],
Tang, Y.Y.[Yuan Yan],
Fang, B.[Bin],
Topological Coding and Its Application in the Refinement of SIFT,
Cyber(44), No. 11, November 2014, pp. 2155-2166.
IEEE DOI
1411
affine transforms
BibRef
Otero, I.R.[Ives Rey],
Delbracio, M.[Mauricio],
Anatomy of the SIFT Method,
IPOL(4), 2014, pp. 370-396.
DOI Link
1412
See also Distinctive Image Features from Scale-Invariant Keypoints.
BibRef
Dan, G.,
Khan, M.A.,
Fodor, V.,
Characterization of SURF and BRISK Interest Point Distribution for
Distributed Feature Extraction in Visual Sensor Networks,
MultMed(17), No. 5, May 2015, pp. 591-602.
IEEE DOI
1505
Cameras
BibRef
Oyallon, E.[Edouard],
Rabin, J.[Julien],
An Analysis of the SURF Method,
IPOL(5), 2015, pp. 176-218.
DOI Link
1508
Code, SURF. General section:
See also Scale Invariant Features, SIFT, SURF, ASIFT.
BibRef
Khan, N.[Nabeel],
McCane, B.[Brendan],
Mills, S.[Steven],
Better than SIFT?,
MVA(26), No. 6, August 2015, pp. 819-836.
WWW Link.
1508
BibRef
Liu, Y.[Yu],
Wang, Z.F.[Zeng-Fu],
Dense SIFT for ghost-free multi-exposure fusion,
JVCIR(31), No. 1, 2015, pp. 208-224.
Elsevier DOI
1508
Multi-exposure fusion
BibRef
Stanciu, S.G.[Stefan G.],
Tranca, D.E.[Denis E.],
Coltuc, D.[Dinu],
Contrast enhancement influences the detection of gradient based local
invariant features and the matching of their descriptors,
JVCIR(32), No. 1, 2015, pp. 246-256.
Elsevier DOI
1511
Contrast enhancement
BibRef
Huang, M.,
Mu, Z.,
Zeng, H.,
Efficient image classification via sparse coding spatial pyramid
matching representation of SIFT-WCS-LTP feature,
IET-IPR(10), No. 1, 2016, pp. 61-67.
DOI Link
1601
feature extraction
BibRef
Awad, D.[Dounia],
Courboulay, V.[Vincent],
Revel, A.[Arnaud],
Toward a perceptual object recognition system,
ELCVIA(14), No. 3, 2015, pp. xx-yy.
DOI Link
1601
Thesis summary.
BibRef
Awad, D.[Dounia],
Courboulay, V.[Vincent],
Revel, A.[Arnaud],
A New Hybrid Texture-Perceptual Descriptor: Application CBIR,
ICPR14(1150-1155)
IEEE DOI
1412
BibRef
Earlier:
Saliency Filtering of SIFT Detectors: Application to CBIR,
ACIVS12(290-300).
Springer DOI
1209
Detectors
BibRef
Hu, S.,
Wang, Q.,
Wang, J.,
Qin, Z.,
Ren, K.,
Securing SIFT: Privacy-Preserving Outsourcing Computation of Feature
Extractions Over Encrypted Image Data,
IP(25), No. 7, July 2016, pp. 3411-3425.
IEEE DOI
1606
Cloud computing. Computation technique.
BibRef
Yang, S.Q.A.[Shu-Qi-Ang],
Li, B.[Biao],
Zeng, K.[Kun],
SBRISK: speed-up binary robust invariant scalable keypoints,
RealTimeIP(12), No. 3, October 2016, pp. 583-591.
WWW Link.
1610
BibRef
Yum, J.,
Lee, C.H.,
Kim, J.S.,
Lee, H.J.,
A Novel Hardware Architecture With Reduced Internal Memory for
Real-Time Extraction of SIFT in an HD Video,
CirSysVideo(26), No. 10, October 2016, pp. 1943-1954.
IEEE DOI
1610
Buffer storage
BibRef
Kaplan, A.[Avi],
Avraham, T.[Tamar],
Lindenbaum, M.[Michael],
Interpreting the Ratio Criterion for Matching SIFT Descriptors,
ECCV16(V: 697-712).
Springer DOI
1611
BibRef
Koutaki, G.[Gou],
Uchimura, K.[Keiichi],
XY-Separable Scale-Space Filtering by Polynomial Representations and
Its Applications,
IEICE(E100-D), No. 4, April 2017, pp. 645-654.
WWW Link.
1704
BibRef
Earlier:
Scale-Space Processing Using Polynomial Representations,
CVPR14(2744-2751)
IEEE DOI
1409
PCA; SIFT; Scale space; Spectral Decomposition
BibRef
Kavitha, H.,
Sudhamani, M.V.,
Experimental analysis of SIFT and SURF features for multi-object image
retrieval,
IJCVR(7), No. 3, 2017, pp. 344-356.
DOI Link
1704
BibRef
Yang, F.[Feng],
Ma, Z.[Zheng],
Xie, M.[Mei],
Codebook Learning for Image Recognition Based on Parallel Key SIFT
Analysis,
IEICE(E100-D), No. 4, April 2017, pp. 927-930.
WWW Link.
1704
BibRef
Zhang, W.,
Wu, X.,
Zhu, W.P.,
Yu, L.,
Unsupervized Image Clustering With SIFT-Based Soft-Matching Affinity
Propagation,
SPLetters(24), No. 4, April 2017, pp. 461-464.
IEEE DOI
1704
feature extraction
BibRef
Hassner, T.[Tal],
Filosof, S.[Shay],
Mayzels, V.[Viki],
Zelnik-Manor, L.[Lihi],
SIFTing Through Scales,
PAMI(39), No. 7, July 2017, pp. 1431-1443.
IEEE DOI
1706
BibRef
Earlier: A1, A3, A4, Only:
On SIFTs and their scales,
CVPR12(1522-1528).
IEEE DOI
1208
Detectors, Estimation, Feature extraction, Laplace equations,
Optical imaging, Optimization, Robustness,
Vision and scene understanding, and transforms, data structures,
representations
BibRef
de Lima, R.[Roberto],
Martinez-Carranza, J.[Jose],
Morales-Reyes, A.[Alicia],
Cumplido, R.[Rene],
Improving the construction of ORB through FPGA-based acceleration,
MVA(28), No. 5-6, August 2017, pp. 525-537.
Springer DOI
1708
See also ORB: An efficient alternative to SIFT or SURF.
BibRef
Lin, B.W.[Bao-Wei],
Wang, F.S.[Fa-Sheng],
Sun, Y.[Yi],
Qu, W.[Wen],
Chen, Z.[Zheng],
Zhang, S.[Shuo],
Boundary points based scale invariant 3D point feature,
JVCIR(48), No. 1, 2017, pp. 136-148.
Elsevier DOI
1708
3D, point, clouds
BibRef
Lin, B.W.[Bao-Wei],
Zhao, F.[Fangda],
Tamaki, T.[Toru],
Wang, F.S.[Fa-Sheng],
Xiao, L.[Le],
SIPF: Scale invariant point feature for 3D point clouds,
ICIP15(2611-2615)
IEEE DOI
1512
SIPF; feature; point cloud; scale invariant
BibRef
Sekeroglu, K.[Kazim],
Soysal, Ö.M.[Ömer Muhammet],
Comparison of SIFT, Bi-SIFT, and Tri-SIFT and their frequency spectrum
analysis,
MVA(28), No. 8, November 2017, pp. 875-902.
WWW Link.
1710
BibRef
Lee, C.,
Rhee, C.E.,
Lee, H.J.,
Complexity Reduction by Modified Scale-Space Construction in SIFT
Generation Optimized for a Mobile GPU,
CirSysVideo(27), No. 10, October 2017, pp. 2246-2259.
IEEE DOI
1710
Feature extraction,
Graphics processing units, Image resolution,
Mobile communication, Real-time systems,
BibRef
Liu, L.F.[Li-Feng],
Ma, Y.[Yan],
Zhang, X.F.[Xiang-Fen],
Zhang, Y.P.[Yu-Ping],
Li, S.[Shunbao],
High discriminative SIFT feature and feature pair selection to improve
the bag of visual words model,
IET-IPR(11), No. 11, November 2017, pp. 994-1001.
DOI Link
1711
BibRef
Yum, J.,
Lee, C.,
Park, J.,
Kim, J.,
Lee, H.,
A Hardware Architecture for the Affine-Invariant Extension of SIFT,
CirSysVideo(28), No. 11, November 2018, pp. 3251-3261.
IEEE DOI
1811
Transforms, Hardware, Real-time systems, Cameras, Memory management,
Streaming media, Solids, Hardware accelerator,
affine transform hardware
BibRef
Desolneux, A.,
Leclaire, A.,
Stochastic Image Models from SIFT-Like Descriptors,
SIIMS(11), No. 4, 2018, pp. 2305-2338.
DOI Link
1901
BibRef
Liu, Y.J.[Yu-Jie],
Yu, D.[Deng],
Chen, X.M.[Xiao-Ming],
Li, Z.M.[Zong-Min],
Fan, J.P.[Jian-Ping],
TOP-SIFT: the selected SIFT descriptor based on dictionary learning,
VC(35), No. 5, May 2019, pp. 667-677.
WWW Link.
1906
BibRef
Cheon, S.H.[Seung Hyeon],
Eom, I.K.[Il Kyu],
Ha, S.W.[Seok Wun],
Moon, Y.H.[Yong Ho],
An enhanced SURF algorithm based on new interest point detection
procedure and fast computation technique,
RealTimeIP(16), No. 4, August 2019, pp. 1177-1187.
Springer DOI
1908
BibRef
Wang, R.[Rui],
Shi, Y.J.[Yi-Jie],
Cao, W.M.[Wen-Ming],
GA-SURF: A new Speeded-Up robust feature extraction algorithm for
multispectral images based on geometric algebra,
PRL(127), 2019, pp. 11-17.
Elsevier DOI
1911
Speeded-Up robust features (SURF), Interest points,
Geometric algebra (GA), Multispectral image
BibRef
Huang, Y.F.[Yin-Fu],
Wu, H.Y.[Huan-Yu],
Image retrieval based on ASIFT features in a Hadoop clustered system,
IET-IPR(14), No. 1, January 2020, pp. 138-146.
DOI Link
1912
more efficient computation of ASIFT.
BibRef
Doménech-Asensi, G.[Ginés],
Zapata-Pérez, J.[Juan],
Ruiz-Merino, R.[Ramón],
López-Alcantud, J.A.[José Alejandro],
Díaz-Madrid, J.Á.[José Ángel],
Brea, V.M.[Víctor Manuel],
López, P.[Paula],
All-hardware SIFT implementation for real-time VGA images feature
extraction,
RealTimeIP(17), No. 2, April 2020, pp. 371-382.
WWW Link.
2004
BibRef
Divya, S.V.,
Paul, S.[Sourabh],
Pati, U.C.[Umesh Chandra],
Structure tensor-based SIFT algorithm for SAR image registration,
IET-IPR(14), No. 5, 17 April 2020, pp. 929-938.
DOI Link
2004
BibRef
Li, D.[Dan],
Xu, Q.[Qiannan],
Yu, W.[Wennian],
Wang, B.[Bing],
SRP-AKAZE: an improved accelerated KAZE algorithm based on sparse
random projection,
IET-CV(14), No. 4, June 2020, pp. 131-137.
DOI Link
2005
BibRef
Du, S.L.[Song-Lin],
Li, Y.[Yuan],
Ikenaga, T.[Takeshi],
Temporally Forward Nonlinear Scale Space for High Frame Rate and
Ultra-Low Delay A-KAZE Matching System,
IEICE(E103-D), No. 6, June 2020, pp. 1226-1235.
WWW Link.
2006
BibRef
Earlier: A2, A1, A3:
Temporally Forward Nonlinear Scale Space with Octave Prediction for
High Frame Rate and Ultra-Low Delay A-KAZE Matching System,
MVA19(1-4)
DOI Link
1911
Gray codes, motion estimation, forward nonlinear scale space,
octave prediction, ultra-low delay, A-KAZE matching system, Robustness
See also KAZE Features.
BibRef
Karimi, H.S.[Hiwa Sufi],
Mohammadi, K.[Karim],
Rotational invariant biologically inspired object recognition,
IET-IPR(14), No. 15, 15 December 2020, pp. 3762-3773.
DOI Link
2103
Biologically inspired hierarchical model and X (HMAX).
Propose a Rotationally invarient version.
BibRef
Zhang, M.[Meng],
Jin, H.Y.[Hai-Yan],
Xiao, Z.L.[Zhao-Lin],
Guillemot, C.[Christine],
A Light Field FDL-HCGH Feature in Scale-Disparity Space,
IP(31), 2022, pp. 6164-6174.
IEEE DOI
2210
BibRef
Earlier: A3, A1, A2, A4:
A Light Field FDL-HSIFT Feature in Scale-Disparity Space,
ICIP21(1549-1553)
IEEE DOI
2201
Feature extraction, Light fields, Histograms, Feature detection,
Detectors, Computational complexity, Light field, feature description.
Statistical analysis, Imaging, Distortion, Fourier disparity layer
BibRef
Bellavia, F.[Fabio],
SIFT Matching by Context Exposed,
PAMI(45), No. 2, February 2023, pp. 2445-2457.
IEEE DOI
2301
Detectors, Artificial neural networks, Benchmark testing,
Transforms, Training, Pipelines, Merging, Delaunay triangulation, SIFT
BibRef
Courbot, J.B.[Jean-Baptiste],
Moukadem, A.[Ali],
Colicchio, B.[Bruno],
Dieterlen, A.[Alain],
Sparse Off-the-Grid Computation of the Zeros of STFT,
SPLetters(30), 2023, pp. 788-792.
IEEE DOI
2307
White noise, Shape, Signal processing algorithms, TV,
Time-frequency analysis, Numerical models, Topology, zeros of the STFT
BibRef
Barath, D.[Daniel],
On Making SIFT Features Affine Covariant,
IJCV(131), No. 9, September 2023, pp. 2316-2332.
Springer DOI
2308
BibRef
Earlier:
Recovering Affine Features from Orientation- and Scale-Invariant Ones,
ACCV18(I:266-281).
Springer DOI
1906
BibRef
Liu, X.[Xiang],
Zhao, X.[Xueli],
Xia, Z.H.[Zhi-Hua],
Feng, Q.[Qian],
Yu, P.[Peipeng],
Weng, J.[Jian],
Secure Outsourced SIFT: Accurate and Efficient Privacy-Preserving
Image SIFT Feature Extraction,
IP(32), 2023, pp. 4635-4648.
IEEE DOI
2309
BibRef
Rodríguez, M.,
Facciolo, G.,
von Gioi, R.G.,
Musé, P.,
Morel, J.,
Delon, J.,
SIFT-AID: Boosting Sift With an Affine Invariant Descriptor Based on
Convolutional Neural Networks,
ICIP19(4225-4229)
IEEE DOI
1910
image comparison, affine invariance, IMAS, SIFT, RootSIFT,
convolutional neural networks.
BibRef
Chu, H.[Hang],
Ma, W.C.[Wei-Chiu],
Kundu, K.[Kaustav],
Urtasun, R.[Raquel],
Fidler, S.[Sanja],
SurfConv: Bridging 3D and 2D Convolution for RGBD Images,
CVPR18(3002-3011)
IEEE DOI
1812
Convolution, Sensors, Surface treatment, Semantics, Image sensors
BibRef
Shi, J.F.[Jian-Feng],
Ulrich, S.[Steve],
Ruel, S.[Stephane],
yBRIEF: A study of non-Gaussian Binary Elementary Features,
ICIVC17(87-91)
IEEE DOI
1708
Boats, Feature extraction, Histograms, Latches, Retina, Robustness,
Smoothing methods, AKAZE, BRIEF, ORB, SIFT, SURF, binary descriptors,
image feature, yBRIEF
BibRef
Abuzneid, M.[Mohannad],
Mahmood, A.[Ausif],
Image Registration Based on a Minimized Cost Function and SURF
Algorithm,
ICIAR17(321-329).
Springer DOI
1706
BibRef
Desolneux, A.[Agnčs],
Leclaire, A.[Arthur],
Stochastic Image Reconstruction from Local Histograms of Gradient
Orientation,
SSVM17(133-145).
Springer DOI
1706
Reconstruct from SIFT.
BibRef
Kirchner, M.R.,
Automatic thresholding of SIFT descriptors,
ICIP16(291-295)
IEEE DOI
1610
Cameras
BibRef
Liao, C.P.[Chong-Po],
Hsieh, J.W.[Jun-Wei],
Chiang, H.F.[Hui-Fen],
Tsao, Y.[Yun],
Visual location search using symmelets,
ICIP16(51-55)
IEEE DOI
1610
Databases
BibRef
Zeglazi, O.,
Amine, A.,
Rziza, M.,
Sift Descriptors Modeling and Application in Texture Image
Classification,
CGiV16(265-268)
IEEE DOI
1608
gamma distribution
BibRef
Bruno, A.,
Greco, L.,
Cascia, M.L.,
Views selection for SIFT based object modeling and recognition,
IVMSP16(1-5)
IEEE DOI
1608
Cameras
BibRef
Rister, B.[Blaine],
Reiter, D.[Daniel],
Zhang, H.[Hejia],
Volz, D.[Daniel],
Horowitz, M.[Mark],
Gabr, R.E.[Refaat E.],
Cavallaro, J.R.[Joseph R.],
Scale- and orientation-invariant keypoints in higher-dimensional data,
ICIP15(3490-3494)
IEEE DOI
1512
3D SIFT
BibRef
Saad, E.[Elhusain],
Hirakawa, K.[Keigo],
Improving surf interest point detection for defocus blur robustness,
ICIP15(3029-3033)
IEEE DOI
1512
Feature detection; image blur
BibRef
Vasconcelos, L.O.[Levi O.],
Nascimento, E.R.[Erickson R.],
Campos, M.F.M.[Mario F. M.],
A Scale Invariant Keypoint Detector Based on Visual and Geometrical
Cues,
CIARP15(341-349).
Springer DOI
1511
BibRef
Setitra, I.[Insaf],
Larabi, S.[Slimane],
SIFT Descriptor for Binary Shape Discrimination, Classification and
Matching,
CAIP15(I:489-500).
Springer DOI
1511
BibRef
Dong, J.M.[Jing-Ming],
Soatto, S.[Stefano],
Domain-size pooling in local descriptors: DSP-SIFT,
CVPR15(5097-5106)
IEEE DOI
1510
BibRef
Borg, N.P.,
Debono, C.J.,
Zammit-Mangion, D.,
A single octave SIFT algorithm for image feature extraction in
resource limited hardware systems,
VCIP14(213-216)
IEEE DOI
1504
aircraft navigation
BibRef
Daud, M.M.[M. Mat],
Kadim, Z.,
Yuen, S.L.[Shang Li],
Woon, H.H.[Hon Hock],
Faye, I.,
Malik, A.S.,
A pre-processing approach for efficient feature matching process in
extreme illumination scenario,
IPTA12(275-279)
IEEE DOI
1503
feature extraction
Enhancement, SURF.
BibRef
Baroffio, L.[Luca],
Canclini, A.[Antonio],
Cesana, M.[Matteo],
Redondi, A.[Alessandro],
Tagliasacchi, M.[Marco],
Briskola: BRISK optimized for low-power ARM architectures,
ICIP14(5691-5695)
IEEE DOI
1502
Computer architecture
Binary Robust Invariant Scalable Keypoints.
BibRef
Tang, Z.W.[Zhong-Wei],
Monasse, P.[Pascal],
Morel, J.M.[Jean-Michel],
Improving the matching precision of SIFT,
ICIP14(5756-5760)
IEEE DOI
1502
Cameras
BibRef
Acharya, K.A.[K. Aniruddha],
Babu, R.V.[R. Venkatesh],
Speeding up SIFT using GPU,
NCVPRIPG13(1-4)
IEEE DOI
1408
computer vision
BibRef
Zhang, C.[Chao],
Shen, T.Z.[Ting-Zhi],
Scale-Less Feature-Spatial Matching,
DICTA13(1-8)
IEEE DOI
1402
feature extraction
BibRef
Bucak, S.,
Saxena, A.,
Nagar, A.,
Fernandes, F.,
Bhat, K.P.,
Mid-level feature based local descriptor selection for image search,
VCIP13(1-6)
IEEE DOI
1402
image processing
BibRef
Nagar, A.,
Saxena, A.,
Bucak, S.,
Fernandes, F.,
Bhat, K.P.,
Low complexity image matching using color based SIFT,
VCIP13(1-6)
IEEE DOI
1402
Fourier transforms
BibRef
Nga, D.H.[Do Hang],
Yanai, K.[Keiji],
A Dense SURF and Triangulation Based Spatio-temporal Feature for Action
Recognition,
MMMod14(I: 375-387).
Springer DOI
1405
BibRef
Earlier:
A Spatio-temporal Feature Based on Triangulation of Dense SURF,
THUMOS13(420-427)
IEEE DOI
1403
feature extraction
BibRef
Schweiger, F.[Florian],
Schroth, G.[Georg],
Huitl, R.[Robert],
Latif, Y.[Yasir],
Steinbach, E.[Eckehard],
Speeded-up SURF: Design of an efficient multiscale feature detector,
ICIP13(3475-3478)
IEEE DOI
1402
Feature detection; SIFT; SURF; fast implementation; scale-invariance
BibRef
Elhoseiny, M.[Mohamed],
Song, B.[Bing],
Sudol, J.[Jeremi],
McKinnon, D.[David],
Low-bitrate benefits of JPEG compression on sift recognition,
ICIP13(3657-3661)
IEEE DOI
1402
Image Matching;JPEG;Low Bitrate;Mobile Visual Search;SIFT
BibRef
Bruno, A.[Alessandro],
Greco, L.[Luca],
La Cascia, M.[Marco],
Object Recognition and Modeling Using SIFT Features,
ACIVS13(250-261).
Springer DOI
1311
BibRef
Abeles, P.[Peter],
Speeding Up SURF,
ISVC13(II:454-464).
Springer DOI
1311
BibRef
Li, J.G.[Jian-Guo],
Zhang, Y.M.[Yi-Min],
Learning SURF Cascade for Fast and Accurate Object Detection,
CVPR13(3468-3475)
IEEE DOI
1309
BibRef
Ding, Y.X.[Yu-Xin],
Zhao, B.[Bin],
You, Q.Z.[Qing-Zhen],
Chai, G.R.[Guang-Ren],
Object retrival based on visual word pairs,
ICIP12(1929-1932).
IEEE DOI
1302
Coarse and fine SIFT detectors.
BibRef
Saygili, G.[Gorkem],
van der Maaten, L.[Laurens],
Hendriks, E.A.[Emile A.],
Improving segment based stereo matching using SURF key points,
ICIP12(2973-2976).
IEEE DOI
1302
BibRef
Tang, H.[Hao],
Tang, F.[Feng],
AH-SIFT: Augmented Histogram based SIFT descriptor,
ICIP12(2357-2360).
IEEE DOI
1302
BibRef
Su, H.[Hui],
Chuang, W.H.[Wei-Hong],
Lu, W.J.[Wen-Jun],
Wu, M.[Min],
Evaluating the quality of individual SIFT features,
ICIP12(2377-2380).
IEEE DOI
1302
BibRef
Shi, J.[Jun],
Jiang, Z.G.[Zhi-Guo],
Feng, H.[Hao],
Zhang, L.G.[Li-Guo],
SIFT-based Elastic sparse coding for image retrieval,
ICIP12(2437-2440).
IEEE DOI
1302
BibRef
Matusiak, K.[Karol],
Skulimowski, P.[Piotr],
Comparison of Key Point Detectors in SIFT Implementation for Mobile
Devices,
ICCVG12(509-516).
Springer DOI
1210
BibRef
Khan, N.Y.,
McCane, B.,
Analysis of Verification Methods for Indoor Image Matching,
ACPR13(38-42)
IEEE DOI
1408
document image processing
BibRef
Khan, N.Y.,
McCane, B.,
Wyvill, G.,
SIFT and SURF Performance Evaluation against Various Image Deformations
on Benchmark Dataset,
DICTA11(501-506).
IEEE DOI
1205
BibRef
Rublee, E.[Ethan],
Rabaud, V.[Vincent],
Konolige, K.G.[Kurt G.],
Bradski, G.[Gary],
ORB: An efficient alternative to SIFT or SURF,
ICCV11(2564-2571).
IEEE DOI
1201
Award, ICCV, Helmholtz.
BibRef
Leutenegger, S.[Stefan],
Chli, M.[Margarita],
Siegwart, R.Y.[Roland Y.],
BRISK: Binary Robust invariant scalable keypoints,
ICCV11(2548-2555).
IEEE DOI
1201
Alternative to SURF, faster computation.
BibRef
Liu, X.B.[Xiao-Bing],
Zhang, B.[Bo],
Learning complex image patterns with Scale and Shift Invariant Sparse
Coding,
ICIP11(1225-1228).
IEEE DOI
1201
BibRef
Chao, J.S.[Jian-Shu],
Steinbach, E.G.[Eckehard G.],
Preserving SIFT features in JPEG-encoded images,
ICIP11(301-304).
IEEE DOI
1201
BibRef
McGuinness, K.[Kevin],
McCusker, K.[Kealan],
O'Hare, N.[Neil],
O'Connor, N.E.[Noel E.],
Efficient Storage and Decoding of SURF Feature Points,
MMMod12(440-451).
Springer DOI
1201
BibRef
Mok, S.J.[Seung Jun],
Jung, K.[Kyungboo],
Ko, D.W.[Dong Wook],
Lee, S.H.[Sang Hwa],
Choi, B.U.[Byung-Uk],
SERP: SURF Enhancer for Repeated Pattern,
ISVC11(II: 578-587).
Springer DOI
1109
BibRef
Shang, M.Y.[Mian-You],
Pan, J.[Jing],
Pang, Y.W.[Yan-Wei],
Yuan, Y.[Yuan],
Integrating kAS and SIFT-like Descriptor for Image Description,
ICIG11(533-537).
IEEE DOI
1109
BibRef
Brown, M.[Matthew],
Susstrunk, S.[Sabine],
Multi-spectral SIFT for scene category recognition,
CVPR11(177-184).
IEEE DOI
1106
BibRef
Brown, M.[Matthew],
Susstrunk, S.[Sabine],
Fua, P.[Pascal],
Spatio-chromatic decorrelation by shift-invariant filtering,
WBCV11(27-34).
IEEE DOI
1106
BibRef
Li, B.[Bing],
Xiao, R.[Rong],
Li, Z.W.[Zhi-Wei],
Cai, R.[Rui],
Lu, B.L.[Bao-Liang],
Zhang, L.[Lei],
Rank-SIFT: Learning to rank repeatable local interest points,
CVPR11(1737-1744).
IEEE DOI
1106
BibRef
Kalia, R.[Robin],
Lee, K.D.[Keun-Dong],
Samir, B.V.R.,
Je, S.K.[Sung-Kwan],
Oh, W.G.[Weon-Geun],
An analysis of the effect of different image preprocessing techniques
on the performance of SURF: Speeded Up Robust Features,
FCV11(1-6).
IEEE DOI
1102
BibRef
Le, M.H.[My-Ha],
Woo, B.S.[Byung-Seok],
Jo, K.H.[Kang-Hyun],
A Comparison of SIFT and Harris conner features for correspondence
points matching,
FCV11(1-4).
IEEE DOI
1102
BibRef
Zhu, D.X.[Dai-Xian],
SIFT algorithm analysis and optimization,
IASP10(415-419).
IEEE DOI
1004
BibRef
Zhu, D.X.[Dai-Xian],
Wang, X.H.[Xiao-Hua],
A Method of Improving SIFT Algorithm Matching Efficiency,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, Z.[Zhan],
Peng, J.Y.[Jing Ye],
Li, D.X.[Da-Xiang],
Zhang, Y.[Ying],
Max-Matching Context Kernel Design for SIFT Feature,
CISP09(1-5).
IEEE DOI
0910
BibRef
Hsu, C.Y.[Chao-Yung],
Lu, C.S.[Chun-Shien],
Pei, S.C.[Soo-Chang],
Secure and robust SIFT with resistance to chosen-plaintext attack,
ICIP10(997-1000).
IEEE DOI
1009
I.e. SIFT features can be removed, but visual quality isn't lost.
BibRef
Ma, R.[Rui],
Chen, J.[Jian],
Su, Z.[Zhong],
MI-SIFT: mirror and inversion invariant generalization for SIFT
descriptor,
CIVR10(228-235).
DOI Link
1007
BibRef
Bellavia, F.[Fabio],
Tegolo, D.[Domenico],
Trucco, E.[Emanuele],
Improving SIFT-based Descriptors Stability to Rotations,
ICPR10(3460-3463).
IEEE DOI
1008
BibRef
Engel, D.[David],
Curio, C.[Cristobal],
Shape centered interest points for feature grouping,
POCV10(9-16).
IEEE DOI
1006
BibRef
Earlier:
Scale-invariant medial features based on gradient vector flow fields,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Moreno, P.[Plinio],
Marín-Jiménez, M.J.[Manuel J.],
Bernardino, A.[Alexandre],
Santos-Victor, J.[José],
de la Blanca, N.P.[Nicolás Pérez],
A Comparative Study of Local Descriptors for Object Category
Recognition: SIFT vs HMAX,
IbPRIA07(I: 515-522).
Springer DOI
0706
BibRef
Schügerl, P.[Philipp],
Sorschag, R.[Robert],
Bailer, W.[Werner],
Thallinger, G.[Georg],
Object Re-detection Using SIFT and MPEG-7 Color Descriptors,
MCAM07(305-314).
Springer DOI
0706
BibRef
Yu, Y.[Yinan],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
A Harris-Like Scale Invariant Feature Detector,
ACCV09(II: 586-595).
Springer DOI
0909
BibRef
Ayadi, W.,
Benazza-Benyahia, A.,
Wavelet based statistical detection of salient points by the
exploitation of the interscale redundancies,
ICIP09(1001-1004).
IEEE DOI
0911
BibRef
Lopez-Garcia, F.[Fernando],
SIFT features for object recognition and tracking within the IVSEE
system,
ICPR08(1-4).
IEEE DOI
0812
Erly vision model
BibRef
Hansen, P.,
Boles, W.,
Corke, P.,
Spherical Diffusion for Scale-Invariant Keypoint Detection in
Wide-Angle Images,
DICTA08(525-532).
IEEE DOI
0812
BibRef
Zeisl, B.[Bernhard],
Georgel, P.F.[Pierre Fite],
Schweiger, F.[Florian],
Steinbach, E.[Eckehard],
Navab, N.[Nassir],
Estimation of Location Uncertainty for Scale Invariant Features Points,
BMVC09(xx-yy).
PDF File. Video:
WWW Link.
0909
Evaluation.
See also Recovering the full pose from a single keyframe.
BibRef
Evans, C.[Christopher],
Notes on the opensurf library,
Technical ReportCSTR-09-001, University of Bristol, January 2009.
PDF File.
0911
BibRef
Cordes, K.[Kai],
Topic, O.[Oliver],
Scherer, M.[Manuel],
Klempt, C.[Carsten],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Classification of Atomic Density Distributions Using Scale Invariant
Blob Localization,
ICIAR11(I: 161-172).
Springer DOI
1106
BibRef
Cordes, K.[Kai],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
High-Resolution Feature Evaluation Benchmark,
CAIP13(327-334).
Springer DOI
1308
BibRef
Cordes, K.[Kai],
Müller, O.[Oliver],
Rosenhahn, B.[Bodo],
Ostermann, J.[Jörn],
Bivariate Feature Localization for SIFT Assuming a Gaussian Feature
Shape,
ISVC10(I: 264-275).
Springer DOI
1011
BibRef
Earlier:
HALF-SIFT: High-Accurate Localized Features for SIFT,
FeatureSpace09(31-38).
IEEE DOI
0906
See also NF-Features: No-Feature-Features for Representing Non-textured Regions.
BibRef
Priese, L.[Lutz],
Schmitt, F.[Frank],
Hering, N.[Nils],
Grouping of Semantically Similar Image Positions,
SCIA09(726-734).
Springer DOI
0906
Use Scale Invariant Feature Transformation (SIFT).
And Color-Structure-Code segmentation.
(
See also 3D-Color-Structure-Code: A Hierarchical Region Growing Method for Segmentation of 3D-Images. ).
BibRef
Harding, P.[Patrick],
Robertson, N.M.[Neil M.],
A Comparison of Feature Detectors with Passive and Task-Based Visual
Saliency,
SCIA09(716-725).
Springer DOI
0906
Investigates the coincidence between six interest point detection methods
(SIFT (
See also Distinctive Image Features from Scale-Invariant Keypoints. ),
MSER (Maximally Stable Extremal Region)
(
See also Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. ),
Harris-Laplace,
SURF (
See also Speeded-Up Robust Features (SURF). ),
FAST and
Kadir-Brady Saliency (
See also Affine Invariant Salient Region Detector, An. ))
BibRef
Cui, Y.[Yan],
Hasler, N.[Nils],
Thormählen, T.[Thorsten],
Seidel, H.P.[Hans-Peter],
Scale Invariant Feature Transform with Irregular Orientation Histogram
Binning,
ICIAR09(258-267).
Springer DOI
0907
SIFT (Scale Invariant Feature Transform)
Irregular grid approach.
BibRef
Park, J.H.[Jae-Han],
Park, K.W.[Kyung-Wook],
Baeg, S.H.[Seung-Ho],
Baeg, M.H.[Moon-Hong],
pi-SIFT: A photometric and Scale Invariant Feature Transform,
ICPR08(1-4).
IEEE DOI
0812
SIFT:
See also Distinctive Image Features from Scale-Invariant Keypoints.
BibRef
Scotney, B.W.[Bryan W.],
Coleman, S.A.[Sonya A.],
Gardiner, B.[Bryan],
Biologically motivated feature extraction using the spiral architecture,
ICIP11(221-224).
IEEE DOI
1201
BibRef
Earlier: A2, A1, A3:
Biologically Motivated Feature Extraction,
CIAP11(I: 605-615).
Springer DOI
1109
BibRef
Earlier: A2, A1, A3:
Coarse Scale Feature Extraction Using the Spiral Architecture Structure,
ICPR10(2370-2373).
IEEE DOI
1008
BibRef
Kerr, D.[Dermot],
Coleman, S.A.[Sonya A.],
Scotney, B.W.[Bryan W.],
A Finite Element Blob Detector for Robust Features,
CIAP11(I: 504-513).
Springer DOI
1109
BibRef
Earlier:
FESID: Finite Element Scale Invariant Detector,
CIAP09(72-81).
Springer DOI
0909
BibRef
Earlier: A1, A3, A2:
Interest point detection on incomplete images,
ICIP08(817-820).
IEEE DOI
0810
See also Space Variant Gradient Based Corner Detector for Sparse Omnidirectional Images, A.
BibRef
Kokkinos, I.[Iasonas],
Yuille, A.L.[Alan L.],
Scale invariance without scale selection,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Toews, M.[Matthew],
Wells, W.[William],
SIFT-Rank: Ordinal description for invariant feature correspondence,
CVPR09(172-177).
IEEE DOI
0906
BibRef
Toews, M.,
Arbel, T.,
Entropy-of-likelihood feature selection for image correspondence,
ICCV03(1041-1047).
IEEE DOI
0311
BibRef
Hall, D.,
Leibe, B.,
Schiele, B.,
Saliency of Interest Points under Scale Changes,
BMVC02(Poster Session).
0208
BibRef
Grabner, M.[Michael],
Grabner, H.[Helmut],
Bischof, H.[Horst],
Fast Approximated SIFT,
ACCV06(I:918-927).
Springer DOI
0601
Regions of interest.
SIFT:
See also Distinctive Image Features from Scale-Invariant Keypoints.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Local Binary Patterns, LBP, Point Features .