Reproducible Research,
OnlineJanuary 2009.
WWW Link.
Survey, Evaluation.
Evaluation, General.
0906
A site for gathering information regarding reproducible research, which
while common in some fields has been lacking in many parts of signal and
iamge processing.
BibRef
Nagy, G.,
Candide's Practical Principles of Experimental Pattern Recognition,
PAMI(5), No. 2, March 1983, pp. 199-200.
BibRef
8303
Cantoin, V.,
Guerra, C.,
Levialdi, S.,
Towards an Evaluation of an Image Processing System,
CSIP83(43-56).
BibRef
8300
Preston, Jr., K.[Kendall],
The Abingdon Cross Benchmark Survey,
Computer(22), No. 7, July 1989, pp. 9-18.
Benchmarks.
BibRef
8907
Preston, Jr., K.[Kendall],
Benchmark results: the Abingdon cross,
EvalMulti1986, pp. 23-54.
BibRef
8600
Duff, M.J.B.,
How not to Benchmark Image Processors,
EvalMulti1986, pp. 23-54.
BibRef
8600
Evaluation of Multicomputers in Image Processing,
Academic PressOrlando, FL, USA, 1986.
Apparently a conference in Tuscon, AZ.
BibRef
8600
Haralick, R.M.[Robert M.],
Performance Assessment of Near-Perfect Machines,
MVA(2), No. 1, 1989, pp. 1-16.
BibRef
8900
Haralick, R.M.[Robert M.],
Overview: Computer Vision Performance Characterization,
ARPA94(I:663-665).
BibRef
9400
And:
Performance Characterization Protocol in Computer Vision,
ARPA94(I:667-673).
BibRef
And:
Tech report,
Univ. of Washington1990.
BibRef
Haralick, R.M.,
Propagating Covariance in Computer Vision,
PRAI(10), 1996, pp. 561-572.
BibRef
9600
And:
AIU96(142-156).
BibRef
Earlier:
ICPR94(A:493-498).
IEEE DOI
9410
Covariance Propagation.
See also Performance Characterization in Computer Vision.
BibRef
Haralick, R.M.,
Covariance Propagation in Computer Vision,
PERF96(XX-YY).
HTML Version.
BibRef
9600
Haralick, R.M.,
Detection Performance Methodology,
ARPA96(981-983).
BibRef
9600
Liu, X.F.[Xu-Fei],
Kanungo, T.[Tapas],
Haralick, R.M.[Robert M.],
On the Use of Error Propagation for Statistical Validation of Computer
Vision Software,
PAMI(27), No. 10, October 2005, pp. 1603-1614.
IEEE DOI
0509
BibRef
Earlier:
Error Propagation and Statistical Validation of
Computer Vision Software,
UMD--TR4213, February 2001.
WWW Link. Error analysis for complex computer vision software.
Statistically validate the implementation for building extraction programs.
BibRef
Liu, X.F.[Xu-Fei],
Kanungo, T.[Tapas],
Haralick, R.M.[Robert M.],
Statistical Validation of Computer Vision Software,
ARPA96(1533-1540).
BibRef
9600
Kanungo, T.[Tapas], and
Haralick, R.M.[Robert M.],
Multivariate Hypothesis Testing for Gaussian Data:
Theory and Software,
Tech report,
Univ. of WashingtonISL-TR-95-05, 23 October, 1995
BibRef
9510
Yi, S.,
Haralick, R.M.,
Shapiro, L.G.,
Error Propagation in Machine Vision,
MVA(7), 1994, pp. 93-114.
See also Performance Characterization in Computer Vision.
BibRef
9400
Price, K.E.,
Anything You Can Do, I Can Do Better (No You Can't),
CVGIP(36), No. 2-3, November-December 1986, pp. 387-391.
Elsevier DOI
BibRef
8611
USC Computer Vision
BibRef
Earlier:
I've seen your demo; so what?,
CVWS85(122-124).
Some rules on how to make work more transportable and judgeable.
BibRef
Kittler, J.V., and
Devijver, P.A.,
The Probability Distribution of the Conditional Classification Error,
PAMI(2), 1980, pp. 259-261.
BibRef
8000
Kittler, J.V., and
Devijver, P.A.,
Statistical Properties of Error Estimators in Performance Assessment of
Recognition Systems,
PAMI(4), No. 2, March 1982, pp. 215-220.
BibRef
8203
Wu, Z.,
Homogeneity Testing for Unlabeled Data: A Performance Evaluation,
GMIP(55), No. 5, 1993, pp. 370-380.
BibRef
9300
Logan, B.J.,
At What Price Inaccuracy,
PhEngRS(62), No. 6, June 1996, pp. 685-685.
9606
BibRef
Jiang, B.C.,
Shiau, M.Y.R.,
A Systematic Methodology for Determining/Optimizing a
Machine Vision System's Capability,
MVA(3), 1990, pp. 169-182.
BibRef
9000
Aksyutov, L.N.,
Prediction of Object Recognition Probability from Space Photographs,
EORS(13), No. 2, 1995, pp. 163-175.
9607
BibRef
Diaspro, A.,
Parodi, G.,
Zunino, R.,
A Performance Analysis of an Associative System for
Image Classification,
PRL(14), 1993, pp. 801-868.
BibRef
9300
Shanbehzadeh, J.,
Ogunbona, P.O.,
On the Computational-Complexity of the LBG and PNN Algorithms,
IP(6), No. 4, April 1997, pp. 614-616.
IEEE DOI
9704
BibRef
Christensen, H.I.,
Förstner, W.,
Performance-Characteristics Of Vision Algorithms,
MVA(9), No. 5-6, 1997, pp. 215-218.
Springer DOI
9705
Introduction to the special issue derived from the conference.
BibRef
Förstner, W.,
Diagnostics and Performance Evaluation in Computer Vision,
Robust94(XX-YY). Seattle, USA.
BibRef
9400
Venetianer, P.L.,
Large, E.W.,
Bajcsy, R.,
A Methodology for Evaluation of Task-Performance in Robotic Systems:
A Case-Study in Vision-Based Localization,
MVA(9), No. 5-6, 1997, pp. 304-320.
Springer DOI
9705
BibRef
Sheinvald, J.,
Kiryati, N.,
On The Magic Of Slide,
MVA(9), No. 5-6, 1997, pp. 251-261.
Springer DOI
9705
BibRef
Hay, G.J.,
Niemann, K.O.,
Goodenough, D.G.,
Spatial Thresholds, Image-Objects, and Upscaling:
A Multiscale Evaluation,
RSE(62), No. 1, October 1997, pp. 1-19.
9709
BibRef
Sunar, F.,
Kaya, S.,
An Assessment of the Geometric Accuracy of Remotely-Sensed Images,
JRS(18), No. 14, September 20 1997, pp. 3069-3074.
9710
BibRef
Förstner, W.,
Reliability Analysis of Parameter Estimation in Linear Models
with Applications to Mensuration Problems in Computer Vision,
CVGIP(40), No. 3, December 1987, pp. 273-310.
Elsevier DOI
Measurement.
Geometric Features, Evaluation. This paper discusses the general ideas behind error analysis and
discusses how measurements from images should be done.
BibRef
8712
Förstner, W.,
A Framework For Low Level Feature Extraction,
ECCV94(B:383-394).
Springer DOI
BibRef
9400
Ho, C.S.,
Precision of Digital Vision Systems,
PAMI(5), No. 6, November 1983, pp. 593-601.
Digital Accuracy, Evaluation. Studies of possible variation in digital measurements of
object features.
BibRef
8311
Kamgar-Parsi, B.[Behrooz], and
Kamgar-Parsi, B.[Behzad],
Evaluation of Quantization Error in Computer Vision,
PAMI(11), No. 9, September 1989, pp. 929-940.
IEEE DOI
BibRef
8909
Earlier:
CVPR88(52-60).
IEEE DOI
BibRef
Earlier:
DARPA88(720-730).
BibRef
Kamgar-Parsi, B.[Behzad], and
Kamgar-Parsi, B.[Behrooz],
Quantization Error in Hexagonal Sensory Configurations,
PAMI(14), No. 6, June 1992, pp. 665-671.
IEEE DOI
Quantization Error, Evaluation.
BibRef
9206
Kamgar-Parsi, B.,
Kamgar-Parsi, B.,
Quantization Error in Regular Grids: Triangular Pixels,
IP(7), No. 10, October 1998, pp. 1496-1500.
IEEE DOI
BibRef
9810
Kamgar-Parsi, B.[Behzad],
Kamgar-Parsi, B.[Behrooz], and
Sander, III, W.A.,
Quantization Error in Spatial Sampling:
Comparison between Square and Hexagonal Pixels,
CVPR89(604-611).
IEEE DOI
BibRef
8900
Wong, P.W.,
On Quantization Errors in Computer Vision,
PAMI(13), No. 9, September 1991, pp. 951-956.
IEEE DOI
BibRef
9109
Bunch, J.R.,
Leborne, R.C.,
Proudler, I.K.,
Tracking Ill-Conditioning for the RLS-Lattice Algorithms,
VISP(145), No. 1, February 1998, pp. 1-5.
9804
BibRef
Pearson, J.J.,
Oddo, L.A.,
A Testbed for the Evaluation of Feature Extraction Techniques in a
Time Constrained Environment,
Ascona97(13-22).
BibRef
9700
Müller, J.P.,
Ourzik, C.,
Kim, T.,
Dowman, I.J.,
Assessment of the Effects of Resolution on Automated DEM and
Building Extraction,
Ascona97(233-242).
Building Recognition.
BibRef
9700
Courtney, P.,
Thacker, N.A.,
Clark, A.F.,
Algorithmic Modeling For Performance Evaluation,
MVA(9), No. 5-6, 1997, pp. 219-228.
Springer DOI
9705
BibRef
Earlier:
Algorithmic Modelling for Performance Evaluation,
PERF96(XX-YY).
HTML Version.
BibRef
Marik, R.,
Petrou, M.,
Kittler, J.V.,
Error Sensitivity Assessment of Vision Algorithms,
VISP(145), No. 2, April 1998, pp. 124-130.
9806
BibRef
Earlier:
Error Sensitivity Assessment of Vision Algorithms Based on
Direct Error Propagation,
PERF96(XX-YY).
HTML Version.
BibRef
Bowyer, K.W.,
Phillips, P.J.,
Empirical Evaluation Techniques in Computer Vision,
CS-Press1998.
ISBN: 0818684011.
Indexed as:
BibRef
9800
EEMTV98
WWW Link.
See also Workshop on Empirical Evaluation Methods in Computer Vision. Mostly seems to be from the conference, but not all of them are.
BibRef
Phillips, P.J.,
Bowyer, K.W.,
Introduction to the Special Section on Empirical Evaluation of Computer
Vision Algorithms,
PAMI(21), No. 4, April 1999, pp. 289-290.
IEEE DOI
BibRef
9904
Bowyer, K.W.[Kevin W.], and
Phillips, P.J.[P. Jonathon],
Overview of Work in Empirical Evaluation of
Computer Vision Algorithms,
EEMTV98(xx)
BibRef
9800
Flynn, P.J.[Patrick J.],
Hoover, A.[Adam],
Phillips, P.J.[P. Jonathon],
Special Issue on Empirical Evaluation of Computer Vision Algorithms,
CVIU(84), No. 1, October 2001, pp. 1-4.
DOI Link
0203
BibRef
Hoppin, J.W.,
Kupinski, M.A.,
Kastis, G.A.,
Clarkson, E.,
Barrett, H.H.,
Objective comparison of quantitative imaging modalities without the use
of a gold standard,
MedImg(21), No. 5, May 2002, pp. 441-449.
IEEE Top Reference.
0206
BibRef
Klette, R.[Reinhard],
Stiehl, H.S.[H. Siegfried],
Viergever, M.A.[Max A.],
Vincken, K.L.[Koen L.],
Performance Characterization in Computer Vision,
KluwerAugust 2000, ISBN 0-7923-6374-4
WWW Link. Proceedings for the 9th Theoretical Foundations of Computer Vision.
Buy this book: Performance Characterization In Computer Vision (Computational Imaging and Vision)
BibRef
0008
Min, J.[Jaesik],
Powell, M.W.[Mark W.],
Bowyer, K.W.[Kevin W.],
Automated Performance Evaluation of Range Image Segmentation Algorithms,
SMC-B(34), No. 1, February 2004, pp. 263-271.
IEEE Abstract.
0403
BibRef
Earlier:
Automated Performance Evaluation of Range Image Segmentation,
WACV00(163-168).
IEEE DOI
0010
Code, Segmenation Evaluation.
HTML Version.
BibRef
Min, J.[Jaesik],
Powell, M.W.[Mark W.],
Bowyer, K.W.[Kevin W.],
Progress in Automated Evaluation of Curved Surface Range Image
Segmentation,
ICPR00(Vol I: 644-647).
IEEE DOI
0009
BibRef
Vandewalle, P.[Patrick],
Kovacevic, J.[Jelena],
Vetterli, M.[Martin],
Reproducible research in signal processing,
SPMag(26), No. 3, May 2009, pp. 37-47.
IEEE DOI A discussion of the need to raise evaluation quality for signal processing.
I.e. compare to established algorithms, use large data sets, make
code available online.
BibRef
0905
Liu, W.Y.[Wen-Yin],
Valveny, E.[Ernest],
Special Issue on Performance Evaluation,
IJDAR(14), No. 1, March 2011, pp. 1-2.
WWW Link.
1103
In Character and document analysis.
BibRef
Andreopoulos, A.[Alexander],
Tsotsos, J.K.[John K.],
On Sensor Bias in Experimental Methods for Comparing Interest-Point,
Saliency, and Recognition Algorithms,
PAMI(34), No. 1, January 2012, pp. 110-126.
IEEE DOI
1112
Other effects on algorithm performance from camera settings.
BibRef
Zendel, O.[Oliver],
Murschitz, M.[Markus],
Humenberger, M.[Martin],
Herzner, W.[Wolfgang],
How Good Is My Test Data? Introducing Safety Analysis for Computer
Vision,
IJCV(125), No. 1-3, December 2018, pp. 95-109.
Springer DOI
1711
BibRef
Earlier:
CV-HAZOP: Introducing Test Data Validation for Computer Vision,
ICCV15(2066-2074)
IEEE DOI
1602
Apply to stereo. Check list of 900 hazards.
Benchmark testing. Find the tests that are a problem.
BibRef
Lapin, M.[Maksim],
Hein, M.[Matthias],
Schiele, B.[Bernt],
Analysis and Optimization of Loss Functions for Multiclass, Top-k,
and Multilabel Classification,
PAMI(40), No. 7, July 2018, pp. 1533-1554.
IEEE DOI
1806
BibRef
Earlier:
Loss Functions for Top-k Error: Analysis and Insights,
CVPR16(1468-1477)
IEEE DOI
1612
Algorithm design and analysis, Benchmark testing, Calibration,
Loss measurement, Optimization, Support vector machines, Training,
top-k error.
Evaluation of evaluation techniques. Large test datasets may
have other criteria.
BibRef
Sahu, P.[Pritish],
Sikka, K.[Karan],
Divakaran, A.[Ajay],
Challenges in Procedural Multimodal Machine Comprehension:
A Novel Way To Benchmark,
WACV22(526-535)
IEEE DOI
2202
Visualization, Systematics, Correlation, Statistical analysis,
Benchmark testing, Transformers, Cognition, Datasets,
Analysis and Understanding
BibRef
Lou, Y.J.[Yu-Jing],
You, Y.[Yang],
Li, C.K.[Cheng-Kun],
Cheng, Z.J.[Zhou-Jun],
Li, L.W.[Liang-Wei],
Ma, L.Z.[Li-Zhuang],
Wang, W.M.[Wei-Ming],
Lu, C.W.[Ce-Wu],
Human Correspondence Consensus for 3d Object Semantic Understanding,
ECCV20(XXII:496-512).
Springer DOI
2011
Human consensus varies on different aspects of the problem.
BibRef
Zendel, O.,
Honauer, K.,
Murschitz, M.,
Humenberger, M.,
Domínguez, G.F.,
Analyzing Computer Vision Data: The Good, the Bad and the Ugly,
CVPR17(6670-6680)
IEEE DOI
1711
Algorithm design and analysis, Cameras,
Measurement, Roads, Simultaneous localization and mapping, Stereo, vision
BibRef
Rivera-Rubio, J.[Jose],
Idrees, S.[Saad],
Alexiou, I.[Ioannis],
Hadjilucas, L.[Lucas],
Bharath, A.A.[Anil A.],
A dataset for Hand-Held Object Recognition,
ICIP14(5881-5885)
IEEE DOI
1502
Dataset, Object Recognition.
BibRef
And:
Small Hand-Held Object Recognition Test (SHORT),
WACV14(524-531)
IEEE DOI
1406
BibRef
Earlier:
Mobile Visual Assistive Apps:
Benchmarks of Vision Algorithm Performance,
ACVR13(30-40).
Springer DOI
1309
Computer vision
Cameras
BibRef
Gala, A.[Apurva],
Shah, S.[Shishir],
Joint Modeling of Algorithm Behavior and Image Quality for Algorithm
Performance Prediction,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Scrapper, C.,
Madhavan, R.,
Balakirsky, S.,
Using a High-Fidelity Simulation Framework for Performance Singularity,
AIPR07(57-62).
IEEE DOI
0710
Without ground truth, algorithm evaluation to find singularities in
results.
BibRef
Fraedrich, D.,
Validation Techniques for Image-Based Simulations,
AIPR06(21-21).
IEEE DOI
0610
BibRef
Zanibbi, R.[Richard],
Blostein, D.[Dorothea],
Cordy, J.R.[James R.],
White-Box Evaluation of Computer Vision Algorithms through Explicit
Decision-Making,
CVS09(295-304).
Springer DOI
0910
BibRef
Tesser, H.[Herbert],
Trout, T.[Theron],
A Note on Evaluation of Image Recognition Systems,
SCIA03(60-66).
Springer DOI
0310
BibRef
Eberst, C.[Christof],
Herbig, T.[Thomas],
On the Application of the Concept of Dependability for Design and
Analysis of Vision Systems,
CVS03(290 ff).
Springer DOI
0306
BibRef
Lucas, S.,
Sarampalis, K.,
Automatic Evaluation of Algorithms Over the Internet,
ICPR00(Vol II: 471-474).
IEEE DOI
0009
BibRef
Tu, P.,
Hartley, R.,
Statistical Significance as an Aid to System Performance Evaluation,
ECCV00(II: 366-378).
Springer DOI
0003
BibRef
Yachik, T.R.[Theodore R.],
Gilfillan, L.[Lynne],
Evaluations of Large, Complex Research and Development Programs:
Theory and Practice,
DARPA97(1291-1304).
BibRef
9700
Jensen, E.S.[Eric S.],
Thompson, W.B.[William B.],
Quantitative Comparison of IU Algorithms,
DARPA97(1007-1010).
BibRef
9700
Appenzeller, G.,
Crowley, J.L.,
Experimental Performance Characterization of Low Level Vision Components
in Vision Systems: Theory and Application,
IMAG-PRIMA1995.
BibRef
9500
Stoica, P.,
Performance Evaluation of Some Methods for Off-Line Detection of
Changes In Autoregressive Signals,
PESIPS93(XX-YY).
BibRef
9300
Vogt, R.C.,
The Role of Performance Evaluation in
Automated Image Algorithm Generation,
PESIPS93(XX-YY).
See also Automatic Generation of Simple Morphological Algorithms.
BibRef
9300
Weber, W.G.,
Ulich, E.,
Psychological Criteria for the Evaluation of Different Forms of
Group Work in Advanced Manufacturing Systems,
HCI93(26-31).
BibRef
9300
Kirsch, C.,
Evaluation of Communication Methods for User Participation in
Data Modeling,
HCI93(558-63).
BibRef
9300
Nielsen, J.,
Characterization of Vision Algorithms: An Experimental Approach,
Bench95(XX-YY).
BibRef
9500
Wu, H.R.,
Paplinski, A.P.,
Jian, Q.X.,
Yuen, M.,
Performance Evaluation of
Spatial Dynamic Motion Compensation Algorithms,
SPIE(2419), 1995, pp. xx-yy. San Jose, California.
BibRef
9500
Courtney, P.,
Skordas, T.,
Caracterisation De Performances Des Algorithmes De Vision:
Un Exemple: Le Detecteur De Coins,
Proceedings RFIA 10 1996(953-962). Rennes, France.
BibRef
9600
Hori, O.,
Doermann, D.S.,
Quantitative Measurement of the Performance of
Raster-to-Vector Conversion Algorithms,
GRMA951996, pp. 57-68.
BibRef
9600
Christmas, W.J.,
Kittler, J.V., and
Petrou, M.,
Error Propagation for 2D-to-3D Matching with Application to
Underwater Navigation,
BMVC96(Poster Session 2).
9608
University of Surrey
BibRef
Förstner, W.,
10 Pros and Cons Against Performance Characterisation
of Vision Algorithms,
PERF96(XX-YY).
HTML Version.
HTML Version.
BibRef
9600
Ramesh, V.,
Haralick, R.M.,
Random perturbation models and performance characterization in computer
vision,
CVPR92(521-527).
IEEE DOI
0403
BibRef
Petkovic, D.,
The Need for Accuracy Verification of Machine Vision Algorithms
and Systems,
CVPR89(439-440).
IEEE DOI
BibRef
8900
Chapter on Books, Collections, Overviews, General, and Surveys continues in
Education Issues, Instructional Media .