Koffka, K.,
Principles of Gestalt Psychology,
New York:
Harcourt, Brace and World1935.
BibRef
3500
BookGeneral Gestalt psychology book.
BibRef
Garner, W.R.,
The Processing of Information and Structure,
Erlbaum1974.
BibRef
7400
Kanizsa, G.,
Organization in Vision: Essays on Gestalt Perception,
New York:
Praeger1979.
The vision reference to grouping and Gestalt psychology.
BibRef
7900
Attneave, F.,
Some Informational Aspects of Visual Perception,
PsychR(61), No. 3, 1954, pp. 183-193.
DOI Link Apply Information Theory concepts to perception.
Information is concentrated at points of high curvature.
BibRef
5400
Attneave, F., and
Arnoult, M.D.,
The Quantitative Study of Shape and Pattern Perception,
PsychBul(xx), 1956, pp. 452-471.
BibRef
5600
Hochberg, J.E.,
McAllister, E.,
A Quantitative Approach to Figural 'Goodness',
JEP(46), 1953, pp. 361-364.
BibRef
5300
Zahn, C.T.,
Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters,
TC(20), No. 1, January 1971, pp. 68-86.
Using a graph representation for finding clusters.
BibRef
7101
Zobrist, A.L., and
Thompson, W.B.,
Building a Distance Function for Gestalt Grouping,
TC(24), No. 7, July 1975, pp. 711-719.
BibRef
7507
Zucker, S.W.[Steven W.],
Computational and Psychophysical Experiments in Grouping:
Early Orientation Selection,
HMV83(545-567).
BibRef
8300
Zucker, S.W.[Steven W.],
Early Orientation Selection: Tangent Fields and the
Dimensionality of Their Support,
CVGIP(32), No. 1, October 1985, pp. 74-103.
Elsevier DOI
BibRef
8510
And:
RCV87(333-347).
inference of orientation information in image.
BibRef
Zucker, S.W.[Steven W.],
Early Orientation Selection:
Inferring Trace, Tangent, and Curvature Fields,
PRAI(2), 1988, pp. 443-457.
BibRef
8800
And:
ICPR86(294-302).
BibRef
Palmer, S.E.,
The Psychology of Perceptual Organization: A Transformational Approach,
HMV83(269-339).
Use local invariance over a group of transformations.
BibRef
8300
Witkin, A.P., and
Tenenbaum, J.M.,
On the Role of Structure in Vision,
HMV83(481-543).
BibRef
8300
And:
What is Perceptual Organization for?,
IJCAI83(XX-YY).
Non-accidentalness. Regular relationships do not arise from accidents.
BibRef
Treisman, A.[Anne],
Preattentive Processing in Vision,
CVGIP(31), No. 2, August 1985, pp. 156-177.
Elsevier DOI
BibRef
8508
Leyton, M.[Michael],
Generative Systems Of Analyzers,
CVGIP(31), No. 2, August 1985, pp. 201-241.
Elsevier DOI
BibRef
8508
Leyton, M.[Michael],
Perceptual Organization as Nested Control,
BioCyber(51), 1984, pp. 141-153.
BibRef
8400
Leyton, M.[Michael],
Nested structures of control: An intuitive view,
CVGIP(37), No. 1, January 1987, pp. 20-53.
Elsevier DOI
0501
BibRef
Triesman, A.,
Perceptual Grouping and Attention in Visual Search for
Features and Objects,
JEP:HPP(8), No. 2, 1982, pp. 194-214.
BibRef
8200
Pentland, A.P.,
Perceptual Organization and the Representation of Natural Form,
AI(28), No. 3, May 1986, pp. 293-331.
Elsevier DOI
Deformable Solids. Parts, descriptions reflect possible formative history of the object.
BibRef
8605
Yip, K., and
Zhao, F.,
Spatial Aggregation: Theory and Applications,
JAIR(5), 1996, pp. 1-26.
HTML Version. Imagistic reasoning to produce a description of the structure,
behavior, or control actions.
BibRef
9600
Murino, V.,
Regazzoni, C.S.,
Foresti, G.L.,
Grouping as a Searching Process for Minimum-Energy Configurations of
Labeled Random-Fields,
CVIU(64), No. 1, July 1996, pp. 157-174.
DOI Link
9608
See also Grouping of Rectilinear Segments by the Labeled Hough Transform.
BibRef
Castaño, R.L.,
Hutchinson, S.A.[Seth A.],
A Probabilistic Approach to Perceptual Grouping,
CVIU(64), No. 3, November 1996, pp. 399-419.
DOI Link
9612
BibRef
Earlier:
A Probabilistic Framework for Grouping Image Features,
SCV95(611-616).
IEEE DOI University of Illinois at Urbana-Champaign.
BibRef
Bottoni, P.,
Cinque, L.,
Levialdi, S.,
Mussio, P.,
Matching the Resolution Level to Salient Image Features,
PR(31), No. 1, January 1998, pp. 89-104.
Elsevier DOI
9802
BibRef
Bottoni, P.,
Cinque, L.,
Levialdi, S.,
Lombardi, L.,
Mussio, P.,
Combining resolution and granularity for pattern recognition,
CIAP95(502-508).
Springer DOI
9509
BibRef
Bottoni, P.,
Mussio, P.,
Protti, M.,
Metareasoning as a tool for pattern recognition,
ICPR92(II:285-289).
IEEE DOI
9208
BibRef
Vasseur, P.,
Pegard, C.,
Mouaddib, E.M.,
Delahoche, L.,
Perceptual organization approach based on Dempster-Shafer theory,
PR(32), No. 8, August 1999, pp. 1449-1462.
Elsevier DOI For object detection.
BibRef
9908
Roerdink, J.B.T.M.[Jos B.T.M.],
Group morphology,
PR(33), No. 6, June 2000, pp. 877-895.
Elsevier DOI
0004
BibRef
And:
Corrigendum:
PR(96), 2019, pp. 106978.
Elsevier DOI
1909
BibRef
Roerdink, J.B.T.M.[Jos B.T.M.],
Adaptivity and group invariance in mathematical morphology,
ICIP09(2253-2256).
IEEE DOI
0911
BibRef
Jacobs, D.W.[David W.],
Lindenbaum, M.[Michael],
Guest editors' introduction to the special section on perceptual
organization in computer vision,
PAMI(25), No. 4, April 2003, pp. 385-386.
IEEE Abstract.
0304
BibRef
And:
PAMI(25), No. 6, June 2003, pp. 641-641.
IEEE Abstract.
0306
Two issues.
Papers grew out of the POCV workshop
(see
BibRef
PercOrg01)
BibRef
Engbers, E.A.[Erik A.],
Smeulders, A.W.M.[Arnold W.M.],
Design considerations for generic grouping in vision,
PAMI(25), No. 4, April 2003, pp. 445-457.
IEEE Abstract.
0304
Formal characterization of perceptual grouping.
BibRef
Desolneux, A.[Agnes],
Moisan, L.[Lionel],
Morel, J.M.[Jean-Michel],
A grouping principle and four applications,
PAMI(25), No. 4, April 2003, pp. 508-513.
IEEE Abstract.
0304
Statistical criterion to test whether a cluster is meaningful.
See also Meaningful Alignments.
See also Edge Detection by Helmholtz Principle.
See also Dequantizing image orientation.
BibRef
Yantis, S.,
How visual salience wins the battle for awareness,
Nature Neuroscience(8), No. 8, 2005, pp. 975-977.
BibRef
0500
Berengolts, A.[Alexander],
Lindenbaum, M.[Michael],
On the Distribution of Saliency,
PAMI(28), No. 12, December 2006, pp. 1973-1990.
IEEE DOI
0611
BibRef
Earlier:
CVPR04(II: 543-549).
IEEE DOI
0408
BibRef
Lindenbaum, M.,
Berengolts, A.,
A Probabilistic Interpretation of the Saliency Network,
ECCV00(II: 257-272).
Springer DOI
0003
BibRef
Zlatoff, N.[Nicolas],
Tellez, B.[Bruno],
Baskurt, A.[Atilla],
Combining local belief from low-level primitives for perceptual
grouping,
PR(41), No. 4, April 2008, pp. 1215-1229.
Elsevier DOI
0801
BibRef
Earlier:
Image understanding and scene models: a generic framework integrating
domain knowledge and gestalt theory,
ICIP04(IV: 2355-2358).
IEEE DOI
0505
Perceptual grouping, Segmentation, Gestalt laws;
Pre-attentive vision, Dempster-Shafer
BibRef
Desolneux, A.[Agnès],
Moisan, L.[Lionel],
Morel, J.M.[Jean-Michel],
From Gestalt Theory to Image Analysis:
A Probabilistic Approach,
Springer2008, ISBN: 978-0-387-72635-9.
WWW Link.
See also ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics.
BibRef
0800
Desolneux, A.[Agnès],
A Probabilistic Grouping Principle to Go from Pixels to Visual
Structures,
DGCI11(1-12).
Springer DOI
1104
BibRef
Pal, R.,
Mukherjee, A.,
Mitra, P.,
Mukherjee, J.,
Modelling visual saliency using degree centrality,
IET-CV(4), No. 3, September 2010, pp. 218-229.
DOI Link
1008
BibRef
Rahman, A.,
Houzet, D.,
Pellerin, D.,
Marat, S.,
Guyader, N.,
Parallel implementation of a spatio-temporal visual saliency model,
RealTimeIP(6), No. 1, March 2011, pp. 3-14.
WWW Link.
1103
BibRef
Seo, H.J.[Hae Jong],
Milanfar, P.[Peyman],
Static and Space-Time Visual Saliency Detection by Self-Resemblance,
Vision(9), No. 12, 2009, pp. 1-17.
DOI Link
BibRef
0900
Earlier:
Nonparametric bottom-up saliency detection by self-resemblance,
VCL-ViSU09(45-52).
IEEE DOI
0906
Bottom-up detection.
BibRef
Goferman, S.[Stas],
Zelnik-Manor, L.[Lihi],
Tal, A.[Ayellet],
Context-Aware Saliency Detection,
PAMI(34), No. 10, October 2012, pp. 1915-1926.
IEEE DOI
1208
BibRef
Earlier:
CVPR10(2376-2383).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Margolin, R.[Ran],
Zelnik-Manor, L.[Lihi],
Tal, A.[Ayellet],
Saliency for image manipulation,
VC(29), No. 5, May 2013, pp. 381-392.
WWW Link.
1305
BibRef
Margolin, R.[Ran],
Zelnik-Manor, L.[Lihi],
Tal, A.[Ayellet],
How to Evaluate Foreground Maps,
CVPR14(248-255)
IEEE DOI
1409
evaluation, foreground extraction, meta-measure, saliency
BibRef
Duncan, K.[Kester],
Sarkar, S.[Sudeep],
Saliency in images and video: a brief survey,
IET-CV(6), No. 6, 2012, pp. 514-523.
DOI Link
1301
BibRef
Duncan, K.[Kester],
Sarkar, S.[Sudeep],
Relational entropy-based saliency detection in images and videos,
ICIP12(1093-1096).
IEEE DOI
1302
BibRef
Earlier:
REM: Relational Entropy-Based Measure of Saliency,
ICCVGIP10(40-47).
DOI Link
1111
BibRef
Xie, Y.L.[Yu-Lin],
Lu, H.C.[Hu-Chuan],
Yang, M.H.[Ming-Hsuan],
Bayesian Saliency via Low and Mid Level Cues,
IP(22), No. 5, May 2013, pp. 1689-1698.
IEEE DOI
1303
BibRef
Xu, L.F.[Lin-Feng],
Li, H.L.[Hong-Liang],
Zeng, L.Y.[Liao-Yuan],
Ngan, K.N.[King Ngi],
Saliency detection using joint spatial-color constraint and multi-scale
segmentation,
JVCIR(24), No. 4, May 2013, pp. 465-476.
Elsevier DOI
1305
Visual attention, Saliency model, Region detection, Human fixation
prediction, Spatial constraint, Color double-opponent, Similarity
distribution, Multi-scale technique, Segmentation-based method
BibRef
Tang, L.,
Li, H.,
Wu, Q.,
Ngan, K.N.[King Ngi],
Boundary-Guided Optimization Framework for Saliency Refinement,
SPLetters(25), No. 4, April 2018, pp. 491-495.
IEEE DOI
1804
convex programming, convolution, feedforward neural nets,
image segmentation, object detection, smoothing methods,
saliency detection
BibRef
Duits, R.,
Boscain, U.,
Rossi, F.,
Sachkov, Y.,
Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2),
JMIV(49), No. 2, June 2014, pp. 384-417.
Springer DOI
1405
Gestalt perception fields.
BibRef
Li, J.[Jia],
Gao, W.[Wen],
Visual Saliency Computation,
Zhou, J.B.[Jing-Bo],
Gao, S.B.[Shang-Bing],
Yan, Y.Y.[Yun-Yang],
Jin, Z.[Zhong],
Saliency detection framework via linear neighbourhood propagation,
IET-IPR(8), No. 12, 2014, pp. 804-814.
DOI Link
1412
graph theory
BibRef
Chen, C.Z.[Chengli-Zhao],
Li, S.[Shuai],
Qin, H.[Hong],
Hao, A.[Aimin],
Structure-Sensitive Saliency Detection via Multilevel Rank Analysis
in Intrinsic Feature Space,
IP(24), No. 8, August 2015, pp. 2303-2316.
IEEE DOI
1505
Correlation
BibRef
Chen, C.Z.[Chengli-Zhao],
Li, S.[Shuai],
Qin, H.[Hong],
Hao, A.[Aimin],
Real-Time and Robust Object Tracking in Video via Low-Rank Coherency
Analysis in Feature Space,
PR(48), No. 9, 2015, pp. 2885-2905.
Elsevier DOI
1506
Localized compressive sensing representation
BibRef
Liang, M.,
Hu, X.,
Feature Selection in Supervised Saliency Prediction,
Cyber(45), No. 5, May 2015, pp. 900-912.
IEEE DOI
1505
Accuracy
BibRef
Ma, X.L.[Xiao-Long],
Xie, X.D.[Xu-Dong],
Lam, K.M.[Kin-Man],
Hu, J.M.[Jian-Ming],
Zhong, Y.S.[Yi-Sheng],
Saliency detection based on singular value decomposition,
JVCIR(32), No. 1, 2015, pp. 95-106.
Elsevier DOI
1511
Gaussian filter
BibRef
Li, J.[Jia],
Fang, S.[Shu],
Tian, Y.H.[Yong-Hong],
Huang, T.J.[Tie-Jun],
Chen, X.W.[Xiao-Wu],
Image saliency estimation via random walk guided by informativeness
and latent signal correlations,
SP:IC(38), No. 1, 2015, pp. 3-14.
Elsevier DOI
1512
Image saliency
BibRef
Koutras, P.[Petros],
Maragos, P.[Petros],
A perceptually based spatio-temporal computational framework for
visual saliency estimation,
SP:IC(38), No. 1, 2015, pp. 15-31.
Elsevier DOI
1512
Spatio-temporal visual frontend
BibRef
Yu, J.G.,
Xia, G.S.,
Gao, C.,
Samal, A.,
A Computational Model for Object-Based Visual Saliency:
Spreading Attention Along Gestalt Cues,
MultMed(18), No. 2, February 2016, pp. 273-286.
IEEE DOI
1601
Biological system modeling
BibRef
Niu, Y.Z.[Yu-Zhen],
Ke, L.L.[Ling-Ling],
Guo, W.Z.[Wen-Zhong],
Evaluation of visual saliency analysis algorithms in noisy images,
MVA(27), No. 5, August 2016, pp. 915-927.
WWW Link.
1609
BibRef
Niu, Y.Z.[Yu-Zhen],
Lin, W.Q.[Wen-Qi],
Ke, X.[Xiao],
Ke, L.L.[Ling-Ling],
Fitting-based optimisation for image visual salient object detection,
IET-CV(11), No. 2, March 2017, pp. 161-172.
DOI Link
1703
BibRef
Niu, Y.Z.[Yu-Zhen],
Lin, W.Q.[Wen-Qi],
Ke, X.[Xiao],
CF-based optimisation for saliency detection,
IET-CV(12), No. 4, June 2018, pp. 365-376.
DOI Link
1805
BibRef
Chen, Z.H.[Zhi-Hui],
Wang, H.Z.[Han-Zi],
Zhang, L.M.[Li-Ming],
Yan, Y.[Yan],
Liao, H.Y.M.[Hong-Yuan Mark],
Visual saliency detection based on homology similarity and an
experimental evaluation,
JVCIR(40, Part A), No. 1, 2016, pp. 251-264.
Elsevier DOI
1609
Homology similarity
BibRef
Chen, S.H.[Shu-Han],
Zheng, L.[Ling],
Hu, X.L.[Xue-Long],
Zhou, P.[Ping],
Discriminative saliency propagation with sink points,
PR(60), No. 1, 2016, pp. 2-12.
Elsevier DOI
1609
Saliency Detection
BibRef
Xu, Y.Y.[Ying-Yue],
Hong, X.P.[Xiao-Peng],
Liu, X.[Xin],
Zhao, G.Y.[Guo-Ying],
Saliency detection via bi-directional propagation,
JVCIR(53), 2018, pp. 113-121.
Elsevier DOI
1805
Saliency detection, Bi-directional, Propagation
BibRef
Ling, J.[Jing],
Zhang, K.[Kao],
Zhang, Y.X.[Ying-Xue],
Yang, D.Q.[Dai-Qin],
Chen, Z.Z.[Zhen-Zhong],
A saliency prediction model on 360 degree images using color
dictionary based sparse representation,
SP:IC(69), 2018, pp. 60-68.
Elsevier DOI
1811
360° images, Saliency prediction, Color dictionary,
Sparse representation, Latitude-bias
BibRef
Fang, Y.M.[Yu-Ming],
Zhang, X.Q.[Xiao-Qiang],
Imamoglu, N.[Nevrez],
A novel superpixel-based saliency detection model for 360-degree
images,
SP:IC(69), 2018, pp. 1-7.
Elsevier DOI
1811
Visual attention, 360-degree image, Saliency detection,
Figure-ground law, Boundary connectivity, Gestalt theory
BibRef
Startsev, M.[Mikhail],
Dorr, M.[Michael],
360-aware saliency estimation with conventional image saliency
predictors,
SP:IC(69), 2018, pp. 43-52.
Elsevier DOI
1811
Saliency prediction, Equirectangular projection, Panoramic images
BibRef
Battisti, F.[Federica],
Baldoni, S.[Sara],
Brizzi, M.[Michele],
Carli, M.[Marco],
A feature-based approach for saliency estimation of omni-directional
images,
SP:IC(69), 2018, pp. 53-59.
Elsevier DOI
1811
Saliency estimation, Human fixation, Omni-directional images, 360° images
BibRef
Jia, N.[Ning],
Zhao, W.D.[Wei-Dong],
Liu, X.H.[Xian-Hui],
Dempster-Shafer theory-based hierarchical saliency detection,
IJIST(29), No. 3, September 2019, pp. 329-338.
DOI Link
1908
BibRef
Cong, R.,
Lei, J.,
Fu, H.,
Cheng, M.,
Lin, W.,
Huang, Q.,
Review of Visual Saliency Detection With Comprehensive Information,
CirSysVideo(29), No. 10, October 2019, pp. 2941-2959.
IEEE DOI
1910
feature extraction, image colour analysis,
image motion analysis, image sequences, object detection,
spatiotemporal constraint
BibRef
Zhang, H.M.[Heng-Min],
Qian, J.J.[Jian-Jun],
Zhang, B.[Bob],
Yang, J.[Jian],
Gong, C.[Chen],
Wei, Y.[Yang],
Low-Rank Matrix Recovery via Modified Schatten-p Norm Minimization
With Convergence Guarantees,
IP(29), 2020, pp. 3132-3142.
IEEE DOI
2002
Low-rank matrix recovery, modified Schatten-p norm,
iterative singular value thresholding algorithm,
convergence guarantees
BibRef
Li, J.X.[Jun-Xia],
Ding, J.[Jundi],
Yang, J.[Jian],
Visual Salience Learning via Low Rank Matrix Recovery,
ACCV14(III: 112-127).
Springer DOI
1504
BibRef
Yu, H.,
Zheng, K.,
Fang, J.,
Guo, H.,
Wang, S.,
A New Method and Benchmark for Detecting Co-Saliency Within a Single
Image,
MultMed(22), No. 12, December 2020, pp. 3051-3063.
IEEE DOI
2011
Saliency detection, Proposals, Benchmark testing,
Object recognition, Streaming media, Image segmentation,
low-rank based fusion
BibRef
Yamanaka, T.[Takao],
Suzuki, T.[Tatsuya],
Nobutsune, T.[Taiki],
Wu, C.[Chenjunlin],
Multi-Scale Estimation for Omni-Directional Saliency Maps Using
Learnable Equator Bias,
IEICE(E106-D), No. 10, October 2023, pp. 1723-1731.
WWW Link.
2310
BibRef
Yang, F.Z.[Fa-Zhan],
Guo, X.G.[Xing-Ge],
Liang, S.[Song],
Zhao, P.P.[Pei-Pei],
Li, S.H.[Shan-Hua],
Siamese Transformer for Saliency Prediction Based on Multi-Prior
Enhancement and Cross-Modal Attention Collaboration,
IEICE(E106-D), No. 9, September 2023, pp. 1572-1583.
WWW Link.
2310
BibRef
Malladi, S.P.K.[Sai Phani Kumar],
Mukherjee, J.[Jayanta],
Larabi, M.C.[Mohamed-Chaker],
Chaudhury, S.[Santanu],
Towards explainable deep visual saliency models,
CVIU(235), 2023, pp. 103782.
Elsevier DOI
2310
Explainable saliency, Human perception, Log-Gabor filters, Color perception
BibRef
Chen, S.[Shi],
Valliappan, N.[Nachiappan],
Shen, S.L.[Shao-Lei],
Ye, X.Y.[Xin-Yu],
Kohlhoff, K.[Kai],
He, J.F.[Jun-Feng],
Learning from Unique Perspectives: User-aware Saliency Modeling,
CVPR23(2701-2710)
IEEE DOI
2309
BibRef
Zhu, D.D.[Dan-Dan],
Chen, Y.Q.[Yong-Qing],
Min, X.K.[Xiong-Kuo],
Zhao, D.F.[De-Fang],
Zhu, Y.C.[Yu-Cheng],
Zhou, Q.Q.[Qiang-Qiang],
Yang, X.K.[Xiao-Kang],
Han, T.[Tian],
Saliency Prediction on Omnidirectional Images with Brain-Like Shallow
Neural Network,
ICPR21(1665-1671)
IEEE DOI
2105
Training, Visualization, Biological system modeling,
Random access memory, Predictive models, Visual systems, Brain modeling
BibRef
Thakur, S.[Shailja],
Fischmeister, S.[Sebastian],
A generalizable saliency map-based interpretation of model outcome,
ICPR21(4099-4106)
IEEE DOI
2105
Sensitivity, Neural networks, Machine learning, Data models
BibRef
Zhang, Z.[Zhao],
Jin, W.[Wenda],
Xu, J.[Jun],
Cheng, M.M.[Ming-Ming],
Gradient-Induced Co-Saliency Detection,
ECCV20(XII: 455-472).
Springer DOI
2010
BibRef
Fosco, C.[Camilo],
Newman, A.[Anelise],
Sukhum, P.[Pat],
Zhang, Y.B.[Yun Bin],
Zhao, N.X.[Nan-Xuan],
Oliva, A.[Aude],
Bylinskii, Z.[Zoya],
How Much Time Do You Have? Modeling Multi-Duration Saliency,
CVPR20(4472-4481)
IEEE DOI
2008
What you see quickly.
Face, Predictive models, Data models,
Computational modeling, Visualization, Task analysis
BibRef
Tsiami, A.,
Koutras, P.,
Maragos, P.,
STAViS: Spatio-Temporal AudioVisual Saliency Network,
CVPR20(4765-4775)
IEEE DOI
2008
Visualization, Videos, Estimation, Fuses,
Databases, Task analysis
BibRef
Rebuffi, S.,
Fong, R.,
Ji, X.,
Vedaldi, A.,
There and Back Again: Revisiting Backpropagation Saliency Methods,
CVPR20(8836-8845)
IEEE DOI
2008
Computational modeling, Predictive models,
Sensitivity, Feature extraction, Backpropagation
BibRef
Siris, A.,
Jiao, J.,
Tam, G.K.L.,
Xie, X.,
Lau, R.W.H.,
Inferring Attention Shift Ranks of Objects for Image Saliency,
CVPR20(12130-12140)
IEEE DOI
2008
Visualization, Observers, Psychology, Object detection, Proposals,
Predictive models, Task analysis
BibRef
Kim, B.,
Seo, J.,
Jeon, S.,
Koo, J.,
Choe, J.,
Jeon, T.,
Why are Saliency Maps Noisy? Cause of and Solution to Noisy Saliency
Maps,
VXAI19(4149-4157)
IEEE DOI
2004
backpropagation, feature extraction, image denoising,
image segmentation, neural nets, noisy saliency maps,
Attribution-Map
BibRef
Buzzelli, M.[Marco],
Bianco, S.[Simone],
Ciocca, G.[Gianluigi],
Combining Saliency Estimation Methods,
CIAP19(II:326-336).
Springer DOI
1909
BibRef
Boccignone, G.[Giuseppe],
Cuculo, V.[Vittorio],
d'Amelio, A.[Alessandro],
Problems with Saliency Maps,
CIAP19(II:35-46).
Springer DOI
1909
BibRef
Cornia, M.,
Baraldi, L.,
Serra, G.,
Cucchiara, R.,
SAM: Pushing the Limits of Saliency Prediction Models,
WiCV18(1971-19712)
IEEE DOI
1812
Predictive models, Visualization, Measurement, Feature extraction,
Computational modeling
BibRef
Yohanandan, S.[Shivanthan],
Song, A.[Andy],
Dyer, A.G.[Adrian G.],
Tao, D.C.[Da-Cheng],
Saliency Preservation in Low-Resolution Grayscale Images,
ECCV18(VI: 237-254).
Springer DOI
1810
BibRef
Kümmerer, M.[Matthias],
Wallis, T.S.A.[Thomas S. A.],
Bethge, M.[Matthias],
Saliency Benchmarking Made Easy: Separating Models, Maps and Metrics,
ECCV18(XVI: 798-814).
Springer DOI
1810
BibRef
Yan, G.[Geng],
Wang, Y.[Yang],
Liao, Z.C.[Zi-Cheng],
LSTM for Image Annotation with Relative Visual Importance,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Hwang, I.,
Park, J.S.,
Park, G.Y.,
Cho, N.I.,
Image co-saliency detection based on clustering and diffusion process,
VCIP16(1-4)
IEEE DOI
1701
Clustering algorithms
BibRef
Wloka, C.[Calden],
Tstotsos, J.K.[John K.],
Spatially Binned ROC: A Comprehensive Saliency Metric,
CVPR16(525-534)
IEEE DOI
1612
BibRef
Wang, Q.S.[Qiao-Song],
Zheng, W.[Wen],
Piramuthu, R.[Robinson],
GraB: Visual Saliency via Novel Graph Model and Background Priors,
CVPR16(535-543)
IEEE DOI
1612
BibRef
Bruce, N.D.B.[Neil D. B.],
Catton, C.[Christopher],
Janjic, S.[Sasa],
A Deeper Look at Saliency: Feature Contrast, Semantics, and Beyond,
CVPR16(516-524)
IEEE DOI
1612
BibRef
Jiang, M.[Ming],
Boix, X.[Xavier],
Xu, J.[Juan],
Roig, G.[Gemma],
Van Gool, L.J.[Luc J.],
Zhao, Q.[Qi],
Saliency Prediction with Active Semantic Segmentation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Sharma, P.[Puneet],
Eiksund, O.[Oddmar],
Group Based Asymmetry: A Fast Saliency Algorithm,
ISVC15(I: 901-910).
Springer DOI
1601
BibRef
Kapoor, A.[Aditi],
Biswas, K.K.,
Hanmandlu, M.,
Effective Information and Contrast Based Saliency Detection,
ISVC15(II: 195-204).
Springer DOI
1601
BibRef
Ardizzone, E.[Edoardo],
Bruno, A.[Alessandro],
Greco, L.[Luca],
La Cascia, M.[Marco],
Why You Trust in Visual Saliency,
QoEM15(589-596).
Springer DOI
1511
BibRef
Khatoonabadi, S.H.[Sayed Hossein],
Vasconcelos, N.M.[Nuno M.],
Bajic, I.V.[Ivan V.],
Shan, Y.F.[Yu-Feng],
How many bits does it take for a stimulus to be salient?,
CVPR15(5501-5510)
IEEE DOI
1510
BibRef
Mauthner, T.[Thomas],
Possegger, H.[Horst],
Waltner, G.[Georg],
Bischof, H.[Horst],
Encoding based saliency detection for videos and images,
CVPR15(2494-2502)
IEEE DOI
1510
BibRef
Gong, C.[Chen],
Tao, D.C.[Da-Cheng],
Liu, W.[Wei],
Maybank, S.J.,
Fang, M.[Meng],
Fu, K.[Keren],
Yang, J.[Jie],
Saliency propagation from simple to difficult,
CVPR15(2531-2539)
IEEE DOI
1510
BibRef
Jiang, M.[Ming],
Huang, S.S.[Sheng-Sheng],
Duan, J.Y.[Juan-Yong],
Zhao, Q.[Qi],
SALICON: Saliency in Context,
CVPR15(1072-1080)
IEEE DOI
1510
BibRef
Frintrop, S.[Simone],
Werner, T.[Thomas],
Garcia, G.M.[German M.],
Traditional saliency reloaded: A good old model in new shape,
CVPR15(82-90)
IEEE DOI
1510
BibRef
Sun, X.S.[Xiao-Shuai],
Yao, H.X.[Hong-Xun],
Exploring covert attention for generic boosting of saliency models,
ICIP14(1179-1183)
IEEE DOI
1502
Boosting
BibRef
Blusseau, S.,
Carboni, A.,
Maiche, A.,
Morel, J.M.,
von Gioi, R.G.[R. Grompone],
A psychophysical evaluation of the a contrario detection theory,
ICIP14(1091-1095)
IEEE DOI
1502
Brain models.
observed configuration is relevant only when it is
unlikely to appear just by chance.
BibRef
Rahman, S.[Shafin],
Rochan, M.[Mrigank],
Wang, Y.[Yang],
Bruce, N.D.B.[Neil D.B.],
Examining visual saliency prediction in naturalistic scenes,
ICIP14(4082-4086)
IEEE DOI
1502
Benchmark testing
BibRef
Guo, D.Y.[Dong-Yan],
Zhang, J.[Jian],
Xu, M.[Min],
He, X.J.[Xiang-Jian],
Li, M.X.[Min-Xian],
Zhao, C.X.[Chun-Xia],
A Multiple Features Distance Preserving (MFDP) Model for Saliency
Detection,
DICTA14(1-7)
IEEE DOI
1502
feature extraction
BibRef
Heo, B.[Byeongho],
Jeong, H.[Hawook],
Kim, J.[Jiyun],
Choi, S.I.[Sang-Il],
Choi, J.Y.[Jin Young],
Weighted Pooling Based on Visual Saliency for Image Classification,
ISVC14(I: 647-657).
Springer DOI
1501
BibRef
Nakajima, J.[Jiro],
Sugimoto, A.[Akihiro],
Kawamoto, K.[Kazuhiko],
Incorporating Audio Signals into Constructing a Visual Saliency Map,
PSIVT13(468-480).
Springer DOI
1402
BibRef
Alsam, A.[Ali],
Sharma, P.[Puneet],
Validating the Visual Saliency Model,
SCIA13(153-161).
Springer DOI
1311
BibRef
Alsam, A.[Ali],
Sharma, P.[Puneet],
Wrålsen, A.[Anette],
Asymmetry as a Measure of Visual Saliency,
SCIA13(591-600).
Springer DOI
1311
BibRef
Varadarajan, K.M.[Karthik Mahesh],
Vincze, M.[Markus],
Semantic saliency using k-TR theory of visual perception,
ICPR12(3676-3679).
WWW Link.
1302
BibRef
Zhu, H.[Hao],
Han, B.[Biao],
Ruan, X.[Xiang],
Visual saliency: A manifold way of perception,
ICPR12(2606-2609).
WWW Link.
1302
BibRef
Huang, J.B.[Jia-Bin],
Ahuja, N.[Narendra],
Saliency detection via divergence analysis: A unified perspective,
ICPR12(2748-2751).
WWW Link.
1302
BibRef
Laine-Hernandez, M.,
Kinnunen, T.,
Kamarainen, J.K.,
Lensu, L.,
Kalviainen, H.,
Oittinen, P.,
Visual saliency and categorisation of abstract images,
ICPR12(2752-2755).
WWW Link.
1302
BibRef
Grant, S.[Shane],
Itti, L.[Laurent],
Saliency mapping enhanced by symmetry from local phase,
ICIP12(653-656).
IEEE DOI
1302
BibRef
Lang, C.Y.[Cong-Yan],
Nguyen, T.V.[Tam V.],
Katti, H.[Harish],
Yadati, K.[Karthik],
Kankanhalli, M.[Mohan],
Yan, S.C.[Shui-Cheng],
Depth Matters: Influence of Depth Cues on Visual Saliency,
ECCV12(II: 101-115).
Springer DOI
1210
BibRef
Niu, Y.Z.[Yu-Zhen],
Geng, Y.J.[Yu-Jie],
Li, X.Q.[Xue-Qing],
Liu, F.[Feng],
Leveraging stereopsis for saliency analysis,
CVPR12(454-461).
IEEE DOI
1208
BibRef
Schauerte, B.[Boris],
Stiefelhagen, R.[Rainer],
Predicting human gaze using quaternion DCT image signature saliency and
face detection,
WACV12(137-144).
IEEE DOI
1203
Award, WACV, Student. Visual saliency, where people will look at an image.
DCT Saliency Map.
Bruce-Tsotsos.
BibRef
Loog, M.[Marco],
Information theoretic preattentive saliency: A closed-form solution,
ITCVPR11(1418-1424).
IEEE DOI
1201
BibRef
Ardizzone, E.[Edoardo],
Bruno, A.[Alessandro],
Gugliuzza, F.[Francesco],
Exploiting Visual Saliency Algorithms for Object-Based Attention:
A New Color and Scale-Based Approach,
CIAP17(II:191-201).
Springer DOI
1711
BibRef
Ardizzone, E.[Edoardo],
Bruno, A.[Alessandro],
Saliency Based Image Cropping,
CIAP13(I:773-782).
Springer DOI
1311
BibRef
Ardizzone, E.[Edoardo],
Bruno, A.[Alessandro],
Mazzola, G.[Giuseppe],
Visual Saliency by Keypoints Distribution Analysis,
CIAP11(I: 691-699).
Springer DOI
1109
See also Detecting multiple copies in tampered images.
BibRef
Rezazadegan Tavakoli, H.[Hamed],
Rahtu, E.[Esa],
Heikkilä, J.[Janne],
Analysis of Sampling Techniques for Learning Binarized Statistical
Image Features Using Fixations and Salience,
CVLBP14(124-134).
Springer DOI
1504
BibRef
And:
Saliency Detection Using Joint Temporal and Spatial Decorrelation,
SCIA13(707-717).
Springer DOI
1311
BibRef
And:
Spherical Center-Surround for Video Saliency Detection Using Sparse
Sampling,
ACIVS13(695-704).
Springer DOI
1311
BibRef
Earlier:
Temporal Saliency for Fast Motion Detection,
BMC12(I:321-326).
Springer DOI
1304
BibRef
Earlier:
Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel
Density Estimation,
SCIA11(666-675).
Springer DOI
1105
BibRef
Wang, W.[Wei],
Wang, Y.Z.[Yi-Zhou],
Huang, Q.M.[Qing-Ming],
Gao, W.[Wen],
Measuring visual saliency by Site Entropy Rate,
CVPR10(2368-2375).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Shi, X.[Xun],
Wang, B.[Bo],
Tsotsos, J.K.[John K.],
Early Recurrence Improves Edge Detection,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Earlier: A1, A3, Only:
Improved Edge Representation via Early Recurrent Inhibition,
CRV12(40-47).
IEEE DOI
1207
BibRef
Bruce, N.D.B.[Neil D.B.],
Shi, X.[Xun],
Tsotsos, J.K.[John K.],
Recurrent Refinement for Visual Saliency Estimation in Surveillance
Scenarios,
CRV12(117-124).
IEEE DOI
1207
BibRef
Bruce, N.D.B.[Neil D.B.],
Shi, X.[Xun],
Simine, E.[Evgueni],
Tsotsos, J.K.[John K.],
Visual Representation in the Determination of Saliency,
CRV11(242-249).
IEEE DOI
1105
BibRef
Shi, X.[Xun],
Bruce, N.D.B.[Neil D.B.],
Tsotsos, J.K.[John K.],
Biologically Motivated Local Contextual Modulation Improves Low-Level
Visual Feature Representations,
ICIAR12(I: 79-88).
Springer DOI
1206
BibRef
Earlier:
Fast, recurrent, attentional modulation improves saliency
representation and scene recognition,
WBCV11(1-8).
IEEE DOI
1106
BibRef
Bruce, N.D.B.[Neil D.B.],
Kornprobst, P.[Pierre],
On the role of context in probabilistic models of visual saliency,
ICIP09(3089-3092).
IEEE DOI
0911
BibRef
Li, Y.[Yin],
Zhou, Y.[Yue],
Xu, L.[Lei],
Yang, X.C.[Xiao-Chao],
Yang, J.[Jie],
Incremental sparse saliency detection,
ICIP09(3093-3096).
IEEE DOI
0911
BibRef
Wong, L.K.[Lai-Kuan],
Low, K.L.[Kok-Lim],
Saliency retargeting: An approach to enhance image aesthetics,
WACV11(73-80).
IEEE DOI
1101
BibRef
Earlier:
Saliency-enhanced image aesthetics class prediction,
ICIP09(997-1000).
IEEE DOI
0911
BibRef
Bileschi, S.M.[Stanley M.],
Wolf, L.B.[Lior B.],
Image representations beyond histograms of gradients:
The role of Gestalt descriptors,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Pila, M.,
The saliency grouping field,
ICIP04(IV: 2307-2310).
IEEE DOI
0505
BibRef
Kadir, T.[Timor],
Zisserman, A.[Andrew],
Brady, M.[Michael],
An Affine Invariant Salient Region Detector,
ECCV04(Vol I: 228-241).
Springer DOI
0405
BibRef
Perona, P.[Pietro],
The Emergence of Visual Categories: A Computational Perspective,
SCIA03(1-3).
Springer DOI
0310
BibRef
Yu, S.,
Computational Models of Perceptual Organization,
CMU-RI-TR-03-14, May, 2003.
BibRef
0305
Ph.D.Thesis
HTML Version.
0306
BibRef
Yu, S.X.[Stella X.],
Lisin, D.A.[Dimitri A.],
Image Compression Based on Visual Saliency at Individual Scales,
ISVC09(I: 157-166).
Springer DOI
0911
BibRef
Lisin, D.A.[Dimitri A.],
Riseman, E.M.[Edward M.],
Hanson, A.R.[Allen R.],
Extracting Salient Image Features for Reliable Matching Using Outlier
Detection Techniques,
CVS03(481 ff).
Springer DOI
0306
BibRef
Lisin, D.A.,
Riseman, E.M.,
Hanson, A.R.,
Extracting Salient Image Features Using Outlier Detection Techniques,
UMassCS TR 2003-2, January, 2003.
PS File.
BibRef
0301
Johannes, M.[Marc],
Sebastian, T.B.[Thomas B.],
Tek, H.[Huseyin],
Kimia, B.B.[Benjamin B.],
Perceptual Organization as Object Recognition Divided by Two,
PercOrg01(xx-yy).
0106
BibRef
Sakai, K.[Ko],
A Network Mechanism for the Determination of Apparent Orientation,
ICPR00(Vol III: 955-958).
IEEE DOI
0009
BibRef
Wong, H.,
Guan, L.,
Characterization of Perceptual Importance for Object-based Image
Segmentation,
ICIP00(Vol III: 54-57).
IEEE DOI
0008
BibRef
Younes, L.,
Calibrating Parameters of Cost Functionals,
ECCV00(II: 212-223).
Springer DOI
0003
BibRef
Milanese, R.,
Detecting Salient Regions in an Image:
From Biology to Implementation,
Ph.D.Thesis, Univ. of Geneva, Switzerland, 1993.
BibRef
9300
Pardo, X.M.[Xosé M.],
Fdez-Vidal, X.R.[Xosé R.],
What Do Datasets Say About Saliency Models?,
IbPRIA17(104-113).
Springer DOI
1706
BibRef
Walker, K.N.,
Cootes, T.F.,
Taylor, C.J.,
Locating Salient Facial Features Using Image Invariants,
AFGR98(242-247).
IEEE DOI
BibRef
9800
Walker, K.N.,
Cootes, T.F.,
Taylor, C.J.,
Locating Salient Object Features,
BMVC98(xx-yy).
BibRef
9800
Perona, P.,
Freeman, W.,
A Factorization Approach to Grouping,
ECCV98(I: 655-670).
Springer DOI
BibRef
9800
Alquier, L.[Laurent], and
Montesinos, P.[Philippe],
Recursive Perceptual Grouping for 3D Object Reconstruction
from 2D Scenes,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Schack, B.,
Krause, W.,
Instantaneous Coherence as a Sensible Parameter for
Considering Human Information Processing,
ICPR96(II: 45-49).
IEEE DOI
9608
(Klinikum der Friedrich Schiller-Univ, D)
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Perceptual Grouping, Saliency, General Systems .