Zobrist, A.L.[Albert L.],
The organization of extracted features for pattern recognition,
PR(3), No. 1, April 1971, pp. 23-30.
Elsevier DOI
0309
A two layered pattern recognition program. The first layer scans
an input for features and produces a coded representation. The second layer
looks for combinations of code which signify relations between features
in the input.
BibRef
Haralick, R.M.[Robert M.],
Dinstein, I.,
An Iterative Clustering Procedure,
),
SMC(1), No. 3, July, 1971, pp. 275-289.
BibRef
7107
Biehl, L.L., and
Silva, L.F.,
A Multilevel Multispectral Data Set Analysis in the Visible and Infrared
Wavelength Regions,
PIEEE(63), No. 1, 1975, pp. 164-175.
BibRef
7500
Lukasová, A.[Alena],
Hierarchical agglomerative clustering procedure,
PR(11), No. 5-6, 1979, pp. 365-381.
Elsevier DOI
0309
BibRef
Smith, S.P.[Stephen P.],
Dubes, R.C.[Richard C.],
Stability of a hierarchical clustering,
PR(12), No. 3, 1980, pp. 177-187.
Elsevier DOI
0309
BibRef
Ozawa, K.[Kazumasa],
Classic: A hierarchical clustering algorithm based on asymmetric
similarities,
PR(16), No. 2, 1983, pp. 201-211.
Elsevier DOI
0309
BibRef
Ozawa, K.[Kazumasa],
A stratificational overlapping cluster scheme,
PR(18), No. 3-4, 1985, pp. 279-286.
Elsevier DOI
0309
BibRef
Perruchet, C.[Christophe],
Constrained agglomerative hierarchical classification,
PR(16), No. 2, 1983, pp. 213-217.
Elsevier DOI
0309
BibRef
Schuermann, J.[Juergen],
Doster, W.[Wolfgang],
A decision theoretic approach to hierarchical classifier design,
PR(17), No. 3, 1984, pp. 359-369.
Elsevier DOI
0309
BibRef
López de Mŕntaras, R.,
Aguilar-Martín, J.,
Self-learning pattern classification using a sequential clustering
technique,
PR(18), No. 3-4, 1985, pp. 271-277.
Elsevier DOI
0309
BibRef
Jain, N.C.[Naresh C.],
Indrayan, A.[Abhaya],
Goel, L.R.[Lajpat R.],
Monte Carlo comparison of six hierarchical clustering methods on random
data,
PR(19), No. 1, 1986, pp. 95-99.
Elsevier DOI
0309
BibRef
Plastria, F.[Frank],
Two hierarchies associated with each clustering scheme,
PR(19), No. 2, 1986, pp. 193-196.
Elsevier DOI
0309
BibRef
Kurzynski, M.W.[Marek W.],
On the Identity of Optimal Strategies for Multistage Classifiers,
PRL(10), No. 1, 1989, pp. 39-46.
See also optimal strategy of a tree classifier, The.
See also On the multistage Bayes classifier.
BibRef
8900
Kurzynski, M.W.,
Puchala, E.,
Blinowska, A.,
A branch-and-bound algorithm for optimization of multiperspective
classifier,
ICPR94(B:235-239).
IEEE DOI
9410
BibRef
Kurzynski, M.W.,
Puchala, E.,
Algorithms of the multiperspective pattern recognition,
ICPR92(II:627-630).
IEEE DOI
9208
BibRef
Spivak, S.[Shalom],
A multisurface method for pattern classification,
PR(22), No. 5, 1989, pp. 587-591.
Elsevier DOI
0309
The desired classifier is built in two stages. In the first stage an
initial classifier is built. In the second stage the classifier is
modified to obtain the desired properties. Modification is performed
by use of the gradient descent procedure.
BibRef
Spivak, S.[Shalom],
Some properties of the multisurface method for pattern classification,
PR(24), No. 4, 1991, pp. 325-330.
Elsevier DOI
0401
BibRef
Li, X.,
Parallel algorithms for hierarchical clustering and cluster validity,
PAMI(12), No. 11, November 1990, pp. 1088-1092.
IEEE DOI
0401
BibRef
Murtagh, F.,
Comments on 'Parallel algorithms for hierarchical clustering and
cluster validity',
PAMI(14), No. 10, October 1992, pp. 1056-1057.
IEEE DOI
0401
BibRef
Zhang, Q.W.[Qi-Wen],
Boyle, R.D.[Roger D.],
A new clustering algorithm with multiple runs of iterative procedures,
PR(24), No. 9, 1991, pp. 835-848.
Elsevier DOI
0401
BibRef
Chan, K.P.,
Cheung, Y.S.,
Clustering of clusters,
PR(25), No. 2, February 1992, pp. 211-217.
Elsevier DOI
0401
Character recognition.
BibRef
Liaw, J.N.[Jin-Nan],
Kashyap, R.L.,
A new sequential classifier using information criterion window,
PR(27), No. 10, October 1994, pp. 1423-1438.
Elsevier DOI
0401
BibRef
Zavaljevski, A.,
Dhawan, A.P.,
Kelch, D.J.,
Riddell, J.,
Adaptive Multilevel Classification and Detection in
Multispectral Images,
OptEng(35), No. 10, October 1996, pp. 2884-2893.
9611
BibRef
El-Sonbaty, Y.[Yasser],
Ismail, M.A.,
On-line hierarchical clustering,
PRL(19), No. 14, December 1998, pp. 1285-1291.
BibRef
9812
Fisher, D.,
Iterative Optimization and Simplification of Hierarchical Clusterings,
JAIR(4), 1996, pp. 147-178.
HTML Version.
BibRef
9600
Labonté, G.,
On a Neural Network that Performs an Enhanced Nearest-Neighbour
Matching,
PAA(3), No. 3 2000, pp. 267-278.
0010
BibRef
Leung, Y.[Yee],
Zhang, J.S.[Jiang-She],
Xu, Z.B.[Zong-Ben],
Clustering by Scale-Space Filtering,
PAMI(22), No. 12, December 2000, pp. 1396-1410.
IEEE DOI
0012
BibRef
Leung, Y.[Yee],
Ma, J.H.[Jiang-Hong],
Zhang, W.X.[Wen-Xiu],
A New Method for Mining Regression Classes in Large Data Sets,
PAMI(23), No. 1, January 2001, pp. 5-21.
IEEE DOI
0101
Genetic algorithm. Regression class: subset of data subject to regression
model.
BibRef
Talavera, L.[Luis],
Béjar, J.[Javier],
Generality-Based Conceptual Clustering with Probabilistic Concepts,
PAMI(23), No. 2, February 2001, pp. 196-206.
IEEE DOI
0102
BibRef
Fieguth, P.W.[Paul W.],
Multiply-rooted multiscale models for large-scale estimation,
IP(10), No. 11, November 2001, pp. 1676-1686.
IEEE DOI
0201
BibRef
Earlier:
Foveated Multiscale Models for Large-Scale Estimation,
ICIP99(II:871-874).
IEEE DOI
BibRef
Earlier:
Multipole-motivated reduced-state estimation,
ICIP98(I: 635-638).
IEEE DOI
9810
BibRef
Agnelli, D.[Davide],
Bollini, A.[Alessandro],
Lombardi, L.[Luca],
Image classification: an evolutionary approach,
PRL(23), No. 1-3, January 2002, pp. 303-309.
Elsevier DOI
0201
BibRef
Sun, Y.[Ying],
Zhu, Q.M.[Qiu-Ming],
Chen, Z.X.[Zheng-Xin],
An iterative initial-points refinement algorithm for categorical data
clustering,
PRL(23), No. 7, May 2002, pp. 875-884.
Elsevier DOI
0203
BibRef
Lam, W.[Wai],
Keung, C.K.[Chi-Kin],
Liu, D.Y.[Dan-Yu],
Discovering Useful Concept Prototypes for Classification Based on
Filtering and Abstraction,
PAMI(24), No. 8, August 2002, pp. 1075-1090.
IEEE Abstract.
0208
ICPL. Integrated Concept Prototype Learner.
Integrate instance filtering with instace abstraction.
BibRef
Fernández Prieto, D.,
An iterative approach to partially supervised classification problems,
JRS(23), No. 18, September 2002, pp. 3887-3892.
WWW Link.
0211
See also adaptive semiparametric and context-based approach to unsupervised change detection multitemporal remote-sensing images, An.
BibRef
Rodríguez, C.,
Soraluze, I.,
Muguerza, J.,
Martín, J.I.,
Álvarez, G.,
Hierarchical classifiers based on neighbourhood criteria with adaptive
computational cost,
PR(35), No. 12, December 2002, pp. 2761-2769.
Elsevier DOI
0209
BibRef
Vijaya, P.A.,
Murty, M.N.[M. Narasimha],
Subramanian, D.K.,
Leaders-Subleaders: An efficient hierarchical clustering algorithm for
large data sets,
PRL(25), No. 4, March 2004, pp. 505-513.
Elsevier DOI
0402
BibRef
Huber, R.[Reinhold],
Ramoser, H.[Herbert],
Mayer, K.[Konrad],
Penz, H.[Harald],
Rubik, M.[Michael],
Classification of coins using an eigenspace approach,
PRL(26), No. 1, 1 January 2005, pp. 61-75.
Elsevier DOI
0501
Multistage classifier for large classes of coins.
BibRef
Hill, E.J.[E. June],
Alder, M.D.[Michael D.],
de Silva, C.J.S.[Christopher J.S.],
An improvement to the DR clustering algorithm,
PRL(26), No. 1, 1 January 2005, pp. 101-107.
Elsevier DOI
0501
Map data from a region to toroidal surface then run DR (Dog-Rabbit)
clustering.
BibRef
Lee, S.,
Crawford, M.M.,
Unsupervised Multistage Image Classification Using Hierarchical
Clustering With a Bayesian Similarity Measure,
IP(14), No. 3, March 2005, pp. 312-320.
IEEE DOI
0501
BibRef
Milgram, J.[Jonathan],
Sabourin, R.[Robert],
Cheriet, M.[Mohamed],
Combining Model-based and Discriminative Approaches in a Modular
Two-stage Classification System: Application to Isolated Handwritten
Digit Recognition,
ELCVIA(5), No. 2, 2005, pp. 1-15.
DOI Link
0505
BibRef
Earlier:
Two-stage classification system combining model-based and
discriminative approaches,
ICPR04(I: 152-155).
IEEE DOI
0409
BibRef
Lee, J.W.T.[John W.T.],
Yeung, D.S.[Daniel S.],
Tsang, E.C.C.[Eric C.C.],
Hierarchical clustering based on ordinal consistency,
PR(38), No. 11, November 2005, pp. 1913-1925.
Elsevier DOI
0509
BibRef
Amador, J.J.[José J.],
Sequential clustering by statistical methodology,
PRL(26), No. 14, 15 October 2005, pp. 2152-2163.
Elsevier DOI
0510
BibRef
Dutta, M.,
Mahanta, A.K.[A. Kakoti],
Pujari, A.K.[Arun K.],
QROCK: A quick version of the ROCK algorithm for clustering of
categorical data,
PRL(26), No. 15, November 2005, pp. 2364-2373.
Elsevier DOI
0510
An agglomerative hierarchical clustering algorithm for
clustering categorical data.
BibRef
Zilong, G.[Guo],
Sun'an, W.[Wang],
Jian, Z.[Zhuang],
A novel immune evolutionary algorithm incorporating chaos optimization,
PRL(27), No. 1, 1 January 2006, pp. 2-8.
Elsevier DOI
0512
BibRef
Nock, R.[Richard], and
Nielsen, F.[Frank],
On Weighting Clustering,
PAMI(28), No. 8, August 2006, pp. 1223-1235.
IEEE DOI
0606
BibRef
Earlier:
Improving clustering algorithms through constrained convex optimization,
ICPR04(IV: 557-560).
IEEE DOI
0409
Formalize unsupervised clustering ideas to take advantage of boosting ideas.
BibRef
Nock, R.[Richard],
Nielsen, F.[Frank],
Bregman Divergences and Surrogates for Learning,
PAMI(31), No. 11, November 2009, pp. 2048-2059.
IEEE DOI
0910
BibRef
Earlier: A2, A1:
Bregman sided and symmetrized centroids,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Nielsen, F.[Frank],
Nock, R.[Richard],
Optimal Interval Clustering: Application to Bregman Clustering and
Statistical Mixture Learning,
SPLetters(21), No. 10, October 2014, pp. 1289-1292.
IEEE DOI
1407
BibRef
Earlier:
Clustering Multivariate Normal Distributions,
ETVC08(164-174).
Springer DOI
0811
Dynamic programming
BibRef
Nielsen, F.[Frank],
Nock, R.[Richard],
Generalizing Skew Jensen Divergences and Bregman Divergences With
Comparative Convexity,
SPLetters(24), No. 8, August 2017, pp. 1123-1127.
IEEE DOI
1708
matrix algebra, Bregman divergence, comparative convexity,
generalizing skew Jensen divergence, monotone embeddings,
ordinary convexity, quasiarithmetic means, Convex functions,
Generators, Harmonic analysis, Indexes, Q measurement,
Radio frequency, Taylor series, Bregman divergence (BD),
conformal divergence, convexity, quasi-arithmetic weighted mean,
regular mean, skew, Jensen, divergence, (JD)
BibRef
Nock, R.[Richard],
Nielsen, F.[Frank],
On the efficient minimization of convex surrogates in supervised
learning,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Intrinsic Geometries in Learning,
ETVC08(175-215).
Springer DOI
0811
BibRef
Nielsen, F.[Frank],
Nock, R.[Richard],
On the chi square and higher-order chi distances for approximating
f-divergences,
SPLetters(21), No. 1, January 2014, pp. 10-13.
IEEE DOI
1402
Gaussian processes
BibRef
Nock, R.[Richard],
Vaillant, P.[Pascal],
Henry, C.[Claudia],
Nielsen, F.[Frank],
Soft memberships for spectral clustering, with application to permeable
language distinction,
PR(42), No. 1, January 2009, pp. 43-53.
Elsevier DOI
0809
Spectral clustering; Soft membership; Stochastic processes; Text classification
BibRef
Kushnir, D.[Dan],
Galun, M.[Meirav],
Brandt, A.[Achi],
Fast multiscale clustering and manifold identification,
PR(39), No. 10, October 2006, pp. 1876-1891.
Elsevier DOI
0606
Algebraic multigrid (AMG); Aggregation; Graph partitioning;
Similarity-based clustering; Manifold; Data analysis; Astrophysical models
BibRef
Kushnir, D.[Dan],
Galun, M.[Meirav],
Brandt, A.[Achi],
Efficient Multilevel Eigensolvers with Applications to Data Analysis
Tasks,
PAMI(32), No. 8, August 2010, pp. 1377-1391.
IEEE DOI
1007
Solving systems of equations.
Solve eigen value problems.
BibRef
Martínez-Otzeta, J.M.,
Sierra, B.,
Lazkano, E.,
Astigarraga, A.,
Classifier hierarchy learning by means of genetic algorithms,
PRL(27), No. 16, December 2006, pp. 1998-2004.
Elsevier DOI
0611
Data mining; Classifier combination; Genetic algorithms
BibRef
Martínez-Otzeta, J.M.,
Sierra, B.,
Lazkano, E.,
Jauregi, E.,
Yurramendi, Y.,
Analyzing Classifier Hierarchy Multiclassifier Learning,
CIARP08(775-782).
Springer DOI
0809
BibRef
Cao, F.[Frédéric],
Delon, J.[Julie],
Desolneux, A.[Agnčs],
Musé, P.[Pablo],
Sur, F.[Frédéric],
A Unified Framework for Detecting Groups and Application to Shape
Recognition,
JMIV(27), No. 2, February 2007, pp. 91-119.
Springer DOI
0704
See also grouping principle and four applications, A. Evaluate validity of clusters, containment of clusters,
merging of clusters.
BibRef
Santos, J.M.[Jorge M.],
de Sa, J.M.[Joaquim Marques],
Alexandre, L.A.[Luis A.],
LEGClust: A Clustering Algorithm Based on Layered Entropic Subgraphs,
PAMI(30), No. 1, January 2008, pp. 62-75.
IEEE DOI
0711
Builds layers of subgraphs then applies clustering.
BibRef
Goldberger, J.[Jacob],
Tassa, T.[Tamir],
A hierarchical clustering algorithm based on the Hungarian method,
PRL(29), No. 11, 1 August 2008, pp. 1632-1638.
Elsevier DOI
0804
Grouping; Pairwise clustering; Hierarchical clustering; Graph algorithms
BibRef
Dang, E.K.F.[Edward K. F.],
Luk, R.W.P.[Robert W. P.],
Lee, D.L.[Dik Lun],
Ho, K.S.[Kei-Shiu],
Chan, S.C.F.[Stephen C. F.],
Optimal Combination of Nested Clusters by a Greedy Approximation
Algorithm,
PAMI(31), No. 11, November 2009, pp. 2083-2087.
IEEE DOI
0910
BibRef
Li, X.T.[Xu-Tao],
Ye, Y.M.[Yun-Ming],
Li, M.J.J.[Mark Jun-Jie],
Ng, M.K.[Michael K.],
On cluster tree for nested and multi-density data clustering,
PR(43), No. 9, September 2010, pp. 3130-3143.
Elsevier DOI
1006
Hierarchical clustering; Multi-densities; Cluster tree; k-Means-type algorithm
BibRef
Tang, X.Q.[Xu-Qing],
Zhu, P.[Ping],
Cheng, J.X.[Jia-Xing],
The structural clustering and analysis of metric based on granular
space,
PR(43), No. 11, November 2010, pp. 3768-3786.
Elsevier DOI
1008
Granular computing; Granular space; Normalized metric space;
Clustering structural analysis; Consistent cluster; Optimal cluster;
Clustering fusion
BibRef
Perina, A.[Alessandro],
Cristani, M.[Marco],
Castellani, U.[Umberto],
Murino, V.[Vittorio],
Jojic, N.[Nebojsa],
Free Energy Score Spaces: Using Generative Information in
Discriminative Classifiers,
PAMI(34), No. 7, July 2012, pp. 1249-1262.
IEEE DOI
1205
Hybrid generative/discriminative paradigm, variational free energy,
classification.
Fixed dimension feature vector for each data sample of varying size.
BibRef
Bicego, M.,
Perina, A.,
Murino, V.,
Martins, A.F.T.[André F. T.],
Aguiar, P.M.Q.[Pedro M. Q.],
Figueiredo, M.A.T.,
Combining free energy score spaces with information theoretic kernels:
Application to scene classification,
ICIP10(2661-2664).
IEEE DOI
1009
Classifiers for structured objects.
BibRef
Li, C.Z.[Chun-Zhong],
Xu, Z.B.[Zong-Ben],
Luo, T.[Tao],
A heuristic hierarchical clustering based on multiple similarity
measurements,
PRL(34), No. 2, 15 January 2013, pp. 155-162.
Elsevier DOI
1212
Data mining; Agglomerative clustering; Heuristic; Blurring; Top-down;
Structural nearest neighbor
BibRef
Pérez-Suárez, A.[Airel],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[Jesús A.],
Medina-Pagola, J.E.[José E.],
An algorithm based on density and compactness for dynamic overlapping
clustering,
PR(46), No. 11, November 2013, pp. 3040-3055.
Elsevier DOI
1306
Data mining; Clustering; Overlapping clustering algorithms;
Dynamic clustering algorithms
BibRef
Zhang, W.[Wei],
Zhao, D.L.[De-Li],
Wang, X.G.[Xiao-Gang],
Agglomerative clustering via maximum incremental path integral,
PR(46), No. 11, November 2013, pp. 3056-3065.
Elsevier DOI
1306
Agglomerative clustering; Path integral; Graph algorithms;
Random walk
BibRef
Kim, B.S.[Byung-Soo],
Park, J.Y.[Jae Young],
Gilbert, A.C.[Anna C.],
Savarese, S.[Silvio],
Hierarchical classification of images by sparse approximation,
IVC(31), No. 12, 2013, pp. 982-991.
Elsevier DOI
1312
Sparse approximation
BibRef
Kim, B.S.[Byung Soo],
Park, J.Y.[Jae Young],
Mohan, A.[Anush],
Gilbert, A.C.[Anna C.],
Savarese, S.[Silvio],
Hierarchical Classification of Images by Sparse Approximation 1,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Abin, A.A.[Ahmad Ali],
Beigy, H.[Hamid],
Active selection of clustering constraints: a sequential approach,
PR(47), No. 3, 2014, pp. 1443-1458.
Elsevier DOI
1312
Active constraint selection
BibRef
Abin, A.A.[Ahmad Ali],
Beigy, H.[Hamid],
Active constrained fuzzy clustering:
A multiple kernels learning approach,
PR(48), No. 3, 2015, pp. 953-967.
Elsevier DOI
1412
Constrained clustering
BibRef
Lotfi, A.[Abdulrahman],
Moradi, P.[Parham],
Beigy, H.[Hamid],
Density peaks clustering based on density backbone and fuzzy
neighborhood,
PR(107), 2020, pp. 107449.
Elsevier DOI
2008
Fuzzy kernel, Density peaks clustering, Noise detection, Label propagation
BibRef
Abin, A.A.[Ahmad Ali],
Clustering with side information:
Further efforts to improve efficiency,
PRL(84), No. 1, 2016, pp. 252-258.
Elsevier DOI
1612
Constrained clustering
BibRef
Sharmila, T.S.[T. Sree],
Ramar, K.,
Raja, T.S.R.[T. Sree Renga],
Impact of applying pre-processing techniques for improving
classification accuracy,
SIViP(8), No. 1, January 2014, pp. 149-157.
WWW Link.
1402
BibRef
Zhu, S.[Shiai],
Wei, X.Y.[Xiao-Yong],
Ngo, C.W.[Chong-Wah],
Collaborative error reduction for hierarchical classification,
CVIU(124), No. 1, 2014, pp. 79-90.
Elsevier DOI
1406
Concept detection
BibRef
Huang, X.,
Lu, Q.,
Zhang, L.,
Plaza, A.,
New Postprocessing Methods for Remote Sensing Image Classification:
A Systematic Study,
GeoRS(52), No. 11, November 2014, pp. 7140-7159.
IEEE DOI
1407
Anisotropic magnetoresistance
BibRef
Huang, S.J.[Sheng-Jun],
Jin, R.[Rong],
Zhou, Z.H.[Zhi-Hua],
Active Learning by Querying Informative and Representative Examples,
PAMI(36), No. 10, October 2014, pp. 1936-1949.
IEEE DOI
1410
learning (artificial intelligence)
BibRef
Espinola, M.,
Piedra-Fernandez, J.A.,
Ayala, R.,
Iribarne, L.,
Wang, J.Z.,
Contextual and Hierarchical Classification of Satellite Images Based
on Cellular Automata,
GeoRS(53), No. 2, February 2015, pp. 795-809.
IEEE DOI
1411
cellular automata
BibRef
de Morsier, F.[Frank],
Tuia, D.[Devis],
Borgeaud, M.[Maurice],
Gass, V.[Volker],
Thiran, J.P.[Jean-Philippe],
Cluster validity measure and merging system for hierarchical
clustering considering outliers,
PR(48), No. 4, 2015, pp. 1478-1489.
Elsevier DOI
1502
Clustering
BibRef
de Morsier, F.[Frank],
Borgeaud, M.[Maurice],
Gass, V.[Volker],
Thiran, J.P.[Jean-Philippe],
Tuia, D.[Devis],
Kernel Low-Rank and Sparse Graph for Unsupervised and Semi-Supervised
Classification of Hyperspectral Images,
GeoRS(54), No. 6, June 2016, pp. 3410-3420.
IEEE DOI
1606
hyperspectral imaging
BibRef
Leski, J.M.[Jacek M.],
Kotas, M.[Marian],
Hierarchical clustering with planar segments as prototypes,
PRL(54), No. 1, 2015, pp. 1-10.
Elsevier DOI
1502
Hierarchical clustering
BibRef
Mall, R.[Raghvendra],
Mehrkanoon, S.[Siamak],
Suykens, J.A.K.[Johan A.K.],
Identifying intervals for hierarchical clustering using the
Gershgorin circle theorem,
PRL(55), No. 1, 2015, pp. 1-7.
Elsevier DOI
1503
Gershgorin circle theorem
BibRef
Mehrkanoon, S.[Siamak],
Huang, X.L.[Xiao-Lin],
Suykens, J.A.K.[Johan A.K.],
Indefinite kernel spectral learning,
PR(78), 2018, pp. 144-153.
Elsevier DOI
1804
Semi-supervised learning, Scalable models, Indefinite kernels,
Kernel spectral clustering, Low embedding dimension
BibRef
He, M.Z.[Ming-Zhen],
He, F.[Fan],
Shi, L.[Lei],
Huang, X.L.[Xiao-Lin],
Suykens, J.A.K.[Johan A. K.],
Learning With Asymmetric Kernels:
Least Squares and Feature Interpretation,
PAMI(45), No. 8, August 2023, pp. 10044-10054.
IEEE DOI
2307
Kernel, Support vector machines, Directed graphs, Task analysis,
Feature extraction, Matrix decomposition, Symmetric matrices,
least squares support vector machine
BibRef
Lian, C.F.[Chun-Feng],
Ruan, S.[Su],
Denux, T.[Thierry],
An evidential classifier based on feature selection and two-step
classification strategy,
PR(48), No. 7, 2015, pp. 2318-2327.
Elsevier DOI
1504
Dempster-Shafer theory
BibRef
Zhong, C.M.[Cai-Ming],
Yue, X.D.[Xiao-Dong],
Lei, J.S.[Jing-Sheng],
Visual hierarchical cluster structure: A refined co-association
matrix based visual assessment of cluster tendency,
PRL(59), No. 1, 2015, pp. 48-55.
Elsevier DOI
1505
Hierarchical clustering
BibRef
Gillis, N.,
Kuang, D.[Da],
Park, H.S.[Hae-Sun],
Hierarchical Clustering of Hyperspectral Images Using Rank-Two
Nonnegative Matrix Factorization,
GeoRS(53), No. 4, April 2015, pp. 2066-2078.
IEEE DOI
1502
feature extraction
BibRef
Najjar, A.[Alameen],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Bregman pooling: feature-space local pooling for image classification,
MultInfoRetr(4), No. 4, December 2015, pp. 247-259.
Springer DOI
1511
BibRef
Bakoben, M.[Maha],
Bellotti, A.[Anthony],
Adams, N.M.[Niall M.],
Improving clustering performance by incorporating uncertainty,
PRL(77), No. 1, 2016, pp. 28-34.
Elsevier DOI
1606
Clustering with uncertainty
BibRef
Wu, H.[Hang],
Liu, B.Z.[Bao-Zhen],
Su, W.H.[Wei-Hua],
Zhang, W.C.[Wen-Chang],
Sun, J.G.[Jing-Gong],
Hierarchical Coding Vectors for Scene Level Land-Use Classification,
RS(8), No. 5, 2016, pp. 436.
DOI Link
1606
BibRef
Alsahwa, B.[Bassem],
Solaiman, B.[Basel],
Almouahed, S.[Shaban],
Bossé, É.[Éloi],
Guériot, D.[Didier],
Iterative Refinement of Possibility Distributions by Learning for
Pixel-Based Classification,
IP(25), No. 8, August 2016, pp. 3533-3545.
IEEE DOI
1608
Markov processes
BibRef
Zhuo, Z.L.[Zhong-Liu],
Zhang, X.S.[Xiao-Song],
Niu, W.[Weina],
Yang, G.W.[Guo-Wu],
Zhang, J.Z.[Jing-Zhong],
Improving data field hierarchical clustering using Barnes-Hut
algorithm,
PRL(80), No. 1, 2016, pp. 113-120.
Elsevier DOI
1609
Barnes-Hut algorithm
BibRef
Hoyoux, T.[Thomas],
Rodríguez-Sánchez, A.J.[Antonio J.],
Piater, J.H.[Justus H.],
Can Computer Vision Problems Benefit from Structured Hierarchical
Classification?,
MVA(27), No. 8, November 2016, pp. 1299-1312.
Springer DOI
1612
BibRef
Earlier:
Add A4:
Szedmak, S.[Sandor],
CAIP15(II:403-414).
Springer DOI
1511
BibRef
Li, S.N.[Shao-Ning],
Li, W.J.[Wen-Jing],
Qiu, J.[Jia],
A Novel Divisive Hierarchical Clustering Algorithm for Geospatial
Analysis,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Yang, C.X.[Chen-Xue],
Ye, M.[Mao],
Tang, S.[Song],
Xiang, T.[Tao],
Liu, Z.J.[Zi-Jian],
Semi-supervised low-rank representation for image classification,
SIViP(11), No. 1, January 2017, pp. 73-80.
Springer DOI
1702
BibRef
Cheng, F.Y.[Fei-Yang],
He, X.M.[Xu-Ming],
Zhang, H.[Hong],
Stacked Learning to Search for Scene Labeling,
IP(26), No. 4, April 2017, pp. 1887-1898.
IEEE DOI
1704
Cost function
BibRef
Bertini Junior, J.R.[Joăo Roberto],
do Carmo Nicoletti, M.[Maria],
Enhancing classification performance using attribute-oriented
functionally expanded data,
PRL(89), No. 1, 2017, pp. 39-45.
Elsevier DOI
1704
Improving classification performance
BibRef
Garcia-Piquer, A.[Alvaro],
Bacardit, J.[Jaume],
Fornells, A.[Albert],
Golobardes, E.[Elisabet],
Scaling-up multiobjective evolutionary clustering algorithms using
stratification,
PRL(93), No. 1, 2017, pp. 69-77.
Elsevier DOI
1706
Multiobjective evolutionary algorithms
BibRef
Wang, L.G.[Lei-Guang],
Huang, X.[Xin],
Zheng, C.[Chen],
Zhang, Y.[Yun],
A Markov random field integrating spectral dissimilarity and class
co-occurrence dependency for remote sensing image classification
optimization,
PandRS(128), No. 1, 2017, pp. 223-239.
Elsevier DOI
1706
Remote sensing image classification.
MRF model for edge-preserving spatial regularization of classification maps.
BibRef
Mondal, S.A.[Sakib A.],
An improved approximation algorithm for hierarchical clustering,
PRL(104), 2018, pp. 23-28.
Elsevier DOI
1804
Clustering, Hierarchical, Approximation
BibRef
Yang, Y.,
Li, B.,
Li, P.,
Liu, Q.,
A Two-Stage Clustering Based 3D Visual Saliency Model for Dynamic
Scenarios,
MultMed(21), No. 4, April 2019, pp. 809-820.
IEEE DOI
1903
Visualization, Solid modeling, Feature extraction, Videos,
two-stage clustering
BibRef
Oh, K.W.[Ki-Won],
Choi, K.S.[Kang-Sun],
Acceleration of simple linear iterative clustering using early
candidate cluster exclusion,
RealTimeIP(16), No. 4, August 2019, pp. 945-956.
WWW Link.
1908
BibRef
Earlier: A2, A1:
Fast Simple Linear Iterative Clustering by Early Candidate Cluster
Elimination,
IbPRIA15(579-586).
Springer DOI
1506
BibRef
Whang, J.J.Y.[Joyce Ji-Young],
Hou, Y.Y.[Yang-Yang],
Gleich, D.F.[David F.],
Dhillon, I.S.[Inderjit S.],
Non-Exhaustive, Overlapping Clustering,
PAMI(41), No. 11, November 2019, pp. 2644-2659.
IEEE DOI
1910
Clustering algorithms, Linear programming, Kernel,
Iterative methods, Computer science, Anomaly detection,
community detection
BibRef
Zhang, J.[Jun],
Zhang, M.[Min],
Shi, L.[Lukui],
Yan, W.J.[Wen-Jie],
Pan, B.[Bin],
A Multi-Scale Approach for Remote Sensing Scene Classification Based
on Feature Maps Selection and Region Representation,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Huang, L.[Lei],
Ma, Y.Q.[Yu-Qing],
Liu, X.L.[Xiang-Long],
A general non-parametric active learning framework for classification
on multiple manifolds,
PRL(130), 2020, pp. 250-258.
Elsevier DOI
2002
Active learning, Multi-class classification, Label propagation, Non-parametric
BibRef
Lamb, D.S.[David S.],
Downs, J.[Joni],
Reader, S.[Steven],
Space-Time Hierarchical Clustering for Identifying Clusters in
Spatiotemporal Point Data,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
Applies to GIS.
BibRef
Hao, X.H.[Xiao-Hui],
Wu, Y.[Yiquan],
Wang, P.[Peng],
Angle Distance-Based Hierarchical Background Separation Method for
Hyperspectral Imagery Target Detection,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Lin, Q.F.[Qi-Feng],
Ling, Q.[Qing],
Decentralized TD(0) With Gradient Tracking,
SPLetters(28), 2021, pp. 723-727.
IEEE DOI
2105
Convergence, Signal processing algorithms,
Function approximation, Approximation algorithms, Acceleration,
gradient tracking
BibRef
Li, M.[Ming],
Lei, L.[Lin],
Tang, Y.Q.[Yu-Qi],
Sun, Y.[Yuli],
Kuang, G.Y.[Gang-Yao],
An Attention-Guided Multilayer Feature Aggregation Network for Remote
Sensing Image Scene Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xie, W.B.[Wen-Bo],
Liu, Z.[Zhen],
Das, D.[Debarati],
Chen, B.[Bin],
Srivastava, J.[Jaideep],
Scalable clustering by aggregating representatives in hierarchical
groups,
PR(136), 2023, pp. 109230.
Elsevier DOI
2301
Hierarchical clustering, Election tree, Representative node, Root
BibRef
del Moral, P.[Pablo],
Nowaczyk, S.[Slawomir],
Sant'Anna, A.[Anita],
Pashami, S.[Sepideh],
Pitfalls of assessing extracted hierarchies for multi-class
classification,
PR(136), 2023, pp. 109225.
Elsevier DOI
2301
Hierarchical multi-class classification,
Multi-class classification, Class hierarchies
BibRef
Han, X.[Xin],
Zhu, Y.[Ye],
Ting, K.M.[Kai Ming],
Li, G.[Gang],
The impact of isolation kernel on agglomerative hierarchical
clustering algorithms,
PR(139), 2023, pp. 109517.
Elsevier DOI
2304
Agglomerative hierarchical clustering, Varied densities,
Dendrogram purity, Isolation kernel, Gaussian kernel
BibRef
Hao, P.Y.[Peng-Yi],
Shi, K.J.[Kang-Jian],
Tian, S.Y.[Shu-Yuan],
Wu, F.[Fuli],
Uncertainty-aware iterative learning for noisy-labeled medical image
segmentation,
IET-IPR(17), No. 13, 2023, pp. 3830-3840.
DOI Link
2311
image segmentation, medical image processing
BibRef
Zhao, H.H.Y.[Henry Heng-Yuan],
Wang, P.[Pichao],
Zhao, Y.Y.[Yu-Yang],
Luo, H.[Hao],
Wang, F.[Fan],
Shou, M.Z.[Mike Zheng],
SCT: A Simple Baseline for Parameter-Efficient Fine-Tuning via Salient
Channels,
IJCV(132), No. 3, March 2024, pp. 731-749.
Springer DOI
2402
Code:
WWW Link.
BibRef
Zhao, Z.Y.[Zi-Yu],
Gan, L.L.[Lei-Lei],
Shen, T.[Tao],
Kuang, K.[Kun],
Wu, F.[Fei],
Deconfounded hierarchical multi-granularity classification,
CVIU(248), 2024, pp. 104108.
Elsevier DOI
2409
Hierarchical multi-granularity classification, Causal inference
BibRef
Chaudhuri, U.[Ushasi],
Chaudhuri, S.[Syomantak],
Chaudhuri, S.[Subhasis],
GuCNet: A Guided Clustering-based Network for Improved Classification,
ICPR21(7335-7342)
IEEE DOI
2105
Training, Semantics, Neural networks, Prototypes,
Network architecture, Benchmark testing, Topology
BibRef
Chen, C.[Chao],
Li, G.B.[Guan-Bin],
Xu, R.J.[Rui-Jia],
Chen, T.S.[Tian-Shui],
Wang, M.[Meng],
Lin, L.[Liang],
ClusterNet: Deep Hierarchical Cluster Network With Rigorously
Rotation-Invariant Representation for Point Cloud Analysis,
CVPR19(4989-4997).
IEEE DOI
2002
BibRef
Montaldo, A.,
Fronda, L.,
Hedhli, I.,
Moser, G.,
Serpico, S.B.,
Zerubia, J.,
Causal Markov Mesh Hierarchical Modeling for the Contextual
Classification of Multiresolution Satellite Images,
ICIP19(2716-2720)
IEEE DOI
1910
Multiresolution images, causality,
hierarchical Markov random field, Markov mesh random field,
semantic image segmentation
BibRef
Saha, S.[Soham],
Varma, G.[Girish],
Jawahar, C.V.,
Class2Str: End to End Latent Hierarchy Learning,
ICPR18(1000-1005)
IEEE DOI
1812
Feature extraction, Training, Encoding, Entropy, Neural networks,
Binary trees, Testing
BibRef
José-García, A.[Adán],
Gómez-Flores, W.[Wilfrido],
Evolutionary Clustering Using Multi-prototype Representation and
Connectivity Criterion,
MCPR17(63-73).
Springer DOI
1706
BibRef
Karray, E.,
Loghmari, M.A.,
Naceur, M.S.,
High and low-level hierarchical classification as an efficient
analysis of remotely sensed hyperpectral data,
ISIVC16(236-241)
IEEE DOI
1704
Hyperspectral imaging
BibRef
Klein, D.A.[Dominik Alexander],
Schulz, D.[Dirk],
Cremers, A.B.[Armin Bernd],
Realtime Hierarchical Clustering Based on Boundary and Surface
Statistics,
ACCV16(I: 3-19).
Springer DOI
1704
BibRef
Qian, B.[Bin],
Shen, X.B.[Xiao-Bo],
Gu, Y.Y.[Yan-Yang],
Tang, Z.M.[Zhen-Min],
Ding, Y.H.[Yu-Hua],
Double Constrained NMF for Partial Multi-View Clustering,
DICTA16(1-7)
IEEE DOI
1701
nonnegative matrix factorization.
Clustering methods
BibRef
Hedhli, I.[Ihsen],
Moser, G.[Gabriele],
Serpico, S.B.[Sebastiano B.],
Zerubia, J.B.[Josiane B.],
Contextual multi-scale image classification on quadtree,
ICIP16(1349-1353)
IEEE DOI
1610
Analytical models
BibRef
Romero, A.R.,
Jayawardena, S.,
Cox, M.,
Borges, P.V.K.,
Partitioning the Input Domain for Classification,
DICTA15(1-8)
IEEE DOI
1603
computational complexity
BibRef
Villalon-Turrubiates, I.E.,
A dynamical model to classify the content of multitemporal images
employing distributed computing techniques,
MultiTemp15(1-4)
IEEE DOI
1511
Big Data
BibRef
Febrer-Hernández, J.K.[José K.],
Hernández-León, R.[Raudel],
Hernández-Palancarr, J.[José],
Feregrino-Uribe, C.[Claudia],
Improving the Accuracy of the Sequential Patterns-Based Classifiers,
CIARP15(708-715).
Springer DOI
1511
BibRef
Aroche-Villarruel, A.A.[Argenis A.],
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Pérez-Suárez, A.[Airel],
A Different Approach for Pruning Micro-clusters in Data Stream
Clustering,
MCPR15(33-43).
Springer DOI
1506
BibRef
Mustafa, W.[Wail],
Kraft, D.[Dirk],
Krüger, N.[Norbert],
Extracting Categories by Hierarchical Clustering Using Global
Relational Features,
IbPRIA15(541-551).
Springer DOI
1506
BibRef
Tax, D.M.J.[David M.J.],
Sontrop, H.M.J.[Herman M.J.],
Reinders, M.J.T.[Marcel J.T],
Moerland, P.D.[Perry D.],
The Effect of Aggregating Subtype Performances Depends Strongly on
the Performance Measure Used,
ICPR14(3720-3725)
IEEE DOI
1412
Accuracy
BibRef
Zemene, E.[Eyasu],
Alemu, L.T.,
Pelillo, M.[Marcello],
Constrained dominant sets for retrieval,
ICPR16(2568-2573)
IEEE DOI
1705
Coherence, Databases, Diffusion processes, Face,
Manifolds, Optimization
BibRef
Zemene, E.[Eyasu],
Pelillo, M.[Marcello],
Path-Based Dominant-Set Clustering,
CIAP15(I:150-160).
Springer DOI
1511
BibRef
Biggio, B.[Battista],
Bulň, S.R.[Samuel Rota],
Pillai, I.[Ignazio],
Mura, M.[Michele],
Zemene Mequanint, E.[Eyasu],
Pelillo, M.[Marcello],
Roli, F.[Fabio],
Poisoning Complete-Linkage Hierarchical Clustering,
SSSPR14(42-52).
Springer DOI
1408
preventing deliberate attack on clustering algorithm in security
application.
BibRef
Chandrashekar, V.,
Kumar, S.,
Jawahar, C.V.,
Compacting Large and Loose Communities,
ACPR13(522-526)
IEEE DOI
1408
eigenvalues and eigenfunctions
BibRef
Rosales-Méndez, H.[Henry],
Ramírez-Cruz, Y.[Yunior],
CICE-BCubed: A New Evaluation Measure for Overlapping Clustering
Algorithms,
CIARP13(I:157-164).
Springer DOI
1311
BibRef
Li, X.[Xin],
Guo, Y.H.[Yu-Hong],
Multi-level Adaptive Active Learning for Scene Classification,
ECCV14(VII: 234-249).
Springer DOI
1408
BibRef
Earlier:
Adaptive Active Learning for Image Classification,
CVPR13(859-866)
IEEE DOI
1309
BibRef
Earlier:
An Object Co-occurrence Assisted Hierarchical Model for Scene
Understanding,
BMVC12(81).
DOI Link
1301
active learning; image classification
BibRef
Yenialp, E.[Erdal],
Kalkan, H.[Habil],
Mete, M.[Mutlu],
Improving Density Based Clustering with Multi-Scale Analysis,
ICCVG12(694-701).
Springer DOI
1210
BibRef
Pauly, O.[Olivier],
Mateus, D.[Diana],
Navab, N.[Nassir],
STARS: A new ensemble partitioning approach,
ITCVPR11(1340-1347).
IEEE DOI
1201
Several Thresholds on a Random Subspace.
BibRef
Zhou, Y.J.[Yu-Jin],
Tan, Y.H.[Yi-Hua],
Li, H.T.[Hai-Tao],
Gu, H.Y.[Hai-Yan],
A Multi-Classifier Combined Decision Tree Hierarchical Classification
Method,
ISIDF11(1-3).
IEEE DOI
1111
BibRef
Dikmen, M.[Mert],
Huang, T.S.[Thomas S.],
Improving Classification Accuracy by Comparing Local Features through
Canonical Correlations,
ICPR10(4032-4035).
IEEE DOI
1008
BibRef
Strange, H.[Harry],
Zwiggelaar, R.[Reyer],
Iterative Hyperplane Merging: A Framework for Manifold Learning,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Cho, M.S.[Min-Su],
Lee, K.M.[Kyoung Mu],
Authority-shift clustering:
Hierarchical clustering by authority seeking on graphs,
CVPR10(3193-3200).
IEEE DOI
1006
BibRef
Joshi, M.[Manish],
Lingras, P.[Pawan],
Evolutionary and Iterative Crisp and Rough Clustering I: Theory,
PReMI09(615-620).
Springer DOI
0912
BibRef
Joshi, M.[Manish],
Lingras, P.[Pawan],
Evolutionary and Iterative Crisp and Rough Clustering II: Experiments,
PReMI09(621-627).
Springer DOI
0912
BibRef
Ma, H.B.[Hong-Bin],
Zhang, C.[Cun],
Yang, S.F.[Sheng-Fei],
Xu, J.F.[Jun-Fang],
Object Oriented Information Extraction from High Resolution Remote
Sensing Imagery,
CISP09(1-5).
IEEE DOI
0910
BibRef
Xu, J.W.[Jian-Wu],
Singh, V.[Vartika],
Govindaraju, V.[Venu],
Neogi, D.[Depankar],
A Hierarchical Classification Model for Document Categorization,
ICDAR09(486-490).
IEEE DOI
0907
BibRef
Sledge, I.J.[Isaac J.],
Keller, J.M.[James M.],
Growing neural gas for temporal clustering,
ICPR08(1-4).
IEEE DOI
0812
Genetic Algorithm for clusters
BibRef
Kuncheva, L.I.[Ludmila I.],
Plumpton, C.O.[Catrin O.],
Adaptive Learning Rate for Online Linear Discriminant Classifiers,
SSPR08(510-519).
Springer DOI
0812
BibRef
Kuncheva, L.I.[Ludmila I.],
Zliobaite, I.[Indre],
Linear Discriminant Classifier (LDC) for Streaming Data with Concept
Drift,
SSPR08(4).
Springer DOI
0812
Trained using latest N observations.
BibRef
Elghazel, H.[Haytham],
Hacid, M.S.[Mohand-Said],
Aggregated Search in Graph Databases: Preliminary Results,
GbRPR11(92-101).
Springer DOI
1105
BibRef
Elghazel, H.[Haytham],
Yoshida, T.[Tetsuya],
Deslandres, V.[Véronique],
Hacid, M.S.[Mohand-Said],
Dussauchoy, A.[Alain],
A New Greedy Algorithm for Improving b-Coloring Clustering,
GbRPR07(228-239).
Springer DOI
0706
BibRef
Aghagolzadeh, M.,
Soltanian-Zadeh, H.,
Araabi, B.,
Aghagolzadeh, A.,
A Hierarchical Clustering Based on Mutual Information Maximization,
ICIP07(I: 277-280).
IEEE DOI
0709
BibRef
Sakai, T.[Tomoya],
Imiya, A.[Atsushi],
Validation of Watershed Regions by Scale-Space Statistics,
SSVM09(175-186).
Springer DOI
0906
BibRef
And:
Statistically Valid Graph Representations of Scale-Space Geometry,
ICISP08(338-345).
Springer DOI
0807
BibRef
Sakai, T.[Tomoya],
Multiple pattern classification by sparse subspace decomposition,
Subspace09(170-177).
IEEE DOI
0910
BibRef
Sakai, T.[Tomoya],
Monte Carlo subspace method: An incremental approach to
high-dimensional data classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Sakai, T.[Tomoya],
Komazaki, T.[Takuto],
Imiya, A.[Atsushi],
Scale-Space Clustering with Recursive Validation,
SSVM07(288-299).
Springer DOI
0705
BibRef
Karadag, O.O.[Ozge Oztimur],
Vural, F.T.Y.[Fatos T. Yarman],
HANOLISTIC: A Hierarchical Automatic Image Annotation System Using
Holistic Approach,
VCL-ViSU09(16-21).
IEEE DOI
0906
BibRef
Akbas, E.[Emre],
Vural, F.T.Y.[Fatos T. Yarman],
Automatic Image Annotation by Ensemble of Visual Descriptors,
SLAM07(1-8).
IEEE DOI
0706
Do not just add all the features, due to different types, redundancy.
Each feature learned at lowest level, combined at other levels.
BibRef
Zhao, L.Y.[Li-Yue],
Sukthankar, G.[Gita],
Sukthankar, R.[Rahul],
Importance-weighted label prediction for active learning with noisy
annotations,
ICPR12(3476-3479).
WWW Link.
1302
BibRef
Yang, L.[Liu],
Jin, R.[Rong],
Pantofaru, C.[Caroline],
Sukthankar, R.[Rahul],
Discriminative Cluster Refinement: Improving Object Category
Recognition Given Limited Training Data,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Pantofaru, C.,
Hebert, M.,
A framework for learning to recognize and segment object classes using
weakly supervised training data,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Monteleoni, C.[Claire],
Kaariainen, M.[Matti],
Practical Online Active Learning for Classification,
Learning07(1-8).
IEEE DOI
0706
BibRef
Gagrani, A.[Aakanksha],
Gupta, L.[Lalit],
Ravindran, B.,
Das, S.[Sukhendu],
Roychowdhury, P.[Pinaki],
Panchal, V.K.,
A Hierarchical Approach to Landform Classification of Satellite Images
Using a Fusion Strategy,
ICCVGIP06(140-151).
Springer DOI
0612
First into 3 major landforms, then classify within each of these.
BibRef
Sternby, J.[Jakob],
Class Dependent Cluster Refinement,
ICPR06(II: 833-836).
IEEE DOI
0609
BibRef
Lam, B.S.Y.[Benson S. Y.],
Yan, H.[Hong],
Improved Clustering Algorithm Based on Calculus of Variation,
ICPR06(I: 900-903).
IEEE DOI
0609
BibRef
Azran, A.[Arik],
Ghahramani, Z.[Zoubin],
Spectral Methods for Automatic Multiscale Data Clustering,
CVPR06(I: 190-197).
IEEE DOI
0606
BibRef
Zhang, K.[Kai],
Tang, M.[Ming],
Kwok, J.T.[James T.],
Applying Neighborhood Consistency for Fast Clustering and Kernel
Density Estimation,
CVPR05(II: 1001-1007).
IEEE DOI
0507
BibRef
Carrivick, L.[Luke],
Prabhu, S.[Sanjay],
Goddard, P.[Paul],
Rossiter, J.[Jonathan],
Unsupervised Learning in Radiology Using Novel Latent Variable Models,
CVPR05(II: 854-859).
IEEE DOI
0507
BibRef
Bouvrie, J.V.[Jake V.],
Multiple Resolution Image Classification,
MIT AIMAIM-2002-022, December 2002.
WWW Link. In this paper we evaluate a
selection of popular techniques in an effort to find a feature set/ classifier combination which generalizes well to full
resolution image data.
0306
BibRef
Shi, S.M.[Shu-Ming],
Yang, G.W.[Guang-Wen],
Wang, D.X.[Ding-Xing],
Zheng, W.M.[Wei-Min],
Potential-based hierarchical clustering,
ICPR02(IV: 272-275).
IEEE DOI
0211
BibRef
Rendon, E.,
Barandela, R.,
Fast hierarchical clustering based on compressed data,
ICPR02(II: 216-219).
IEEE DOI
0211
BibRef
Zöller, T.,
Buhmann, J.M.,
Active Learning for Hierarchical Pairwise Data Clustering,
ICPR00(Vol II: 186-189).
IEEE DOI
0009
BibRef
Chardin, A.,
Perez, P.,
Unsupervised Image Classification with a Hierarchical EM Algorithm,
ICCV99(969-974).
IEEE DOI
BibRef
9900
Earlier:
Semi-iterative inference with hierarchical models,
ICIP98(I: 630-634).
IEEE DOI
9810
BibRef
Schikuta, E.,
Grid-Clustering:
An Efficient Hierarchical Clustering Method for Very Large Data Sets,
ICPR96(II: 101-105).
IEEE DOI
9608
(Univ. of Vienna, A)
BibRef
Bajcsy, P.,
Ahuja, N.,
Uniformity and Homogeneity Based Hierarchical Clustering,
ICPR96(II: 96-100).
IEEE DOI
9608
(Univ. of Illinois, Urbana, USA)
BibRef
Roberts, S.J.,
Scale-Space Unsupervised Cluster Analysis,
ICPR96(II: 106-110).
IEEE DOI
9608
(Univ. of London, UK)
BibRef
Jin, J.S.,
Hierarchical pattern matching using a high entropy signature,
ICPR94(B:436-438).
IEEE DOI
9410
BibRef
Prabhu, S.M.,
Garg, D.P.,
Spano, Sr., M.R.,
A hierarchical labeled object classification system,
ICPR94(B:479-481).
IEEE DOI
9410
BibRef
Jiang, H.T.[Hong-Tao],
Bolviken, E.,
A general parameter updating approach to image classification,
ICPR94(A:720-722).
IEEE DOI
9410
BibRef
Tseng, C.T.,
Moret, B.M.E.,
The design of a nonparametric hierarchical classifier,
ICPR90(I: 428-432).
IEEE DOI
9006
BibRef
Li, X.,
Hierarchical clustering on SIMD machines with alignment network,
CVPR89(660-665).
IEEE DOI
0403
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Dynamic Learning, Incremental Learning .