Beisner, H.M.,
A recursive Bayesian approach to pattern recognition,
PR(1), No. 1, July 1968, pp. 13-31.
Elsevier DOI
0309
BibRef
Basu, J.P.,
Odell, P.L.,
Effect of intraclass correlation among training samples on the
misclassification probabilities of bayes procedure,
PR(6), No. 1, June 1974, pp. 13-16.
Elsevier DOI
0309
See also Effect of autocorrelated training samples on Bayes' probabilities of misclassification.
BibRef
Decell, Jr., H.P.[Henry P.],
Odell, P.L.,
Coberly, W.A.[William A.],
Linear dimension reduction and Bayes classification,
PR(13), No. 3, 1981, pp. 241-243.
Elsevier DOI
0309
BibRef
Tsokos, C.P.[Chris P.],
Welch, R.L.W.,
Bayes discrimination with mean square error loss,
PR(10), No. 2, 1978, pp. 113-123.
Elsevier DOI
0309
BibRef
Tubbs, J.D.,
Effect of autocorrelated training samples on Bayes' probabilities of
misclassification,
PR(12), No. 6, 1980, pp. 351-354.
Elsevier DOI
0309
extends:
See also Effect of intraclass correlation among training samples on the misclassification probabilities of bayes procedure.
BibRef
Tubbs, J.D.,
Coberly, W.A.,
Young, D.M.,
Linear dimension reduction and Bayes classification with unknown
population parameters,
PR(15), No. 3, 1982, pp. 167-172.
Elsevier DOI
0309
BibRef
van Ness, J.W.[John W.],
On the Dominance of Non-Parametric Bayes Rule Discriminant Algorithms
in High Dimensions,
PR(12), No. 6, 1980, pp. 355-368.
Elsevier DOI
BibRef
8000
Postaire, J.G.,
An unsupervised Bayes classifier for normal patterns based on marginal
densities analysis,
PR(15), No. 2, 1982, pp. 103-111.
Elsevier DOI
0309
BibRef
Jajuga, K.[Krzysztof],
Bayes classification rule for the general discrete case,
PR(19), No. 5, 1986, pp. 413-415.
Elsevier DOI
0309
BibRef
Toussaint, G.T.[Godfried T.],
Bayes classification rule for the general discrete case,
PR(20), No. 4, 1987, pp. 411.
Elsevier DOI
0309
BibRef
Kurzynski, M.W.[Marek W.],
On the multistage Bayes classifier,
PR(21), No. 4, 1988, pp. 355-365.
Elsevier DOI
0309
See also On the Identity of Optimal Strategies for Multistage Classifiers.
See also optimal strategy of a tree classifier, The.
BibRef
Garber, F.D., and
Djouadi, A.,
Bounds on the Bayes Classification Error Based on
Pairwise Risk Functions,
PAMI(10), No. 2, March 1988, pp. 281-288.
IEEE DOI
BibRef
8803
Hwang, S.Y.[Shu-Yuen],
Two heuristics for arranging the order of feature-extraction operations
in recursive Bayesian decision rule,
PR(23), No. 12, 1990, pp. 1389-1392.
Elsevier DOI
0401
BibRef
Carhart, G.W.[Gary W.],
Draayer, B.F.[Bret F.],
Giles, M.K.[Michael K.],
Optical-Pattern Recognition Using Bayesian Classification,
PR(27), No. 4, April 1994, pp. 587-606.
Elsevier DOI
BibRef
9404
Ruiz, A.[Alberto],
A Nonparametric Bound for the Bayes Error,
PR(28), No. 6, June 1995, pp. 921-930.
Elsevier DOI
0401
BibRef
Avi-Itzhak, H.,
Diep, T.A.,
Arbitrarily Tight Upper and Lower Bounds on the
Bayesian Probability of Error,
PAMI(18), No. 1, January 1996, pp. 89-91.
IEEE DOI
BibRef
9601
Xu, L.,
Bayesian Ying-Yang Machine, Clustering and Number of Clusters,
PRL(18), No. 11-13, November 1997, pp. 1167-1178.
9806
BibRef
Hurn, M.A.,
Mardia, K.V.,
Hainsworth, T.J.,
Kirkbride, J.,
Berry, E.,
Bayesian fused classification of medical images,
MedImg(15), No. 6, December 1996, pp. 850-858.
IEEE Top Reference.
0203
BibRef
Mardia, K.V.,
Hainsworth, T.J.,
Kirkbride, J.,
Hierarchical Bayesian Classification of Multimodal Medical Images,
MMBIA96(Bayesian Analysis)
BibRef
9600
Gorte, B.,
Stein, A.,
Bayesian Classification and Class Area Estimation of
Satellite Images Using Stratification,
GeoRS(36), No. 3, May 1998, pp. 803-812.
IEEE Top Reference.
9806
BibRef
Rajan, J.J.,
Rayner, P.J.W.,
Godsill, S.J.,
Bayesian Approach to Parameter Estimation and Interpolation of
Time Varying Autoregressive Processes Using the Gibbs Sampler,
VISP(144), No. 4, August 1997, pp. 249-256.
9806
BibRef
Sanjaygopel, S.,
Hebert, T.J.,
Bayesian Pixel Classification Using Spatially Variant Finite Mixtures
and the Generalized EM Algorithm,
IP(7), No. 7, July 1998, pp. 1014-1028.
IEEE DOI
9807
BibRef
Roberts, S.J.[Stephen J.],
Husmeier, D.[Dirk],
Rezek, I.[Iead],
Penny, W.D.[William D.],
Bayesian Approaches to Gaussian Mixture Modeling,
PAMI(20), No. 11, November 1998, pp. 1133-1142.
IEEE DOI
9811
BibRef
Williams, C.K.I.,
Barber, D.,
Bayesian Classification With Gaussian Processes,
PAMI(20), No. 12, December 1998, pp. 1342-1351.
IEEE DOI
BibRef
9812
Horiuchi, T.[Takahiko],
Decision Rule for Pattern Classification by
Integrating Interval Feature Values,
PAMI(20), No. 4, April 1998, pp. 440-448.
IEEE DOI
9806
Bayes Nets.
BibRef
Horiuchi, T.[Takahiko],
Pattern Classification Method by Integrating Interval Feature Values,
ICDAR97(847-850).
IEEE DOI
9708
BibRef
Warrender, C.E.[Christina E.],
Augusteijn, M.F.[Marijke F.],
Fusion of image classifications using Bayesian techniques with Markov
random fields,
JRS(20), No. 10, July 1999, pp. 1987.
BibRef
9907
Foggia, P.[Pasquale],
Sansone, C.[Carlo],
Tortorella, F.,
Vento, M.[Mario],
Multiclassification: reject criteria for the Bayesian combiner,
PR(32), No. 8, August 1999, pp. 1435-1447.
Elsevier DOI
BibRef
9908
Cordella, L.P.,
Foggia, P.[Pasquale],
Sansone, C.[Carlo],
Tortorella, F.,
Vento, M.,
Classification reliability and its use in multi-classifier systems,
CIAP97(I: 46-53).
Springer DOI
9709
BibRef
Foggia, P.[Pasquale],
Percannella, G.[Gennaro],
Sansone, C.[Carlo],
Vento, M.[Mario],
The Impact of Reliability Evaluation on a Semi-supervised Learning
Approach,
CIAP09(249-258).
Springer DOI
0909
BibRef
Earlier:
Evaluating Classification Reliability for Combining Classifiers,
CIAP07(711-716).
IEEE DOI
0709
BibRef
Cordella, L.P.,
Foggia, P.,
Sansone, C.,
Vento, M.,
Learning structural shape descriptions from examples,
PRL(23), No. 12, October 2002, pp. 1427-1437.
Elsevier DOI
0206
BibRef
Antos, A.[Andras],
Devroye, L.[Luc],
Gyoerfi, L.[Laszlo],
Lower Bounds for Bayes Error Estimation,
PAMI(21), No. 7, July 1999, pp. 643-645.
IEEE DOI
BibRef
9907
Davis, R.[Robert],
Prieditis, A.[Armand],
Designing Optimal Sequential Experiments for a Bayesian Classifier,
PAMI(21), No. 3, March 1999, pp. 193-201.
IEEE DOI Generate better classifiers using more computation.
BibRef
9903
Rangarajan, A.[Anand],
Hsiao, I.T.[Ing-Tsung],
Gindi, G.[Gene],
A Bayesian Joint Mixture Framework for the Integration of Anatomical
Information in Functional Image Reconstruction,
JMIV(12), No. 3, June 2000, pp. 199-217.
DOI Link
0003
BibRef
Rueda, L.G.[Luis G.],
Oommen, B.J.[B. John],
On Optimal Pairwise Linear Classifiers for Normal Distributions:
The Two-Dimensional Case,
PAMI(24), No. 2, February 2002, pp. 274-280.
IEEE DOI
0202
Bayesian Clustering. Linear classifier is a pair of straight lines.
BibRef
Rueda, L.G.[Luis G.],
Oommen, B.J.[B. John],
On Optimal Pairwise Linear Classifiers for Normal Distributions:
The D-Dimensional Case,
PR(36), No. 1, January 2003, pp. 13-23.
Elsevier DOI
0210
See also Linear dimensionality reduction by maximizing the Chernoff distance in the transformed space.
BibRef
Rueda, L.G.[Luis G.],
Selecting the best hyperplane in the framework of optimal pairwise
linear classifiers,
PRL(25), No. 1, January 2004, pp. 49-62.
Elsevier DOI
0311
BibRef
Rueda, L.G.[Luis G.],
An efficient approach to compute the threshold for multi-dimensional
linear classifiers,
PR(37), No. 4, April 2004, pp. 811-826.
Elsevier DOI
0403
BibRef
Rueda, L.G.[Luis G.],
A one-dimensional analysis for the probability of error of linear
classifiers for normally distributed classes,
PR(38), No. 8, August 2005, pp. 1197-1207.
Elsevier DOI
0505
See also comment on: A one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes by Rueda, A.
BibRef
Oommen, B.J.[B. John],
Rueda, L.G.[Luis G.],
Stochastic learning-based weak estimation of multinomial random
variables and its applications to pattern recognition in non-stationary
environments,
PR(39), No. 3, March 2006, pp. 328-341.
Elsevier DOI
0601
BibRef
Forsyth, D.A.,
Haddon, J.,
Ioffe, S.,
The Joy of Sampling,
IJCV(41), No. 1-2, January-February 2001, pp. 109-134.
DOI Link Sampling for Bayesian models applied to structure from motion
and color constancy.
0105
BibRef
Huang, H.J.[Hung-Ju],
Hsu, C.N.[Chun-Nan],
Bayesian classification for data from the same unknown class,
SMC-B(32), No. 2, April 2002, pp. 137-145.
IEEE Top Reference.
0205
BibRef
Zribi, M.[Mourad],
Non-parametric and unsupervised Bayesian classification with Bootstrap
sampling,
IVC(22), No. 1, January 2004, pp. 1-8.
Elsevier DOI
0401
BibRef
Zribi, M.[Mourad],
Unsupervised Bayesian image segmentation using orthogonal series,
JVCIR(18), No. 6, December 2007, pp. 496-503.
Elsevier DOI
0711
Unsupervised Bayesian image segmentation; Orthogonal series estimator;
Stochastic and Nonparametric Expectation-Maximization
BibRef
Zribi, M.[Mourad],
Ghorbel, F.[Faouzi],
An Unsupervised and Non-Parametric Bayesian Classifier,
PRL(24), No. 1-3, January 2003, pp. 97-112.
Elsevier DOI
0211
BibRef
Earlier:
An unsupervised and non-parametric Bayesian Image segmentation,
CIAP95(423-428).
Springer DOI
9509
BibRef
Vass, G.G.[György G.],
Daoudi, M.[Mohamed],
Ghorbel, F.[Faouzi],
Optimization methods in multilayer classifier networks for automatic
control of lamellibranch larva growth,
CIAP97(II: 220-227).
Springer DOI
9709
BibRef
Eastman, J.R.,
Laney, R.M.,
Bayesian Soft Classification for Sub-Pixel Analysis:
A Critical Evaluation,
PhEngRS(68), No. 11, November 2002, pp. 1149-1154.
Fuzzy training sites improve the accuracy of the Bayesian classification procedure by increasing the degree of
overlap between parent distributions.
WWW Link.
0304
BibRef
Pernkopf, F.[Franz],
O'Leary, P.[Paul],
Floating search algorithm for structure learning of Bayesian network
classifiers,
PRL(24), No. 15, November 2003, pp. 2839-2848.
Elsevier DOI
0308
BibRef
Earlier:
Feature Selection for Classification Using Genetic Algorithms with a
Novel Encoding,
CAIP01(161 ff.).
Springer DOI
0210
BibRef
Pernkopf, F.[Franz],
Bayesian network classifiers versus selective k-NN classifier,
PR(38), No. 1, January 2005, pp. 1-10.
Elsevier DOI
0410
BibRef
Pernkopf, F.[Franz],
Wohlmayr, M.[Michael],
Tschiatschek, S.[Sebastian],
Maximum Margin Bayesian Network Classifiers,
PAMI(34), No. 3, March 2012, pp. 521-532.
IEEE DOI
1201
Conjugate gradient optimization. Maintain normalization on constraints of
the Bayesian network
BibRef
Mutsam, N.[Nikolaus],
Pernkopf, F.[Franz],
Maximum margin hidden Markov models for sequence classification,
PRL(77), No. 1, 2016, pp. 14-20.
Elsevier DOI
1606
Hidden Markov models
BibRef
Tschiatschek, S.,
Pernkopf, F.,
On Bayesian Network Classifiers with Reduced Precision Parameters,
PAMI(37), No. 4, April 2015, pp. 774-785.
IEEE DOI
1503
Bayes methods
BibRef
Pernkopf, F.[Franz],
Wohlmayr, M.[Michael],
Stochastic margin-based structure learning of Bayesian network
classifiers,
PR(46), No. 2, February 2013, pp. 464-471.
Elsevier DOI
1210
Bayesian network classifier; Discriminative learning; Maximum margin
learning; Structure learning
BibRef
Raymer, M.L.,
Doom, T.E.,
Kuhn, L.A.,
Punch, W.F.,
Knowledge discovery in medical and biological datasets using a hybrid
Bayes classifier/evolutionary algorithm,
SMC-B(33), No. 5, October 2003, pp. 802-813.
IEEE Abstract.
0310
BibRef
Thomaz, C.E.,
Gillies, D.F.,
Feitosa, R.Q.,
A New Covariance Estimate for Bayesian Classifiers in Biometric
Recognition,
CirSysVideo(14), No. 2, February 2004, pp. 214-223.
IEEE Abstract.
0403
BibRef
Storvik, G.,
Fjortoft, R.,
Solberg, A.H.S.,
A Bayesian Approach to Classification of Multiresolution Remote Sensing
Data,
GeoRS(43), No. 3, March 2005, pp. 539-547.
IEEE Abstract.
0501
BibRef
Kwoh, C.K.[Chee-Keong],
Gillies, D.F.[Duncan Fyfe],
Estimating the initial values of unobservable variables in visual
probabilistic networks,
CAIP95(326-333).
Springer DOI
9509
BibRef
Aksoy, S.,
Koperski, K.,
Tusk, C.,
Marchisio, G.,
Tilton, J.C.,
Learning Bayesian Classifiers for Scene Classification With a Visual
Grammar,
GeoRS(43), No. 3, March 2005, pp. 581-589.
IEEE Abstract.
0501
BibRef
Hand, D.J., and
Yu, K.,
Idiot's Bayes: Not so Stupid After All?,
Statistical Review(69), 2001, pp. 385-398.
BibRef
0100
Jamain, A.[Adrien],
Hand, D.J.[David J.],
The Naive Bayes Mystery: A classification detective story,
PRL(26), No. 11, August 2005, pp. 1752-1760.
Elsevier DOI
0506
BibRef
Zhang, H.[Harry],
Su, J.[Jiang],
Learning probabilistic decision trees for AUC,
PRL(27), No. 8, June 2006, pp. 892-899.
Elsevier DOI Naive Bayes; Ranking
0605
BibRef
Nadarajah, S.[Saralees],
Kotz, S.[Samuel],
A comment on: 'A one-dimensional analysis for the probability of error
of linear classifiers for normally distributed classes' by Rueda,
PR(40), No. 5, May 2007, pp. 1632-1633.
Elsevier DOI
0702
See also one-dimensional analysis for the probability of error of linear classifiers for normally distributed classes, A.
BibRef
Shi, X.J.[Xiao-Jin],
Manduchi, R.[Roberto],
On the Bayes fusion of visual features,
IVC(25), No. 11, 1 November 2007, pp. 1748-1758.
Elsevier DOI
0709
Image classification; Bayes fusion; Color; Texture
BibRef
Sicard, R.[Rudy],
Artieres, T.[Thierry],
Petit, E.[Eric],
Learning iteratively a classifier with the Bayesian Model Averaging
Principle,
PR(41), No. 3, March 2008, pp. 930-938.
Elsevier DOI
0711
Bayesian model averaging; Point estimate approximation;
Naieve Bayes classifier; Statistical classification
BibRef
Hernandez-Lobato, D.[Daniel],
Hernandez-Lobato, J.M.[Jose Miguel],
Bayes Machines for binary classification,
PRL(29), No. 10, 15 July 2008, pp. 1466-1473.
Elsevier DOI
0711
Kernel methods; Approximate inference; Bayesian methods;
Expectation Propagation; Bayes Point Machines; Bayes Machines
BibRef
Agrawal, R.K.,
Bala, R.[Rajni],
Incremental Bayesian classification for multivariate normal
distribution data,
PRL(29), No. 13, 1 October 2008, pp. 1873-1876.
Elsevier DOI
0804
Bayesian classification; Multivariate normal distribution; Sequential
classification; Feature selection
BibRef
Agrawal, R.K.,
Bala, R.[Rajni],
Bala, M.[Manju],
Discriminant Function Revisited for Incremental Learning,
ICCVGIP08(435-441).
IEEE DOI
0812
BibRef
Damoulas, T.[Theodoros],
Girolami, M.A.[Mark A.],
Pattern recognition with a Bayesian kernel combination machine,
PRL(30), No. 1, 1 January 2009, pp. 46-54.
Elsevier DOI
0811
Classification; Kernel combination; MCMC; Probit regression; Bayesian
inference; Information integration
BibRef
Damoulas, T.[Theodoros],
Girolami, M.A.[Mark A.],
Combining feature spaces for classification,
PR(42), No. 11, November 2009, pp. 2671-2683.
Elsevier DOI
0907
Variational Bayes approximation; Multiclass classification; Kernel
combination; Hierarchical Bayes; Bayesian inference; Ensemble
learning; Multi-modal modelling; Information integration
BibRef
Liao, W.H.[Wen-Hui],
Ji, Q.A.[Qi-Ang],
Learning Bayesian network parameters under incomplete data with domain
knowledge,
PR(42), No. 11, November 2009, pp. 3046-3056.
Elsevier DOI
0907
BibRef
Earlier:
Exploiting qualitative domain knowledge for learning Bayesian network
parameters with incomplete data,
ICPR08(1-4).
IEEE DOI
0812
Bayesian network parameter learning; Missing data; EM algorithm;
Facial action unit (AU) recognition
BibRef
Jiang, L.X.[Liang-Xiao],
Random one-dependence estimators,
PRL(32), No. 3, 1 February 2011, pp. 532-539.
Elsevier DOI
1101
Naive Bayes; One-dependence estimators; Random selection;
Classification; Class probability estimation; Ranking
BibRef
Schlueter, R.[Ralf],
Nussbaum-Thom, M.[Markus],
Ney, H.[Hermann],
Does the Cost Function Matter in Bayes Decision Rule?,
PAMI(34), No. 2, February 2012, pp. 292-301.
IEEE DOI
1112
Applied to various tasks. Analysis of Bayesian techniques.
BibRef
Silva, J.F.[Jorge F.],
Narayanan, S.S.[Shrikanth S.],
On signal representations within the Bayes decision framework,
PR(45), No. 5, May 2012, pp. 1853-1865.
Elsevier DOI
1201
Signal representation; Minimum risk decision; Bayes decision
framework; Estimation-approximation error tradeoff; complexity
regularization; Mutual information; Decision trees; Linear
discriminant analysis
BibRef
Ducinskas, K.[Kestutis],
Stabingiene, L.[Lijana],
Stabingis, G.[Giedrius],
Image Classification Based on Bayes Discriminant Functions,
Procedia Env. Sci(7), 2011, pp. 218-223
Elsevier DOI
1301
BibRef
And:
Retraction information for second reference:
Application of Bayes linear discriminant functions in image
classification,
PRL(35), No. 3, 1 February 2013, pp. 358.
Elsevier DOI
1301
Retracted Reference, do not use:
PRL(33), No. 3, 1 February 2012, pp. 278-282.
Image classification; Gaussian random fields; Actual error rate; Bayes
discriminant function.
Adding spatial information.
BibRef
Ruic, T.[Tijana],
Piurica, A.[Aleksandra],
Philips, W.[Wilfried],
Neighborhood-consensus message passing as a framework for generalized
iterated conditional expectations,
PRL(33), No. 3, 1 February 2012, pp. 309-318.
Elsevier DOI
1201
Markov random fields; Bayesian inference; Iterated conditional modes;
Message passing
BibRef
Liao, W.Z.[Wen-Zhi],
Pizurica, A.[Aleksandra],
Philips, W.[Wilfried],
Pi, Y.[Youguo],
A fast iterative kernel PCA feature extraction for hyperspectral images,
ICIP10(1317-1320).
IEEE DOI
1009
BibRef
Boullé, M.[Marc],
Functional data clustering via piecewise constant nonparametric density
estimation,
PR(45), No. 12, December 2012, pp. 4389-4401.
Elsevier DOI
1208
Functional data; Distributional data; Exploratory analysis; Clustering;
Bayesianism; Model selection; Density estimation
BibRef
Zheng, S.F.[Song-Feng],
Liu, W.X.[Wei-Xiang],
Functional gradient ascent for Probit regression,
PR(45), No. 12, December 2012, pp. 4428-4437.
Elsevier DOI
1208
Probit regression; Classification; Functional gradient ascent;
Boosting
BibRef
Dalton, L.A.[Lori A.],
Dougherty, E.R.[Edward R.],
Optimal classifiers with minimum expected error within a Bayesian
framework - Part I: Discrete and Gaussian models,
PR(46), No. 5, May 2013, pp. 1301-1314.
Elsevier DOI
1302
Bayesian estimation; Classification; Error estimation; Genomics;
Minimum mean-square estimation; Small samples
BibRef
Dalton, L.A.[Lori A.],
Dougherty, E.R.[Edward R.],
Optimal classifiers with minimum expected error within a Bayesian
framework - Part II: Properties and performance analysis,
PR(46), No. 5, May 2013, pp. 1288-1300.
Elsevier DOI
1302
Bayesian estimation; Classification; Error estimation; Genomics;
Minimum mean-square estimation; Small samples
BibRef
Nielsen, F.,
An Information-Geometric Characterization of Chernoff Information,
SPLetters(20), No. 3, March 2013, pp. 269-272.
IEEE DOI
1303
BibRef
Trajdos, P.[Pawel],
Burduk, R.[Robert],
Linear classifier combination via multiple potential functions,
PR(111), 2021, pp. 107681.
Elsevier DOI
2012
Linear classifier, Potential function, Ensemble of classifiers, Score function
BibRef
Feng, G.[Guang],
Zhang, J.D.[Jia-Dong],
Liao, S.S.Y.[Stephen Shao-Yi],
A novel method for combining Bayesian networks, theoretical analysis,
and its applications,
PR(47), No. 5, 2014, pp. 2057-2069.
Elsevier DOI
1402
Bayesian networks combination
BibRef
Wang, X.Z.[Xi-Zhao],
He, Y.L.[Yu-Lin],
Wang, D.D.,
Non-Naive Bayesian Classifiers for Classification Problems With
Continuous Attributes,
Cyber(44), No. 1, January 2014, pp. 21-39.
IEEE DOI
1402
Bayes methods
BibRef
Besson, O.,
Dobigeon, N.,
Tourneret, J.Y.,
Joint Bayesian Estimation of Close Subspaces from Noisy Measurements,
SPLetters(21), No. 2, February 2014, pp. 168-171.
IEEE DOI
1402
Bayes methods
BibRef
Ruiz, P.,
Mateos, J.,
Camps-Valls, G.,
Molina, R.,
Katsaggelos, A.K.,
Bayesian Active Remote Sensing Image Classification,
GeoRS(52), No. 4, April 2014, pp. 2186-2196.
IEEE DOI
1403
Bayes methods
BibRef
Stein, M.,
Castaneda, M.,
Mezghani, A.,
Nossek, J.A.,
Information-Preserving Transformations for Signal Parameter
Estimation,
SPLetters(21), No. 7, July 2014, pp. 866-870.
IEEE DOI
1405
Bayes methods
BibRef
Knowles, D.A.,
Ghahramani, Z.,
Pitman-Yor Diffusion Trees for Bayesian Hierarchical Clustering,
PAMI(37), No. 2, February 2015, pp. 271-289.
IEEE DOI
1502
Bayes methods
BibRef
Archambeau, C.[Cedric],
Lakshminarayanan, B.,
Bouchard, G.,
Latent IBP Compound Dirichlet Allocation,
PAMI(37), No. 2, February 2015, pp. 321-333.
IEEE DOI
1502
Analytical models
Indian buffet process (IBP).
BibRef
Gershman, S.J.,
Frazier, P.I.,
Blei, D.M.,
Distance Dependent Infinite Latent Feature Models,
PAMI(37), No. 2, February 2015, pp. 334-345.
IEEE DOI
1502
Analytical models
BibRef
Foti, N.J.,
Williamson, S.A.,
A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models,
PAMI(37), No. 2, February 2015, pp. 359-371.
IEEE DOI
1502
Bayesian nonparametrics
BibRef
Doshi-Velez, F.,
Pfau, D.,
Wood, F.,
Roy, N.,
Bayesian Nonparametric Methods for Partially-Observable Reinforcement
Learning,
PAMI(37), No. 2, February 2015, pp. 394-407.
IEEE DOI
1502
Bayes methods
BibRef
Deisenroth, M.P.,
Fox, D.,
Rasmussen, C.E.,
Gaussian Processes for Data-Efficient Learning in Robotics and
Control,
PAMI(37), No. 2, February 2015, pp. 408-423.
IEEE DOI
1502
Approximation methods
BibRef
Gilboa, E.,
Saatci, Y.,
Cunningham, J.P.,
Scaling Multidimensional Inference for Structured Gaussian Processes,
PAMI(37), No. 2, February 2015, pp. 424-436.
IEEE DOI
1502
Additives
BibRef
Orbanz, P.,
Roy, D.M.,
Bayesian Models of Graphs, Arrays and Other Exchangeable Random
Structures,
PAMI(37), No. 2, February 2015, pp. 437-461.
IEEE DOI
1502
Analytical models
BibRef
Palla, K.,
Knowles, D.A.,
Ghahramani, Z.,
Relational Learning and Network Modelling Using Infinite Latent
Attribute Models,
PAMI(37), No. 2, February 2015, pp. 462-474.
IEEE DOI
1502
Atmospheric modeling
BibRef
Xu, Z.,
Yan, F.,
Qi, Y.,
Bayesian Nonparametric Models for Multiway Data Analysis,
PAMI(37), No. 2, February 2015, pp. 475-487.
IEEE DOI
1502
Bayes methods
BibRef
Blomstedt, P.,
Tang, J.,
Xiong, J.,
Granlund, C.,
Corander, J.,
A Bayesian Predictive Model for Clustering Data of Mixed Discrete and
Continuous Type,
PAMI(37), No. 3, March 2015, pp. 489-498.
IEEE DOI
1502
Bayes methods
BibRef
Sun, S.J.[Shu-Jin],
Zhong, P.[Ping],
Xiao, H.T.[Huai-Tie],
Wang, R.S.[Run-Sheng],
Active Learning With Gaussian Process Classifier for Hyperspectral
Image Classification,
GeoRS(53), No. 4, April 2015, pp. 1746-1760.
IEEE DOI
1502
Bayes methods
BibRef
Sun, L.[Lei],
Toh, K.A.[Kar-Ann],
Lin, Z.P.[Zhi-Ping],
A center sliding Bayesian binary classifier adopting orthogonal
polynomials,
PR(48), No. 6, 2015, pp. 2013-2028.
Elsevier DOI
1503
Binary classification
BibRef
Klarreich, E.[Erica],
In Search of Bayesian Inference,
CACM(58), No. 1, January 2015, pp. 21-24.
DOI Link
1503
BibRef
Broumand, A.[Ariana],
Esfahani, M.S.[Mohammad Shahrokh],
Yoon, B.J.[Byung-Jun],
Dougherty, E.R.[Edward R.],
Discrete optimal Bayesian classification with error-conditioned
sequential sampling,
PR(48), No. 11, 2015, pp. 3766-3782.
Elsevier DOI
1506
Optimal Bayesian classifier
BibRef
El Korso, M.N.,
Boyer, R.,
Larzabal, P.,
Fleury, B.H.,
Estimation Performance for the Bayesian Hierarchical Linear Model,
SPLetters(23), No. 4, April 2016, pp. 488-492.
IEEE DOI
1604
Bayes methods
BibRef
Ruiz, P.[Pablo],
Molina, R.[Rafael],
Katsaggelos, A.K.[Aggelos K.],
Joint Data Filtering and Labeling Using Gaussian Processes and
Alternating Direction Method of Multipliers,
IP(25), No. 7, July 2016, pp. 3059-3072.
IEEE DOI
1606
Bayes methods
BibRef
Rohani, N.[Neda],
Ruiz, P.[Pablo],
Molina, R.[Rafael],
Katsaggelos, A.K.[Aggelos K.],
Variational Gaussian process for multisensor classification problems,
PRL(116), 2018, pp. 80-87.
Elsevier DOI
1812
Fusion, Gaussian process, Variational inference, Kernel, Posterior probability
BibRef
Morales-Álvarez, P.[Pablo],
Pérez-Suay, A.[Adrián],
Molina, R.[Rafael],
Camps-Valls, G.[Gustau],
Remote Sensing Image Classification With Large-Scale Gaussian
Processes,
GeoRS(56), No. 2, February 2018, pp. 1103-1114.
IEEE DOI
1802
Computational efficiency, Gaussian processes, Image resolution,
Kernel, Remote sensing, Standards, Support vector machines,
variational inference
BibRef
Svendsen, D.H.[Daniel Heestermans],
Martino, L.[Luca],
Camps-Valls, G.[Gustau],
Active emulation of computer codes with Gaussian processes:
Application to remote sensing,
PR(100), 2020, pp. 107103.
Elsevier DOI
2005
Active learning, Gaussian process, Emulation,
Design of experiments, Computer code, Remote sensing, Radiative transfer model
BibRef
Ruiz, P.[Pablo],
Morales-Álvarez, P.[Pablo],
Molina, R.[Rafael],
Katsaggelos, A.K.[Aggelos K.],
Learning from crowds with variational Gaussian processes,
PR(88), 2019, pp. 298-311.
Elsevier DOI
1901
Crowdsourcing, Classification, Gaussian processes,
Bayesian modeling, Variational inference
BibRef
Ruiz, P.[Pablo],
Mateos, J.[Javier],
Molina, R.[Rafael],
Katsaggelos, A.K.[Aggelos K.],
Learning filters in Gaussian process classification problems,
ICIP14(2913-2917)
IEEE DOI
1502
Bayes methods
BibRef
Morales-Álvarez, P.[Pablo],
Pérez-Suay, A.[Adrián],
Molina, R.[Rafael],
Camps-Valls, G.[Gustau],
Katsaggelos, A.K.,
Passive millimeter wave image classification with large scale
Gaussian processes,
ICIP17(370-374)
IEEE DOI
1803
Bayes methods, Gaussian processes, image classification,
image resolution, inference mechanisms,
variational inference
BibRef
Serra, J.G.,
Ruiz, P.[Pablo],
Molina, R.[Rafael],
Katsaggelos, A.K.[Aggelos K.],
Bayesian logistic regression with sparse general representation prior
for multispectral image classification,
ICIP16(1893-1897)
IEEE DOI
1610
Adaptation models
BibRef
Tang, B.,
Kay, S.,
He, H.,
Baggenstoss, P.M.,
EEF: Exponentially Embedded Families with
Class-Specific Features for Classification,
SPLetters(23), No. 7, July 2016, pp. 969-973.
IEEE DOI
1608
Bayes methods. Class specific features, not the general set.
BibRef
Kong, G.G.[Gang-Gang],
Jiang, L.X.[Liang-Xiao],
Li, C.Q.[Chao-Qun],
Beyond accuracy:
Learning selective Bayesian classifiers with minimal test cost,
PRL(80), No. 1, 2016, pp. 165-171.
Elsevier DOI
1609
Naive Bayes
BibRef
Oneto, L.[Luca],
Anguita, D.[Davide],
Ridella, S.[Sandro],
PAC-bayesian analysis of distribution dependent priors:
tighter risk bounds and stability analysis,
PRL(80), No. 1, 2016, pp. 200-207.
Elsevier DOI
1609
PAC-Bayes
BibRef
Wong, T.T.[Tzu-Tsung],
Liu, C.R.[Chao-Rui],
An efficient parameter estimation method for generalized Dirichlet
priors in naďve Bayesian classifiers with multinomial models,
PR(60), No. 1, 2016, pp. 62-71.
Elsevier DOI
1609
Covariance matrix
BibRef
Darwish, S.M.,
Combining firefly algorithm and Bayesian classifier:
New direction for automatic multilabel image annotation,
IET-IPR(10), No. 10, 2016, pp. 763-772.
DOI Link
1610
Bayes methods
BibRef
uch, O.[Ondrej],
Barreda, S.[Santiago],
Bayes covariant multi-class classification,
PRL(84), No. 1, 2016, pp. 99-106.
Elsevier DOI
1612
Multi-class classification
BibRef
Mariooryad, S.,
Busso, C.,
The Cost of Dichotomizing Continuous Labels for Binary Classification
Problems: Deriving a Bayesian-Optimal Classifier,
AffCom(8), No. 1, January 2017, pp. 119-130.
IEEE DOI
1703
Bayes methods
BibRef
Pereyra, M.[Marcelo],
Maximum-a-Posteriori Estimation with Bayesian Confidence Regions,
SIIMS(10), No. 1, 2017, pp. 285-302.
DOI Link
1704
BibRef
Lázaro, M.[Marcelino],
Hayes, M.H.[Monson H.],
Figueiras-Vidal, A.R.[Aníbal R.],
Training neural network classifiers through Bayes risk minimization
applying unidimensional Parzen windows,
PR(77), 2018, pp. 204-215.
Elsevier DOI
1802
Bayes risk, Parzen windows, Binary classification
BibRef
Durmus, A.[Alain],
Moulines, E.[Eric],
Pereyra, M.[Marcelo],
Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo:
When Langevin Meets Moreau,
SIIMS(11), No. 1, 2018, pp. 473-506.
DOI Link
1804
BibRef
Nguyen, T.T.T.[Thi Thu Thuy],
Nguyen, T.T.[Tien Thanh],
Liew, A.W.C.[Alan Wee-Chung],
Wang, S.L.[Shi-Lin],
Variational inference based bayes online classifiers with concept
drift adaptation,
PR(81), 2018, pp. 280-293.
Elsevier DOI
1806
Online learning, Variational inference, Bayesian classifier,
Data stream, Concept drift
BibRef
Zhao, T.Y.[Tian-Yi],
Zhang, B.P.[Bao-Peng],
He, M.[Ming],
Zhang, W.[Wei],
Zhou, N.[Ning],
Yu, J.[Jun],
Fan, J.P.[Jian-Ping],
Embedding Visual Hierarchy With Deep Networks for Large-Scale Visual
Recognition,
IP(27), No. 10, October 2018, pp. 4740-4755.
IEEE DOI
1808
Bayes methods, image classification,
learning (artificial intelligence), mixture models,
Bayesian approach
BibRef
Zhao, T.Y.[Tian-Yi],
Chen, Q.Y.[Qiu-Yu],
Kuang, Z.Z.[Zhen-Zhong],
Yu, J.[Jun],
Zhang, W.[Wei],
Fan, J.P.[Jian-Ping],
Deep Mixture of Diverse Experts for Large-Scale Visual Recognition,
PAMI(41), No. 5, May 2019, pp. 1072-1087.
IEEE DOI
1904
Task analysis, Visualization, Training, Complexity theory,
Image recognition, Prediction algorithms, Diversity reception,
large-scale visual recognition
BibRef
Zhao, Z.C.[Zhen-Chong],
Wang, X.D.[Xiao-Dan],
Multi-segments Naďve Bayes classifier in likelihood space,
IET-CV(12), No. 6, September 2018, pp. 882-891.
DOI Link
1808
BibRef
Fan, W.T.[Wen-Tao],
Bouguila, N.[Nizar],
Bourouis, S.[Sami],
Laalaoui, Y.[Yacine],
Entropy-based variational Bayes learning framework for data clustering,
IET-IPR(12), No. 10, October 2018, pp. 1762-1772.
DOI Link
1809
BibRef
Lagrange, A.[Adrien],
Fauvel, M.[Mathieu],
May, S.[Stéphane],
Dobigeon, N.[Nicolas],
Hierarchical Bayesian image analysis:
From low-level modeling to robust supervised learning,
PR(85), 2019, pp. 26-36.
Elsevier DOI
1810
Bayesian model, Supervised learning, Image interpretation, Markov random field
BibRef
Wang, D.[Dong],
Song, G.[Ge],
Tan, X.Y.[Xiao-Yang],
Bayesian denoising hashing for robust image retrieval,
PR(86), 2019, pp. 134-142.
Elsevier DOI
1811
Image retrieval, Denoising hashing, Probabilistic model, Variational Bayes
BibRef
Gezici, S.,
Varshney, P.K.,
On the Optimality of Likelihood Ratio Test for Prospect Theory-Based
Binary Hypothesis Testing,
SPLetters(25), No. 12, December 2018, pp. 1845-1849.
IEEE DOI
1812
Bayes methods, decision making, decision theory,
statistical testing, optimality, likelihood ratio test,
randomization
BibRef
Xu, Y.,
Hong, X.,
Porikli, F.M.[Fatih M.],
Liu, X.,
Chen, J.,
Zhao, G.,
Saliency Integration: An Arbitrator Model,
MultMed(21), No. 1, January 2019, pp. 98-113.
IEEE DOI
1901
Computational modeling, Bayes methods, Estimation,
Adaptation models, Predictive models, Biological system modeling,
arbitrator model
BibRef
Jiang, L.X.[Liang-Xiao],
Zhang, L.G.[Lun-Gan],
Yu, L.J.[Liang-Jun],
Wang, D.H.[Dian-Hong],
Class-specific attribute weighted naive Bayes,
PR(88), 2019, pp. 321-330.
Elsevier DOI
1901
Naive Bayes, Attribute weighting, Weight optimization
BibRef
Ali, M.[Muhammad],
Gao, J.B.[Jun-Bin],
Antolovich, M.[Michael],
Parametric Classification of Bingham Distributions Based on Grassmann
Manifolds,
IP(28), No. 12, December 2019, pp. 5771-5784.
IEEE DOI
1909
Manifolds, Kernel, Data models, Bayes methods, Parametric statistics,
Maximum likelihood estimation, Analytical models,
classification
BibRef
Kuang, W.,
Chan, Y.,
Tsang, S.,
Siu, W.,
Online-Learning-Based Bayesian Decision Rule for Fast Intra Mode and
CU Partitioning Algorithm in HEVC Screen Content Coding,
IP(29), No. 1, 2020, pp. 170-185.
IEEE DOI
1910
Bayes methods, computational complexity,
learning (artificial intelligence), video coding,
scene change detection
BibRef
Hassan, S.S.[Syeda Sakira],
Huttunen, H.[Heikki],
Niemi, J.[Jari],
Tohka, J.[Jussi],
Bayesian receiver operating characteristic metric for linear
classifiers,
PRL(128), 2019, pp. 52-59.
Elsevier DOI
1912
Receiver operating characteristic curve,
Bayesian error estimation, Classification
BibRef
Rademacher, P.,
Wagner, K.,
Efficient Bayesian Sequential Classification Under the Markov
Assumption for Various Loss Functions,
SPLetters(27), 2020, pp. 401-405.
IEEE DOI
2004
Markov processes, Viterbi algorithm,
Signal processing algorithms, Hidden Markov models,
efficient computation
BibRef
Zhou, Q.P.[Qing-Ping],
Yu, T.C.[Teng-Chao],
Zhang, X.Q.[Xiao-Qun],
Li, J.L.[Jing-Lai],
Bayesian Inference and Uncertainty Quantification for Medical Image
Reconstruction with Poisson Data,
SIIMS(13), No. 1, 2020, pp. 29-52.
DOI Link
2004
BibRef
Kim, H.C.[Hae-Cheon],
Park, J.H.[Jin-Hyeong],
Kim, D.W.[Dae-Won],
Lee, J.[Jaesung],
Multilabel Naďve Bayes classification considering label dependence,
PRL(136), 2020, pp. 279-285.
Elsevier DOI
2008
Multilabel classifier, Naďve Bayes classification, Label dependence
BibRef
Zhang, H.[Huan],
Jiang, L.X.[Liang-Xiao],
Yu, L.J.[Liang-Jun],
Attribute and instance weighted naive Bayes,
PR(111), 2021, pp. 107674.
Elsevier DOI
2012
Naive Bayes, Attribute weighting, Instance weighting,
Eager learning, Lazy learning
BibRef
Carlucci, F.M.[Fabio Maria],
Porzi, L.[Lorenzo],
Caputo, B.[Barbara],
Ricci, E.[Elisa],
Buló, S.R.[Samuel Rota],
MultiDIAL: Domain Alignment Layers for (Multisource) Unsupervised
Domain Adaptation,
PAMI(43), No. 12, December 2021, pp. 4441-4452.
IEEE DOI
2112
BibRef
Earlier:
AutoDIAL: Automatic Domain Alignment Layers,
ICCV17(5077-5085)
IEEE DOI
1802
BibRef
And:
Just DIAL: DomaIn Alignment Layers for Unsupervised Domain Adaptation,
CIAP17(I:357-369).
Springer DOI
1711
Deep learning, Adaptation models,
Training data, Visualization, Entropy, Data models, entropy loss.
learning (artificial intelligence), pattern classification,
AutoDIAL, automatic domain alignment layers, classifier training,
Visualization
BibRef
Kuzborskij, I.[Ilja],
Carlucci, F.M.[Fabio Maria],
Caputo, B.[Barbara],
When Naive Bayes Nearest Neighbors Meet Convolutional Neural
Networks,
CVPR16(2100-2109)
IEEE DOI
1612
BibRef
Byvshev, P.[Petr],
Mettes, P.S.[Pascal S.],
Xiao, Y.[Yu],
Are 3D convolutional networks inherently biased towards appearance?,
CVIU(220), 2022, pp. 103437.
Elsevier DOI
2206
3D models, Temporality measure, Motion analysis, Large-scale videosets
BibRef
de la Riva, M.,
Mettes, P.S.[Pascal S.],
Bayesian 3D ConvNets for Action Recognition from Few Examples,
MDALC19(1337-1343)
IEEE DOI
2004
Bayes methods, belief networks, convolutional neural nets,
image colour analysis, image motion analysis, image recognition,
action recognition
BibRef
Zhang, H.[Huan],
Jiang, L.[Liangxiao],
Webb, G.I.[Geoffrey I.],
Rigorous non-disjoint discretization for naive Bayes,
PR(140), 2023, pp. 109554.
Elsevier DOI
2305
Naive Bayes, Singleton interval, Proportional weighting, Discretization
BibRef
Lefebvre, T.[Tom],
Crevecoeur, G.[Guillaume],
A posteriori control densities: Imitation learning from partial
observations,
PRL(169), 2023, pp. 87-94.
Elsevier DOI
2305
Information-theory, Hidden markov models, Bayesian methods,
Imitation learning, Markov decision processes
BibRef
Du, X.[Xinqi],
Chen, H.C.[He-Chang],
Wang, C.[Che],
Xing, Y.H.[Yong-Heng],
Yang, J.[Jielong],
Yu, P.S.[Philip S.],
Chang, Y.[Yi],
He, L.F.[Li-Fang],
Robust multi-agent reinforcement learning via Bayesian distributional
value estimation,
PR(145), 2024, pp. 109917.
Elsevier DOI
2311
Multi-agent reinforcement learning, Bayesian inference,
Distributional value function, Deep reinforcement learning
BibRef
Khodayari-Samghabadi, I.[Imaneh],
Mohammad-Khanli, L.[Leyli],
Tanha, J.[Jafar],
A Fast Multi-Network K-Dependence Bayesian Classifier for Continuous
Features,
PR(150), 2024, pp. 110299.
Elsevier DOI
2403
Kernel density estimation, B-spline functions, Probability density estimation,
Continuous features, Bayesian network classifier
BibRef
Cai, Z.[Ziruo],
Tang, J.Q.[Jun-Qi],
Mukherjee, S.[Subhadip],
Li, J.L.[Jing-Lai],
Schonlieb, C.B.[Carola-Bibiane],
Zhang, X.Q.[Xiao-Qun],
NF-ULA: Normalizing Flow-Based Unadjusted Langevin Algorithm for
Imaging Inverse Problems,
SIIMS(17), No. 2, 2024, pp. 820-860.
DOI Link
2407
BibRef
Jalali, H.[Hamed],
Kasneci, G.[Gjeraji],
Aggregating Dependent Gaussian Experts in Local Approximation,
ICPR21(9015-9022)
IEEE DOI
2105
Training, Graphical models, Estimation, Gaussian processes,
Bayes methods, Approximation methods
BibRef
Berns, F.[Fabian],
Schmidt, K.[Kjeld],
Bracht, I.[Ingolf],
Beecks, C.[Christian],
3CS Algorithm for Efficient Gaussian Process Model Retrieval,
ICPR21(1773-1780)
IEEE DOI
2105
Machine learning algorithms, Heuristic algorithms,
Gaussian processes, Data models, Partitioning algorithms,
Performance Evaluation
BibRef
Carvalho, E.D.C.[Eduardo D. C.],
Clark, R.[Ronald],
Nicastro, A.[Andrea],
Kelly, P.H.J.[Paul H. J.],
Scalable Uncertainty for Computer Vision With Functional Variational
Inference,
CVPR20(12000-12010)
IEEE DOI
2008
Uncertainty, Task analysis, Bayes methods, Training,
Machine learning, Neural networks
BibRef
Kim, T.,
Lee, J.,
Choe, Y.,
Tensor Train Decomposition for Efficient Memory Saving in Perceptual
Feature-Maps,
RSL-CV19(599-604)
IEEE DOI
2004
approximation theory, Bayes methods, convolutional neural nets,
image classification, learning (artificial intelligence),
Tensor Train decomposition
BibRef
Machireddy, A.[Amrutha],
Krishnan, R.[Ranganath],
Ahuja, N.[Nilesh],
Tickoo, O.[Omesh],
Continual Active Adaptation to Evolving Distributional Shifts,
RoSe22(3443-3449)
IEEE DOI
2210
Adaptation models, Computational modeling, Perturbation methods,
Neural networks, Lighting, Predictive models, Data models
BibRef
Krishnan, R.,
Subedar, M.,
Tickoo, O.,
Efficient Priors for Scalable Variational Inference in Bayesian Deep
Neural Networks,
SDL-CV19(773-777)
IEEE DOI
2004
Bayes methods, neural net architecture,
statistical distributions, stochastic processes, Bayesian Priors
BibRef
Liu, Y.H.[Yu-Hang],
Dong, W.Y.[Wen-Yong],
Zhang, L.[Lei],
Gong, D.[Dong],
Shi, Q.F.[Qin-Feng],
Variational Bayesian Dropout With a Hierarchical Prior,
CVPR19(7117-7126).
IEEE DOI
2002
BibRef
Nguyen, K.,
Le, T.,
Dinh, T.N.,
Phung, D.,
Bayesian Multi-Hyperplane Machine for Pattern Recognition,
ICPR18(609-614)
IEEE DOI
1812
Bayes methods, data handling, gradient methods,
inference mechanisms, learning (artificial intelligence),
Computational modeling
BibRef
Pirayre, A.,
Zheng, Y.,
Duval, L.,
Pesquet, J.C.,
HOGMep: Variational Bayes and higher-order graphical models applied
to joint image recovery and segmentation,
ICIP17(3775-3779)
IEEE DOI
1803
Bayes methods, Graphical models, Image restoration,
Image segmentation, Indexes, Probability density function,
variational Bayes
BibRef
Dogadov, S.,
Masegosa, A.,
Nakajima, S.,
Variational Robust Subspace Clustering with Mean Update Algorithm,
RSL-CV17(1792-1799)
IEEE DOI
1802
Approximation algorithms, Bayes methods, Clustering algorithms,
Computational modeling, Dictionaries, Robustness, Sparse matrices
BibRef
Fathy, M.E.,
Chellappa, R.,
Image Set Classification Using Sparse Bayesian Regression,
WACV17(1187-1196)
IEEE DOI
1609
Bayes methods, Computational modeling, Dictionaries,
Face recognition, Kernel, Manifolds, Probes
BibRef
Vogt, K.[Karsten],
Ostermann, J.[Jörn],
Soft Margin Bayes-Point-Machine Classification via Adaptive Direction
Sampling,
SCIA17(I: 313-324).
Springer DOI
1706
BibRef
Nguyen, T.T.T.[Thi Thu Thuy],
Nguyen, T.T.[Tien Thanh],
Pham, X.C.[Xuan Cuong],
Liew, A.W.C.[Alan Wee-Chung],
Hu, Y.J.[Yong-Jian],
Liang, T.C.[Tian-Cai],
Li, C.T.[Chang-Tsun],
A Novel Online Bayes Classifier,
DICTA16(1-6)
IEEE DOI
1701
Approximation algorithms
BibRef
Kim, Y.D.,
Jang, T.,
Han, B.,
Choi, S.,
Learning to Select Pre-Trained Deep Representations with Bayesian
Evidence Framework,
CVPR16(5318-5326)
IEEE DOI
1612
BibRef
Maeda, T.,
Yamasaki, T.,
Aizawa, K.,
Multi-stage object classification featuring confidence analysis of
classifier and inclined local Naive Bayes nearest neighbor,
ICIP14(5177-5181)
IEEE DOI
1502
Accuracy
BibRef
Endo, T.[Tomomi],
Kudo, M.[Mineichi],
Weighted Naďve Bayes Classifiers by Renyi Entropy,
CIARP13(I:149-156).
Springer DOI
1311
BibRef
Cordella, L.P.[Luigi P.],
de Stefano, C.[Claudio],
A Weighted Majority Vote Strategy Using Bayesian Networks,
CIAP13(II:219-228).
Springer DOI
1309
BibRef
Turkov, P.[Pavel],
Krasotkina, O.[Olga],
Mottl, V.[Vadim],
The Bayesian logistic regression in pattern recognition problems under
concept drift,
ICPR12(2976-2979).
WWW Link.
1302
BibRef
Aghajanian, J.[Jania],
Warrell, J.[Jonathan],
Prince, S.J.D.[Simon J.D.],
Li, P.[Peng],
Rohn, J.L.[Jennifer L.],
Baum, B.[Buzz],
Patch-based within-object classification,
ICCV09(1125-1132).
IEEE DOI
0909
E.g. Gender in face, pose in pedestrian. Within-object classification.
BibRef
Goswami, D.,
Kalkan, S.,
Krüger, N.,
Bayesian Classification of Image Structures,
SCIA09(676-685).
Springer DOI
0906
BibRef
Chandra, B.,
Gupta, M.[Manish],
Gupta, M.P.,
Robust Approach for Estimating Probabilities in Naive-Bayes Classifier,
PReMI07(11-16).
Springer DOI
0712
BibRef
Wang, W.[Wei],
Wang, C.H.[Chun-Heng],
Cui, X.[Xia],
Wang, A.[Ai],
A clustering algorithm combine the FCM algorithm with supervised
learning normal mixture model,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Xuan, G.R.[Guo-Rong],
Zhu, X.M.[Xiu-Ming],
Shi, Y.Q.[Yun Q.],
Chai, P.Q.[Pei-Qi],
Cui, X.[Xia],
Li, J.[Jue],
A Novel Bayesian Classifier with Smaller Eigenvalues Reset by Threshold
Based on Given Database,
ICIAR07(375-386).
Springer DOI
0708
See also Optimum Histogram Pair Based Image Lossless Data Embedding.
BibRef
Okatani, T.[Takayuki],
Deguchi, K.[Koichiro],
Variational Bayes Based Approach to Robust Subspace Learning,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Yuan, C.[Chao],
Neubauer, C.[Claus],
A Variational Bayesian Approach for Classification with Corrupted
Inputs,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Phung, S.L.[Son Lam],
Bouzerdoum, A.,
Chai, D.,
Watson, A.,
Naive bayes face/nonface classifier: a study of preprocessing and
feature extraction techniques,
ICIP04(II: 1385-1388).
IEEE DOI
0505
BibRef
Jeon, Y.J.[Young-Joon],
Choi, J.G.[Jae-Gark],
Kim, J.I.[Jin-Il],
A Study on Supervised Classification of Remote Sensing Satellite Image
by Bayesian Algorithm Using Average Fuzzy Intracluster Distance,
IWCIA04(597-606).
Springer DOI
0505
BibRef
Jermyn, I.H.[Ian H.],
On Bayesian Estimation in Manifolds,
INRIARR-4607, Octobre 2002.
HTML Version.
0306
BibRef
Mathis, C.,
Breuel, T.,
Classification using a hierarchical bayesian approach,
ICPR02(IV: 103-106).
IEEE DOI
0211
BibRef
Carvalho, P.C.P.[Paulo C.P.],
Santos, A.[Amancio],
Dourado, A.[Antonio],
Ribeiro, B.[Bernardete],
Bayes information criterion for Tikhonov regularization with linear
constraints: application to spectral data estimation,
ICPR02(I: 696-700).
IEEE DOI
0211
BibRef
Keren, D.,
Painter identification using local features and naive bayes,
ICPR02(II: 474-477).
IEEE DOI
0211
BibRef
Qi, Y.[Yuan],
Picard, R.W.,
Context-sensitive Bayesian classifiers and application to mouse
pressure pattern classification,
ICPR02(III: 448-451).
IEEE DOI
0211
BibRef
Ling, L.L.[Lee Luan],
Cavalcanti, H.M.,
Fast and Efficient Feature Extraction Based on Bayesian Decision
Boundaries,
ICPR00(Vol II: 390-393).
IEEE DOI
0009
BibRef
Sze, L.,
Leung, C.,
Branch and Bound Algorithm for the Bayes Classifier,
ICPR96(II: 705-709).
IEEE DOI
9608
(Univ. of Hong Kong, HK)
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Bayesian Optimization .