CR Chisto Labeled Nuclei Dataset,
Online2016
WWW Link.
Dataset, Nuclei.
1602
Dataset of colorectal cancer histology images consisting of nearly
30,000 dotted nuclei with over 22,000 labeled with the type of cell
they belong to.
BibRef
Ott, R.,
Schürmann, J.,
Reinhardt, E.R.,
Bloss, W.H.,
Automated classification of cytological specimens based on features
extracted from nuclei images,
PR(13), No. 1, 1981, pp. 83-87.
Elsevier DOI
0309
BibRef
Bamford, P.[Pascal],
Lovell, B.C.[Brian C.],
Unsupervised cell nucleus segmentation with active contours,
SP(71), No. 2, 15 December 1998, pp. 203-213.
BibRef
9812
Earlier:
Bayesian Analysis of Cell Nucleus Segmentation by a
Viterbi Search Based Active Contour,
ICPR98(Vol I: 133-135).
IEEE DOI
9808
BibRef
And:
Improving the Robustness of Cell Nucleus Segmentation,
BMVC98(xx-yy).
BibRef
Yang, S.,
Kohler, D.,
Teller, K.,
Cremer, T.,
Le Baccon, P.,
Heard, E.,
Eils, R.,
Rohr, K.,
Nonrigid Registration of 3-D Multichannel Microscopy Images of Cell
Nuclei,
IP(17), No. 4, April 2008, pp. 493-499.
IEEE DOI
0803
BibRef
Kim, I.H.,
Chen, Y.C.M.,
Spector, D.L.,
Eils, R.,
Rohr, K.,
Nonrigid Registration of 2-D and 3-D Dynamic Cell Nuclei Images for
Improved Classification of Subcellular Particle Motion,
IP(20), No. 4, April 2011, pp. 1011-1022.
IEEE DOI
1103
BibRef
McCullough, D.P.,
Gudla, P.R.,
Harris, B.S.,
Collins, J.A.,
Meaburn, K.J.,
Nakaya, M.A.,
Yamaguchi, T.P.,
Misteli, T.,
Lockett, S.J.,
Segmentation of Whole Cells and Cell Nuclei From 3-D Optical Microscope
Images Using Dynamic Programming,
MedImg(27), No. 5, May 2008, pp. 723-734.
IEEE DOI
0711
BibRef
Yu, D.G.[Dong-Gang],
Pham, T.D.[Tuan D.],
Zhou, X.B.[Xiao-Bo],
Wong, S.T.C.[Stephen T.C.],
Recognition and analysis of cell nuclear phases for high-content
screening based on morphological features,
PR(42), No. 4, April 2009, pp. 498-508.
Elsevier DOI
0812
Nuclei phases; Cell screening; Feature extraction; Morphological
feature; Feed-forward detection; Feed-back detection; Shape
recognition; Normal cellular cycle
BibRef
Cloppet, F.,
Boucher, A.,
Segmentation of complex nucleus configurations in biological images,
PRL(31), No. 8, 1 June 2010, pp. 755-761.
Elsevier DOI
1004
BibRef
Earlier:
Segmentation of overlapping/aggregating nuclei cells in biological
images,
ICPR08(1-4).
IEEE DOI
0812
Nucleus segmentation; Prior information; Watershed-based segmentation;
Biomedical imaging
BibRef
Quelhas, P.,
Marcuzzo, M.,
Mendonca, A.M.,
Campilho, A.,
Cell Nuclei and Cytoplasm Joint Segmentation Using the Sliding Band
Filter,
MedImg(29), No. 8, August 2010, pp. 1463-1473.
IEEE DOI
1008
BibRef
Quelhas, P.[Pedro],
Mendonca, A.M.[Ana Maria],
Campilho, A.[Aurelio],
3D Cell Nuclei Fluorescence Quantification Using Sliding Band Filter,
ICPR10(2508-2511).
IEEE DOI
1008
BibRef
Marcuzzo, M.[Monica],
Quelhas, P.[Pedro],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Evaluation of Symmetry Enhanced Sliding Band Filter for Plant Cell
Nuclei Detection in Low Contrast Noisy Fluorescent Images,
ICIAR09(824-831).
Springer DOI
0907
BibRef
Carleos, C.[Carlos],
López-Díaz, M.C.[M. Concepción],
López-Díaz, M.[Miguel],
A Stochastic Order of Shape Variability with an Application to Cell
Nuclei Involved in Mastitis,
JMIV(38), No. 2, October 2010, pp. 95-107.
WWW Link.
1011
BibRef
Carleos, C.[Carlos],
López-Díaz, M.C.[María Concepción],
López-Díaz, M.[Miguel],
Ranking Star-Shaped Valued Mappings with Respect to Shape Variability,
JMIV(48), No. 1, January 2014, pp. 1-12.
Springer DOI
1402
BibRef
Plissiti, M.E.[Marina E.],
Nikou, C.[Christophoros],
Charchanti, A.[Antonia],
Combining shape, texture and intensity features for cell nuclei
extraction in Pap smear images,
PRL(32), No. 6, 15 April 2011, pp. 838-853.
Elsevier DOI
1103
Cell nuclei segmentation; Pap smear images; Morphological reconstruction; Watersheds; Feature selection; Clustering
BibRef
Plissiti, M.E.[Marina E.],
Vrigkas, M.,
Nikou, C.[Christophoros],
Segmentation of cell clusters in Pap smear images using intensity
variation between superpixels,
WSSIP15(184-187)
IEEE DOI
1603
CCD image sensors
BibRef
Wang, W.,
Ozolek, J.A.,
Slepcev, D.,
Lee, A.B.,
Chen, C.,
Rohde, G.K.,
An Optimal Transportation Approach for Nuclear Structure-Based
Pathology,
MedImg(30), No. 3, March 2011, pp. 621-631.
IEEE DOI
1103
BibRef
Ali, R.[Rehan],
Gooding, M.[Mark],
Szilágyi, T.[Tünde],
Vojnovic, B.[Borivoj],
Christlieb, M.[Martin],
Brady, M.[Michael],
Automatic segmentation of adherent biological cell boundaries and
nuclei from brightfield microscopy images,
MVA(23), No. 4, July 2012, pp. 607-621.
WWW Link.
1206
adherent eukaryotic cells.
BibRef
Wang, W.[Wei],
Slepcev, D.[Dejan],
Basu, S.[Saurav],
Ozolek, J.A.[John A.],
Rohde, G.K.[Gustavo K.],
A Linear Optimal Transportation Framework for Quantifying and
Visualizing Variations in Sets of Images,
IJCV(101), No. 2, January 2013, pp. 254-269.
WWW Link.
1302
BibRef
Kolouri, S.[Soheil],
Tosun, A.B.[Akif B.],
Ozolek, J.A.[John A.],
Rohde, G.K.[Gustavo K.],
A continuous linear optimal transport approach for pattern analysis
in image datasets,
PR(51), No. 1, 2016, pp. 453-462.
Elsevier DOI
1601
Optimal transport
BibRef
Han, J.W.[Ji Wan],
Breckon, T.P.[Toby P.],
Randell, D.A.[David A.],
Landini, G.[Gabriel],
The application of support vector machine classification to detect cell
nuclei for automated microscopy,
MVA(23), No. 1, January 2012, pp. 15-24.
WWW Link.
1201
BibRef
Esteves, T.[Tiago],
Quelhas, P.[Pedro],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Gradient convergence filters and a phase congruency approach for in
vivo cell nuclei detection,
MVA(23), No. 4, July 2012, pp. 623-638.
WWW Link.
1206
BibRef
Plissiti, M.E.,
Nikou, C.,
Overlapping Cell Nuclei Segmentation Using a Spatially Adaptive Active
Physical Model,
IP(21), No. 11, November 2012, pp. 4568-4580.
IEEE DOI
1210
BibRef
Chang, H.,
Han, J.,
Borowsky, A.,
Loss, L.,
Gray, J.W.,
Spellman, P.T.,
Parvin, B.,
Invariant Delineation of Nuclear Architecture in Glioblastoma
Multiforme for Clinical and Molecular Association,
MedImg(32), No. 4, April 2013, pp. 670-682.
IEEE DOI
1304
BibRef
Moussavi, F.,
Wang, Y.,
Lorenzen, P.,
Oakley, J.,
Russakoff, D.,
Gould, S.,
A Unified Graphical Models Framework for Automated Mitosis Detection
in Human Embryos,
MedImg(33), No. 7, July 2014, pp. 1551-1562.
IEEE DOI
1407
Computational modeling
BibRef
Widmer, C.[Christian],
Heinrich, S.[Stephanie],
Drewe, P.[Philipp],
Lou, X.H.[Xing-Hua],
Umrania, S.[Shefali],
Rätsch, G.[Gunnar],
Graph-regularized 3D shape reconstruction from highly anisotropic and
noisy images,
SIViP(8), No. S1, December 2014, pp. 41-48.
Springer DOI
1411
cellular nuclear segmentation in microscope images.
BibRef
Pecot, T.,
Bouthemy, P.,
Boulanger, J.,
Chessel, A.,
Bardin, S.,
Salamero, J.,
Kervrann, C.,
Background Fluorescence Estimation and Vesicle Segmentation in Live
Cell Imaging With Conditional Random Fields,
IP(24), No. 2, February 2015, pp. 667-680.
IEEE DOI
1502
adhesion
BibRef
Paul, A.,
Mukherjee, D.P.,
Mitosis Detection for Invasive Breast Cancer Grading in
Histopathological Images,
IP(24), No. 11, November 2015, pp. 4041-4054.
IEEE DOI
1509
biological organs
BibRef
Zhang, W.,
Fehrenbach, J.,
Desmaison, A.,
Lobjois, V.,
Ducommun, B.,
Weiss, P.,
Structure Tensor Based Analysis of Cells and Nuclei Organization in
Tissues,
MedImg(35), No. 1, January 2016, pp. 294-306.
IEEE DOI
1601
Anisotropic magnetoresistance
BibRef
Bejnordi, B.E.[B. Ehteshami],
Litjens, G.,
Timofeeva, N.,
Otte-Holler, I.,
Homeyer, A.,
Karssemeijer, N.,
van der Laak, J.A.W.M.,
Stain Specific Standardization of Whole-Slide Histopathological
Images,
MedImg(35), No. 2, February 2016, pp. 404-415.
IEEE DOI
1602
Design automation
BibRef
Gharipour, A.[Amin],
Liew, A.W.C.[Alan Wee-Chung],
Segmentation of cell nuclei in fluorescence microscopy images: An
integrated framework using level set segmentation and touching-cell
splitting,
PR(58), No. 1, 2016, pp. 1-11.
Elsevier DOI
1606
Fluorescence microscopy images
BibRef
Ram, S.,
Rodríguez, J.J.,
Size-Invariant Detection of Cell Nuclei in Microscopy Images,
MedImg(35), No. 7, July 2016, pp. 1753-1764.
IEEE DOI
1608
biomedical optical imaging
BibRef
Ram, S.,
Nguyen, V.T.,
Limesand, K.H.,
Rodriguez, J.J.,
Combined Detection and Segmentation of Cell Nuclei in Microscopy
Images Using Deep Learning,
SSIAI20(26-29)
IEEE DOI
2009
biological organs, biomedical optical imaging, cancer,
cellular biophysics, convolutional neural nets,
confocal microscopy
BibRef
Shahul Hameed, K.A.,
Banumathi, A.,
Ulaganathan, G.,
P53immunostained cell nuclei segmentation in tissue images of oral
squamous cell carcinoma,
SIViP(11), No. 2, February 2017, pp. 363-370.
WWW Link.
1702
BibRef
Zhang, W.J.[Wan-Jun],
Li, H.Q.[Hui-Qi],
Automated segmentation of overlapped nuclei using concave point
detection and segment grouping,
PR(71), No. 1, 2017, pp. 349-360.
Elsevier DOI
1707
Nuclei, segmentation
BibRef
Kumar, N.,
Verma, R.,
Sharma, S.,
Bhargava, S.,
Vahadane, A.,
Sethi, A.,
A Dataset and a Technique for Generalized Nuclear Segmentation for
Computational Pathology,
MedImg(36), No. 7, July 2017, pp. 1550-1560.
IEEE DOI
1707
Diseases, Image color analysis, Image segmentation,
Machine learning, Measurement, Pathology, Training, Annotation,
boundaries, dataset, deep learning, nuclear segmentation, nuclei
BibRef
Song, J.,
Xiao, L.,
Lian, Z.,
Contour-Seed Pairs Learning-Based Framework for Simultaneously
Detecting and Segmenting Various Overlapping Cells/Nuclei in
Microscopy Images,
IP(27), No. 12, December 2018, pp. 5759-5774.
IEEE DOI
1810
biomedical optical imaging, blood, cancer, cellular biophysics,
feature extraction, image classification, image segmentation,
complete contour inference
BibRef
Sorokin, D.V.,
Peterlik, I.,
Tektonidis, M.,
Rohr, K.,
Matula, P.,
Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell
Microscopy Images Using a Dynamic Elasticity Model,
MedImg(37), No. 1, January 2018, pp. 173-184.
IEEE DOI
1801
biomechanics, biomedical optical imaging, cellular biophysics,
deformation, elasticity, fluorescence, image matching,
registration
BibRef
Kurmi, Y.[Yashwant],
Chaurasia, V.[Vijayshri],
Multifeature-based medical image segmentation,
IET-IPR(12), No. 8, August 2018, pp. 1491-1498.
DOI Link
1808
overlapped nuclei.
BibRef
Nie, W.Z.[Wei-Zhi],
Yan, Y.[Yan],
Hao, T.[Tong],
Liu, C.C.[Chen-Chen],
Su, Y.T.[Yu-Ting],
Mitosis event recognition and detection based on evolution of feature
in time domain,
MVA(29), No. 8, November 2018, pp. 1249-1256.
WWW Link.
1811
BibRef
Hou, L.[Le],
Nguyen, V.[Vu],
Kanevsky, A.B.[Ariel B.],
Samaras, D.[Dimitris],
Kurc, T.M.[Tahsin M.],
Zhao, T.H.[Tian-Hao],
Gupta, R.R.[Rajarsi R.],
Gao, Y.[Yi],
Chen, W.J.[Wen-Jin],
Foran, D.[David],
Saltz, J.H.[Joel H.],
Sparse autoencoder for unsupervised nucleus detection and
representation in histopathology images,
PR(86), 2019, pp. 188-200.
Elsevier DOI
1811
Pathology image analysis, Convolutional neural network,
Unsupervised learning, Semi-supervised learning
BibRef
Shi, J.[Jun],
Zheng, X.[Xiao],
Wu, J.J.[Jin-Jie],
Gong, B.M.[Bang-Ming],
Zhang, Q.[Qi],
Ying, S.H.[Shi-Hui],
Quaternion Grassmann average network for learning representation of
histopathological image,
PR(89), 2019, pp. 67-76.
Elsevier DOI
1902
Principal component analysis network (PCANet),
Quaternion algebra,
Color histopathological image
BibRef
Wu, J.J.[Jin-Jie],
Shi, J.[Jun],
Ying, S.H.[Shi-Hui],
Zhang, Q.[Qi],
Li, Y.[Yan],
Learning Representation for Histopathological Image with Quaternion
Grassmann Average Network,
MLMI16(122-129).
Springer DOI
1611
BibRef
Naylor, P.,
Laé, M.,
Reyal, F.,
Walter, T.,
Segmentation of Nuclei in Histopathology Images by Deep Regression of
the Distance Map,
MedImg(38), No. 2, February 2019, pp. 448-459.
IEEE DOI
1902
Image segmentation, Cancer, Pathology, Task analysis, Biology, Tumors,
Computer architecture, Cancer research, deep learning,
nuclei segmentation
BibRef
Tofighi, M.,
Guo, T.,
Vanamala, J.K.P.,
Monga, V.,
Prior Information Guided Regularized Deep Learning for Cell Nucleus
Detection,
MedImg(38), No. 9, September 2019, pp. 2047-2058.
IEEE DOI
1909
Shape, Image edge detection, Computer architecture,
Microprocessors, Deep learning, Biomedical imaging,
learnable shapes
BibRef
Gao, Q.,
Rohr, K.,
A Global Method for Non-Rigid Registration of Cell Nuclei in Live
Cell Time-Lapse Images,
MedImg(38), No. 10, October 2019, pp. 2259-2270.
IEEE DOI
1910
Optical imaging, Biomedical optical imaging, Strain, Microscopy,
Computational modeling, Optical microscopy, Optical scattering,
Markov random field
BibRef
Kumar, N.[Neeraj],
Verma, R.[Ruchika],
Anand, D.[Deepak],
Zhou, Y.N.[Yan-Ning],
Onder, O.F.[Omer Fahri],
Tsougenis, E.[Efstratios],
Chen, H.[Hao],
Heng, P.A.[Pheng-Ann],
Li, J.H.[Jia-Hui],
Hu, Z.Q.[Zhi-Qiang],
Wang, Y.Z.[Yun-Zhi],
Koohbanani, N.A.[Navid Alemi],
Jahanifar, M.[Mostafa],
Tajeddin, N.Z.[Neda Zamani],
Gooya, A.[Ali],
Rajpoot, N.[Nasir],
Ren, X.[Xuhua],
Zhou, S.H.[Si-Hang],
Wang, Q.[Qian],
Shen, D.G.[Ding-Gang],
Yang, C.K.[Cheng-Kun],
Weng, C.H.[Chi-Hung],
Yu, W.H.[Wei-Hsiang],
Yeh, C.Y.[Chao-Yuan],
Yang, S.[Shuang],
Xu, S.[Shuoyu],
Yeung, P.H.[Pak Hei],
Sun, P.[Peng],
Mahbod, A.[Amirreza],
Schaefer, G.[Gerald],
Ellinger, I.[Isabella],
Ecker, R.[Rupert],
Smedby, O.[Orjan],
Wang, C.L.[Chun-Liang],
Chidester, B.[Benjamin],
Ton, T.V.[That-Vinh],
Tran, M.T.[Minh-Triet],
Ma, J.[Jian],
Do, M.N.[Minh N.],
Graham, S.[Simon],
Vu, Q.D.[Quoc Dang],
Kwak, J.T.[Jin Tae],
Gunda, A.[Akshaykumar],
Chunduri, R.[Raviteja],
Hu, C.[Corey],
Zhou, X.Y.[Xiao-Yang],
Lotfi, D.[Dariush],
Safdari, R.[Reza],
Kascenas, A.[Antanas],
O'Neil, A.[Alison],
Eschweiler, D.[Dennis],
Stegmaier, J.[Johannes],
Cui, Y.P.[Yan-Ping],
Yin, B.C.[Bao-Cai],
Chen, K.L.[Kai-Lin],
Tian, X.M.[Xin-Mei],
Gruening, P.[Philipp],
Barth, E.[Erhardt],
Arbel, E.[Elad],
Remer, I.[Itay],
Ben-Dor, A.[Amir],
Sirazitdinova, E.[Ekaterina],
Kohl, M.[Matthias],
Braunewell, S.[Stefan],
Li, Y.X.[Yue-Xiang],
Xie, X.P.[Xin-Peng],
Shen, L.L.[Lin-Lin],
Ma, J.[Jun],
Baksi, K.D.[Krishanu Das],
Khan, M.A.[Mohammad Azam],
Choo, J.[Jaegul],
Colomer, A.[Adrián],
Naranjo, V.[Valery],
Pei, L.M.[Lin-Min],
Iftekharuddin, K.M.[Khan M.],
Roy, K.[Kaushiki],
Bhattacharjee, D.[Debotosh],
Pedraza, A.[Anibal],
Bueno, M.G.[Maria Gloria],
Devanathan, S.[Sabarinathan],
Radhakrishnan, S.[Saravanan],
Koduganty, P.[Praveen],
Wu, Z.H.[Zi-Han],
Cai, G.Y.[Guan-Yu],
Liu, X.J.[Xiao-Jie],
Wang, Y.Q.[Yu-Qin],
Sethi, A.[Amit],
A Multi-Organ Nucleus Segmentation Challenge,
MedImg(39), No. 5, May 2020, pp. 1380-1391.
IEEE DOI
2005
Image segmentation, Pathology, Image color analysis, Semantics,
Machine learning algorithms, Task analysis, Deep learning,
aggregated Jaccard index
BibRef
Su, Y.T.[Yu-Ting],
Lu, Y.[Yao],
Liu, J.[Jing],
Chen, M.[Mei],
Liu, A.A.[An-An],
Spatio-Temporal Mitosis Detection in Time-Lapse Phase-Contrast
Microscopy Image Sequences: A Benchmark,
MedImg(40), No. 5, May 2021, pp. 1319-1328.
IEEE DOI
2105
Microscopy, Image sequences, Feature extraction,
Spatiotemporal phenomena, Visualization, Computer architecture,
phase-contrast microscopy
BibRef
Xing, F.Y.[Fu-Yong],
Cornish, T.C.[Toby C.],
Bennett, T.D.[Tellen D.],
Ghosh, D.[Debashis],
Bidirectional Mapping-Based Domain Adaptation for Nucleus Detection
in Cross-Modality Microscopy Images,
MedImg(40), No. 10, October 2021, pp. 2880-2896.
IEEE DOI
2110
Microscopy, Image segmentation, Training, Adaptation models,
Task analysis, Annotations, Data models, Nucleus detection,
microscopy image analysis
BibRef
Verma, R.[Ruchika],
Kumar, N.[Neeraj],
Patil, A.[Abhijeet],
Kurian, N.C.[Nikhil Cherian],
Rane, S.[Swapnil],
Graham, S.[Simon],
Vu, Q.D.[Quoc Dang],
Zwager, M.[Mieke],
Raza, S.E.A.[Shan E. Ahmed],
Rajpoot, N.[Nasir],
Wu, X.[Xiyi],
Chen, H.[Huai],
Huang, Y.J.[Yi-Jie],
Wang, L.S.[Li-Sheng],
Jung, H.[Hyun],
Brown, G.T.[G. Thomas],
Liu, Y.L.[Yan-Ling],
Liu, S.[Shuolin],
Jahromi, S.A.F.[Seyed Alireza Fatemi],
Khani, A.A.[Ali Asghar],
Montahaei, E.[Ehsan],
Baghshah, M.S.[Mahdieh Soleymani],
Behroozi, H.[Hamid],
Semkin, P.[Pavel],
Rassadin, A.[Alexandr],
Dutande, P.[Prasad],
Lodaya, R.[Romil],
Baid, U.[Ujjwal],
Baheti, B.[Bhakti],
Talbar, S.[Sanjay],
Mahbod, A.[Amirreza],
Ecker, R.[Rupert],
Ellinger, I.[Isabella],
Luo, Z.P.[Zhi-Peng],
Dong, B.[Bin],
Xu, Z.Y.[Zheng-Yu],
Yao, Y.H.[Yue-Han],
Lv, S.[Shuai],
Feng, M.[Ming],
Xu, K.[Kele],
Zunair, H.[Hasib],
Ben Hamza, A.[Abdessamad],
Smiley, S.[Steven],
Yin, T.K.[Tang-Kai],
Fang, Q.R.[Qi-Rui],
Srivastava, S.[Shikhar],
Mahapatra, D.[Dwarikanath],
Trnavska, L.[Lubomira],
Zhang, H.Y.[Han-Yun],
Narayanan, P.L.[Priya Lakshmi],
Law, J.[Justin],
Yuan, Y.[Yinyin],
Tejomay, A.[Abhiroop],
Mitkari, A.[Aditya],
Koka, D.[Dinesh],
Ramachandra, V.[Vikas],
Kini, L.[Lata],
Sethi, A.[Amit],
MoNuSAC2020: A Multi-Organ Nuclei Segmentation and Classification
Challenge,
MedImg(40), No. 12, December 2021, pp. 3413-3423.
IEEE DOI
2112
Annotations, Image segmentation, Tumors, Computer architecture,
Training, Task analysis, Semantics, Multi-organ dataset,
panoptic quality
BibRef
Verma, R.[Ruchika],
Kumar, N.[Neeraj],
Patil, A.[Abhijeet],
Kurian, N.C.[Nikhil Cherian],
Rane, S.[Swapnil],
Sethi, A.[Amit],
Author's Reply to 'MoNuSAC2020: A Multi-Organ Nuclei Segmentation and
Classification Challenge',
MedImg(41), No. 4, April 2022, pp. 1000-1003.
IEEE DOI
2204
Measurement, Image segmentation, Codes, Computer bugs,
Biomedical imaging, Nucleus segmentation, MoNuSAC,
challenges
BibRef
Foucart, A.[Adrien],
Debeir, O.[Olivier],
Decaestecker, C.[Christine],
Comments on 'MoNuSAC2020: A Multi-Organ Nuclei Segmentation and
Classification Challenge',
MedImg(41), No. 4, April 2022, pp. 997-999.
IEEE DOI
2204
Digital pathology, challenge, nuclei segmentation, nuclei classification
BibRef
Liu, S.S.[Shan-Shan],
Hu, R.[Ruo],
Wu, J.[Jianfang],
Zhang, X.[Xizheng],
He, J.[Jun],
Zhao, H.M.[Hui-Min],
Wang, H.[Huajia],
Li, X.J.[Xiang-Jun],
Research on data classification and feature fusion method of cancer
nuclei image based on deep learning,
IJIST(32), No. 3, 2022, pp. 969-981.
DOI Link
2205
cancer cell image, classification, deep learning,
feature fusion model, multiscale image
BibRef
Khan, R.[Rafflesia],
Debnath, R.[Rameswar],
Morphology Preserving Segmentation Method for Occluded Cell Nuclei from
Medical Microscopy Image,
IJIG(22), No. 2, April 2022, pp. 2250019.
DOI Link
2205
BibRef
Li, Y.H.[Yong-Hui],
Xue, Y.[Yao],
Li, L.F.[Liang-Fu],
Zhang, X.J.[Xing-Jun],
Qian, X.M.[Xue-Ming],
Domain Adaptive Box-Supervised Instance Segmentation Network for
Mitosis Detection,
MedImg(41), No. 9, September 2022, pp. 2469-2485.
IEEE DOI
2209
Feature extraction, Image segmentation, Head, Adaptation models,
Annotations, Training, Semantics, Mitosis detection, pesudo masks
BibRef
Chen, S.C.[Sheng-Cong],
Ding, C.X.[Chang-Xing],
Liu, M.F.[Min-Feng],
Cheng, J.[Jun],
Tao, D.C.[Da-Cheng],
CPP-Net: Context-Aware Polygon Proposal Network for Nucleus
Segmentation,
IP(32), 2023, pp. 980-994.
IEEE DOI
2302
Shape, Image segmentation, Feature extraction, Proposals, Robustness,
Task analysis, Predictive models, Nucleus segmentation, perceptual loss
BibRef
Wang, J.[Juan],
Zhang, Z.[Zetao],
Wu, M.[Minghu],
Ye, Y.G.[Yong-Gang],
Wang, S.[Sheng],
Cao, Y.[Ye],
Yang, H.[Hao],
Improved BlendMask: Nuclei instance segmentation for medical
microscopy images,
IET-IPR(17), No. 7, 2023, pp. 2284-2296.
DOI Link
2305
image segmentation, convolutional neural nets,
image processing, medical image processing
BibRef
Zhou, Y.[Yang],
Wu, Y.J.[Yong-Jian],
Wang, Z.[Zihua],
Wei, B.Z.[Bing-Zheng],
Lai, M.[Maode],
Shou, J.Z.[Jian-Zhong],
Fan, Y.[Yubo],
Xu, Y.[Yan],
Cyclic Learning: Bridging Image-Level Labels and Nuclei Instance
Segmentation,
MedImg(42), No. 10, October 2023, pp. 3104-3116.
IEEE DOI
2310
BibRef
Wu, H.[Huisi],
Wang, Z.Z.[Zhao-Ze],
Zhao, Z.B.[Ze-Bin],
Chen, C.[Cheng],
Qin, J.[Jing],
Continual Nuclei Segmentation via Prototype-Wise Relation
Distillation and Contrastive Learning,
MedImg(42), No. 12, December 2023, pp. 3794-3804.
IEEE DOI Code:
WWW Link.
2312
BibRef
Lim, S.[Seohoon],
Xu, Z.X.[Zhi-Xin],
Chong, Y.[Yosep],
Jung, S.W.[Seung-Won],
CAWM: Class-Aware Weight Map for Improved Semi-Supervised Nuclei
Segmentation,
SPLetters(31), 2024, pp. 81-85.
IEEE DOI
2401
BibRef
Zhou, H.Y.[Hao-Yang],
Feng, B.[Bao],
Chen, H.B.[Hong-Bo],
Segmentation of nucleus based on dynamic convolution and deep
features of stain distribution,
IET-IPR(18), No. 4, 2024, pp. 939-950.
DOI Link
2403
deep learning, nucleus, pathological image, segmentation
BibRef
Lin, Y.[Yi],
Wang, Z.[Zeyu],
Zhang, D.[Dong],
Cheng, K.T.[Kwang-Ting],
Chen, H.[Hao],
BoNuS: Boundary Mining for Nuclei Segmentation With Partial Point
Labels,
MedImg(43), No. 6, June 2024, pp. 2137-2147.
IEEE DOI Code:
WWW Link.
2406
Annotations, Image segmentation, Cancer, Histopathology,
Technological innovation, Task analysis, Manuals, pixel affinity
BibRef
Fan, J.A.[Jian-An],
Liu, D.N.[Dong-Nan],
Chang, H.[Hang],
Cai, W.D.[Wei-Dong],
Learning to Generalize over Subpartitions for Heterogeneity-Aware
Domain Adaptive Nuclei Segmentation,
IJCV(132), No. 8, August 2024, pp. 2861-2884.
Springer DOI
2408
BibRef
Utz, J.[Jonas],
Weise, T.[Tobias],
Schlereth, M.[Maja],
Wagner, F.[Fabian],
Thies, M.[Mareike],
Gu, M.X.[Ming-Xuan],
Uderhardt, S.[Stefan],
Breininger, K.[Katharina],
Focus on Content not Noise: Improving Image Generation for Nuclei
Segmentation by Suppressing Steganography in CycleGAN,
BioIm23(3858-3866)
IEEE DOI
2401
BibRef
Hassan, T.[Taimur],
Abdalla, M.[Moshira],
Raja, H.[Hina],
Owais, M.[Muhammad],
Werghi, N.[Naoufel],
Robust Nucleus Classification with Iterative Graph Representational
Learning,
ICIP23(3414-3418)
IEEE DOI
2312
BibRef
Han, Y.[Yue],
Lei, Y.[Yang],
Shkolnikov, V.[Viktor],
Xin, D.[Daisy],
Auduong, A.[Alicia],
Barcelo, S.[Steven],
Allebach, J.[Jan],
Delp, E.J.[Edward J.],
An Ensemble Method with Edge Awareness for Abnormally Shaped Nuclei
Segmentation,
CVMI23(4315-4325)
IEEE DOI
2309
BibRef
Bonte, T.[Thomas],
Philbert, M.[Maxence],
Coleno, E.[Emeline],
Bertrand, E.[Edouard],
Imbert, A.[Arthur],
Walter, T.[Thomas],
Learning with Minimal Effort: Leveraging in Silico Labeling for Cell
and Nucleus Segmentation,
BioImage22(423-436).
Springer DOI
2304
BibRef
Magoulianitis, V.[Vasileios],
Han, P.[Peida],
Yang, Y.J.[Yi-Jing],
Kuo, C.C.J.[C.C. Jay],
An Unsupervised Parameter-Free Nuclei Segmentation Method for
Histology Images,
ICIP22(226-230)
IEEE DOI
2211
Dimensionality reduction, Image segmentation, Histopathology,
Image color analysis, Transforms, Indexes, Histology Images,
Morphological Processing
BibRef
Habis, A.[Antoine],
Meas-Yedid, V.[Vannary],
Obando, D.F.G.[Daniel Felipe González],
Olivo-Marin, J.C.[Jean-Christophe],
Angelini, E.D.[Elsa D.],
Smart Learning of Click and Refine for Nuclei Segmentation on
Histology Images,
ICIP22(2281-2285)
IEEE DOI
2211
Deep learning, Image segmentation, Histopathology, Glands, Manuals,
Educational technology, Medical diagnosis, Histology images,
visual similarity
BibRef
Zhao, W.[Wanbi],
Zhou, X.[Xu],
Bi-Polar Mask for Joint Cell and Nuclei Instance Segmentation,
ICIP22(3421-3425)
IEEE DOI
2211
Image segmentation, Pathology, Annotations, Cervical cancer,
cell segmentation, overlapping, nuclei segmentation, computational pathology
BibRef
Wu, L.M.[Li-Ming],
Chen, A.[Alain],
Salama, P.[Paul],
Dunn, K.W.[Kenneth W.],
Delp, E.J.[Edward J.],
3D Centroidnet: Nuclei Centroid Detection with Vector Flow Voting,
ICIP22(651-655)
IEEE DOI
2211
Training, Codes, Annotations, Microscopy, Biological tissues,
Nuclei centroid detection, voting mechanism
BibRef
Wu, L.M.[Li-Ming],
Chen, A.[Alain],
Salama, P.[Paul],
Dunn, K.W.[Kenneth W.],
Delp, E.J.[Edward J.],
An Ensemble Learning and Slice Fusion Strategy for Three-Dimensional
Nuclei Instance Segmentation,
CVMI22(1883-1893)
IEEE DOI
2210
Training, Pathology, Image segmentation, Annotations, Microscopy,
Supervised learning
BibRef
Naghizadeh, A.[Alireza],
Xu, H.Y.[Hong-Ye],
Mohamed, M.[Mohab],
Metaxas, D.N.[Dimitris N.],
Liu, D.F.[Dong-Fang],
Semantic Aware Data Augmentation for Cell Nuclei Microscopical Images
with Artificial Neural Networks,
ICCV21(3932-3941)
IEEE DOI
2203
Training, Image segmentation, Microscopy, Microprocessors, Semantics,
Training data, Computer architecture, Medical, biological,
Neural generative models
BibRef
He, H.L.[Hong-Liang],
Huang, Z.Y.[Zhong-Yi],
Ding, Y.[Yao],
Song, G.[Guoli],
Wang, L.[Lin],
Ren, Q.[Qian],
Wei, P.X.[Peng-Xu],
Gao, Z.Q.[Zhi-Qiang],
Chen, J.[Jie],
CDNet: Centripetal Direction Network for Nuclear Instance
Segmentation,
ICCV21(4006-4015)
IEEE DOI
2203
Image segmentation, Pathology, Codes, Aggregates, Task analysis,
Nuclear measurements, Medical, biological, and cell microscopy,
grouping and shape
BibRef
Feng, Z.L.[Zun-Lei],
Wang, Z.H.[Zhong-Hua],
Wang, X.C.[Xin-Chao],
Mao, Y.N.[Yi-Ning],
Li, T.[Thomas],
Lei, J.[Jie],
Wang, Y.X.[Yue-Xuan],
Song, M.L.[Ming-Li],
Mutual-Complementing Framework for Nuclei Detection and Segmentation
in Pathology Image,
ICCV21(4016-4025)
IEEE DOI
2203
Image segmentation, Pathology, Manuals, Robustness,
Clinical diagnosis, Cancer, Medical, biological, and cell microscopy,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Hossain, M.S.[Md Shamim],
Armstrong, L.J.[Leisa J.],
Abu-Khalaf, J.[Jumana],
Cook, D.M.[David M.],
Zaenker, P.[Pauline],
Overlapping Cell Nuclei Segmentation in Digital Histology Images
using Intensity-based Contours,
DICTA21(1-9)
IEEE DOI
2201
Image segmentation, Image analysis, Histopathology, Annotations,
Shape, Microprocessors, Digital images, Overlapping cell nuclei,
Nucleus contour
BibRef
Nejatbakhsh, A.[Amin],
Varol, E.[Erdem],
Neuron matching in C. elegans with robust approximate linear
regression without correspondence,
WACV21(2836-2845)
IEEE DOI
2106
Neurons, Linear regression,
Computational neuroscience, Approximation algorithms, Noise measurement
BibRef
Ling, C.,
Halter, M.,
Plant, A.,
Majurski, M.,
Stinson, J.,
Chalfoun, J.,
Analyzing U-Net Robustness for Single Cell Nucleus Segmentation from
Phase Contrast Images,
Microscopy20(4157-4163)
IEEE DOI
2008
Image segmentation, Training, Computer architecture,
Microprocessors, Microscopy, Manuals
BibRef
Jackson, P.T.[Philip T.],
Wang, Y.[Yinhai],
Knight, S.[Sinead],
Chen, H.M.[Hong-Ming],
Dorval, T.[Thierry],
Brown, M.[Martin],
Bendtsen, C.[Claus],
Obara, B.[Boguslaw],
Phenotypic Profiling of High Throughput Imaging Screens with Generic
Deep Convolutional Features,
MVA19(1-4)
DOI Link
1911
biomedical optical imaging, cellular biophysics, drugs,
fluorescence, medical image processing, pattern clustering,
Neural networks
BibRef
Narotamo, H.[Hemaxi],
Sanches, J.M.[J. Miguel],
Silveira, M.[Margarida],
Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using
Deep Learning,
IbPRIA(I:53-64).
Springer DOI
1910
BibRef
Wiesner, D.[David],
Necasová, T.[Tereza],
Svoboda, D.[David],
On Generative Modeling of Cell Shape Using 3D GANs,
CIAP19(II:672-682).
Springer DOI
1909
BibRef
Javer, A.[Avelino],
Brown, A.E.X.[André E. X.],
Kokkinos, I.[Iasonas],
Rittscher, J.[Jens],
Identification of C. elegans Strains Using a Fully Convolutional Neural
Network on Behavioural Dynamics,
BioIm18(VI:455-464).
Springer DOI
1905
BibRef
Zhang, J.,
Chen, Y.,
Kuo, Y.,
Chen, C.,
Fast automatic segmentation of cells and nucleuses in large-scale
liquid-based monolayer smear images,
IVCNZ17(1-6)
IEEE DOI
1902
cancer, image enhancement, image segmentation, iterative methods,
medical image processing, monolayers,
Cervical Cancer Screening
BibRef
Kalinin, A.A.,
Allyn-Feuer, A.,
Ade, A.,
Fon, G.,
Meixner, W.,
Dilworth, D.,
de Wet, J.R.,
Higgins, G.A.,
Zheng, G.,
Creekmore, A.,
Wiley, J.W.,
Verdone, J.E.,
Veltri, R.W.,
Pienta, K.J.,
Coffey, D.S.,
Athey, B.D.,
Dinov, I.D.,
3D Cell Nuclear Morphology: Microscopy Imaging Dataset and
Voxel-Based Morphometry Classification Results,
Microscopy18(2353-23538)
IEEE DOI
1812
Computer architecture,
Image segmentation, Microprocessors, Microscopy,
Morphology
BibRef
Tofighi, M.,
Guo, T.,
Vanamala, J.K.P.,
Monga, V.,
Deep Networks with Shape Priors for Nucleus Detection,
ICIP18(719-723)
IEEE DOI
1809
Shape, Image edge detection, Training,
Computer architecture, Biomedical imaging, Feature extraction,
shape priors
BibRef
Rad, R.M.,
Saeedi, P.,
Au, J.,
Havelock, J.,
Multi-Resolutional Ensemble of Stacked Dilated U-Net for Inner Cell
Mass Segmentation in Human Embryonic Images,
ICIP18(3518-3522)
IEEE DOI
1809
Image segmentation, Embryo, Indexes, Convolution, Training, Kernel,
Machine learning, IVF, Human Embryo, Inner Cell Mass, Segmentation,
Deep Learning
BibRef
de Mesquita Sá, Jr., J.J.[Jarbas Joaci],
Backes, A.R.[André R.],
Bruno, O.M.[Odemir Martinez],
Pap-Smear Image Classification Using Randomized Neural Network Based
Signature,
CIARP17(677-684).
Springer DOI
1802
See also Randomized Neural Network Based Signature for Classification of Titanium Alloy Microstructures.
BibRef
Baykal, E.[Elif],
Dogan, H.[Hulya],
Ekinci, M.[Murat],
Ercin, M.E.[Mustafa Emre],
Ersoz, S.[Safak],
Automated Cell Nuclei Segmentation in Pleural Effusion Cytology Using
Active Appearance Model,
CAIP17(II: 59-69).
Springer DOI
1708
BibRef
Bayramoglu, N.[Neslihan],
Heikkilä, J.[Janne],
Transfer Learning for Cell Nuclei Classification in Histopathology
Images,
TASKCV16(III: 532-539).
Springer DOI
1611
BibRef
Scherzinger, A.[Aaron],
Kleene, F.[Florian],
Dierkes, C.[Cathrin],
Kiefer, F.[Friedemann],
Hinrichs, K.H.[Klaus H.],
Jiang, X.Y.[Xiao-Yi],
Automated Segmentation of Immunostained Cell Nuclei in 3D
Ultramicroscopy Images,
GCPR16(105-116).
Springer DOI
1611
BibRef
Bortsova, G.[Gerda],
Sterr, M.[Michael],
Wang, L.C.[Li-Chao],
Milletari, F.[Fausto],
Navab, N.[Nassir],
Böttcher, A.[Anika],
Lickert, H.[Heiko],
Theis, F.[Fabian],
Peng, T.Y.[Ting-Ying],
Mitosis Detection in Intestinal Crypt Images with Hough Forest and
Conditional Random Fields,
MLMI16(287-295).
Springer DOI
1611
BibRef
Fouad, S.[Shereen],
Landini, G.[Gabriel],
Randell, D.[David],
Galton, A.[Antony],
Morphological Separation of Clustered Nuclei in Histological Images,
ICIAR16(599-607).
Springer DOI
1608
BibRef
Labayrade, R.[Raphael],
Ngo, M.[Mathias],
Multi-genomic curve extraction,
MVA15(283-286)
IEEE DOI
1507
Biological cells
BibRef
Mazurek, P.[Przemyslaw],
Oszutowska-Mazurek, D.[Dorota],
Multi-layer Lacunarity for Texture Recognition,
ICCVG16(174-183).
Springer DOI
1611
BibRef
Oszutowska-Mazurek, D.[Dorota],
Mazurek, P.[Przemyslaw],
Sycz, K.[Kinga],
Waker-Wójciuk, G.[Grazyna],
Lacunarity Based Estimator for the Analysis of Cell Nuclei from the
Papanicolaou Smears,
ICCVG14(486-493).
Springer DOI
1410
BibRef
Qi, J.[Jin],
Wang, B.,
Pelaez, N.,
Rebay, L.,
Carthew, R.W.,
Katsaggelos, A.K.,
Nunes Amaral, L.A.,
Drosophila eye nuclei segmentation based on graph cut and convex
shape prior,
ICIP13(670-674)
IEEE DOI
1402
Algorithm design and analysis
BibRef
Bessa, S.[Sílvia],
Quelhas, P.[Pedro],
Amaral, I.F.[Isabel F.],
Automatic Quantification of Cell Outgrowth from Neurospheres,
IbPRIA13(141-148).
Springer DOI
1307
BibRef
Ferro, L.[Luis],
Leal, P.[Pedro],
Marques, M.[Marco],
Maciel, J.[Joana],
Oliveira, M.I.[Marta I.],
Multinuclear Cell Analysis Using Laplacian of Gaussian and Delaunay
Graphs,
IbPRIA13(441-449).
Springer DOI
1307
BibRef
Zeng, Z.M.[Zi-Ming],
Strange, H.[Harry],
Han, C.L.[Chun-Lei],
Zwiggelaar, R.[Reyer],
Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive
Active Contour Modelling,
ICIAR13(605-612).
Springer DOI
1307
BibRef
Li, X.,
Cheah, C.C.,
Observer based adaptive control for optical manipulation of cell,
ICARCV12(1323-1328).
IEEE DOI
1304
BibRef
Huang, C.H.[Chao-Hui],
Lee, H.K.[Hwee-Kuan],
Automated mitosis detection based on eXclusive Independent Component
Analysis,
ICPR12(1856-1859).
WWW Link.
1302
BibRef
de Vylder, J.[Jonas],
Aelterman, J.[Jan],
Vandewoestyne, M.[Mado],
Lepez, T.[Trees],
Deforce, D.[Dieter],
Philip, W.[Wilfried],
Cell Nuclei Detection Using Globally Optimal Active Contours with Shape
Prior,
ISVC12(II: 115-124).
Springer DOI
1209
BibRef
Ram, S.[Sundaresh],
Rodriguez, J.J.[Jeffrey J.],
Bosco, G.[Giovanni],
Size-invariant cell nucleus segmentation in 3-D microscopy,
Southwest12(37-40).
IEEE DOI
1205
BibRef
Kang, S.[Sukryool],
Giurumescu, C.A.[Claudiu A.],
Chisholm, A.D.[Andrew D.],
Cosman, P.[Pamela],
Automated nuclei tracking in C. elegans based on spherical model
fitting with multiple target tracking,
Southwest12(17-20).
IEEE DOI
1205
BibRef
Zhang, C.[Chao],
Sun, C.M.[Chang-Ming],
Pham, T.D.,
Clustered Nuclei Splitting Using Curvature Information,
DICTA11(352-357).
IEEE DOI
1205
BibRef
Ibba, A.[Alessandro],
Duin, R.P.W.[Robert P.W.],
Loog, M.[Marco],
Supervised localization of cell nuclei on TMA images,
MMBIA12(4321-4327).
IEEE DOI
1203
BibRef
Hammoudi, A.A.[Ahmad A.],
Li, F.[Fuhai],
Gao, L.[Liang],
Wang, Z.Y.[Zhi-Yong],
Thrall, M.J.[Michael J.],
Massoud, Y.[Yehia],
Wong, S.T.C.[Stephen T. C.],
Automated Nuclear Segmentation of Coherent Anti-Stokes Raman Scattering
Microscopy Images by Coupling Superpixel Context Information with
Artificial Neural Networks,
MLMI11(317-325).
Springer DOI
1109
BibRef
Xia, C.[Cong],
Chen, J.S.[Jian-Sheng],
Hu, C.H.[Chun-Hua],
Su, G.D.[Guang-Da],
Hao, H.W.[Hong-Wei],
Ma, Y.[Yu],
Segmenting the Subthalamic Nucleus Using Narrow Band Limited
Variational Level Set Method,
ICIG11(372-376).
IEEE DOI
1109
BibRef
Malon, C.[Christopher],
Cosatto, E.[Eric],
Dynamic Radial Contour Extraction by Splitting Homogeneous Areas,
CAIP11(I: 269-277).
Springer DOI
1109
Radial contour around a point, e.g. cell nucleus.
BibRef
Keuper, M.[Margret],
Schmidt, T.[Thorsten],
Padeken, J.[Jan],
Heun, P.[Patrick],
Palme, K.[Klaus],
Burkhardt, H.[Hans],
Ronneberger, O.[Olaf],
3D Deformable Surfaces with Locally Self-Adjusting Parameters:
A Robust Method to Determine Cell Nucleus Shapes,
ICPR10(2254-2257).
IEEE DOI
1008
BibRef
Zhang, J.[Jun],
Hu, J.L.[Jing-Lu],
Nuclei Extraction Based on Multi-channel Information,
DICTA08(59-64).
IEEE DOI
0812
BibRef
Keuper, M.[Margret],
Padeken, J.[Jan],
Heun, P.[Patrick],
Burkhardt, H.[Hans],
Ronneberger, O.[Olaf],
A 3D Active Surface Model for the Accurate Segmentation of Drosophila
Schneider Cell Nuclei and Nucleoli,
ISVC09(I: 865-874).
Springer DOI
0911
BibRef
Maška, M.[Martin],
Danek, O.[Ondrej],
Ortiz-de-Solórzano, C.[Carlos],
Muñoz-Barrutia, A.[Arrate],
Kozubek, M.[Michal],
García, I.F.[Ignacio Fernández],
A Two-Phase Segmentation of Cell Nuclei Using Fast Level Set-Like
Algorithms,
SCIA09(390-399).
Springer DOI
0906
BibRef
Danek, O.[Ondrej],
Matula, P.[Pavel],
An Improved Riemannian Metric Approximation for Graph Cuts,
DGCI11(71-82).
Springer DOI
1104
BibRef
Danek, O.[Ondrej],
Matula, P.[Pavel],
Ortiz-de-Solórzano, C.[Carlos],
Muñoz-Barrutia, A.[Arrate],
Maška, M.[Martin],
Kozubek, M.[Michal],
Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model,
SCIA09(410-419).
Springer DOI
0906
BibRef
Hafiane, A.[Adel],
Bunyak, F.[Filiz],
Palaniappan, K.[Kannappan],
Clustering initiated multiphase active contours and robust separation
of nuclei groups for tissue segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Boucheron, L.E.[Laura E.],
Harvey, N.R.[Neal R.],
Manjunath, B.S.,
A Quantitative Object-Level Metric for Segmentation Performance and Its
Application to Cell Nuclei,
ISVC07(I: 208-219).
Springer DOI
0711
BibRef
Palacios, G.[Guillermo],
Beltran, J.R.[Jose R.],
Cell Nuclei Segmentation Combining Multiresolution Analysis, Clustering
Methods and Colour Spaces,
IMVIP07(91-97).
IEEE DOI
0709
BibRef
Siva, P.[Parthipan],
Brodland, G.W.[G. Wayne],
Clausi, D.A.[David A.],
Automated Detection of Mitosis in Embryonic Tissues,
CRV07(97-104).
IEEE DOI
0705
BibRef
Schulz, J.[Janina],
Schmidt, T.[Thorsten],
Ronneberger, O.[Olaf],
Burkhardt, H.[Hans],
Pasternak, T.[Taras],
Dovzhenko, A.[Alexander],
Palme, K.[Klaus],
Fast Scalar and Vectorial Grayscale Based Invariant Features for 3D
Cell Nuclei Localization and Classification,
DAGM06(182-191).
Springer DOI
0610
Award, GCPR, HM.
BibRef
Restif, C.[Christophe],
Towards Safer, Faster Prenatal Genetic Tests: Novel Unsupervised,
Automatic and Robust Methods of Segmentation of Nuclei and Probes,
ECCV06(IV: 437-450).
Springer DOI
0608
BibRef
Hu, M.[Min],
Ping, X.J.[Xi-Jian],
Ding, Y.H.[Yi-Hong],
A new active contour model and its application on cell segmentation,
ICARCV04(II: 1104-1107).
IEEE DOI
0412
BibRef
And:
Automated cell nucleus segmentation using improved snake,
ICIP04(IV: 2737-2740).
IEEE DOI
0505
BibRef
Begelman, G.,
Gur, E.,
Rivlin, E.,
Radzsky, M.,
Zalevsky, Z.,
Cell nuclei segmentation using fuzzy logic engine,
ICIP04(V: 2937-2940).
IEEE DOI
0505
BibRef
Clocksin, W.F.,
Automatic segmentation of overlapping nuclei with high background
variation using robust estimation and flexible contour models,
CIAP03(682-687).
IEEE DOI
0310
BibRef
Bengtsson, E.[Ewert],
Image Processing and Its Hardware Support Analysis vs Synthesis:
Historical Trends,
SCIA17(I: 3-14).
Springer DOI
1706
BibRef
Bengtsson, E.[Ewert],
Computerized Cell Image Analysis: Past, Present, and Future,
SCIA03(395-407).
Springer DOI
0310
BibRef
Wählby, C.[Carolina],
Bengtsson, E.[Ewert],
Segmentation of Cell Nuclei in Tissue by Combining Seeded Watersheds
with Gradient Information,
SCIA03(408-414).
Springer DOI
0310
BibRef
Netten, H.,
Young, I.T.,
Prins, M.,
van Vliet, L.J.,
Tanke, H.,
Vrolijk, H.,
Sloos, W.,
Automation of fluorescent dot counting in cell nuclei,
ICPR94(A:84-87).
IEEE DOI
9410
BibRef
Strasters, K.C.,
Smeulders, A.W.M.,
van der Voort, H.T.M.,
Young, I.T.,
Nanninga, N.,
Quantitative 3-D texture analysis of interphase cell nuclei,
ICPR92(III:767-770).
IEEE DOI
9208
BibRef
O'Gorman, L.,
Sanderson, A.C.,
Preston, Jr., K., and
Dekker, A.,
Image Segmentation and Nucleus Classification for
Automated Tissue Section Analysis,
CVPR83(89-94).
BibRef
8300
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Gene Expression, Genome .