5.3.13 Restoration by Deconvolution, Blind Deconvolution

Chapter Contents (Back)
Image Restoration. Deconvolution. Blind Deconvolution.
See also Restoration from Blurred Images, Motion Blur.

MacAdam, D.P.,
Digital Image Restoration by Constrained Deconvolution,
JOSA(60), No. 12, December 1970, pp. 1617-1627. BibRef 7012

Cannon, T.M.,
Blind deconvolution of spatially invariant image blurs with phase,
ASSP(24), No. 1, February 1975, pp. 58-63. BibRef 7502

Lorre, J.J.[Jean J.],
Histogram Deconvolution: An Aid to Automated Classifiers,
CVGIP(23), No. 3, September 1983, pp. 334-340.
Elsevier DOI Removing noise from the histograms to aid in classification. BibRef 8309

Zou, M.Y.[Mou-Yan], Unbehauen, R.,
On the computational model of a kind of deconvolution problem,
IP(4), No. 10, October 1995, pp. 1464-1467.
IEEE DOI 0402
BibRef

Cadzow, J.A.,
Blind Deconvolution via Cumulant Extrema,
SPMag(13), No. 3, May 1996, pp. 24-42. 9605
BibRef

Kundur, D., Hatzinakos, D.,
Blind Image Deconvolution,
SPMag(13), No. 3, May 1996, pp. 43-64. 9605
BibRef
And:
Blind Image Deconvolution Revisited,
SPMag(13), No. 6, November 1996, pp. 61-63. 9611
BibRef

Kundur, D., Hatzinakos, D.[Dimitrios],
A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering,
TSP(46), No. 2, February 1998, pp. 375-390. 9803
BibRef
Earlier:
On the Global Asymptotic Stability of the NAS-RIF Algorithm for Blind Image Restoration,
ICIP96(III: 73-76).
IEEE DOI BibRef

Cheng, L.Z.,
Fast Hartley Transform and Truncated Singular-Value Algorithm for Circular Deconvolution,
OptEng(36), No. 8, August 1997, pp. 2137-2142. 9708
BibRef

Namba, M., Ishida, Y.,
Wavelet Transform Domain Blind Deconvolution,
SP(68), No. 1, July 1998, pp. 119-124. 9808
BibRef

Pillai, S.U., Liang, B.,
Blind Image Deconvolution Using a Robust GCD Approach,
IP(8), No. 2, February 1999, pp. 295-301.
IEEE DOI BibRef 9902
Earlier:
Two-Dimensional Blind Deconvolution Using a Robust GCD Approach,
ICIP97(I: 424-427).
IEEE DOI BibRef

Ong, C.A., Chambers, J.A.,
An Enhanced NAS-RIF Algorithm for Blind Image Deconvolution,
IP(8), No. 7, July 1999, pp. 988-992.
IEEE DOI BibRef 9907

Harikumar, G., Bresler, Y.,
Exact Image Deconvolution from Multiple FIR Blurs,
IP(8), No. 6, June 1999, pp. 846-862.
IEEE DOI BibRef 9906

Ng, M.K., Plemmons, R.J., Qiao, S.,
Regularization of RIF Blind Image Deconvolution,
IP(9), No. 6, June 2000, pp. 1130-1134.
IEEE DOI 0006
BibRef

Lam, E.Y.[Edmund Y.], Goodman, J.W.[Joseph W.],
Iterative statistical approach to blind image deconvolution,
JOSA-A(17), No. 7, July 2000, pp. 1177-1184.
DOI Link 0008
BibRef

Fiori, S., Maiolini, G.,
Weighted least-squares blind deconvolution of non-minimum phase systems,
VISP(147), No. 6, December 2000, pp. 557-563. 0101
BibRef

Qidwai, U., Chen, C.H.,
Two-dimensional Hinf -based blind deconvolution for image enhancement with applications to ultrasonic NDE,
SPLetters(9), No. 5, May 2002, pp. 157-159.
IEEE Top Reference. 0206
BibRef

Qidwai, U.,
Infrared Image Enhancement using H_inf Bounds for Surveillance Applications,
IP(17), No. 8, August 2008, pp. 1274-1282.
IEEE DOI 0808
BibRef

Chen, C.H.[Chi-Hau], Qidwai, U.,
Recent trends in 2D blind deconvolution for nondestructive evaluation,
ICPR02(II: 989-992).
IEEE DOI 0211
BibRef

Qidwai, U.[Uvais], Qidwai, U.[Umair],
Blind Restoration of Fluorescein Angiography Images,
DICTA10(146-151).
IEEE DOI 1012
BibRef

Ruiz, C.P.[C. Pinilla], López, F.J.A.[F. J. Ariza],
Restoring SPOT images using PSF-derived deconvolution filters,
JRS(23), No. 12, June 2002, pp. 2379-2391. 0208
BibRef

Li, T.H.[Ta-Hsin], Lii, K.S.[Keh-Shin],
A joint estimation approach for two-tone image deblurring by blind deconvolution,
IP(11), No. 8, August 2002, pp. 847-858.
IEEE DOI 0209
BibRef

Jalobeanu, A.[André], Blanc-Féraud, L.[Laure], Zerubia, J.B.[Josiane B.],
Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method,
PR(35), No. 2, February 2002, pp. 341-352.
Elsevier DOI 0201
BibRef

Khoumri, M., Blanc-Feraud, L., Zerubia, J.B.,
Unsupervised deconvolution of satellite images,
ICIP98(II: 84-87).
IEEE DOI 9810
BibRef

Jalobeanu, A.[André], Blanc-Féraud, L.[Laure], Zerubia, J.B.[Josiane B.],
Satellite Image Deblurring Using Complex Wavelet Packets,
IJCV(51), No. 3, February-March 2003, pp. 205-217.
DOI Link 0301
BibRef
Earlier:
Satellite Image Deconvolution Using Complex Wavelet Packets,
ICIP00(Vol III: 809-812).
IEEE DOI 0008
BibRef

Jalobeanu, A., Kingsbury, N.G., Zerubia, J.B.,
Image Deconvolution Using Hidden Markov Tree Modeling of Complex Wavelet Packets,
ICIP01(I: 201-204).
IEEE DOI 0108
BibRef

Miller, M., Kingsbury, N.G.,
Image Denoising Using Derotated Complex Wavelet Coefficients,
IP(17), No. 9, September 2008, pp. 1500-1511.
IEEE DOI 0810
BibRef

de Rivaz, P., Kingsbury, N.G.,
Bayesian Image Deconvolution and Denoising Using Complex Wavelets,
ICIP01(II: 273-276).
IEEE DOI 0108
BibRef

Miller, M., Kingsbury, N.G.,
Image Modeling Using Interscale Phase Properties of Complex Wavelet Coefficients,
IP(17), No. 9, September 2008, pp. 1491-1499.
IEEE DOI 0810
BibRef

Jalobeanu, A.[André], Blanc-Féraud, L.[Laure], Zerubia, J.B.[Josiane B.],
An Adaptive Gaussian Model for Satellite Image Deblurring,
IP(13), No. 4, April 2004, pp. 613-621.
IEEE DOI 0404
BibRef
Earlier:
Estimation of Adaptive Parameters for Satellite Image Deconvolution,
ICPR00(Vol III: 318-321).
IEEE DOI 0009
BibRef

Jalobeanu, A., Nowak, R.D., Zerubia, J.B., Figueiredo, M.A.T.,
Satellite and aerial image deconvolution using an EM method with complex wavelets,
ICIP02(I: 333-336).
IEEE DOI 0210
BibRef

Easley, G.R., Walnut, D.F.,
Local Multichannel Deconvolution,
JMIV(18), No. 1, January 2003, pp. 69-80.
DOI Link 0301
BibRef

Kalifa, J., Mallat, S.G., Rouge, B.,
Deconvolution by thresholding in mirror wavelet bases,
IP(12), No. 4, April 2003, pp. 446-457.
IEEE DOI 0306
BibRef
Earlier:
Image deconvolution in mirror wavelet bases,
ICIP98(I: 565-569).
IEEE DOI 9810
BibRef

Panci, G., Campisi, P., Colonnese, S., Scarano, G.,
Multichannel blind image deconvolution using the bussgang algorithm: Spatial and multiresolution approaches,
IP(12), No. 11, November 2003, pp. 1324-1337.
IEEE DOI 0311
BibRef
Earlier: A2, A3, A1, A4:
Multichannel bussgang algorithm for blind restoration of natural images,
ICIP03(II: 985-988).
IEEE DOI 0312
BibRef

Laligant, O., Truchetet, F., Dupasquier, A.,
Edge enhancement by local deconvolution,
PR(38), No. 5, May 2005, pp. 661-672.
Elsevier DOI 0501
BibRef

Chen, L., Yap, K.H.,
A Soft Double Regularization Approach to Parametric Blind Image Deconvolution,
IP(14), No. 5, May 2005, pp. 624-633.
IEEE DOI 0505
BibRef
Earlier: A2, A1:
A Recursive Soft-decision Psf and Neural Network Approach to Adaptive Blind Image Regularization,
ICIP00(Vol III: 813-816).
IEEE DOI 0008
BibRef

Bronstein, M.M., Bronstein, A.M., Zibulevsky, M., Zeevi, Y.Y.,
Blind Deconvolution of Images Using Optimal Sparse Representations,
IP(14), No. 6, June 2005, pp. 726-736.
IEEE DOI 0505
BibRef
Earlier:
Optimal sparse representations for blind source separation and blind deconvolution: a learning approach,
ICIP04(III: 1815-1818).
IEEE DOI 0505
BibRef

Bronstein, A.M., Zibulevsky, M., Bronstein, M.M., Zeevi, Y.Y.,
Fast Relative Newton Algorithm for Blind Deconvolution of Images,
ICIP04(II: 1233-1236).
IEEE DOI 0505
BibRef

Paajarvi, P., Le Blanc, J.P.,
Online Adaptive Blind Deconvolution Based on Third-Order Moments,
SPLetters(12), No. 12, December 2005, pp. 863-866.
IEEE DOI 0512
BibRef

Kaftory, R.[Ran], Sochen, N.A.[Nir A.], Zeevi, Y.Y.[Yehushua Y.],
Variational blind deconvolution of multi-channel images,
IJIST(15), No. 1, 2005, pp. 56-63.
DOI Link 0507
BibRef

Kaftory, R.[Ran], Zeevi, Y.Y.[Yehoshua Y.],
Blind separation of position varying mixed images,
ICIP09(3913-3916).
IEEE DOI 0911
BibRef
Earlier:
Blind separation of images obtained by spatially-varying mixing system,
ICIP08(2604-2607).
IEEE DOI 0810
BibRef

Kaftory, R.[Ran], Schechner, Y.Y.[Yoav Y.], Zeevi, Y.Y.[Yehoshua Y.],
Variational Distance-Dependent Image Restoration,
CVPR07(1-8).
IEEE DOI 0706
Through scattering medium. BibRef

Schechner, Y.Y., Karpel, N.,
Clear underwater vision,
CVPR04(I: 536-543).
IEEE DOI 0408
BibRef

He, L.[Lin], Marquina, A.[Antonio], Osher, S.J.[Stanley J.],
Blind deconvolution using TV regularization and Bregman iteration,
IJIST(15), No. 1, 2005, pp. 74-83.
DOI Link 0507
BibRef

Zhou, J., Do, M.N.,
Multidimensional Multichannel FIR Deconvolution Using GrÖbner Bases,
IP(15), No. 10, October 2006, pp. 2998-3007.
IEEE DOI 0609
BibRef

Sanchez-Brea, L.M., Bernabeu, E.,
Uncertainty Estimation by Convolution Using Spatial Statistics,
IP(15), No. 10, October 2006, pp. 3131-3137.
IEEE DOI 0609
BibRef

Sakano, M.[Morihiko], Suetake, N.[Noriaki], Uchino, E.[Eiji],
A Robust Point Spread Function Estimation for Out-of-Focus Blurred and Noisy Images Based on a Distribution of Gradient Vectors on the Polar Plane,
OptRev(14), No. 5, September 2007, pp. 297-303.
Springer DOI BibRef 0709

Ma, L.S.[Liang-Suo], Tsoi, A.C.[Ah Chung],
A unified balanced approach to multichannel blind deconvolution,
SIViP(1), No. 4, October 2007, pp. 369-384.
Springer DOI 0711
BibRef

Ma, L.S.[Liang-Suo], Tsoi, A.C.[Ah Chung],
A variational Bayesian approach to number of sources estimation for multichannel blind deconvolution,
SIViP(2), No. 2, June 2008, pp. xx-yy.
Springer DOI 0711
BibRef

Neelamani, R.N.[Ramesh N.], Deffenbaugh, M., Baraniuk, R.G.[Ricard G.],
Texas Two-Step: A Framework for Optimal Multi-Input Single-Output Deconvolution,
IP(16), No. 11, November 2007, pp. 2752-2765.
IEEE DOI 0709
BibRef

Giovannelli, J.F.,
Unsupervised Bayesian Convex Deconvolution Based on a Field With an Explicit Partition Function,
IP(17), No. 1, January 2008, pp. 16-26.
IEEE DOI 0712
Cavity models. BibRef

Kopriva, I.[Ivica],
Aproach to blind image deconvolution by multiscale subband decomposition and independent component analysis,
JOSA-A(24), No. 4, April 2007, pp. 973-983.
DOI Link 0801
BibRef

Hom, E.F.Y.[Erik F. Y.], Marchis, F.[Franck], Lee, T.K.[Timothy K.], Haase, S.[Sebastian], Agard, D.A.[David A.], Sedat, J.W.[John W.],
AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,
JOSA-A(24), No. 6, June 2007, pp. 1580-1600.
DOI Link 0801
Extension of the MISTRAL method developed by Mugnier.
See also MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images. BibRef

Zhang, J.L.[Jian-Lin], Zhang, Q.H.[Qi-Heng], He, G.M.[Guang-Ming],
Blind image deconvolution by means of asymmetric multiplicative iterative algorithm,
JOSA-A(25), No. 3, March 2008, pp. 710-717.
DOI Link 0804
BibRef

He, Y., Yap, K.H., Chen, L., Chau, L.P.,
A Novel Hybrid Model Framework to Blind Color Image Deconvolution,
SMC-A(38), No. 4, July 2008, pp. 867-880.
IEEE DOI 0806
BibRef

Zhou, H.Y.[Hui-Yu], Liu, T.W.[Tang-Wei], Lin, F.Q.[Fa-Quan], Pang, Y.S.[Yu-Sheng], Wu, J.[Ji],
Image Restoration And Detail Preservation By Bayesian Estimation,
IJIG(7), No. 3, July 2007, pp. 497-514. 0707
BibRef

Tzikas, D.G.[Dimitris G.], Likas, A.[Aristidis], Galatsanos, N.P.[Nikolaos P.],
Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors,
IP(18), No. 4, April 2009, pp. 753-764.
IEEE DOI 0903
BibRef
Earlier:
Variational Bayesian Blind Image Deconvolution with Student-T Priors,
ICIP07(I: 109-112).
IEEE DOI 0709
BibRef
Earlier: A2, A3, Only:
A variational method for bayesian blind image deconvolution,
ICIP03(II: 973-976).
IEEE DOI 0312
BibRef

Easley, G.R.[Glenn R.], Healy, D.M.[Dennis M.], Berenstein, C.A.[Carlos A.],
Image Deconvolution Using A General Ridgelet And Curvelet Domain,
SIIMS(2), No. 1, 2009, pp. 253-283. Radon transform; ridgelet transform; curvelet transform; deconvolution; boundary conditions
DOI Link BibRef 0900

Wang, X.[Xin],
Wrap-around effect removal finite ridgelet transform for multiscale image denoising,
PR(43), No. 11, November 2010, pp. 3693-3698.
Elsevier DOI 1008
Finite radon transform; Ridgelets; Pyramid; Image denoising BibRef

Orieux, F.[François], Giovannelli, J.F.[Jean-François], Rodet, T.[Thomas],
Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution,
JOSA-A(27), No. 7, July 2010, pp. 1593-1607.
DOI Link 1003
BibRef

Orieux, F.[François], Rodet, T.[Thomas], Giovannelli, J.F.[Jean-François],
Instrument parameter estimation in bayesian convex deconvolution,
ICIP10(1161-1164).
IEEE DOI 1009
BibRef

Averbuch, A.[Amir], Zheludev, V.[Valery], Neittaanmäki, P.[Pekka], Koren, J.[Jenny],
Block Based Deconvolution Algorithm Using Spline Wavelet Packets,
JMIV(38), No. 3, November 2010, pp. 197-225.
WWW Link. 1011
BibRef

Garnier, J.[Josselin], Solna, K.[Knut],
Cross Correlation And Deconvolution of Noise Signals in Randomly Layered Media,
SIIMS(3), No. 4, 2010, pp. 809-834.
DOI Link 1011
passive sensor imaging; noise sources; random media BibRef

Liao, H., Ng, M.K.,
Blind Deconvolution Using Generalized Cross-Validation Approach to Regularization Parameter Estimation,
IP(20), No. 3, March 2011, pp. 670-680.
IEEE DOI 1103
BibRef

Lee, J.H.[Jong-Ho], Ho, Y.S.[Yo-Sung],
High-quality non-blind image deconvolution with adaptive regularization,
JVCIR(22), No. 7, October 2011, pp. 653-663.
Elsevier DOI 1109
BibRef
Earlier:
High-quality Non-blind Image Deconvolution,
PSIVT10(282-287).
IEEE DOI 1011
Image deblurring; Non-blind image deconvolution; Ringing artifacts; Noise amplification; Local characteristics; Adaptive regularization; Fast deconvolution; Boundary artifacts reduction BibRef

Levin, A.[Anat], Weiss, Y.[Yair], Durand, F.[Fredo], Freeman, W.T.[William T.],
Understanding Blind Deconvolution Algorithms,
PAMI(33), No. 12, December 2011, pp. 2354-2367.
IEEE DOI 1110
BibRef
And:
Efficient marginal likelihood optimization in blind deconvolution,
CVPR11(2657-2664).
IEEE DOI 1106
BibRef
Earlier:
Understanding and evaluating blind deconvolution algorithms,
CVPR09(1964-1971).
IEEE DOI 0906
Award, CVPR, HM. BibRef
And: CSAIL-2009-014, March 2009.
WWW Link. Recovery of a sharp version of blurred image with unknown blur kernel. Evaluation of recent algorithms. BibRef

Levin, A.[Anat], Nadler, B.[Boaz], Durand, F.[Fredo], Freeman, W.T.[William T.],
Patch Complexity, Finite Pixel Correlations and Optimal Denoising,
ECCV12(V: 73-86).
Springer DOI 1210
BibRef

Ni, J., Turaga, P.K., Patel, V.M., Chellappa, R.,
Example-Driven Manifold Priors for Image Deconvolution,
IP(20), No. 11, November 2011, pp. 3086-3096.
IEEE DOI 1110
BibRef

Hou, T.B.[Ting-Bo], Wang, S.[Sen], Qin, H.[Hong],
Image Deconvolution With Multi-Stage Convex Relaxation and Its Perceptual Evaluation,
IP(20), No. 12, December 2011, pp. 3383-3392.
IEEE DOI 1112

See also Vehicle matching and recognition under large variations of pose and illumination. BibRef

Šroubek, F.[Filip], Milanfar, P.[Peyman],
Robust Multichannel Blind Deconvolution via Fast Alternating Minimization,
IP(21), No. 4, April 2012, pp. 1687-1700.
IEEE DOI 1204
BibRef

Sorel, M.,
Removing Boundary Artifacts for Real-Time Iterated Shrinkage Deconvolution,
IP(21), No. 4, April 2012, pp. 2329-2334.
IEEE DOI 1204
BibRef

Chung, J.[Julianne], Chung, M.[Matthias], O'Leary, D.P.[Dianne P.],
Optimal Filters from Calibration Data for Image Deconvolution with Data Acquisition Error,
JMIV(44), No. 3, November 2012, pp. 366-374.
WWW Link. 1209
BibRef

Yang, H.[Hang], Zhang, Z.B.[Zhong-Bo], Wu, D.Y.[Dan-Yang],
Image deconvolution using incomplete Fourier measurements,
IJIST(22), No. 4, December 2012, pp. 233-240.
DOI Link 1211
BibRef

Huo, Z.X.[Zhuo-Xi], Zhou, J.F.[Jian-Feng],
Interval estimate with probabilistic background constraints in deconvolution,
JOSA-A(29), No. 12, December 2012, pp. 2688-2695.
DOI Link 1211
BibRef

Ponti, Jr., M.P.[Moacir P.], Mascarenhas, N.D.A.[Nelson D.A.], Ferreira, P.J.S.G.[Paulo J.S.G.], Suazo, C.A.T.[Claudio A.T.],
Three-dimensional noisy image restoration using filtered extrapolation and deconvolution,
SIViP(7), No. 1, January 2013, pp. 1-10.
WWW Link. 1301
BibRef

Cao, W.F.[Wen-Fei], Sun, J.[Jian], Xu, Z.B.[Zong-Ben],
Fast image deconvolution using closed-form thresholding formulas of regularization,
JVCIR(24), No. 1, January 2013, pp. 31-41.
Elsevier DOI 1301
Sparsity; L 1 2 regularization; L 2 3 regularization; Variable splitting; Image deconvolution; L0 regularization; L1 regularization; Thresholding formula BibRef

Henrot, S., Soussen, C., Brie, D.,
Fast Positive Deconvolution of Hyperspectral Images,
IP(22), No. 2, February 2013, pp. 828-833.
IEEE DOI 1302
BibRef

Ahmad, M.S.[Mohammad Shukri], Kukrer, O.[Osman], Hocanin, A.[Aykut],
A 2-D recursive inverse adaptive algorithm,
SIViP(7), No. 2, March 2013, pp. 221-226.
Springer DOI 1303
BibRef

Bonettini, S., Cornelio, A., Prato, M.,
A New Semiblind Deconvolution Approach for Fourier-Based Image Restoration: An Application in Astronomy,
SIIMS(6), No. 3, 2013, pp. 1736-1757.
DOI Link 1310
BibRef

Li, Y.[Yan], Clarke, K.C.[Keith C.],
Image deblurring for satellite imagery using small-support-regularized deconvolution,
PandRS(85), No. 1, 2013, pp. 148-155.
Elsevier DOI 1310
Remote sensing BibRef

Zhang, J., Zhong, P., Chen, Y., Li, S.,
L_1/2-Regularized Deconvolution Network for the Representation and Restoration of Optical Remote Sensing Images,
GeoRS(52), No. 5, May 2014, pp. 2617-2627.
IEEE DOI 1403
L_1/2 regularizer BibRef

Fortunato, H.E.[Horacio E.], Oliveira, M.M.[Manuel M.],
Fast high-quality non-blind deconvolution using sparse adaptive priors,
VC(30), No. 6-8, June 2014, pp. 661-671.
WWW Link. 1407
BibRef

Shao, W.Z.[Wen-Ze], Deng, H.S.[Hai-Song], Wei, Z.H.[Zhi-Hui],
The magic of split augmented Lagrangians applied to K-frame-based L0-L2 minimization image restoration,
SIViP(8), No. 5, July 2014, pp. 975-983.
Springer DOI 1407
BibRef

Repetti, A., Pham, M.Q., Duval, L., Chouzenoux, E., Pesquet, J.C.,
Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed L_1/L_2 Regularization,
SPLetters(22), No. 5, May 2015, pp. 539-543.
IEEE DOI 1411
Approximation methods BibRef

Jung, C.[Cheolkon], Gu, A.[Aiguo],
Curvature preserving image super-resolution with gradient-consistency-anisotropic-regularization prior,
SP:IC(29), No. 10, 2014, pp. 1211-1222.
Elsevier DOI 1411
Adaptive de-convolution BibRef

Jung, C.[Cheolkon], Sun, T.[Tian], Gu, A.[Aiguo],
Content adaptive video denoising based on human visual perception,
JVCIR(31), No. 1, 2015, pp. 14-25.
Elsevier DOI 1508
Content adaptive BibRef

Xiao, L., Gregson, J.[James], Heide, F.[Felix], Heidrich, W.[Wolfgang],
Stochastic Blind Motion Deblurring,
IP(24), No. 10, October 2015, pp. 3071-3085.
IEEE DOI 1507
Cameras BibRef

Gregson, J.[James], Heide, F.[Felix], Hullin, M.B.[Matthias B.], Rouf, M.[Mushfiqur], Heidrich, W.[Wolfgang],
Stochastic Deconvolution,
CVPR13(1043-1050)
IEEE DOI 1309
Deblurring; Deconvolution; Random Walk; Spatially-Varying PSF; Stochastic BibRef

Bahmani, S.[Sohail], Romberg, J.[Justin],
Lifting for Blind Deconvolution in Random Mask Imaging: Identifiability and Convex Relaxation,
SIIMS(8), No. 4, 2015, pp. 2203-2238.
DOI Link 1601
BibRef

Welk, M.[Martin],
A robust variational model for positive image deconvolution,
SIViP(10), No. 1, February 2016, pp. 369-378.
WWW Link. 1601
BibRef

Xue, F.[Feng], Liu, J.[Jiaqi], Jiao, S.H.[Sheng-Hai], Liu, S.D.[Sheng-Dong], Zhao, M.[Min], Niu, Z.H.[Zhen-Hong],
SURE-Type Functionals as Criteria for Parametric PSF Estimation,
JMIV(54), No. 1, January 2016, pp. 78-105.
Springer DOI 1601
BibRef

Schmidt, U., Jancsary, J.[Jeremy], Nowozin, S.[Sebastian], Roth, S.[Stefan], Rother, C.[Carsten],
Cascades of Regression Tree Fields for Image Restoration,
PAMI(38), No. 4, April 2016, pp. 677-689.
IEEE DOI 1603
Analytical models BibRef

Schelten, K.[Kevin], Nowozin, S.[Sebastian], Jancsary, J.[Jeremy], Rother, C.[Carsten], Roth, S.[Stefan],
Interleaved Regression Tree Field Cascades for Blind Image Deconvolution,
WACV15(494-501)
IEEE DOI 1503
Cameras BibRef

Zuo, W.M.[Wang-Meng], Ren, D.W.[Dong-Wei], Zhang, D., Gu, S.H.[Shu-Hang], Zhang, L.[Lei],
Learning Iteration-wise Generalized Shrinkage: Thresholding Operators for Blind Deconvolution,
IP(25), No. 4, April 2016, pp. 1751-1764.
IEEE DOI 1604
Deconvolution BibRef

Zuo, W.M.[Wang-Meng], Ren, D.W.[Dong-Wei], Gu, S.H.[Shu-Hang], Lin, L.[Liang], Zhang, L.[Lei],
Discriminative learning of iteration-wise priors for blind deconvolution,
CVPR15(3232-3240)
IEEE DOI 1510
BibRef

Ren, W., Tian, J., Tang, Y.,
Blind Deconvolution With Nonlocal Similarity and L_0 Sparsity for Noisy Image,
SPLetters(23), No. 4, April 2016, pp. 439-443.
IEEE DOI 1604
Cameras BibRef

Schuler, C.J.[Christian J.], Hirsch, M., Harmeling, S.[Stefan], Scholkopf, B.[Bernhard],
Learning to Deblur,
PAMI(38), No. 7, July 2016, pp. 1439-1451.
IEEE DOI 1606
Artificial neural networks BibRef

Xiao, L., Heide, F., Heidrich, W., Schölkopf, B., Hirsch, M.,
Discriminative Transfer Learning for General Image Restoration,
IP(27), No. 8, August 2018, pp. 4091-4104.
IEEE DOI 1806
Computational modeling, Image restoration, Noise level, Noise reduction, Optimization, Task analysis, Training, proximal optimization BibRef

Burger, H.C.[Harold Christopher], Schuler, C.J.[Christian J.], Harmeling, S.[Stefan],
Learning How to Combine Internal and External Denoising Methods,
GCPR13(121-130).
Springer DOI 1311
BibRef

Schuler, C.J.[Christian J.], Burger, H.C.[Harold Christopher], Harmeling, S.[Stefan], Scholkopf, B.[Bernhard],
A Machine Learning Approach for Non-blind Image Deconvolution,
CVPR13(1067-1074)
IEEE DOI 1309
deblurring; deconvolution; learning; neural networks BibRef

Burger, H.C.[Harold C.], Schuler, C.J.[Christian J.], Harmeling, S.[Stefan],
Image denoising: Can plain neural networks compete with BM3D?,
CVPR12(2392-2399).
IEEE DOI 1208
BM3D.
See also Small Neural Networks can Denoise Image Textures Well: A Useful Complement to BM3D.
See also Block Matching 3-D Denoising, BM3D. BibRef

Zhuang, P.X.[Pei-Xian], Fu, X.Y.[Xue-Yang], Huang, Y.[Yue], Zeng, D.[Delu], Ding, X.H.[Xing-Hao],
A novel framework method for non-blind deconvolution using subspace images priors,
SP:IC(46), No. 1, 2016, pp. 17-28.
Elsevier DOI 1606
Non-blind deconvolution BibRef

Zhuang, P.X.[Pei-Xian], Fu, X.Y.[Xue-Yang], Huang, Y.[Yue], Ding, X.H.[Xing-Hao],
Image enhancement using divide-and-conquer strategy,
JVCIR(45), No. 1, 2017, pp. 137-146.
Elsevier DOI 1704
Image enhancement BibRef

Kara, F.[Fatih], Vural, C.[Cabir],
Blind restoration and resolution enhancement of images based on complex filtering,
SIViP(10), No. 6, June 2016, pp. 1159-1167.
WWW Link. 1608
BibRef

Liu, T.T.[Ting-Ting], Chen, Z.Z.[Zeng-Zhao], Liu, S.Y.[San-Yan], Zhang, Z.L.[Zhao-Li], Shu, J.B.[Jiang-Bo],
Blind image restoration with sparse priori regularization for passive millimeter-wave images,
JVCIR(40, Part A), No. 1, 2016, pp. 58-66.
Elsevier DOI 1609
Millimeter wave imaging BibRef

Wang, W.[Wei], Ng, M.K.[Michael K.],
Convex regularized inverse filtering methods for blind image deconvolution,
SIViP(10), No. 7, October 2016, pp. 1353-1360.
WWW Link. 1609
BibRef

Simões, M., Almeida, L.B., Bioucas-Dias, J., Chanussot, J.,
A Framework for Fast Image Deconvolution With Incomplete Observations,
IP(25), No. 11, November 2016, pp. 5266-5280.
IEEE DOI 1610
Boundary conditions BibRef

Song, Y.Y.[Ying-Ying], Brie, D.[David], Djermoune, E.H.[El-Hadi], Henrot, S.[Simon],
Regularization Parameter Estimation for Non-Negative Hyperspectral Image Deconvolution,
IP(25), No. 11, November 2016, pp. 5316-5330.
IEEE DOI 1610
Convolution. BibRef

Wang, L., Chi, Y.,
Blind Deconvolution From Multiple Sparse Inputs,
SPLetters(23), No. 10, October 2016, pp. 1384-1388.
IEEE DOI 1610
convex programming BibRef

Qu, Y.[Ying], Koschan, A.[Andreas], Abidi, M.[Mongi],
Robust penalty-weighted deblurring via kernel adaption using single image,
JVCIR(41), No. 1, 2016, pp. 109-122.
Elsevier DOI 1612
Blind deconvolution BibRef

Badri, H.[Hicham], Yahia, H.[Hussein], Aboutajdine, D.,
Low-Rankness Transfer for Realistic Denoising,
IP(25), No. 12, December 2016, pp. 5768-5779.
IEEE DOI 1612
Gaussian noise BibRef

Badri, H.[Hicham], Yahia, H.[Hussein],
Handling noise in image deconvolution with local/non-local priors,
ICIP14(2644-2648)
IEEE DOI 1502
Convolution BibRef

Kotera, J.[Jan], Šmídl, V., Šroubek, F.[Filip],
Blind Deconvolution With Model Discrepancies,
IP(26), No. 5, May 2017, pp. 2533-2544.
IEEE DOI 1704
Bayes methods BibRef

Ševcík, J., Šmídl, V., Šroubek, F.,
An Adaptive Correlated Image Prior for Image Restoration Problems,
SPLetters(25), No. 7, July 2018, pp. 1024-1028.
IEEE DOI 1807
Bayes methods, image resolution, image restoration, variational techniques, Bayesian interpretation, variational Bayes BibRef

Kotera, J.[Jan], Šroubek, F.[Filip], Milanfar, P.[Peyman],
Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors,
CAIP13(II:59-66).
Springer DOI 1311
BibRef

Yang, C.X.[Chang-Xing], Shao, W.Z.[Wen-Ze], Huang, L.L.[Li-Li],
Boosting normalized sparsity regularization for blind image deconvolution,
SIViP(11), No. 4, May 2017, pp. 681-688.
WWW Link. 1704
BibRef

Sonogashira, M.[Motoharu], Iiyama, M.[Masaaki], Minoh, M.[Michihiko],
Shift-Variant Blind Deconvolution Using a Field of Kernels,
IEICE(E100-D), No. 9, September 2017, pp. 1971-1983.
WWW Link. 1709
BibRef

Abboud, F.[Feriel], Chouzenoux, E.[Emilie], Pesquet, J.C.[Jean-Christophe], Chenot, J.H.[Jean-Hugues], Laborelli, L.[Louis],
Dual Block-Coordinate Forward-Backward Algorithm with Application to Deconvolution and Deinterlacing of Video Sequences,
JMIV(59), No. 3, November 2017, pp. 415-431.
Springer DOI 1710
BibRef
Earlier:
A dual block coordinate proximal algorithm with application to deconvolution of interlaced video sequences,
ICIP15(4917-4921)
IEEE DOI 1512
Proximity operator BibRef

Abboud, F.[Feriel], Chouzenoux, É.[Émilie], Pesquet, J.C.[Jean-Christophe], Chenot, J.H.[Jean-Hugues], Laborelli, L.[Louis],
An alternating proximal approach for blind video deconvolution,
SP:IC(70), 2019, pp. 21-36.
Elsevier DOI 1812
Blind deconvolution, Video processing, Regularization, Nonconvex optimization, Proximal algorithms BibRef

Yuan, S., Wang, S., Ma, M., Ji, Y., Deng, L.,
Sparse Bayesian Learning-Based Time-Variant Deconvolution,
GeoRS(55), No. 11, November 2017, pp. 6182-6194.
IEEE DOI 1711
Attenuation, Bayes methods, Convolution, Deconvolution, Time-frequency analysis, Attenuation, Bayesian framework, inverse problems, sparse Bayesian learning (SBL), BibRef

Li, J., Luisier, F., Blu, T.,
PURE-LET Image Deconvolution,
IP(27), No. 1, January 2018, pp. 92-105.
IEEE DOI 1712
BibRef
Earlier:
Deconvolution of poissonian images with the PURE-LET approach,
ICIP16(2708-2712)
IEEE DOI 1610
Gaussian noise, Haar transforms, Wiener filters, deconvolution, image restoration, image segmentation, mean square error methods, unbiased risk estimate BibRef

Ren, D., Zuo, W., Zhang, D., Xu, J., Zhang, L.,
Partial Deconvolution With Inaccurate Blur Kernel,
IP(27), No. 1, January 2018, pp. 511-524.
IEEE DOI 1712
Computational modeling, Deconvolution, Estimation error, Kernel, Robustness, E-M algorithm, Image deblurring, blind deconvolution, blur kernel estimation BibRef

Gabarda, S.[Salvador], Cristóbal, G.[Gabriel], Goel, N.[Navdeep],
Anisotropic blind image quality assessment: Survey and analysis with current methods,
JVCIR(52), 2018, pp. 101-105.
Elsevier DOI 1804
Image quality assessment, Pseudo-Wigner distribution, Rényi entropy, Anisotropy, Correlation, Mean opinion scores BibRef

Carrasquinha, E.[Eunice], Amado, C.[Conceição], Pires, A.M.[Ana M.], Oliveira, L.[Lina],
Image reconstruction based on circulant matrices,
SP:IC(63), 2018, pp. 72-80.
Elsevier DOI 1804
PCA, Signal processing, Image reconstruction, Circulant matrices, Toeplitz matrices BibRef

Wang, R., Tao, D.,
Training Very Deep CNNs for General Non-Blind Deconvolution,
IP(27), No. 6, June 2018, pp. 2897-2910.
IEEE DOI 1804
Computational modeling, Convolution, Deconvolution, Image restoration, Kernel, Task analysis, Training, Deep CNNs, residual learning BibRef

Han, J., Song, K.S., Kim, J., Kang, M.G.,
Permuted Coordinate-Wise Optimizations Applied to Lp-Regularized Image Deconvolution,
IP(27), No. 7, July 2018, pp. 3556-3570.
IEEE DOI 1805
Cost function, Deconvolution, Estimation, Iterative methods, Kernel, Linear programming, Lp-norm, Non-blind deconvolution, total variation BibRef

Lamash, Y.[Yechiel],
Algorithm and Constraints for Exact Non-blind Deconvolution,
JMIV(60), No. 5, June 2018, pp. 692-706.
WWW Link. 1806
BibRef

Winkler, J.R.[Joab R.], Halawani, H.[Hanan],
The Sylvester and Bézout Resultant Matrices for Blind Image Deconvolution,
JMIV(60), No. 8, October 2018, pp. 1284-1305.
Springer DOI 1810
BibRef

Huang, W., Hand, P.,
Blind Deconvolution by a Steepest Descent Algorithm on a Quotient Manifold,
SIIMS(11), No. 4, 2018, pp. 2757-2785.
DOI Link 1901
BibRef

Gong, D.[Dong], Tan, M.K.[Ming-Kui], Shi, Q.F.[Qin-Feng], van den Hengel, A.J.[Anton J.], Zhang, Y.N.[Yan-Ning],
MPTV: Matching Pursuit-Based Total Variation Minimization for Image Deconvolution,
IP(28), No. 4, April 2019, pp. 1851-1865.
IEEE DOI 1901
BibRef
Earlier: A1, A2, A5, A4, A3:
Self-Paced Kernel Estimation for Robust Blind Image Deblurring,
ICCV17(1670-1679)
IEEE DOI 1802
BibRef
Earlier: A1, A2, A5, A4, A3:
Blind Image Deconvolution by Automatic Gradient Activation,
CVPR16(1827-1836)
IEEE DOI 1612
convex programming, deconvolution, gradient methods, image denoising, image reconstruction, convex programming. estimation theory, image enhancement, image restoration, learning (artificial intelligence), Robustness BibRef

Boudjenouia, F.[Fouad], Abed-Meraim, K.[Karim], Chetouani, A.[Aladine], Jennane, R.[Rachid],
Robust, blind multichannel image identification and restoration using stack decoder,
IET-IPR(13), No. 3, February 2019, pp. 475-482.
DOI Link 1903
BibRef

Abbass, M.Y., Kim, H.[HyungWon], Abdelwahab, S.A.[Safey A.], Haggag, S.S., El-Rabaie, E.S.M.[El-Sayed M.], Dessouky, M.I.[Moawad I.], El-Samie, F.E.A.[Fathi E. Abd],
Image deconvolution using homomorphic technique,
SIViP(13), No. 4, June 2019, pp. 703-709.
Springer DOI 1906
BibRef

Xue, F.[Feng], Liu, J.[Jiaqi], Ai, X.[Xia],
Parametric PSF estimation based on predicted-SURE with l1-penalized sparse deconvolution,
SIViP(13), No. 4, June 2019, pp. 635-642.
WWW Link. 1906
BibRef

Siadat, M., Aghazadeh, N., Akbarifard, F., Brismar, H., Öktem, O.,
Joint Image Deconvolution and Separation Using Mixed Dictionaries,
IP(28), No. 8, August 2019, pp. 3936-3945.
IEEE DOI 1907
deconvolution, image reconstruction, image representation, iterative methods, synthetic data, wavelets BibRef

Hajmohammadi, S.[Solmaz], Nooshabadi, S.[Saeid], Archer, G.E.[Glen E.], Bos, J.P., Struther, A.[Allan],
Parallel hybrid bispectrum-multi-frame blind deconvolution image reconstruction technique,
RealTimeIP(16), No. 4, August 2019, pp. 919-929.
Springer DOI 1908
BibRef

Güngör, A., Kar, O.F.,
A Transform Learning Based Deconvolution Technique with Super-Resolution and Microscanning Applications,
ICIP19(2159-2163)
IEEE DOI 1910
Deconvolution, Sparsity, Transform Learning, Computational Imaging, Super-Resolution BibRef

Ancora, D., Bassi, A.,
Deconvolved Image Restoration From Auto-Correlations,
IP(30), 2021, pp. 1332-1341.
IEEE DOI 2012
Image reconstruction, Kernel, Imaging, Correlation, Extraterrestrial measurements, Deconvolution, Convolution, inverse problem BibRef

Zhang, Y., Lau, Y., Kuo, H.W., Cheung, S., Pasupathy, A., Wright, J.,
On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution,
PAMI(43), No. 3, March 2021, pp. 999-1008.
IEEE DOI 2102
BibRef
Earlier: CVPR17(4381-4389)
IEEE DOI 1711
Convolution, Deconvolution, Kernel, Geometry, Image restoration, Optimization, Microscopy, Image deblurring, blind deconvolution, nonconvex optimization. Convolution, Deconvolution, Geometry, Image restoration, Kernel, Microscopy, Optimization BibRef

Gao, W.Z.[Wei-Zhe], Xu, X.B.[Xue-Bin], Yang, Y.K.[Yi-Kang], Zhang, Z.G.[Zhi-Guang],
Non-iterative blind deconvolution algorithm based on power-law distribution,
IET-IPR(14), No. 17, 24 December 2020, pp. 4499-4506.
DOI Link 2104
BibRef

Tao, S.Y.[Shu-Yin], Dong, W.[Wende], Xu, J.[Jian], Lu, J.F.[Jian-Feng], Xu, G.[Guili], Chen, Y.T.[Yue-Ting],
An adaptive two phase blind image deconvolution algorithm for an iterative regularization model,
JVCIR(81), 2021, pp. 103370.
Elsevier DOI 2112
Blind image deconvolution, -norm gradient regularization, TV regularization BibRef

Liu, J.[Jing], Tan, J.Q.[Jie-Qing], Zhang, L.[Li], Ge, X.Y.[Xian-Yu], Hu, D.D.[Dan-Dan],
Blind deblurring with patch-wise second-order gradient prior,
SP:IC(107), 2022, pp. 116781.
Elsevier DOI 2208
Motion deblurring, Second-order gradient, Kernel similarity, Blind deconvolution, Local image patches BibRef

Liu, J.[Jing], Tan, J.Q.[Jie-Qing], Ge, X.Y.[Xian-Yu], Hu, D.D.[Dan-Dan], He, L.[Lei],
Blind deblurring with fractional-order calculus and local minimal pixel prior,
JVCIR(89), 2022, pp. 103645.
Elsevier DOI 2212
Motion deblurring, Deconvolution, Kernel estimation, Fractional-Order calculus Theory, Local Minimal Pixel Prior BibRef

Wang, W.X.[Wei-Xi], Li, J.[Ji], Ji, H.[Hui],
L_1-Norm Regularization for Short-and-Sparse Blind Deconvolution: Point Source Separability and Region Selection,
SIIMS(15), No. 3, 2022, pp. 1345-1372.
DOI Link 2208
BibRef

Jin, Y.[Yan], Jiang, Z.W.[Zhi-Wei], Xue, Z.Z.[Zhi-Zhong], Hu, Y.B.[Yi-Biao],
Image blind restoration based on degradation representation network,
JVCIR(87), 2022, pp. 103564.
Elsevier DOI 2208
Deep learning, Contrastive learning, Image restoration, Convolution neural network BibRef

Traullé, B.[Benjamin], Bidon, S.[Stéphanie], Roque, D.[Damien],
A Reversible Jump MCMC in Bayesian Blind Deconvolution With a Spherical Prior,
SPLetters(29), 2022, pp. 2372-2376.
IEEE DOI 2212
Bayes methods, Signal processing algorithms, Deconvolution, Space exploration, Monte Carlo methods, Markov processes, von Mises-Fisher prior BibRef

Chen, Z.J.[Zhuo-Jie], Yao, X.[Xin], Xu, Y.[Yong], Wang, J.[Junle], Quan, Y.H.[Yu-Hui],
Unsupervised knowledge transfer for nonblind image deconvolution,
PRL(164), 2022, pp. 232-238.
Elsevier DOI 2212
Nonblind image deconvolution, Deep knowledge transfer, Model adaption, Image recovery BibRef

Huang, Y.S.[Yun-Shi], Chouzenoux, E.[Emilie], Pesquet, J.C.[Jean-Christophe],
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution,
IP(32), 2023, pp. 430-445.
IEEE DOI 2301
Bayes methods, Kernel, Deconvolution, Image restoration, Training, Deep learning, Tuning, Variational Bayesian approach BibRef

Zhao, Y.[Yang], Jia, W.[Wei], Chen, Y.[Yuan], Wang, R.G.[Rong-Gang],
Fast Blind Decontouring Network,
CirSysVideo(33), No. 2, February 2023, pp. 478-490.
IEEE DOI 2302
Task analysis, Image coding, Degradation, Automobiles, Training, Image restoration, Frequency division multiplexing, Decontouring, flat region detection BibRef

Huo, D.[Dong], Masoumzadeh, A.[Abbas], Kushol, R.[Rafsanjany], Yang, Y.H.[Yee-Hong],
Blind Image Deconvolution Using Variational Deep Image Prior,
PAMI(45), No. 10, October 2023, pp. 11472-11483.
IEEE DOI 2310
BibRef

Lyu, Z.[Zhiyu], Chen, Y.[Yan], Sun, H.[Haojun], Hou, Y.M.[Yi-Min],
A dual fusion deep convolutional network for blind universal image denoising,
SP:IC(120), 2024, pp. 117077.
Elsevier DOI 2312
Blind image denoising, Deep convolutional neural network, Non-subsampled shearlet transform, Edge preservation BibRef

Qiao, Y.J.[Yuan-Jian], Shao, M.W.[Ming-Wen], Wang, L.Q.[Lei-Quan], Zuo, W.M.[Wang-Meng],
Learning Depth-Density Priors for Fourier-Based Unpaired Image Restoration,
CirSysVideo(34), No. 4, April 2024, pp. 2604-2618.
IEEE DOI 2404
Degradation, Image restoration, Rain, Visualization, Atmospheric modeling, Rendering (computer graphics), spatial-frequency interaction BibRef

Mbakam, C.K.[Charlesquin Kemajou], Pereyra, M.[Marcelo], Giovannelli, J.F.[Jean-Francois],
Marginal Likelihood Estimation in Semiblind Image Deconvolution: A Stochastic Approximation Approach,
SIIMS(17), No. 2, 2024, pp. 1206-1254.
DOI Link 2407
BibRef

Liu, Y.Q.[Ying-Qi], He, J.W.[Jing-Wen], Liu, Y.H.[Yi-Hao], Lin, X.[Xinqi], Yu, F.[Fanghua], Hu, J.[Jinfan], Qiao, Y.[Yu], Dong, C.[Chao],
AdaptBIR: Adaptive Blind Image Restoration with latent diffusion prior for higher fidelity,
PR(155), 2024, pp. 110659.
Elsevier DOI 2408
Image restoration, Diffusion model, Adaptive adjustment BibRef


Bredell, G.[Gustav], Erdil, E.[Ertunc], Weber, B.[Bruno], Konukoglu, E.[Ender],
Wiener Guided DIP for Unsupervised Blind Image Deconvolution,
WACV23(3046-3055)
IEEE DOI 2302
Deconvolution, Image synthesis, Microscopy, Image edge detection, Distance measurement, Delays, High frequency, Algorithms: Low-level and physics-based vision BibRef

Laribi, G.[Ghada], Welk, M.[Martin],
Towards Quality Assessment of Blind Deconvolution with Shift Compensation,
ICPR22(421-427)
IEEE DOI 2212
Deconvolution, Systematics, Measurement uncertainty, Estimation, Displacement measurement, Time measurement, Image restoration, Fourier method BibRef

Kuo, P.H.[Pin-Hung], Pan, J.S.[Jin-Shan], Chien, S.Y.[Shao-Yi], Yang, M.H.[Ming-Hsuan],
Learning Discriminative Shrinkage Deep Networks for Image Deconvolution,
ECCV22(XIX:217-234).
Springer DOI 2211
BibRef

Sanders, T.[Toby],
Blind Deconvolution Using the Sure-Blur Criterion and Linear PSF Expansions,
ICIP22(3475-3479)
IEEE DOI 2211
Deconvolution, Filtering, Gaussian distribution, Minimization, Optimization, Blind deconvolution, SURE, Wiener filtering BibRef

Kotera, J.[Jan], Šroubek, F.[Filip], Šmidl, V.[Václav],
Improving Neural Blind Deconvolution,
ICIP21(1954-1958)
IEEE DOI 2201
Learning systems, Deconvolution, Neural networks, Image restoration, Convolutional neural networks, Convergence, multiscale BibRef

Hu, X.[Xiaowan], Ma, R.[Ruijun], Liu, Z.H.[Zhi-Hong], Cai, Y.H.[Yuan-Hao], Zhao, X.L.[Xiao-Le], Zhang, Y.[Yulun], Wang, H.Q.[Hao-Qian],
Pseudo 3D Auto-Correlation Network for Real Image Denoising,
CVPR21(16170-16179)
IEEE DOI 2111
Deep learning, Visualization, Convolution, Stacking, Memory management, Feature extraction BibRef

Soh, J.W.[Jae Woong], Cho, N.I.[Nam Ik],
Deep Universal Blind Image Denoising,
ICPR21(747-754)
IEEE DOI 2105
Noise reduction, Tools, Random variables, Bayes methods, Pattern recognition BibRef

Ko, H.C.[Hung-Chih], Chang, J.Y.[Je-Yuan], Ding, J.J.[Jian-Jiun],
Deep Priors Inside an Unrolled and Adaptive Deconvolution Model,
ACCV20(II:371-388).
Springer DOI 2103
BibRef

Unni, V.S., Chaudhury, K.N.,
Kernel Regularization for Image Restoration,
ICIP20(943-947)
IEEE DOI 2011
Image restoration, Kernel, Eigenvalues and eigenfunctions, Noise reduction, Image resolution, Convex functions, Deconvolution, kernel denoiser BibRef

Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.,
Neural Blind Deconvolution Using Deep Priors,
CVPR20(3338-3347)
IEEE DOI 2008
Kernel, Deconvolution, Optimization, Electronics packaging, Machine learning, Estimation, Convolution BibRef

Zhao, H., Shao, W., Bao, B., Li, H.,
A Simple and Robust Deep Convolutional Approach to Blind Image Denoising,
CLI19(3943-3951)
IEEE DOI 2004
Code, Convolutional Networks.
WWW Link. AWGN, convolutional neural nets, feature extraction, Gaussian noise, image denoising, noise estimation BibRef

Wang, Z., Wang, Z., Li, Q., Bilen, H.,
Image Deconvolution with Deep Image and Kernel Priors,
RLQ19(980-989)
IEEE DOI 2004
deconvolution, image reconstruction, image restoration, inverse problems, learning (artificial intelligence), Learning Free BibRef

Aljadaany, R.[Raied], Pal, D.K.[Dipan K.], Savvides, M.[Marios],
Douglas-Rachford Networks: Learning Both the Image Prior and Data Fidelity Terms for Blind Image Deconvolution,
CVPR19(10227-10236).
IEEE DOI 2002
BibRef

Guo, S.[Shi], Yan, Z.[Zifei], Zhang, K.[Kai], Zuo, W.M.[Wang-Meng], Zhang, L.[Lei],
Toward Convolutional Blind Denoising of Real Photographs,
CVPR19(1712-1722).
IEEE DOI 2002
BibRef

Kang, D., Yoo, S.I.,
Multi-Image Blind Deconvolution Using Low-Rank Representation,
ICIP19(4669-4673)
IEEE DOI 1910
BibRef

Yao, L.S., Ren, D., Yin, Q.,
Understanding Kernel Size in Blind Deconvolution,
WACV19(2068-2076)
IEEE DOI 1904
deconvolution, image restoration, optimisation, blind deconvolution methods, support domain, BibRef

Anger, J., Facciolo, G., Delbracio, M.,
Modeling Realistic Degradations in Non-Blind Deconvolution,
ICIP18(978-982)
IEEE DOI 1809
Quantization (signal), Deconvolution, Degradation, Image restoration, Cameras, Kernel, Stochastic processes, gamma correction BibRef

Lin, Y.Z.[Yun-Zhi], Shao, W.Z.[Wen-Ze],
Robust Blind Deconvolution Using Relative Total Variation as a Regularization Penalty,
PSIVTWS17(325-337).
Springer DOI 1806
BibRef

Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.,
Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems,
ICCV17(1799-1808)
IEEE DOI 1802
deconvolution, image denoising, image restoration, image segmentation, inverse problems, Training BibRef

Shaham, T.R.[Tamar Rott], Michaeli, T.[Tomer],
Deformation Aware Image Compression,
CVPR18(2453-2462)
IEEE DOI 1812
Image coding, Strain, Transform coding, Codecs, Measurement uncertainty, Visualization, Distortion measurement BibRef

Blau, Y., Michaeli, T.,
The Perception-Distortion Tradeoff,
CVPR18(6228-6237)
IEEE DOI 1812
Distortion, Distortion measurement, Image restoration, Image resolution, Visualization, Indexes BibRef

Shaham, T.R.[Tamar Rott], Michaeli, T.[Tomer],
Visualizing Image Priors,
ECCV16(VI: 136-153).
Springer DOI 1611
BibRef

He, F.Y.[Fu-Yun], Zhang, Z.S.[Zhi-Sheng],
Bayesian image blind restoration based on differential evolution optimization,
ICIVC16(15-18)
IEEE DOI 1610
Bayes methods BibRef

Fujisawa, T., Ikehara, M.,
Blind image deconvolution using specified HPF for feature extraction and conjugate gradient method in frequency domain,
ICIP16(2713-2717)
IEEE DOI 1610
Convolution BibRef

Aouinti, F., Nasri, M., Moussaoui, M., Benchaou, S., Zinedine, K.,
Satellite Image Restoration by Applying the Genetic Approach to the Wiener Deconvolution,
CGiV16(57-61)
IEEE DOI 1608
deconvolution BibRef

Alkhaldi, N.[Nora], Winkler, J.[Joab],
Blind image deconvolution using the Sylvester resultant matrix,
ICIP15(784-788)
IEEE DOI 1512
Image restoration BibRef

Zhou, X.[Xu], Zhou, F.[Fugen], Bai, X.Z.[Xiang-Zhi],
Parameter estimation for LP regularized image deconvolution,
ICIP15(4892-4896)
IEEE DOI 1512
Bayesian methods BibRef

Hanocka, R.[Rana], Kiryati, N.[Nahum],
Progressive Blind Deconvolution,
CAIP15(II:313-325).
Springer DOI 1511
BibRef

Köhler, T.[Thomas], Maier, A.[Andreas], Christlein, V.[Vincent],
Binarization Driven Blind Deconvolution for Document Image Restoration,
GCPR15(91-102).
Springer DOI 1511
BibRef

Zenati, S., Boukrouche, A., Neveux, P.,
Deconvolution for slowly time-varying systems 3D cases,
IPTA12(121-126)
IEEE DOI 1503
Kalman filters BibRef

Zhou, X.[Xu], Molina, R.[Rafael], Zhou, F.[Fugen], Katsaggelos, A.K.[Aggelos K.],
Fast iteratively reweighted least squares for Lp regularized image deconvolution and reconstruction,
ICIP14(1783-1787)
IEEE DOI 1502
Approximation methods BibRef

Portilla, J.[Javier],
Maximum likelihood extension for non-circulant deconvolution,
ICIP14(4276-4279)
IEEE DOI 1502
Deconvolution BibRef

Filho, J.M.[Joao Mendes], Miranda, M.D.[Maria D.], Silva, M.T.M.[Magno T.M.],
A regional multimodulus algorithm for blind image deconvolution,
ICIP14(4512-4516)
IEEE DOI 1502
Blind equalizers BibRef

Zhang, G.[Ganchi], Roberts, T.D.[Timothy D.], Kingsbury, N.[Nick],
Image deconvolution using tree-structured Bayesian group sparse modeling,
ICIP14(4537-4541)
IEEE DOI 1502
Approximation methods BibRef

Lorenz, D.A.[Dirk A.], Wenger, S.[Stephan], Schopfer, F.[Frank], Magnor, M.[Marcus],
A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing,
ICIP14(1347-1351)
IEEE DOI 1502
Compressed sensing BibRef

Gogna, A., Shukla, A., Agarwal, H.K., Majumdar, A.,
Split Bregman algorithms for sparse/joint-sparse and low-rank signal recovery: Application in compressive hyperspectral imaging,
ICIP14(1302-1306)
IEEE DOI 1502
Algorithm design and analysis BibRef

Sun, L.[Libin], Cho, S.H.[Sung-Hyun], Wang, J.[Jue], Hays, J.[James],
Good Image Priors for Non-blind Deconvolution,
ECCV14(IV: 231-246).
Springer DOI 1408
BibRef

Xu, L.[Li], Tao, X.[Xin], Jia, J.Y.[Jia-Ya],
Inverse Kernels for Fast Spatial Deconvolution,
ECCV14(V: 33-48).
Springer DOI 1408
BibRef

Zhou, X.[Xu], Zhou, F.[Fugen], Bai, X.Z.[Xiang-Zhi],
Blind deconvolution using a nondimensional Gaussianity measure,
ICIP13(877-881)
IEEE DOI 1402
Cameras BibRef

Calef, B.[Brandoch],
Iteratively reweighted blind deconvolution,
ICIP13(1391-1393)
IEEE DOI 1402
Blind deconvolution;image reconstruction;robust estimation BibRef

Morin, R.[Renaud], Bidon, S.[Stephanie], Basarab, A.[Adrian], Kouame, D.[Denis],
Semi-blind deconvolution for resolution enhancement in ultrasound imaging,
ICIP13(1413-1417)
IEEE DOI 1402
Resolution enhancement BibRef

Schmidt, U.[Uwe], Roth, S.[Stefan],
Shrinkage Fields for Effective Image Restoration,
CVPR14(2774-2781)
IEEE DOI 1409
BibRef

Sellent, A.[Anita], Rother, C.[Carsten], Roth, S.[Stefan],
Stereo Video Deblurring,
ECCV16(II: 558-575).
Springer DOI 1611
BibRef

Schmidt, U.[Uwe], Rother, C.[Carsten], Nowozin, S.[Sebastian], Jancsary, J.[Jeremy], Roth, S.[Stefan],
Discriminative Non-blind Deblurring,
CVPR13(604-611)
IEEE DOI 1309
Award, CVPR, Student. BibRef

Komodakis, N.[Nikos], Paragios, N.[Nikos],
MRF-Based Blind Image Deconvolution,
ACCV12(III:361-374).
Springer DOI 1304
BibRef

Wang, F.[Fang], Li, Y.[Yi],
Robust kernel estimation for single image blind deconvolution,
ICPR12(481-484).
WWW Link. 1302
BibRef

Turnes, C.K.[Christopher K.], Balcan, D.[Doru], Romberg, J.K.[Justin K.],
Image deconvolution via superfast inversion of a class of two-level Toeplitz matrices,
ICIP12(3073-3076).
IEEE DOI 1302
BibRef

Xia, W.[Wenyao], Hatzinakos, D.[Dimitrios],
An efficient projected subgradient algorithm for blind image deconvolution using an L1-TV cost function,
ICIP12(3045-3048).
IEEE DOI 1302
BibRef

Cho, S.H.[Sung-Hyun], Wang, J.[Jue], Lee, S.Y.[Seung-Yong],
Handling outliers in non-blind image deconvolution,
ICCV11(495-502).
IEEE DOI 1201
Deblurring. Non-linear blurring BibRef

Dolui, S.[Sudipto], Michailovich, O.V.[Oleg V.],
Hybrid blind deconvolution of images using variable splitting and proximal point methods,
ICIP11(2709-2712).
IEEE DOI 1201
BibRef

Krishnan, D.[Dilip], Tay, T.[Terence], Fergus, R.[Rob],
Blind deconvolution using a normalized sparsity measure,
CVPR11(233-240).
IEEE DOI 1106
BibRef

Zou, L.[Le], Zhou, H.[Howard], Cheng, S.[Samuel], He, C.[Chuan],
Dual Range Deringing for non-blind image deconvolution,
ICIP10(1701-1704).
IEEE DOI 1009
BibRef

Cho, S.H.[Sung-Hyun], Lee, H.J.[Hyun-Jun], Lee, S.Y.[Seung-Yong],
Image decomposition using deconvolution,
ICIP10(1965-1968).
IEEE DOI 1009
BibRef

Hou, T.B.[Ting-Bo], Wang, S.[Sen], Qin, H.[Hong], Miller, R.L.[Rodney L.],
Image deconvolution using multigrid natural image prior and its applications,
ICIP10(3569-3572).
IEEE DOI 1009
BibRef

Tanaka, M.[Masayuki], Kanda, T.[Takafumi], Okutomi, M.[Masatoshi],
Progressive MAP-based Deconvolution with Pixel-Dependent Gaussian Prior,
ICPR10(4428-4431).
IEEE DOI 1008
BibRef

Fan, F.[Fan], Yang, K.C.[Ke-Cheng], Fu, B.[Bo], Xia, M.[Min], Zhang, W.[Wei],
Application of blind deconvolution approach with image quality metric in underwater image restoration,
IASP10(236-239).
IEEE DOI 1004
BibRef

Tian, H.[Hui], Shen, T.Z.[Ting-Zhi], Hao, B.[Bing], Hu, Y.[Yu], Yang, N.[Nan],
Image Restoration Based on Adaptive MCMC Particle Filter,
CISP09(1-5).
IEEE DOI 0910
BibRef

Bishop, T.E.[Tom E.], Molina, R.[Rafael], Hopgood, J.R.[James R.],
Blind restoration of blurred photographs via AR modelling and MCMC,
ICIP08(669-672).
IEEE DOI 0810
BibRef

Vonesch, C.[Cedric], Ramani, S.[Sathish], Unser, M.[Michael],
Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint,
ICIP08(665-668).
IEEE DOI 0810
BibRef

Soulez, F.[Ferreol], Thiebaut, E.[Eric], Tourneur, Y.[Yves], Gressard, A.[Alain], Dauphin, R.[Raphael],
Blind deconvolution of video sequences,
ICIP08(673-676).
IEEE DOI 0810
BibRef

Liu, R.[Renting], Jia, J.Y.[Jia-Ya],
Reducing boundary artifacts in image deconvolution,
ICIP08(505-508).
IEEE DOI 0810
BibRef

Jain, V.[Viren], Murray, J.F.[Joseph F.], Roth, F.[Fabian], Turaga, S.C.[Srinivas C.], Zhigulin, V.[Valentin], Briggman, K.L.[Kevin L.], Helmstaedter, M.N.[Moritz N.], Denk, W.[Winfried], Seung, H.S.[H. Sebastian],
Supervised Learning of Image Restoration with Convolutional Networks,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Welk, M.[Martin], Nagy, J.G.[James G.],
Variational Deconvolution of Multi-channel Images with Inequality Constraints,
IbPRIA07(I: 386-393).
Springer DOI 0706
BibRef

Raj, A.[Ashish], Zabih, R.[Ramin],
A Graph Cut Algorithm for Generalized Image Deconvolution,
ICCV05(II: 1048-1054).
IEEE DOI 0510
BibRef

Homem, M.R.P., Mascarenhas, N.D.A., Costa, L.F.,
Linear filters for deconvolution microscopy,
Southwest04(142-146).
IEEE DOI 0411
BibRef

Dias, J.M.B.,
Fast gem wavelet-based image deconvolution algorithm,
ICIP03(II: 961-964).
IEEE DOI 0312
BibRef

Starck, J.L., Nguyen, M.K., Murtagh, F.,
Deconvolution based on the curvelet transform,
ICIP03(II: 993-996).
IEEE DOI 0312
BibRef

Yamada, I.[Isao], Kato, M.[Masanori], Sakaniwa, K.[Kohichi],
A Nonlinear Pre-filtering Technique for Set-Theoretic Linear Blind Deconvolution Scheme,
ICIP99(II:401-405).
IEEE DOI BibRef 9900

Neelamani, R.N.[Ramesh N.], Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.[Ricard G.],
Wavelet-Domain Regularized Deconvolution for Ill-Conditioned Systems,
ICIP99(I:204-208).
IEEE DOI BibRef 9900

Kwan, W.C.[Wilson C.], Ng, M.K.[Michael K.],
Iterative Methods for Phase Diversity-based Blind Deconvolution in Atmospheric Optics,
ICIP99(I:198-200).
IEEE DOI BibRef 9900

Šimberová, S.[Stanislava], Suk, T.[Tomáš],
Digital processing of skylab X-ray images of the solar corona,
CAIP93(759-765).
Springer DOI 9309
BibRef

Biggs, D.S.C., and Andrews, M.,
Iterative Blind Deconvolution of Extended Objects,
ICIP97(II: 454-457).
IEEE DOI 9710
BibRef

Robini, M.C., Rastello, T., Vray, D., and Magnin, I.E.,
Space-Variant Deconvolution for Synthetic Aperture Imaging Using Simulated Annealing,
ICIP97(I: 432-435).
IEEE DOI BibRef 9700

Schulz, T.J.[Timothy J.], Miller, J.J., Stribling, B.E.,
Phase-error compensation through multiframe blind deconvolution,
ICIP96(III: 101-103).
IEEE DOI BibRef 9600

Hawkins, W.G., Leichner, P.K.,
An intrinsic 3D Wiener filter for the deconvolution of spatially varying collimator blur,
ICIP94(II: 163-167).
IEEE DOI 9411
BibRef

Yang, Y.Y.[Yong-Yi], Galatsanos, N.P., Stark, H.,
Gradient-projection blind deconvolution,
ICIP94(III: 192-196).
IEEE DOI 9411
BibRef

Molina, R., Ripley, B.D., Cortijo, F.J.,
On the Bayesian deconvolution of planets,
ICPR92(III:147-150).
IEEE DOI 9208
BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Color, Multispectral, Multi-Channel Restoration .


Last update:Sep 28, 2024 at 17:47:54