CoronARe: A Coronary Artery Reconstruction Challenge,
2017.
Dataset, Angiography.
WWW Link. 3D Reconstrucion challange dataset.
Coppini, G.,
Demi, M.,
Poli, R.,
Valli, G.,
An artificial vision system for X-ray images of human coronary trees,
PAMI(15), No. 2, February 1993, pp. 156-162.
IEEE DOI
0401
BibRef
Ruan, S.,
Bruno, A.,
Coatrieux, J.L.,
3-Dimensional Motion and Reconstruction of Coronary-Arteries
from Biplane Cineangiography,
IVC(12), No. 10, December 1994, pp. 683-689.
Elsevier DOI
BibRef
9412
Chen, S.Y.J.,
Carroll, J.D.,
3-D reconstruction of coronary arterial tree to optimize angiographic
visualization,
MedImg(19), No. 4, April 2000, pp. 318-336.
IEEE Top Reference.
0110
BibRef
Chen, S.Y.J.,
Carroll, J.D.,
Messenger, J.C.,
Quantitative analysis of reconstructed 3-d coronary arterial tree and
intracoronary devices,
MedImg(21), No. 7, July 2002, pp. 724-740.
IEEE Top Reference.
0210
BibRef
Chen, S.Y.J.,
Carroll, J.D.,
Kinematic and deformation analysis of 4-D coronary arterial trees
reconstructed from cine angiograms,
MedImg(22), No. 6, June 2003, pp. 710-721.
IEEE Abstract.
0308
BibRef
Dorsaz, P.A.,
Dorsaz, L.,
Doriot, P.A.,
The effect of image distortion on 3-D reconstruction of coronary bypass
grafts from angiographic views,
MedImg(19), No. 7, July 2000, pp. 759-762.
IEEE Top Reference.
0110
BibRef
Greenspan, H.,
Laifenfeld, M.,
Einav, S.,
Barnea, O.,
Evaluation of center-line extraction algorithms in quantitative
coronary angiography,
MedImg(20), No. 9, September 2001, pp. 928-941.
IEEE Top Reference.
0110
BibRef
Kayikcioglu, T.[Temel],
Gangal, A.[Ali],
Turhal, M.[Mehmet],
Kose, C.[Cemal],
A surface-based method for detection of coronary vessel boundaries in
poor quality X-ray angiogram images,
PRL(23), No. 7, May 2002, pp. 783-802.
Elsevier DOI
0203
BibRef
Haraguchi, R.[Ryo],
Sugimoto, N.[Naozo],
Eiho, S.[Shigeru],
Ishida, Y.[Yoshio],
Three Dimensional Reconstruction of Coronary Arteries by Using
Registration and Texture-mapping onto Epicardial Surface on Nuclear 3d
Image,
IJIG(3), No. 4, October 2003, pp. 567-587.
0310
BibRef
Luo, Z.C.[Zhong-Chi],
Wang, Y.Y.[Yuan-Yuan],
Wang, W.Q.[Wei-Qi],
Estimating coronary artery lumen area with optimization-based contour
detection,
MedImg(22), No. 4, April 2003, pp. 564-566.
IEEE Abstract.
0306
BibRef
Barratt, D.C.,
Ariff, B.B.,
Humphries, K.N.,
Thom, S.A.M.G.,
Hughes, A.D.,
Reconstruction and quantification of the carotid artery bifurcation
from 3-D ultrasound images,
MedImg(23), No. 5, May 2004, pp. 567-583.
IEEE Abstract.
0406
BibRef
Wahle, A.,
Olszewski, M.E.,
Sonka, M.,
Interactive Virtual Endoscopy in Coronary Arteries Based on
Multimodality Fusion,
MedImg(23), No. 11, November 2004, pp. 1391-1403.
IEEE Abstract.
0411
BibRef
Blondel, C.[Christophe],
Malandain, G.[Grégoire],
Vaillant, R.[Régis],
Ayache, N.J.[Nicholas J.],
Reconstruction of Coronary Arteries From a Single Rotational X-Ray
Projection Sequence,
MedImg(25), No. 5, May 2006, pp. 653-663.
IEEE DOI
0605
BibRef
Earlier:
Reconstruction of Coronary Arteries from One Rotational
X-Ray Projection Sequence,
INRIARR-5214, 2004.
HTML Version.
BibRef
Perrenot, B.,
Vaillant, R.,
Prost, R.,
Finet, G.,
Douek, P.,
Peyrin, F.,
Motion Correction for Coronary Stent Reconstruction From Rotational
X-ray Projection Sequences,
MedImg(26), No. 10, October 2007, pp. 1412-1423.
IEEE DOI
0711
BibRef
Santhiyakumari, N.,
Madheswaran, M.,
Non-invasive evaluation of carotid artery wall thickness using improved
dynamic programming technique,
SIViP(2), No. 2, June 2008, pp. xx-yy.
Springer DOI
0711
BibRef
Yang, J.,
Wang, Y.,
Liu, Y.,
Tang, S.,
Chen, W.,
Novel Approach for 3-D Reconstruction of Coronary Arteries From Two
Uncalibrated Angiographic Images,
IP(18), No. 7, July 2009, pp. 1563-1572.
IEEE DOI
0906
BibRef
Hernandez-Sabate, A.,
Gil, D.,
Fernandez-Nofrerias, E.,
Radeva, P.I.,
Marti, E.,
Approaching Artery Rigid Dynamics in IVUS,
MedImg(28), No. 11, November 2009, pp. 1670-1680.
IEEE DOI
0911
BibRef
Gil, D.[Debora],
Radeva, P.I.[Petia I.],
Saludes, J.,
Segmentation of Artery Wall in Coronary IVUS Images:
A Probabilistic Approach,
ICPR00(Vol IV: 352-355).
IEEE DOI
0009
BibRef
Provost, J.,
Lee, W.N.,
Fujikura, K.,
Konofagou, E.E.,
Electromechanical Wave Imaging of Normal and Ischemic Hearts In Vivo,
MedImg(29), No. 3, March 2010, pp. 625-635.
IEEE DOI
1003
BibRef
Schaap, M.[Michiel],
van Walsum, T.[Theo],
Neefjes, L.A.[Lisan A.],
Metz, C.T.[Coert T.],
Capuano, E.[Ermanno],
de Bruijne, M.[Marleen],
Niessen, W.J.[Wiro J.],
Robust Shape Regression for Supervised Vessel Segmentation and its
Application to Coronary Segmentation in CTA,
MedImg(30), No. 11, November 2011, pp. 1974-1986.
IEEE DOI
1111
BibRef
Rivest-Henault, D.,
Sundar, H.,
Cheriet, M.,
Nonrigid 2D/3D Registration of Coronary Artery Models With Live
Fluoroscopy for Guidance of Cardiac Interventions,
MedImg(31), No. 8, August 2012, pp. 1557-1572.
IEEE DOI
1208
BibRef
Zheng, S.[Sheng],
Yang, C.[Changcai],
Kaptein, B.L.[Bart L.],
Hendriks, E.A.[Emile A.],
Koning, O.H.J.[Olivier H.J.],
Lei, B.J.[Bang-Jun],
Support value based stent-graft marker detection,
PR(46), No. 3, March 2013, pp. 962-975.
Elsevier DOI
1212
Directional support value transform (SVT); Support value matrix;
Multiscale correlations; Fluoroscopic roentgenographic
stereophotogrammetric analysis (FRSA); Stent-graft markers detection
BibRef
Aswathy, M.A.,
Santha, S,
Jayanthi, K.B.,
Analysis of the performance of various algorithms for the segmentation
of the carotid artery,
IMVIP12(133-136).
IEEE DOI
1302
BibRef
Baka, N.,
Metz, C.T.,
Schultz, C.J.,
van Geuns, R.J.,
Niessen, W.J.,
van Walsum, T.,
Oriented Gaussian Mixture Models for Nonrigid 2D/3D Coronary Artery
Registration,
MedImg(33), No. 5, May 2014, pp. 1023-1034.
IEEE DOI
1405
Arteries
BibRef
Sifakis, E.G.,
Golemati, S.,
Robust Carotid Artery Recognition in Longitudinal B-Mode Ultrasound
Images,
IP(23), No. 9, September 2014, pp. 3762-3772.
IEEE DOI
1410
blood vessels
BibRef
Kawai, F.[Fumi],
Kondo, S.[Satoshi],
Hayata, K.[Keisuke],
Ohmiya, J.[Jun],
Ishikawa, K.[Kiyoko],
Yamamoto, M.[Masahiro],
Automatic Detection of the Carotid Artery Location from Volumetric
Ultrasound Images Using Anatomical Position-Dependent LBP Features,
IEICE(E98-D), No. 7, July 2015, pp. 1353-1364.
WWW Link.
1508
BibRef
Tang, S.[Szeling],
Chan, C.S.[Chee Seng],
Orthogonal planar search (OPS) for coronary artery centerline
extraction,
SIViP(10), No. 1, February 2016, pp. 335-342.
WWW Link.
1601
BibRef
Lesage, D.[David],
Angelini, E.D.[Elsa D.],
Funka-Lea, G.[Gareth],
Bloch, I.[Isabelle],
Adaptive particle filtering for coronary artery segmentation from 3D
CT angiograms,
CVIU(151), No. 1, 2016, pp. 29-46.
Elsevier DOI
1610
3D CTA
BibRef
Khedmati, A.,
Nikravanshalmani, A.,
Salajegheh, A.,
Semi-automatic detection of coronary artery stenosis in 3D CTA,
IET-IPR(10), No. 10, 2016, pp. 724-732.
DOI Link
1610
cardiology
BibRef
Cui, H.F.[Heng-Fei],
Xia, Y.[Yong],
Zhang, Y.N.[Yan-Ning],
Zhong, L.[Liang],
Validation of right coronary artery lumen area from cardiac computed
tomography against intravascular ultrasound,
MVA(29), No. 8, November 2018, pp. 1287-1298.
WWW Link.
1811
BibRef
Qin, B.J.[Bin-Jie],
Jin, M.X.[Ming-Xin],
Hao, D.D.[Dong-Dong],
Lv, Y.S.[Yi-Song],
Liu, Q.[Qiegen],
Zhu, Y.Q.[Yue-Qi],
Ding, S.[Song],
Zhao, J.[Jun],
Fei, B.W.[Bao-Wei],
Accurate vessel extraction via tensor completion of background layer
in X-ray coronary angiograms,
PR(87), 2019, pp. 38-54.
Elsevier DOI
1812
X-ray coronary angiography, Tensor completion,
Robust principal component analysis, Vessel segmentation,
Vessel recovery
BibRef
Olender, M.L.,
Athanasiou, L.S.,
de la Torre Hernández, J.M.,
Ben-Assa, E.,
Nezami, F.R.,
Edelman, E.R.,
A Mechanical Approach for Smooth Surface Fitting to Delineate Vessel
Walls in Optical Coherence Tomography Images,
MedImg(38), No. 6, June 2019, pp. 1384-1397.
IEEE DOI
1906
Surface fitting, Fitting, Springs, Interpolation,
Medical diagnostic imaging, Border detection, coronary arteries,
vessels
BibRef
Zreik, M.,
van Hamersvelt, R.W.,
Wolterink, J.M.,
Leiner, T.,
Viergever, M.A.,
Igum, I.,
A Recurrent CNN for Automatic Detection and Classification of
Coronary Artery Plaque and Stenosis in Coronary CT Angiography,
MedImg(38), No. 7, July 2019, pp. 1588-1598.
IEEE DOI
1907
Arteries, Feature extraction, Computed tomography, Task analysis,
Visualization, Biomedical imaging, Atherosclerosis,
automatic classification
BibRef
Petersen, J.,
Arias-Lorza, A.M.,
Selvan, R.,
Bos, D.,
van der Lugt, A.,
Pedersen, J.H.,
Nielsen, M.,
de Bruijne, M.,
Increasing Accuracy of Optimal Surfaces Using Min-Marginal Energies,
MedImg(38), No. 7, July 2019, pp. 1559-1568.
IEEE DOI
1907
Biomedical imaging, Rough surfaces, Surface roughness, Labeling,
Uncertainty, Image segmentation, Memory management, Segmentation,
carotid arteries
BibRef
Jeon, B.[Byunghwan],
Jang, Y.G.[Yeong-Gul],
Shim, H.[Hackjoon],
Chang, H.J.[Hyuk-Jae],
Identification of coronary arteries in CT images by Bayesian analysis
of geometric relations among anatomical landmarks,
PR(96), 2019, pp. 106958.
Elsevier DOI
1909
Computed tomography angiography, Bayesian, Localization,
Coronary artery, Multiple target, Curve analysis, Curvature and torsion
BibRef
Edwards, M.[Michael],
Xie, X.H.[Xiang-Hua],
Palmer, R.I.[Robert I.],
Tam, G.K.L.[Gary K.L.],
Alcock, R.[Rob],
Roobottom, C.[Carl],
Graph convolutional neural network for multi-scale feature learning,
CVIU(194), 2020, pp. 102881.
Elsevier DOI
2005
Deep learning, Graph convolutional neural network,
Medical image segmentation, Marginal space learning,
Computerized tomography
BibRef
Deng, J.J.[Jing-Jing],
Xie, X.H.[Xiang-Hua],
Alcock, R.[Rob],
Roobottom, C.[Carl],
3D interactive coronary artery segmentation using random forests and
Markov random field optimization,
ICIP14(942-946)
IEEE DOI
1502
Arteries
BibRef
Gao, Z.,
Chung, J.,
Abdelrazek, M.,
Leung, S.,
Hau, W.K.,
Xian, Z.,
Zhang, H.,
Li, S.,
Privileged Modality Distillation for Vessel Border Detection in
Intracoronary Imaging,
MedImg(39), No. 5, May 2020, pp. 1524-1534.
IEEE DOI
2005
Vessel border detection, privileged information,
knowledge distillation, intravascular ultrasound, optical coherence tomography
BibRef
Zreik, M.,
van Hamersvelt, R.W.,
Khalili, N.,
Wolterink, J.M.,
Voskuil, M.,
Viergever, M.A.,
Leiner, T.,
Igum, I.,
Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography
for Detection of Patients Requiring Invasive Coronary Angiography,
MedImg(39), No. 5, May 2020, pp. 1545-1557.
IEEE DOI
2005
Functionally significant coronary artery stenosis,
convolutional autoencoder, convolutional neural network,
deep learning
BibRef
Fang, H.,
Zhu, J.,
Ai, D.,
Huang, Y.,
Jiang, Y.,
Song, H.,
Wang, Y.,
Yang, J.,
Greedy Soft Matching for Vascular Tracking of Coronary Angiographic
Image Sequences,
CirSysVideo(30), No. 5, May 2020, pp. 1466-1480.
IEEE DOI
2005
Target tracking, Topology, Bifurcation, Image sequences, GSM,
Optimization, Integrated circuit modeling, Branch matching,
vascular tracking
BibRef
Nasarian, E.[Elham],
Abdar, M.[Moloud],
Fahami, M.A.[Mohammad Amin],
Alizadehsani, R.[Roohallah],
Hussain, S.[Sadiq],
Basiri, M.E.[Mohammad Ehsan],
Zomorodi-Moghadam, M.[Mariam],
Zhou, X.[Xujuan],
Plawiak, P.[Pawel],
Acharya, U.R.[U. Rajendra],
Tan, R.S.[Ru-San],
Sarrafzadegan, N.[Nizal],
Association between work-related features and coronary artery
disease: A heterogeneous hybrid feature selection integrated with
balancing approach,
PRL(133), 2020, pp. 33-40.
Elsevier DOI
2005
Machine learning, Data mining, Heart disease,
Coronary artery disease, Feature selection
BibRef
Sukanya, A.[Arumugham],
Rajeswari, R.[Rajendran],
Murugan, K.S.[Kamatchigounder Subramaniam],
Region based coronary artery segmentation using modified Frangi's
vesselness measure,
IJIST(30), No. 3, 2020, pp. 716-730.
DOI Link
2008
centerline extraction, coronary artery segmentation,
coronary computed tomography angiography, vesselness measure
BibRef
Zhou, R.,
Guo, F.,
Azarpazhooh, M.R.,
Spence, J.D.,
Ukwatta, E.,
Ding, M.,
Fenster, A.,
A Voxel-Based Fully Convolution Network and Continuous Max-Flow for
Carotid Vessel-Wall-Volume Segmentation From 3D Ultrasound Images,
MedImg(39), No. 9, September 2020, pp. 2844-2855.
IEEE DOI
2009
Image segmentation, Feature extraction,
Imaging, Atherosclerosis,
continuous max-flow
BibRef
Zhang, D.,
Yang, G.,
Zhao, S.,
Zhang, Y.,
Ghista, D.,
Zhang, H.,
Li, S.,
Direct Quantification of Coronary Artery Stenosis Through
Hierarchical Attentive Multi-View Learning,
MedImg(39), No. 12, December 2020, pp. 4322-4334.
IEEE DOI
2012
Arteries, Lesions, Task analysis, Image reconstruction, Correlation,
Feature extraction, Estimation, direct quantification,
coronary artery stenosis
BibRef
Ning, Y.[Yang],
Zhang, Y.F.[Yun-Feng],
Li, X.M.[Xue-Mei],
Zhang, C.M.[Cai-Ming],
Towards accurate coronary artery calcium segmentation with
multi-scale attention mechanism,
IET-IPR(15), No. 6, 2021, pp. 1359-1370.
DOI Link
2106
BibRef
Qi, Y.L.[Yao-Lei],
Xu, H.[Han],
He, Y.T.[Yu-Ting],
Li, G.Y.[Guan-Yu],
Li, Z.H.[Ze-Hang],
Kong, Y.Y.[You-Yong],
Coatrieux, J.L.[Jean-Louis],
Shu, H.Z.[Hua-Zhong],
Yang, G.[Guanyu],
Tu, S.X.[Sheng-Xian],
Examinee-Examiner Network: Weakly Supervised Accurate Coronary Lumen
Segmentation Using Centerline Constraint,
IP(30), 2021, pp. 9429-9441.
IEEE DOI
2112
Image segmentation, Task analysis, Arteries, Supervised learning,
Lesions, Feature extraction, Training,
CT angiography image
BibRef
Li, C.[Chao],
Jia, H.B.[Hai-Bo],
Tian, J.[Jinwei],
He, C.[Chong],
Lu, F.[Fang],
Li, K.W.[Kai-Wen],
Gong, Y.[Yubin],
Hu, S.[Sining],
Yu, B.[Bo],
Wang, Z.[Zhao],
Comprehensive Assessment of Coronary Calcification in Intravascular
OCT Using a Spatial-Temporal Encoder-Decoder Network,
MedImg(41), No. 4, April 2022, pp. 857-868.
IEEE DOI
2204
Image segmentation, Spatial resolution, Imaging, Medical services,
Lesions, Planning, Calcification, convolutional neural networks,
optical coherence tomography
BibRef
Rjiba, S.[Saifeddine],
Urruty, T.[Thierry],
Bourdon, P.[Pascal],
Fernandez-Maloigne, C.[Christine],
Delepaule, R.[Roger],
Christiaens, L.P.[Luc-Philippe],
Guillevin, R.[Remy],
CenterlineNet: Automatic Coronary Artery Centerline Extraction for
Computed Tomographic Angiographic Images Using Convolutional Neural
Network Architectures,
IPTA20(1-6)
IEEE DOI
2206
Heart, Pipelines, Feature extraction, Data mining,
Convolutional neural networks, Arteries
BibRef
Wu, W.[Wei],
Zhang, J.Y.[Jing-Yang],
Peng, W.J.[Wen-Jia],
Xie, H.Z.[Hong-Zhi],
Zhang, S.Y.[Shu-Yang],
Gu, L.[Lixu],
CAR-Net: A Deep Learning-Based Deformation Model for 3D/2D Coronary
Artery Registration,
MedImg(41), No. 10, October 2022, pp. 2715-2727.
IEEE DOI
2210
Arteries, Strain, Image segmentation, Bifurcation, Solid modeling,
Detectors, 3D/2D coronary artery registration, deep learning,
angular deflections prediction
BibRef
Qin, B.J.[Bin-Jie],
Mao, H.H.[Hao-Hao],
Liu, Y.M.[Yi-Ming],
Zhao, J.[Jun],
Lv, Y.S.[Yi-Song],
Zhu, Y.Q.[Yue-Qi],
Ding, S.[Song],
Chen, X.[Xu],
Robust PCA Unrolling Network for Super-Resolution Vessel Extraction
in X-Ray Coronary Angiography,
MedImg(41), No. 11, November 2022, pp. 3087-3098.
IEEE DOI
2211
Feature extraction, Spatiotemporal phenomena, Noise measurement,
Computational modeling, Image segmentation, Data mining,
super-resolution
BibRef
Zhang, H.W.[Hong-Wei],
Gao, Z.[Zhifan],
Zhang, D.[Dong],
Hau, W.K.[William Kongto],
Zhang, H.[Heye],
Progressive Perception Learning for Main Coronary Segmentation in
X-Ray Angiography,
MedImg(42), No. 3, March 2023, pp. 864-879.
IEEE DOI
2303
Semantics, Interference, Image segmentation, Feature extraction,
X-ray imaging, Lesions, Transformers, Progressive perception,
X-ray angiography
BibRef
Arora, P.[Priyanka],
Singh, P.[Parminder],
Girdhar, A.[Akshay],
Vijayvergiya, R.[Rajesh],
Performance analysis of various denoising filters on intravascular
ultrasound coronary artery images,
IJIST(33), No. 3, 2023, pp. 965-984.
DOI Link
2305
coronary artery stenosis, image denoising,
Intravascular Ultrasound, speckle noise
BibRef
Yang, S.[Shimeng],
Li, T.[Teng],
Lv, Y.[Yinping],
Xia, Y.[Yi],
Li, S.[Shuo],
Carotid Lumen Diameter and Intima-Media Thickness Measurement via
Boundary-Guided Pseudo-Labeling,
SPLetters(30), 2023, pp. 1027-1031.
IEEE DOI
2309
BibRef
Jiang, M.J.[Ming-Jie],
Chiu, B.[Bernard],
A Dual-Stream Centerline-Guided Network for Segmentation of the
Common and Internal Carotid Arteries From 3D Ultrasound Images,
MedImg(42), No. 9, September 2023, pp. 2690-2705.
IEEE DOI
2310
BibRef
Singh, B.K.[Bikesh Kumar],
Dutta, S.[Sonali],
Chand, P.[Poonam],
Kumar, K.[Khilesh],
Banchhor, S.K.[Sumit Kumar],
An improved multi-criteria-based feature selection approach for
detection of coronary artery disease in machine learning paradigm,
IJCVR(13), No. 5, 2023, pp. 533-555.
DOI Link
2310
BibRef
Zhao, C.[Chen],
Xu, Z.H.[Zhi-Hui],
Jiang, J.F.[Jing-Feng],
Esposito, M.[Michele],
Pienta, D.[Drew],
Hung, G.U.[Guang-Uei],
Zhou, W.H.[Wei-Hua],
AGMN: Association graph-based graph matching network for coronary
artery semantic labeling on invasive coronary angiograms,
PR(143), 2023, pp. 109789.
Elsevier DOI
2310
Coronary artery disease, Coronary arterial anatomy,
Semantic labeling, Graph matching network
BibRef
Fu, Z.[Zeyu],
Fu, Z.[Zhuang],
Lu, C.[Chenzhuo],
Yan, J.[Jun],
Fei, J.[Jian],
Han, H.[Hui],
Robust implementation of foreground extraction and vessel
segmentation for X-ray coronary angiography image sequence,
PR(145), 2024, pp. 109926.
Elsevier DOI
2311
X-ray coronary angiography, Tensor RPCA, TV regularization,
Two-stage region growing, Foreground extraction, Vessel segmentation
BibRef
Kowsalyadevi, J.,
Geetha, P.,
Predicting coronary artery disease using learning rate based snow
leopard optimization with soft swish scaling based bidirectional long
short-term memory,
IJIST(34), No. 1, 2024, pp. e22963.
DOI Link
2401
classification, clustering, coronary artery disease, detection,
early diagnosis, feature selection, learning rate, segmentation
BibRef
Zhang, X.[Xiao],
Sun, K.[Kaicong],
Wu, D.[Dijia],
Xiong, X.S.[Xiao-Song],
Liu, J.[Jiameng],
Yao, L.L.[Lin-Lin],
Li, S.[Shufang],
Wang, Y.[Yining],
Feng, J.[Jun],
Shen, D.G.[Ding-Gang],
An Anatomy- and Topology-Preserving Framework for Coronary Artery
Segmentation,
MedImg(43), No. 2, February 2024, pp. 723-733.
IEEE DOI
2402
Arteries, Topology, Image segmentation, Biomedical imaging, Heart,
Feature extraction, Encoding, Coronary artery segmentation,
coarse-to-fine segmentation
BibRef
van Herten, R.L.M.[Rudolf L. M.],
Hampe, N.[Nils],
Takx, R.A.P.[Richard A. P.],
Franssen, K.J.[Klaas Jan],
Wang, Y.[Yining],
SuchĄ, D.[Dominika],
Henriques, J.P.[JosŠ P.],
Leiner, T.[Tim],
Planken, R.N.[R. Nils],
Igum, I.[Ivana],
Automatic Coronary Artery Plaque Quantification and CAD-RADS
Prediction Using Mesh Priors,
MedImg(43), No. 4, April 2024, pp. 1272-1283.
IEEE DOI
2404
Arteries, Lumen, Image segmentation, Convolutional neural networks,
Task analysis, Computed tomography, Standards, mesh generation
BibRef
Özbilgin, F.[Ferdi],
Kurnaz, Ç.[Çetin],
Aydin, E.[Ertan],
Non-invasive coronary artery disease identification through the iris
and bio-demographic health profile features using stacking learning,
IVC(146), 2024, pp. 105046.
Elsevier DOI
2405
Coronary artery disease, iris, image processing,
Bio-demographic data, Stacking machine learning
BibRef
Evripides, G.[George],
Christodoulides, P.[Paul],
Loizou, C.P.[Christos P.],
Texture Analysis Contribution to Evaluate the Common Carotid Artery's
Cardiovascular Disease (cvd) Risk Using Structural Equation Modeling,
CAIP23(I:227-236).
Springer DOI
2312
BibRef
Liapi, G.D.[Georgia D.],
Markides, C.[Christos],
Loizou, C.P.[Christos P.],
Griffin, M.[Maura],
Nicolaides, A.[Andrew],
Kyriacou, E.[Efthyvoulos],
Stroke Risk Stratification Using Transfer Learning on Carotid
Ultrasound Images,
CAIP23(II:130-139).
Springer DOI
2312
BibRef
Viti, M.[Mario],
Talbot, H.[Hugues],
Abdallah, B.[Bassam],
Perot, E.[Etienne],
Gogin, N.[Nicolas],
Coronary Artery Centerline Tracking with the Morphological Skeleton
Loss,
ICIP22(2741-2745)
IEEE DOI
2211
Computed tomography, Angiography, Imaging, Skeleton, Reliability,
Arteries, CT angiography, segmentation, blood vessels, deep learning
BibRef
Arvidsson, I.[Ida],
Overgaard, N.C.[Niels Christian],
Ĺström, K.[Kalle],
Heyden, A.[Anders],
Figueroa, M.O.[Miguel Ochoa],
Rose, J.F.[Jeronimo Frias],
Davidsson, A.[Anette],
Prediction of Obstructive Coronary Artery Disease from Myocardial
Perfusion Scintigraphy using Deep Neural Networks,
ICPR21(4442-4449)
IEEE DOI
2105
Medical services, Myocardium, Prediction algorithms,
Classification algorithms, Risk management, Reliability, Task analysis
BibRef
Shen, H.,
Zhang, W.,
Wang, H.,
Ding, G.,
Xie, J.,
NDDR-LCS: A Multi-Task Learning Method for Classification of Carotid
Plaques,
ICIP20(2461-2465)
IEEE DOI
2011
Task analysis, Ultrasonic imaging, Feature extraction,
Atherosclerosis, Dimensionality reduction, Image analysis,
Ultrasound Reports
BibRef
Li, D.H.[Dong-Hang],
Barbu, A.[Adrian],
Training a Steerable CNN for Guidewire Detection,
CVPR20(13952-13960)
IEEE DOI
2008
used in coronary angioplasty.
Training, Feature extraction, X-ray imaging, Convolution,
Convolutional neural networks, Wires
BibRef
Yang, H.,
Zhen, X.,
Chi, Y.,
Zhang, L.,
Hua, X.,
CPR-GCN: Conditional Partial-Residual Graph Convolutional Network in
Automated Anatomical Labeling of Coronary Arteries,
CVPR20(3802-3810)
IEEE DOI
2008
Arteries, Feature extraction, Labeling,
Solid modeling, Machine learning, Kernel
BibRef
Blaiech, A.G.[Ahmed Ghazi],
Mansour, A.[Asma],
Kerkeni, A.[Asma],
Bedoui, M.H.[Mohamed Hédi],
Abdallah, A.B.[Asma Ben],
Impact of Enhancement for Coronary Artery Segmentation Based on Deep
Learning Neural Network,
IbPRIA19(II:260-272).
Springer DOI
1910
BibRef
Çimen, S.[Serkan],
Unberath, M.[Mathias],
Frangi, A.[Alejandro],
Maier, A.[Andreas],
CoronARe: A Coronary Artery Reconstruction Challenge,
RAMBO17(96-104).
Springer DOI
1711
BibRef
Poulain, E.[Emmanuelle],
Malandain, G.[Grégoire],
Vaillant, R.[Régis],
3D Coronary Vessel Tree Tracking in X-Ray Projections,
FIMH19(388-396).
Springer DOI
1906
BibRef
Earlier:
3D Coronary Vessel Tracking in X-Ray Projections,
FIMH17(204-215).
Springer DOI
1706
BibRef
Wang, C.L.[Chun-Liang],
Wang, Q.[Qian],
Smedby, Ö.[Örjan],
Automatic Heart and Vessel Segmentation Using Random Forests and a
Local Phase Guided Level Set Method,
RAMBO16(159-164).
Springer DOI
1703
BibRef
Lösel, P.[Philipp],
Heuveline, V.[Vincent],
A GPU Based Diffusion Method for Whole-Heart and Great Vessel
Segmentation,
RAMBO16(121-128).
Springer DOI
1703
BibRef
Sofian, H.,
Muhammad, S.,
Ming, J.T.C.[Joel Than Chia],
Noor, N.M.,
Lumen coronary artery border detection using texture and Chi-square
classification,
ICVNZ15(1-6)
IEEE DOI
1701
biomedical ultrasonics
BibRef
Smith, J.P.[Jordan P.],
Shehata, M.[Mohamed],
McGuire, P.F.[Peter F.],
Smith, A.J.[Andrew J.],
Features of Internal Jugular Vein Contours for Classification,
ISVC16(II: 421-430).
Springer DOI
1701
BibRef
Harish Kumar, J.R.,
Seelamantula, C.S.,
Andrade, J.,
Rajagopal, K.V.,
Automatic Segmentation of Lumen Intima Layer in Transverse Mode
Ultrasound Images,
ICIP18(3493-3497)
IEEE DOI
1809
Image segmentation, Carotid arteries, Ultrasonic imaging, Blood,
Motion segmentation, Biomedical imaging, Media,
active disc
BibRef
Harish Kumar, J.R.,
Seelamantula, C.S.,
Narayan, N.S.,
Marziliano, P.,
Automatic segmentation of common carotid artery in transverse mode
ultrasound images,
ICIP16(389-393)
IEEE DOI
1610
Atherosclerosis
BibRef
Debbich, A.,
Kerkni, A.,
Abdallah, A.B.,
Salem, R.,
Clarysse, P.,
Bedoui, M.H.,
Hemodynamic Modeling in a Stenosed Internal Carotid Artery,
CGiV16(358-363)
IEEE DOI
1608
Navier-Stokes equations
BibRef
Kerkeni, A.,
Abdallah, A.B.,
Manzanera, A.,
Bedoui, M.H.,
Automatic Bifurcation Detection in Coronary X-Ray Angiographies,
CGiV16(333-338)
IEEE DOI
1608
Hessian matrices
BibRef
Uus, A.,
Liatsis, P.,
Jawaid, M.M.,
Rajani, R.,
Benderskaya, E.,
Assessment of stenosis introduced flow resistance in
CCTA-reconstructed coronary arteries,
WSSIP15(313-320)
IEEE DOI
1603
blood flow measurement
BibRef
M'Hiri, F.[Faten],
Le, T.H.N.[T. Hoang Ngan],
Duong, L.[Luc],
Desrosiers, C.[Christian],
Cherief, M.[Mohamed],
Hierarchical segmentation and tracking of coronary arteries in 2D
X-ray Angiography sequences,
ICIP15(1707-1711)
IEEE DOI
1512
Coronary Arteries
BibRef
Fazlali, H.R.,
Karimi, N.,
Soroushmehr, S.M.R.,
Sinha, S.,
Samavi, S.,
Nallamothu, B.,
Najarian, K.,
Vessel region detection in coronary X-ray angiograms,
ICIP15(1493-1497)
IEEE DOI
1512
Coronary Arteries Disease
BibRef
Jin, D.[Dakai],
Iyer, K.S.[Krishna S.],
Hoffman, E.A.[Eric A.],
Saha, P.K.[Punam K.],
Automated Assessment of Pulmonary Arterial Morphology in Multi-row
Detector CT Imaging Using Correspondence with Anatomic Airway Branches,
ISVC14(I: 521-530).
Springer DOI
1501
BibRef
Chen, Y.[Yang],
Cao, Q.[Qing],
Zhuang, Z.K.[Zhi-Kun],
Yang, Z.[Zhou],
Luo, L.M.[Li-Min],
Toumoulin, C.[Christine],
3-D Coronary Vessel Extraction Using a Novel Minimum Path Based Region
Growing,
ICIAR13(502-509).
Springer DOI
1307
BibRef
Kerkeni, A.[Asma],
Benabdallah, A.[Asma],
Bedoui, M.H.[Mohamed Hedi],
Coronary Artery MultiScale Enhancement Methods: A Comparative Study,
ICIAR13(510-520).
Springer DOI
1307
BibRef
Zheng, Y.F.[Ye-Feng],
Shen, J.H.[Jian-Hua],
Tek, H.[Huseyin],
Funka-Lea, G.[Gareth],
Model-Driven Centerline Extraction for Severely Occluded Major Coronary
Arteries,
MLMI12(10-18).
Springer DOI
1211
BibRef
Carvalho, D.D.B.[Diego D. B.],
Klein, S.[Stefan],
Akkus, Z.[Zeynettin],
ten Kate, G.L.[Gerrit L.],
Tang, H.[Hui],
Selwaness, M.[Mariana],
Schinkel, A.F.L.[Arend F. L.],
Bosch, J.G.[Johan G.],
van der Lugt, A.[Aad],
Niessen, W.J.[Wiro J.],
Registration of Free-Hand Ultrasound and MRI of Carotid Arteries
through Combination of Point-Based and Intensity-Based Algorithms,
WBIR12(131-140).
Springer DOI
1208
BibRef
Zhong, H.[Hua],
Zheng, Y.F.[Ye-Feng],
Funka-Lea, G.[Gareth],
Vega-Higuera, F.[Fernando],
Segmentation and removal of pulmonary arteries, veins and left atrial
appendage for visualizing coronary and bypass arteries,
MCV12(24-30).
IEEE DOI
1207
BibRef
Serradell, E.[Eduard],
Romero, A.[Adriana],
Leta, R.[Ruben],
Gatta, C.[Carlo],
Moreno-Noguer, F.[Francesc],
Simultaneous correspondence and non-rigid 3D reconstruction of the
coronary tree from single X-ray images,
ICCV11(850-857).
IEEE DOI
1201
BibRef
Pal, D.[Debabrata],
Chakraborty, C.[Chandan],
Mandana, K.M.,
Data mining approach for coronary artery disease screening,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Lu, X.G.[Xiao-Guang],
Chen, T.[Terrence],
Comaniciu, D.[Dorin],
Robust discriminative wire structure modeling with application to stent
enhancement in fluoroscopy,
CVPR11(1121-1127).
IEEE DOI
1106
BibRef
Silva, S.[Samuel],
Bettencourt, N.[Nuno],
Leite, D.[Daniel],
Rocha, J.[Joăo],
Carvalho, M.[Mónica],
Madeira, J.[Joaquim],
Santos, B.S.[Beatriz Sousa],
Myocardial Perfusion Analysis from Adenosine-Induced Stress MDCT,
IbPRIA11(717-725).
Springer DOI
1106
BibRef
Gatta, C.[Carlo],
Balocco, S.[Simone],
Martin-Yuste, V.[Victoria],
Leta, R.[Ruben],
Radeva, P.[Petia],
Non-rigid Multi-modal Registration of Coronary Arteries Using SIFTflow,
IbPRIA11(159-166).
Springer DOI
1106
BibRef
Qian, Z.[Zhen],
Joshi, P.[Parag],
Rinehart, S.[Sarah],
Voros, S.[Szilard],
An Automated Segmentation and Classification Framework for CT-Based
Myocardial Perfusion Imaging for Detecting Myocardial Perfusion Defect,
FIMH11(206-214).
Springer DOI
1105
BibRef
Dutta, S.[Sara],
Bishop, M.J.[Martin J.],
Pathmanathan, P.[Pras],
Lee, P.[Peter],
Kohl, P.[Peter],
Quinn, T.A.[T. Alexander],
Rodriguez, B.[Blanca],
Interpreting Optical Mapping Recordings in the Ischemic Heart:
A Combined Experimental and Computational Investigation,
FIMH11(20-27).
Springer DOI
1105
BibRef
Bastida-Jumilla, M.C.,
Morales-Sanchez, J.,
Verdu-Monedero, R.,
Larrey-Ruiz, J.,
Sancho-Gomez, J.L.,
Detection of the intima and media walls of the carotid artery with
geodesic active contours,
ICIP10(2213-2216).
IEEE DOI
1009
BibRef
Azar, J.C.[Jimmy C.],
Muhammed, H.H.[Hamed Hamid],
Automated Tracking of the Carotid Artery in Ultrasound Image Sequences
Using a Self Organizing Neural Network,
ICPR10(2544-2547).
IEEE DOI
1008
BibRef
Lu, L.[Le],
Bi, J.[Jinbo],
Yu, S.P.[Shi-Peng],
Peng, Z.G.[Zhi-Gang],
Krishnan, A.[Arun],
Zhou, X.S.[Xiang Sean],
Hierarchical learning for tubular structure parsing in medical imaging:
A study on coronary arteries using 3D CT Angiography,
ICCV09(2021-2028).
IEEE DOI
0909
BibRef
Kukar, M.[Matja],
ajn, L.[Luka],
Supporting Diagnostics of Coronary Artery Disease with Multi-resolution
Image Parameterization and Data Mining,
MIRAGE09(356-367).
Springer DOI
0905
BibRef
Bismuth, V.[Vincent],
Vaillant, R.[Regis],
A device enhancing and denoising algorithm for X-ray cardiac
fluoroscopy,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Elastic registration for stent enhancement in X-ray image sequences,
ICIP08(2400-2403).
IEEE DOI
0810
BibRef
Nwogu, I.[Ifeoma],
Lorigo, L.M.[Liana M.],
Fast Temporal Tracking and 3D Reconstruction of a Single Coronary
Vessel,
ICIP07(V: 537-540).
IEEE DOI
0709
BibRef
Fallavollita, P.[Pascal],
Cheriet, F.[Farida],
Robust Coronary Artery Tracking from Fluoroscopic Image Sequences,
ICIAR07(889-898).
Springer DOI
0708
BibRef
Köse, C.[Cemal],
Fully Automatic Segmentation of Coronary Vessel Structures in Poor
Quality X-Ray Angiogram Images,
SSPR06(74-82).
Springer DOI
0608
BibRef
de Bruijne, M.[Marleen],
Shape Particle Guided Tissue Classification,
MMBIA06(64).
IEEE DOI
0609
BibRef
Zhang, Q.L.[Qi-Long],
Pless, R.[Robert],
Segmenting Cardiopulmonary Images Using Manifold Learning with Level
Sets,
CVBIA05(479-488).
Springer DOI
0601
BibRef
Hadar, E.,
Hahiashvili, Z.,
Aravot, D.,
The H2 Length Estimation Method: An Algorithm for Digitized Curves for
Asymmetric 3D Grid Applied on Coronary Bypass Surgery,
ICIP05(I: 1121-1124).
IEEE DOI
0512
BibRef
Bouattour, S.,
Arndt, R.,
Paulus, D.,
4D Reconstruction of Coronary Arteries from Monoplane Angiograms,
CAIP05(724).
Springer DOI
0509
BibRef
Isgum, I.,
van Ginneken, B.,
Prokop, M.,
A pattern recognition approach to automated coronary calcium scoring,
ICPR04(III: 746-749).
IEEE DOI
0409
BibRef
Bellemare, C.,
Meunier, J.,
Structural method for tracking coronary arteries in coronary
cineangiograms,
CRV04(378-384).
IEEE DOI
0408
BibRef
Cheng, D.C.[Da-Chuan],
Schmidt-Trucksass, A.,
Cheng, K.S.[Kuo-Sheng],
Sandrock, M.,
Pu, Q.[Qin],
Burkhardt, H.,
Automatic detection of the intimal and the adventitial layers of the
common carotid artery wall in ultrasound B-mode images using snakes,
CIAP99(452-457).
IEEE DOI
9909
BibRef
Ukai, Y.,
Niki, N.,
Satoh, H.,
Watanabe, S.,
Ohmatsu, H.,
Eguchi, K.,
Moriyama, N.,
An Algorithm for Coronary Calcification Diagnosis Based on
Helical CT Images,
ICPR96(III: 543-547).
IEEE DOI
9608
(Univ. of Tokushima, J)
BibRef
Zhang, X.M.[Xiang-Min],
Collins, S.M.,
Sonka, M.,
Tree pruning strategy in automated detection of coronary trees in
cineangiograms,
ICIP95(III: 656-659).
IEEE DOI
9510
BibRef
Suetens, P.,
Smets, C.,
van de Werf, F.,
Oosterlinck, A.,
Recognition of the coronary blood vessels on angiograms using
hierarchical model-based iconic search,
CVPR89(576-581).
IEEE DOI
0403
BibRef
Wang, R.,
Sklansky, J.,
Multiresolution method for reconstructing the cross sections of
coronary arteries from biplane angiograms,
ICPR92(III:667-670).
IEEE DOI
9208
BibRef
Harpaz, N.,
Shani, U.,
Dinar, U.,
Towards the automatic reconstruction of a 3-D animated model for the
coronary tree from biplane angiograms,
ICPR88(II: 1012-1014).
IEEE DOI
8811
BibRef
Kitamura, K.,
Tobis, J.M.,
Sklansky, J.,
Biplane analysis of atheromatous coronary arteries,
ICPR88(II: 1277-1281).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Aorta, Aortic Analysis .