Herault, L., and
Horaud, R.,
Figure-Ground Discrimination: A Combinatorial Approach,
PAMI(15), No. 9, September 1993, pp. 899-914.
IEEE DOI
BibRef
9309
Earlier:
Figure-Ground Discrimination by Mean Field Annealing,
ECCV92(58-66).
Springer DOI Finding lines and curves in noisy edge images.
BibRef
Spann, M.[Michael],
Figure/Ground Separation Using Stochastic Pyramid Relinking,
PR(24), No. 10, 1991, pp. 993-1002.
Elsevier DOI
BibRef
9100
Everson, R.,
Knight, B.W.,
Sirovich, L.,
Separating Spatially Distributed Response to Stimulation from Background I:
Optical Imaging,
BioCyber(77), No. 6, December 1997, pp. 407-417.
9801
BibRef
Amir, A.[Arnon],
Lindenbaum, M.[Michael],
Ground from Figure Discrimination,
CVIU(76), No. 1, October 1999, pp. 7-18.
BibRef
9910
Earlier:
CVPR98(521-527).
DOI Link
See also Comments on ground from figure discrimination.
BibRef
Zhang, J.,
Gao, J.,
Liu, J.,
Figure-Ground Separation by a Dynamical System,
IP(8), No. 1, January 1999, pp. 115-122.
IEEE DOI
BibRef
9901
Zhang, J.[Jun],
Lin, J.H.[Jian-Hua],
Figure-ground separation by a neural dynamical system,
ICIP95(II: 615-618).
IEEE DOI
9510
BibRef
Beyerer, J.,
Leon, F.P.,
Adaptive Separation of Random Lines and Background,
OptEng(37), No. 10, October 1998, pp. 2733-2741.
9810
BibRef
Caselles, V.[Vicent],
Coll, B.[Bartomeu],
Morel, J.M.[Jean-Michel],
Topographic Maps and Local Contrast Changes in Natural Images,
IJCV(33), No. 1, September 1999, pp. 5-27.
DOI Link Topographic map: contrast invariant representation of the image.
Occlusion/Transparency analysis of the image formation and analysis.
BibRef
9909
Coll, B.[Bartomeu],
Froment, J.[Jacques],
Topographic Maps of Color Images,
ICPR00(Vol III: 609-612).
IEEE DOI
0009
Way to represent an image -- segmentation.
BibRef
Carvalho, B.M.[Bruno M.],
Gau, C.J.[C. Jose],
Herman, G.T.[Gabor T.],
Kong, T.Y.[T. Yung],
Algorithms for Fuzzy Segmentation,
PAA(2), No. 1, 1999, pp. 73-81.
BibRef
9900
Herman, G.T.[Gabor T.],
Carvalho, B.M.[Bruno M.],
Multiseeded Segmentation Using Fuzzy Connectedness,
PAMI(23), No. 5, May 2001, pp. 460-474.
IEEE DOI
0105
Segment an object from the background with noise.
BibRef
Kellner, C.R.[Charles R.],
Method and apparatus for unencumbered capture of an object,
US_Patent6,101,289, Aug 8, 2000
WWW Link. controlled environment to do background
BibRef
0008
Naoi, S.[Satoshi],
Egawa, H.[Hiroichi],
Shiohara, M.[Morito],
Image processing apparatus,
US_Patent6,141,435, Oct 31, 2000
WWW Link.
BibRef
0010
And:
US_Patent6,430,303, Aug 6, 2002
WWW Link.
BibRef
Henderson, T.R.[Todd R.],
Spaulding, K.E.[Kevin E.],
Couwenhoven, D.W.[Douglas W.],
Method for segmenting a digital image into a foreground region and a key color region,
US_Patent6,011,595, Jan 4, 2000
WWW Link.
BibRef
0001
Chen, T.H.[Tsu-Han],
Swain, C.T.[Cassandra Turner],
Method and apparatus for segmenting images prior to coding,
US_Patent6,301,385, Oct 9, 2001
WWW Link.
BibRef
0110
Funayama, R.J.[Ryu-Ji],
Konya, M.[Minehiro],
Takezawa, H.[Hajime],
Image processing device,
US_Patent6,332,038, Dec 18, 2001
WWW Link. particular objects
BibRef
0112
Vernon, D.[David],
Fourier Vision:
Segmentation and Velocity Measurement Using the Fourier Transform,
KluwerBoston, June 2001.
ISBN 0-7923-7413-4.
WWW Link.
BibRef
0106
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
An Expectation-Maximisation Framework for Segmentation and Grouping,
IVC(20), No. 9-10, August 2002, pp. 725-738.
Elsevier DOI
0208
BibRef
Earlier:
PercOrg01(xx-yy).
0106
Motion Segmentation.
BibRef
Earlier:
A Maximum Likelihood Framework for Grouping and Segmentation,
EMMCVPR01(251-267).
Springer DOI
0205
BibRef
Earlier:
Maximum likelihood motion segmentation using eigen-decomposition,
CIAP01(63-68).
IEEE DOI
0210
BibRef
And:
An EM-like Algorithm for Motion Segmentation via Eigendecomposition,
BMVC01(Poster Session 1).
HTML Version. University of York
0110
See also graph-spectral approach to surface segmentation, A.
BibRef
Robles-Kelly, A.[Antonio],
Bors, A.G.,
Hancock, E.R.[Edwin R.],
Hierarchical Iterative Eigen Decomposition for Motion Segmentation,
ICIP01(II: 363-366).
IEEE DOI
0108
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
A Maximum Likelihood Framework for Iterative Eigendecomposition,
ICCV01(I: 654-661).
IEEE DOI
0106
BibRef
And:
Grouping Line-segments using Eigenclustering,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.[Edwin R.],
A probabilistic spectral framework for grouping and segmentation,
PR(37), No. 7, July 2004, pp. 1387-1405.
Elsevier DOI
0405
BibRef
Earlier:
An Expectation-Maximisation Framework for Perceptual Grouping,
VF01(594 ff.).
Springer DOI
0209
BibRef
And:
Perceptual Grouping using Eigendecomposition and the EM Algorithm,
SCIA01(O-Th1).
0206
Pairwise clustering and perceptual grouping. Model expressed in
terms of two sets of parameters: cluster
memberships which represent the affinity of objects to
clusters and a matrix of link weights for pairs of
tokens.
BibRef
Rosin, P.L.[Paul L.],
Comments on 'ground from figure discrimination',
PRL(24), No. 15, November 2003, pp. 2761-2766.
Elsevier DOI
0308
See also Ground from Figure Discrimination.
BibRef
Sakamoto, S.[Shizuo],
Method and device of object detectable and background removal,
and storage media for storing program thereof,
US_Patent6,603,880, Aug 5, 2003
WWW Link.
BibRef
0308
Gordon, G.G.[Gaile G.],
Harville, M.[Michael],
Woodfill, J.I.[John I.],
Darrell, T.J.[Trevor J.],
Background estimation and segmentation based on range and color,
US_Patent6,661,918, Dec 9, 2003
WWW Link.
BibRef
0312
Gordon, G.G.[Gaile G.],
Darrell, T.J.[Trevor J.],
Harville, M.[Michael],
Woodfill, J.I.[John I.],
Background Estimation and Removal Based on Range and Color,
CVPR99(II: 459-464).
IEEE DOI Use both range and color, not just one.
BibRef
9900
Pavlidis, G.P.[George P.],
Chamzas, C.[Christodoulos],
Compressing the background layer in compound images, using JPEG and
data filling,
SP:IC(20), No. 5, June 2005, pp. 487-502.
Elsevier DOI
0506
BibRef
Pavlidis, G.P.[George P.],
Tsekeridou, S.,
Chamzas, C.[Christodoulos],
JPEG-matched data filling of sparse images,
ICIP04(I: 493-496).
IEEE DOI
0505
BibRef
Aguiar, P.M.Q.,
Moura, J.M.F.,
Figure-ground segmentation from occlusion,
IP(14), No. 8, August 2005, pp. 1109-1124.
IEEE DOI
0508
BibRef
Chalmond, B.,
Francesconi, B.,
Herbin, S.,
Using Hidden Scale for Salient Object Detection,
IP(15), No. 9, August 2006, pp. 2644-2656.
IEEE DOI
0608
Scale and contrast interaction. First, spatial and contrast.
BibRef
Zhang, H.[Hong],
Carls, G.[Garry],
Barnhill, S.D.[Stephen D.],
Computer-aided image analysis,
US_Patent6,996,549, Feb 7, 2006
WWW Link.
BibRef
0602
And:
US_Patent7,383,237, Jun 3, 2008
WWW Link.
BibRef
Burgess, A.E.[Arthur E.],
Judy, P.F.[Philip F.],
Signal detection in power-law noise: effect of spectrum exponents,
JOSA-A(24), No. 12, December 2007, pp. B52-B60.
WWW Link.
0801
Analyze backgrounds.
BibRef
Levin, A.[Anat],
Rav-Acha, A.[Alex],
Lischinski, D.[Dani],
Spectral Matting,
PAMI(30), No. 10, October 2008, pp. 1699-1712.
IEEE DOI
0810
BibRef
Earlier:
CVPR07(1-8).
IEEE DOI
0706
Award, CVPR, HM. Background/foreground.
BibRef
Rhemann, C.[Christoph],
Rother, C.[Carsten],
Kohli, P.[Pushmeet],
Gelautz, M.[Margrit],
A spatially varying PSF-based prior for alpha matting,
CVPR10(2149-2156).
IEEE DOI
1006
BibRef
Rhemann, C.[Christoph],
Rother, C.[Carsten],
Wang, J.[Jue],
Gelautz, M.[Margrit],
Kohli, P.[Pushmeet],
Rott, P.[Pamela],
A perceptually motivated online benchmark for image matting,
CVPR09(1826-1833).
IEEE DOI
0906
See also Alpha Matting Evaluation Website.
See also stereo approach that handles the matting problem via image warping, A.
BibRef
Rhemann, C.[Christoph],
Rother, C.[Carsten],
Rav-Acha, A.[Alex],
Sharp, T.[Toby],
High resolution matting via interactive trimap segmentation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Zhang, L.[Li],
In Situ Image Segmentation Using the Convexity of Illumination
Distribution of the Light Sources,
PAMI(30), No. 10, October 2008, pp. 1786-1799.
IEEE DOI
0810
Use light source analysis to separate background pixels.
BibRef
Fukuda, H.[Hiroshi],
Ishihara, A.[Atsuhiko],
Sakamoto, K.[Koichi],
Tsubaki, H.[Hisayoshi],
Watanabe, M.[Mikio],
Image capturing apparatus, main subject position determination method,
and computer-readable medium storing program,
US_Patent7,339,606, Mar 4, 2008
WWW Link.
BibRef
0803
Jimenez-Sanchez, A.R.,
Mendiola-Santibanez, J.D.,
Terol-Villalobos, I.R.,
Herrera-Ruiz, G.,
Vargas-Vazquez, D.,
Garcia-Escalante, J.J.,
Lara-Guevara, A.,
Morphological Background Detection and Enhancement of Images With Poor
Lighting,
IP(18), No. 3, March 2009, pp. 613-623.
IEEE DOI
0903
BibRef
Shen, H.Y.[Hui-Ying],
Coughlan, J.[James],
Ivanchenko, V.[Volodymyr],
Figure-ground segmentation using factor graphs,
IVC(27), No. 7, 4 June 2009, pp. 854-863.
Elsevier DOI
0904
Figure-ground segmentation, Belief propagation, Factor graphs, Text detection
Graphy models.
BibRef
Dickinson, P.[Patrick],
Hunter, A.[Andrew],
Appiah, K.[Kofi],
A spatially distributed model for foreground segmentation,
IVC(27), No. 9, 3 August 2009, pp. 1326-1335.
Elsevier DOI
0906
Foreground segmentation, Background model, Spatial coherence, Mixture
of Gaussians
BibRef
Sun, W.[Wei],
Spackman, S.P.[Stephen P.],
Multi-object segmentation by stereo mismatch,
MVA(20), No. 6, October 2009, pp. xx-yy.
Springer DOI
0910
No need to do full stereo reconstruction for foreground object extration.
BibRef
Fujimoto, K.[Ken'ichi],
Musashi, M.[Mio],
Yoshinaga, T.[Tetsuya],
Reduced model of discrete-time dynamic image segmentation system and
its bifurcation analysis,
IJIST(19), No. 4, December 2009, pp. 283-289.
DOI Link
0912
Neural network model for segmentation.
BibRef
Ghosh, K.,
Pal, S.K.,
Some Insights Into Brightness Perception of Images in the Light of a
New Computational Model of Figure-Ground Segregation,
SMC-A(40), No. 4, July 2010, pp. 758-766.
IEEE DOI
1007
Human Vision.
BibRef
Dong, Y.,
de Souza, G.N.,
Adaptive learning of multi-subspace for foreground detection under
illumination changes,
CVIU(115), No. 1, January 2011, pp. 31-49.
Elsevier DOI
1011
Multiple eigensubspace, Local PCA, Incremental learning, Illumination
invariance
BibRef
Fuentes Pineda, G.[Gibran],
Koga, H.[Hisashi],
Watanabe, T.[Toshinori],
Scalable Object Discovery:
A Hash-Based Approach to Clustering Co-occurring Visual Words,
IEICE(E94-D), No. 10, October 2011, pp. 2024-2035.
WWW Link.
1110
BibRef
Earlier:
Object Discovery by Clustering Correlated Visual Word Sets,
ICPR10(750-753).
IEEE DOI
1008
BibRef
Earlier:
Unsupervised Object Discovery from Images by Mining Local Features
Using Hashing,
CIARP09(978-985).
Springer DOI
0911
Find groups of closely located features.
BibRef
Cheng, C.[Chang],
Koschan, A.F.[Andreas F.],
Chen, C.H.,
Page, D.L.[David L.],
Abidi, M.A.[Mongi A.],
Outdoor Scene Image Segmentation Based on Background Recognition and
Perceptual Organization,
IP(21), No. 3, March 2012, pp. 1007-1019.
IEEE DOI
1203
BibRef
Earlier: A1, A2, A4, A5, only:
Scene image segmentation based on Perceptual Organization,
ICIP09(1801-1804).
IEEE DOI
0911
BibRef
Carreira, J.[João],
Li, F.X.[Fu-Xin],
Sminchisescu, C.[Cristian],
Object Recognition by Sequential Figure-Ground Ranking,
IJCV(98), No. 3, July 2012, pp. 243-262.
WWW Link.
1202
BibRef
Earlier: A2, A1, A3:
Object recognition as ranking holistic figure-ground hypotheses,
CVPR10(1712-1719).
IEEE DOI
1006
BibRef
Chen, T.T.[Tian-Tang],
Li, H.L.[Hong-Liang],
Segmenting focused objects based on the Amplitude Decomposition Model,
PRL(33), No. 12, 1 September 2012, pp. 1536-1542.
Elsevier DOI
1208
Amplitude Decomposition Model, Detection, Segmentation, Focused
objects, Low depth-of-field
BibRef
Shen, J.,
Yang, W.,
Lu, Z.,
Liao, Q.,
Information integration for accurate foreground segmentation in complex
scenes,
IET-IPR(6), No. 5, 2012, pp. 596-605.
DOI Link
1210
BibRef
Punithakumar, K.[Kumaradevan],
Yuan, J.[Jing],
Ben Ayed, I.[Ismail],
Li, S.[Shuo],
Boykov, Y.Y.[Yuri Y.],
A Convex Max-Flow Approach to Distribution-Based Figure-Ground
Separation,
SIIMS(5), No. 4, 2012, pp. 1333-1354.
DOI Link
1211
BibRef
Jian, M.,
Lam, K.,
Dong, J.,
Shen, L.,
Visual-Patch-Attention-Aware Saliency Detection,
Cyber(45), No. 8, August 2015, pp. 1575-1586.
IEEE DOI
1506
Computational modeling
BibRef
Shi, Y.J.[Yan-Jiao],
Yi, Y.G.[Yu-Gen],
Yan, H.X.[He-Xin],
Dai, J.Y.[Jiang-Yan],
Zhang, M.[Ming],
Kong, J.[Jun],
Region contrast and supervised locality-preserving projection-based
saliency detection,
VC(31), No. 9, September 2015, pp. 1191-1205.
WWW Link.
1508
BibRef
Kee, Y.[Youngwook],
Lee, Y.[Yegang],
Souiai, M.[Mohamed],
Cremers, D.[Daniel],
Kim, J.[Junmo],
Sequential Convex Programming for Computing Information-Theoretic
Minimal Partitions: Nonconvex Nonsmooth Optimization,
SIIMS(10), No. 4, 2017, pp. 1845-1877.
DOI Link
1801
BibRef
Earlier: A1, A3, A4, A5, Only:
Sequential Convex Relaxation for Mutual Information-Based
Unsupervised Figure-Ground Segmentation,
CVPR14(4082-4089)
IEEE DOI
1409
BibRef
Huang, X.M.[Xiao-Ming],
Zhang, Y.J.[Yu-Jin],
Water flow driven salient object detection at 180 fps,
PR(76), No. 1, 2018, pp. 95-107.
Elsevier DOI
1801
Minimum Barrier Distance for Salient object detection.
BibRef
Ortiz-Jaramillo, B.,
Kumcu, A.,
Platisa, L.,
Philips, W.,
Content-aware contrast ratio measure for images,
SP:IC(62), 2018, pp. 51-63.
Elsevier DOI
1802
Contrast of foreground object and background.
Image content analysis, Image contrast ratio,
Image fidelity assessment,
Local contrast ratio
BibRef
Zhang, Y.Y.[Ying Ying],
Zhang, S.[Shuo],
Zhang, P.[Ping],
Zhang, X.G.[Xin-Gang],
Saliency detection via background and foreground null space learning,
SP:IC(70), 2019, pp. 271-281.
Elsevier DOI
1812
Saliency detection, Null space learning, Saliency optimization
BibRef
Pan, Y.S.[Yong-Sheng],
Xia, Y.[Yong],
Shen, D.G.[Ding-Gang],
Foreground Fisher Vector: Encoding Class-Relevant Foreground to
Improve Image Classification,
IP(28), No. 10, October 2019, pp. 4716-4729.
IEEE DOI
1909
Detect foreground then encode it.
feature extraction, image classification,
image representation, neural nets, vectors,
convolutional neural networks
BibRef
Peng, T.[Tong],
He, K.[Kun],
Su, Y.[Yao],
Hui, Z.W.[Zi-Wei],
Visual perception and local features for foreground-background
segmentation,
IET-IPR(16), No. 6, 2022, pp. 1613-1625.
DOI Link
2204
BibRef
Markowitz, S.[Spencer],
Snyder, C.[Corey],
Eldar, Y.C.[Yonina C.],
Do, M.N.[Minh N.],
Multimodal Unrolled Robust PCA for Background Foreground Separation,
IP(31), 2022, pp. 3553-3564.
IEEE DOI
2205
Radar, Cameras, Deep learning, Sensors, Real-time systems,
Radar clutter, Principal component analysis, Radar, ISTA
BibRef
Dundar, A.[Aysegul],
Shih, K.J.[Kevin J.],
Garg, A.[Animesh],
Pottorf, R.[Robert],
Tao, A.[Anrew],
Catanzaro, B.[Bryan],
Unsupervised Disentanglement of Pose, Appearance and Background from
Images and Videos,
PAMI(44), No. 7, July 2022, pp. 3883-3894.
IEEE DOI
2206
Learning semantic keypoint-like representations without the use of
expensive input keypoint annotations.
Image reconstruction, Task analysis, Videos, Pipelines, Training,
Image color analysis, Decoding, Unsupervised landmarks, keypoints,
video prediction
BibRef
Zhang, S.[Shiao],
Chen, Y.L.[Yi-Lei],
An, P.[Ping],
Huang, X.P.[Xin-Peng],
Yang, C.[Chao],
Light field occlusion removal network via foreground location and
background recovery,
SP:IC(109), 2022, pp. 116853.
Elsevier DOI
2210
Light field image, Occlusion removal, Foreground location,
Background recovery, Deep learning
BibRef
Yang, Z.G.[Zhi-Gang],
Shen, Y.H.[Ya-Hui],
Hou, L.[Lin],
Zhang, W.E.[Wei Emma],
Chen, T.[Tao],
S^3Seg: A Three-Stage Unsupervised Foreground and Background
Segmentation Network,
SPLetters(31), 2024, pp. 1484-1488.
IEEE DOI
2406
Image segmentation, Generators, Semantics, Image synthesis, Training,
Task analysis, Foreground and background segmentation, GANs,
radial loss
BibRef
Kajo, I.[Ibrahim],
Ruichek, Y.[Yassine],
Kamel, N.[Nidal],
History Based Incremental Singular Value Decomposition for Background
Initialization and Foreground Segmentation,
CIARP23(I:63-75).
Springer DOI
2312
BibRef
Yang, Y.[Yu],
Bilen, H.[Hakan],
Zou, Q.[Qiran],
Cheung, W.Y.[Wing Yin],
Ji, X.Y.[Xiang-Yang],
Learning Foreground-Background Segmentation from Improved Layered
GANs,
WACV22(366-375)
IEEE DOI
2202
Training, Deep learning, Image segmentation,
Generative adversarial networks, Noise measurement, Grouping and Shape
BibRef
Forte, M.[Marco],
Approximate Fast Foreground Colour Estimation,
ICIP21(1909-1913)
IEEE DOI
2201
Runtime, Image color analysis, Estimation, Robustness, Alpha Matting,
Foreground Estimation, Compositing, Despill
BibRef
Sultana, M.[Maryam],
Mahmood, A.[Arif],
Bouwmans, T.[Thierry],
Khan, M.H.[Muhammad Haris],
Jung, S.K.[Soon Ki],
Background/Foreground Separation: Guided Attention based Adversarial
Modeling (GAAM) versus Robust Subspace Learning Methods,
RSLCV21(181-188)
IEEE DOI
2112
Deep learning, Learning systems,
Computational modeling, Dynamics, Lighting, Benchmark testing
BibRef
Oh, S.J.,
Benenson, R.,
Khoreva, A.,
Akata, Z.,
Fritz, M.,
Schiele, B.,
Exploiting Saliency for Object Segmentation from Image Level Labels,
CVPR17(5038-5047)
IEEE DOI
1711
Image segmentation, Labeling, Semantics,
Shape, Training
BibRef
Yang, L.F.[Li-Feng],
Hu, Q.H.[Qing-Hua],
Zhao, L.[Lei],
Li, Y.[Yin],
Salience based hierarchical fuzzy representation for object
recognition,
ICIP15(4873-4877)
IEEE DOI
1512
Object recognition. Salience to divide into
Object, boundary, background. Then features.
BibRef
Wu, X.Y.[Xian-Yan],
Han, Q.[Qi],
Niu, X.M.[Xia-Mu],
An adaptive transfer scheme based on sparse representation for
figure-ground segmentation,
ICIP14(3327-3331)
IEEE DOI
1502
Computational modeling
BibRef
Murasaki, K.[Kazuhiko],
Sudo, K.[Kyoko],
Taniguchi, Y.[Yukinobu],
Occlusion boundary detection based on mid-level figure/ground
assignment features,
ICIP14(4707-4711)
IEEE DOI
1502
Accuracy
BibRef
Gallo, I.[Ignazio],
Zamberletti, A.[Alessandro],
Albertini, S.[Simone],
Noce, L.[Lucia],
High Entropy Ensembles for Holistic Figure-ground Segmentation,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Li, F.[Feng],
Porikli, F.M.[Fatih M.],
Harmonic Variance: A Novel Measure for In-focus Segmentation,
BMVC13(xx-yy).
DOI Link
1402
Foreground detection
BibRef
Liu, Q.G.[Qie-Gen],
Liu, J.B.[Jian-Bo],
Dong, P.[Pei],
Liang, D.[Dong],
SGTD: Structure Gradient and Texture Decorrelating Regularization for
Image Decomposition,
ICCV13(1081-1088)
IEEE DOI
1403
Image decomposition, Structural decorrelating, Structure gradient
BibRef
St-Laurent, L.[Louis],
Prevost, D.[Donald],
Maldague, X.[Xavier],
Combination of thermal and color images for accurate foreground /
background segmentation in outdoor environment,
ICIP13(3431-3435)
IEEE DOI
1402
Sensor fusion
BibRef
Zhang, Z.[Zhong],
Wang, C.H.[Chun-Heng],
Xiao, B.H.[Bai-Hua],
Liu, S.[Shuang],
Zhou, W.[Wen],
Multi-scale Fusion of Texture and Color for Background Modeling,
AVSS12(154-159).
IEEE DOI
1211
BibRef
Razavian, A.S.[Ali Sharif],
Azizpour, H.[Hossein],
Sullivan, J.[Josephine],
Carlsson, S.[Stefan],
CNN Features Off-the-Shelf: An Astounding Baseline for Recognition,
DeepLearn14(512-519)
IEEE DOI
1409
BibRef
Aghazadeh, O.[Omid],
Azizpour, H.[Hossein],
Sullivan, J.[Josephine],
Carlsson, S.[Stefan],
Mixture Component Identification and Learning for Visual Recognition,
ECCV12(VI: 115-128).
Springer DOI
1210
Decision boundary between object and background
BibRef
Zhu, W.J.[Wang-Jiang],
Liang, S.[Shuang],
Wei, Y.C.[Yi-Chen],
Sun, J.[Jian],
Saliency Optimization from Robust Background Detection,
CVPR14(2814-2821)
IEEE DOI
1409
BibRef
Wei, Y.C.[Yi-Chen],
Wen, F.[Fang],
Zhu, W.J.[Wang-Jiang],
Sun, J.[Jian],
Geodesic Saliency Using Background Priors,
ECCV12(III: 29-42).
Springer DOI
1210
BibRef
Dai, Z.W.[Zhen-Wen],
Lucke, J.[Jorg],
Unsupervised learning of translation invariant occlusive components,
CVPR12(2400-2407).
IEEE DOI
1208
Object extraction
BibRef
Moshe, Y.[Yair],
Hel-Or, H.[Hagit],
Hel-Or, Y.[Yacov],
Foreground detection using spatiotemporal projection kernels,
CVPR12(3210-3217).
IEEE DOI
1208
BibRef
Kuettel, D.[Daniel],
Ferrari, V.[Vittorio],
Figure-ground segmentation by transferring window masks,
CVPR12(558-565).
IEEE DOI
1208
BibRef
Rosenfeld, A.[Amir],
Weinshall, D.[Daphna],
Extracting foreground masks towards object recognition,
ICCV11(1371-1378).
IEEE DOI
1201
BibRef
Maire, M.[Michael],
Yu, S.X.[Stella X.],
Perona, P.[Pietro],
Hierarchical Scene Annotation,
BMVC13(xx-yy).
DOI Link
1402
BibRef
And:
Object detection and segmentation from joint embedding of parts and
pixels,
ICCV11(2142-2149).
IEEE DOI
1201
Segmentation and figure/ground from single grouping. Integrate lowlevel
with high-level part detectors.
BibRef
Zhao, X.D.[Xu-Dong],
Liu, P.[Peng],
Liu, J.[Jiafeng],
Tang, X.L.[Xiang-Long],
Adaptive background estimation of outdoor illumination variations for
foreground detection,
VCIP11(1-4).
IEEE DOI
1201
BibRef
He, S.B.[Shuang-Bai],
Yang, J.Q.[Jia-Qian],
Prominent object sharpening using reference image,
IASP11(232-234).
IEEE DOI
1112
Only sharpen the object, not background.
BibRef
Ghosh, K.[Kuntal],
Roy, A.[Anirban],
Neuro-visually inspired figure-ground segregation,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Kuang, Z.H.[Zhang-Hui],
Zhou, H.[Hao],
Wong, K.Y.K.[Kwan-Yee K.],
Accurate Foreground Segmentation without Pre-learning,
ICIG11(331-337).
IEEE DOI
1109
BibRef
Maruta, H.[Hidenori],
Ishii, M.[Masahiro],
Sato, M.[Makoto],
Salient region extraction based on local extrema of natural images,
ICIP10(1113-1116).
IEEE DOI
1009
BibRef
Han, B.[Bing],
Gao, X.B.[Xin-Bo],
Walsh, V.[Vincent],
Tcheang, L.[Lili],
A saliency map method with cortex-like mechanisms and sparse
representation,
CIVR10(259-265).
DOI Link
1007
Visual attention. Non-specific conspicuous object detection.
BibRef
Albarelli, A.[Andrea],
Rodola, E.[Emanuele],
Cavallarin, A.[Alberto],
Torsello, A.[Andrea],
Robust Figure Extraction on Textured Background:
A Game-Theoretic Approach,
ICPR10(360-363).
IEEE DOI
1008
See also Robust Game-Theoretic Inlier Selection for Bundle Adjustment.
BibRef
Qin, G.[Ge],
Vrusias, B.[Bogdan],
Gillam, L.[Lee],
Background Filtering for Improving of Object Detection in Images,
ICPR10(922-925).
IEEE DOI
1008
BibRef
Maire, M.[Michael],
Simultaneous Segmentation and Figure/Ground Organization Using Angular
Embedding,
ECCV10(II: 450-464).
Springer DOI
1009
BibRef
Gao, T.S.[Tian-Shi],
Packer, B.[Benjamin],
Koller, D.[Daphne],
A segmentation-aware object detection model with occlusion handling,
CVPR11(1361-1368).
IEEE DOI
1106
BibRef
Packer, B.[Ben],
Gould, S.[Stephen],
Koller, D.[Daphne],
A Unified Contour-Pixel Model for Figure-Ground Segmentation,
ECCV10(V: 338-351).
Springer DOI
1009
BibRef
Fragkiadaki, K.[Katerina],
Shi, J.B.[Jian-Bo],
Figure-Ground Image Segmentation Helps Weakly-Supervised Learning of
Objects,
ECCV10(VI: 561-574).
Springer DOI
1009
BibRef
Arens, M.[Michael],
Anderer, C.[Claus],
Measuring the quality of figure/ground segmentations,
OTCBVS10(52-59).
IEEE DOI
1006
BibRef
Ren, X.F.[Xiao-Feng],
Gu, C.H.[Chun-Hui],
Figure-ground segmentation improves handled object recognition in
egocentric video,
CVPR10(3137-3144).
IEEE DOI
1006
BibRef
Jahangiri, M.[Mohammad],
Petrou, M.[Maria],
An attention model for extracting components that merit identification,
ICIP09(965-968).
IEEE DOI
0911
See also Component Identification in the 3D Model of a Building.
BibRef
Liu, M.H.[Man-Hua],
Yao, J.C.[Jian-Chao],
Zhao, H.[Hui],
Yap, K.H.[Kim-Hui],
Learning-Based Image Ground Segmentation Using Multiple Cues,
CISP09(1-5).
IEEE DOI
0910
BibRef
Yuan, L.[Liu],
Chun, Y.[Yuan],
Automatic Segmentation of Background Defocused Nature Image,
CISP09(1-5).
IEEE DOI
0910
BibRef
Estrada, F.J.[Francisco J.],
Fua, P.[Pascal],
Lepetit, V.[Vincent],
Susstrunk, S.[Sabine],
Appearance-based keypoint clustering,
CVPR09(1279-1286).
IEEE DOI
0906
Cluster sets of interest points into visually distinct structures using
color and texture.
BibRef
Achanta, R.[Radhakrishna],
Hemami, S.[Sheila],
Estrada, F.[Francisco],
Susstrunk, S.[Sabine],
Frequency-tuned salient region detection,
CVPR09(1597-1604).
IEEE DOI
0906
See also Saliency detection using maximum symmetric surround.
BibRef
Liu, Y.[Yuee],
Zhang, J.L.[Jing-Lan],
Tjondronegoro, D.[Dian],
Geva, S.[Shlomo],
Li, Z.R.[Zheng-Rong],
An improved image segmentation algorithm for salient object detection,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Sharma, G.[Gaurav],
Chaudhury, S.[Santanu],
Srivastava, J.B.,
Object Category Detection by Statistical Test of Hypothesis,
ICCVGIP08(474-480).
IEEE DOI
0812
BibRef
Fan, S.,
Ferrie, F.P.,
Structure Guided Salient Region Detector,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Yin, Z.,
Collins, R.T.,
Online Figure-ground Segmentation with Edge Pixel Classification,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Reynolds, J.[Jordan],
Murphy, K.[Kevin],
Figure-ground segmentation using a hierarchical conditional random
field,
CRV07(175-182).
IEEE DOI
0705
BibRef
Sun, J.[Jian],
Zhang, W.W.[Wei-Wei],
Tang, X.[Xiaoou],
Shum, H.Y.[Heung-Yeung],
Background Cut,
ECCV06(II: 628-641).
Springer DOI
0608
Real-time foreground layer extraction.
Attenuate background contrast, leave foreground.
BibRef
Ren, X.F.[Xiao-Feng],
Fowlkes, C.C.[Charless C.],
Malik, J.[Jitendra],
Figure/Ground Assignment in Natural Images,
ECCV06(II: 614-627).
Springer DOI
0608
BibRef
Bjorkman, M.,
Eklundh, J.O.,
Foveated Figure-Ground Segmentation and Its Role in Recognition,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Wang, J.[Jue],
Cohen, M.F.[Michael F.],
Simultaneous Matting and Compositing,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
An Iterative Optimization Approach for Unified Image Segmentation and
Matting,
ICCV05(II: 936-943).
IEEE DOI
0510
foreground/background with partial pixels.
BibRef
Cohen, S.[Scott],
Background Estimation as a Labeling Problem,
ICCV05(II: 1034-1041).
IEEE DOI
0510
BibRef
Lee, W.B.[Woo-Beom],
Kim, W.[Wookhyun],
Illusory Surface Perception Using a Hierarchical Neural Network Model
of the Visual Pathways,
CAIP05(709).
Springer DOI
0509
BibRef
Cheng, J.[Jian],
Yang, J.[Jie],
Zhou, Y.[Yue],
A Novel Adaptive Gaussian Mixture Model for Background Subtraction,
IbPRIA05(I:587).
Springer DOI
0509
BibRef
Mochizuki, Y.[Yoshihiko],
Imiya, A.[Atsushi],
Pyramid Transform and Scale-Space Analysis in Image Analysis,
WTFCV11(78-109).
Springer DOI
1210
BibRef
Sakai, T.[Tomoya],
Imiya, A.[Atsushi],
Figure Field Analysis of Linear Scale-Space Image,
ScaleSpace05(374-385).
Springer DOI
0505
BibRef
Kottow, D.[Daniel],
Köppen, M.[Mario],
Ruiz-del-Solar, J.[Javier],
A Background Maintenance Model in the Spatial-Range Domain,
SMVP04(141-152).
Springer DOI
0505
Foreground/Background codebook descriptions.
BibRef
Porikli, F.M.[Fatih M.],
Multiplicative Background-Foreground Estimation Under Uncontrolled
Illumination using Intrinsic Images,
Motion05(II: 20-27).
IEEE DOI
0502
BibRef
Stein, A.[Andrew],
Hebert, M.[Martial],
Incorporating Background Invariance into Feature-Based Object
Recognition,
WACV05(I: 37-44).
IEEE DOI
0502
Features from patches, how to exclude the background.
BibRef
Al-Mazeed, A.H.,
Nixon, M.S.,
Gunn, S.R.,
Fusing Complementary Operators to Enhance Foreground/Background
Segmentation,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Zhao, L.[Liang],
Davis, L.S.,
Iterative figure-ground discrimination,
ICPR04(I: 67-70).
IEEE DOI
0409
BibRef
Zivkovic, Z.,
Improved adaptive gaussian mixture model for background subtraction,
ICPR04(II: 28-31).
IEEE DOI
0409
BibRef
Fraundorfer, F.[Friedrich],
Bischof, H.[Horst],
Detecting Distinguished Regions by Saliency,
SCIA03(208-215).
Springer DOI
0310
BibRef
Yu, S.X.,
Shi, J.B.[Jian-Bo],
Object-specific figure-ground segregation,
CVPR03(II: 39-45).
IEEE DOI
0307
BibRef
Lamarre, M.,
Clark, J.J.,
Background subtraction using competing models in the block-DCT domain,
ICPR02(I: 299-302).
IEEE DOI
0211
BibRef
Baek, K.[Kyungim],
Draper, B.A.,
Factor analysis for background suppression,
ICPR02(II: 643-646).
IEEE DOI
0211
BibRef
Yu, S.X.[Stella X.],
Lee, T.S.[Tai Sing],
Kanade, T.[Takeo],
A Hierarchical Markov Random Field Model for Figure-Ground Segregation,
EMMCVPR01(118-133).
Springer DOI
0205
BibRef
Hayman, E.[Eric],
Eklundh, J.O.[Jan-Olof],
Probabilistic and Voting Approaches to Cue Integration for
Figure-Ground Segmentation,
ECCV02(III: 469 ff.).
Springer DOI
0205
BibRef
Wexler, Y.,
Fitzgibbon, A.W.,
Zisserman, A.,
Bayesian Estimation of Layers from Multiple Images,
ECCV02(III: 487 ff.).
Springer DOI
0205
To extract the foreground objects. (Blue screen technique.)
BibRef
Riesenhuber, M.[Maximilian],
Generalization Over Contrast and Mirror Reversal, But not Figure-ground
Reversal, in an Edge-based Model of IT Neurons,
MIT AIM-2001-034, December 2001.
WWW Link.
0205
BibRef
Yu, S.X.[Stella X.],
Shi, J.B.[Jian-Bo],
Segmentation with Pairwise Attraction and Repulsion,
ICCV01(I: 52-58).
IEEE DOI
0106
Figure-Ground separation.
BibRef
Keuchel, J.,
Schellewald, C.,
Cremers, D.,
Schnörr, C.,
Convex Relaxation for Figure-Ground Discrimination and Perceptual
Grouping,
PercOrg01(353-360).
0106
BibRef
And:
Relaxations for Binary Image Partitioning and Perceptual Grouping,
DAGM01(353-360).
Award, DAGM.
PS File.
BibRef
Andrade-Cetto, J.[Juan],
Sanfeliu, A.[Alberto],
Integration of Perceptual Grouping and Depth,
ICPR00(Vol I: 295-298).
IEEE DOI
0009
BibRef
Giaccone, P.R.,
Tsaptsinos, D.,
Jones, G.A.,
Foreground-background Segmentation by Cellular Neural Networks,
ICPR00(Vol II: 438-441).
IEEE DOI
0009
BibRef
Pao, H.,
Geiger, D.,
Rubin, N.,
Measuring Convexity for Figure/Ground Separation,
ICCV99(948-955).
IEEE DOI
BibRef
9900
Geiger, D.[Davi],
Kumaran, K.[Krishnan],
Parida, L.[Laxmi],
Visual Organization for Figure/Ground Separation,
CVPR96(155-160).
IEEE DOI
BibRef
9600
Geiger, D.,
Kumaran, K.,
Visual Organization of Illusory Surfaces,
ECCV96(I:413-424).
Springer DOI Use occlusions to find the most salient contours.
BibRef
9600
Stricker, M.,
Leonardis, A.,
Figure-Ground Segmentation Using Tabu Search,
SCV95(605-610).
IEEE DOI Swiss Federal Institute of Technology. U. of Ljubljana.
Compared with mean field annealing algorithm.
BibRef
9500
Huang, Q.[Qian],
Dam, B.,
Steele, D.,
Ashley, J.,
Niblack, W.,
Foreground/background segmentation of color images by integration of
multiple cues,
ICIP95(I: 246-249).
IEEE DOI
9510
BibRef
Heitger, F., and
von der Heydt, R.[Rudiger],
A Computational Model of Neural Contour Processing:
Figure-Ground Segregation and Illusory Contours,
ICCV93(32-40).
IEEE DOI
BibRef
9300
Shimaya, A.,
Yoroizawa, I.,
A Cognitive Model Of Figure Segregation,
IJCAI91(366-372).
BibRef
9100
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Sensors for Machine Vision, Image Sensors .