Avalon Vision Solutions,
1991.
WWW Link.
Vendor, Inspection. Industrial inspection systems.
Ejiri, M.,
Uno, T.,
Mese, M.,
Ikeda, T.,
A Process for Detecting Defects in Complicated Patterns,
CGIP(2), 1973, pp. 326-339.
Expansion-contraction for thinning lines.
BibRef
7300
Maitre, H.[Henri],
Defect recognition in numerical images by spectrum zero detection,
CGIP(5), No. 2, June 1976, pp. 238-244.
Elsevier DOI
0501
BibRef
Woods, P.W.[Peter W.],
Allen, P.D.,
A cue generator for crack detection,
IVC(7), No. 4, November 1989, pp. 268-273.
Elsevier DOI
0401
BibRef
Gmytrasiewicz, P.,
Hassberger, J.A.,
Lee, J.C.,
Fault tree based diagnostics using fuzzy logic,
PAMI(12), No. 11, November 1990, pp. 1115-1119.
IEEE DOI
0401
BibRef
Leu, J.G.[Jia-Guu],
Yau, H.L.[Hok-Lai],
Detecting the dislocations in metal crystals from microscopic images,
PR(24), No. 1, 1991, pp. 41-56.
Elsevier DOI
0401
BibRef
Perner, P.[Petra],
A Knowledge-Based Image-Inspection System for Automatic Defect Recognition,
Classification, and Process Diagnosis,
MVA(7), No. 3, 1994, pp. 135-147.
BibRef
9400
Earlier:
Application of knowledge-based image inspection system for diagnosis of
misprints in offsetprinting,
CAIP93(738-749).
Springer DOI
9309
See also Case-Based Object Recognition with Application to Biological Images.
BibRef
Bryson, N.,
Dixon, R.N.,
Hunter, J.J.,
Taylor, C.J.,
Contextual Classification of Cracks,
IVC(12), No. 3, April 1994, pp. 149-154.
Elsevier DOI
BibRef
9404
Earlier:
BMVC93(xx).
PDF File.
BibRef
Azencott, R.,
Chalmond, B.,
Coldefy, F.,
Markov Fusion of a Pair of Noisy Images to Detect Intensity Valleys,
IJCV(16), No. 2, October 1995, pp. 135-145.
Springer DOI
Cracks. Task is to detect defects using pairs of radiographic images.
Defects are identified as intensity valleys.
BibRef
9510
Kona, S.R.[Sudheer R.],
Foster, J.W.[Joseph W.],
Varughese, J.V.[Joseph V.],
A robust algorithm for detecting pinholes in transparent plastic films,
PR(26), No. 8, August 1993, pp. 1215-1227.
Elsevier DOI
0401
BibRef
Asaeda, T.[Teruo],
Nousou, K.[Kazunori],
Imanisi, M.[Masanori],
Suzuki, Y.[Yutaka],
Katabami, S.[Sachiyo],
Inspection system and process,
US_Patent5,734,742, Mar 31, 1998
WWW Link.
BibRef
9803
Nesi, P.[Paolo],
Trucco, E.[Emanuel],
Guest Editorial: Special Issue on Real-Time Defect Detection,
RealTimeImg(5), No. 1, February 1999, pp. 1-2.
BibRef
9902
Zabih, R.[Ramin],
Halviatti, R.[Ramin],
Method and apparatus for analyzing computer screens,
US_Patent6,226,407, May 1, 2001
WWW Link.
BibRef
0105
Kazantsev, I.G.,
Lemahieu, I.,
Salov, G.I.,
Denys, R.,
Statistical detection of defects in radiographic images in
nondestructive testing,
SP(82), No. 5, May 2002, pp. 791-801.
HTML Version.
0206
BibRef
Vachtesvanos, G.J.[George J.],
Dorrity, L.J.[Lewis J.],
Wang, P.[Peng],
Echauz, J.[Javier],
Mufti, M.[Muid],
Method and apparatus for analyzing an image to detect and
identify patterns,
US_Patent6,650,779, Nov 18, 2003
WWW Link.
BibRef
0311
Lam, E.Y.[Edmund Y.],
Robust minimization of lighting variation for real-time defect
detection,
RealTimeImg(10), No. 6, December 2004, pp. 365-370.
Elsevier DOI
0501
BibRef
Akgul, Y.[Yusuf],
Bachelder, I.A.[Ivan A.],
Wagman, A.[Adam],
Davis, J.[Jason],
Koljonen, J.[Juha],
Morje, P.[Prabhav],
Methods and apparatuses for detecting classifying and
measuring spot defects in an image of an object,
US_Patent7,162,073, Jan 9, 2007
WWW Link.
BibRef
0701
Ribeiro, B.,
Support vector machines for quality monitoring in a plastic injection
molding process,
SMC-C(35), No. 3, August 2005, pp. 401-410.
IEEE DOI
0508
BibRef
Sakata, Y.[Yukinobu],
Kaneko, S.[Shuni'chi],
Takagi, Y.J.[Yu-Ji],
Okuda, H.[Hirohito],
Successive pattern classification based on test feature classifier and
its application to defect image classification,
PR(38), No. 11, November 2005, pp. 1847-1856.
Elsevier DOI
0509
BibRef
Sakata, Y.[Yukinobu],
Kaneko, S.[Shuni'chi],
Tanaka, T.,
Successive pattern learning based on test feature classifier and its
application to dynamic recognition problems,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Tsai, D.M.[Du-Ming],
Yang, C.H.[Cheng-Hsiang],
A quantile-quantile plot based pattern matching for defect detection,
PRL(26), No. 13, 1 October 2005, pp. 1948-1962.
Elsevier DOI
0509
BibRef
Tsai, D.M.[Du-Ming],
Yang, R.H.[Ron-Hwa],
An eigenvalue-based similarity measure and its application in defect
detection,
IVC(23), No. 12, 1 November 2005, pp. 1094-1101.
Elsevier DOI
0510
BibRef
Liu, J.J.[J. Jay],
MacGregor, J.F.[John F.],
Estimation and monitoring of product aesthetics:
Application to manufacturing of 'engineered stone' countertops,
MVA(16), No. 6, 2006, pp. 374-383.
Springer DOI
0603
BibRef
Taniguchi, K.[Kazutaka],
Ueta, K.[Kunio],
Tatsumi, S.[Shoji],
A mura detection method,
PR(39), No. 6, June 2006, pp. 1044-1052.
Elsevier DOI
0604
Mura (irregular lightness variation on a manufactured surface);
Defect; Detection; Vision; Spatial frequency; Contrast enhancement
BibRef
Ng, H.F.[Hui-Fuang],
Automatic thresholding for defect detection,
PRL(27), No. 14, 15 October 2006, pp. 1644-1649.
Elsevier DOI
0609
Automatic thresholding; Defect detection
BibRef
Tsap, L.V.[Leonid V.],
Duchaineau, M.[Mark],
Goldgof, D.B.[Dmitry B.],
Shin, M.C.[Min C.],
Data-driven feature modeling, recognition and analysis in a discovery
of supersonic cracks in multimillion-atom simulations,
PR(40), No. 9, September 2007, pp. 2400-2407.
Elsevier DOI
0705
Data-driven; Feature modeling (analysis, extraction, recognition);
Image motion analysis; Physics-based; Supersonic cracks; Molecular dynamics;
Atomic simulation; Nanoscale analysis
BibRef
Caleb-Solly, P.,
Smith, J.E.,
Adaptive surface inspection via interactive evolution,
IVC(25), No. 7, 1 July 2007, pp. 1058-1072.
Elsevier DOI
0705
Machine vision; Configuration; Interative; Evolution
User knowledge to get description for defects.
BibRef
Groby, J.P.[Jean-Philippe],
Lesselier, D.[Dominique],
Localization and characterization of simple defects in finite-sized
photonic crystals,
JOSA-A(25), No. 1, January 2008, pp. 146-152.
WWW Link.
0801
BibRef
Lim, M.S.[Mee-Seub],
Lim, J.H.[Joon-Hong],
Visual measurement of pile movements for the foundation work using a
high-speed line-scan camera,
PR(41), No. 6, June 2008, pp. 2025-2033.
Elsevier DOI
0802
Construction.
Line-scan image; Visual measurement; Pile movement
BibRef
Choi, K.N.[Kyu Nam],
Park, N.K.[No Kap],
Yoo, S.I.[Suk In],
Image Restoration for Quantifying TFT-LCD Defect Levels,
IEICE(E91-D), No. 2, February 2008, pp. 322-329.
DOI Link
0802
BibRef
Barazzetti, L.[Luigi],
Scaioni, M.[Marco],
Crack measurement: Development, testing and applications of an
automatic image-based algorithm,
PandRS(64), No. 3, May 2009, pp. 285-296.
Elsevier DOI
0905
Metrology; Measurement; Matching; Close-range photogrammetry; Target
recognition
Extraction of cracks, measurement of crack deformations.
BibRef
Liew, C.K.[Chin Kian],
Veidt, M.[Martin],
Pattern recognition of guided waves for damage evaluation in bars,
PRL(30), No. 3, 1 February 2009, pp. 321-330.
Elsevier DOI
0804
Ultrasonics; Quantitative nondestructive evaluation; Structural health
monitoring; Multi-layer perceptron; Ensemble networks; Modular
networks
BibRef
Gnanaprakasam, P.[Pradeep],
Parker, J.M.[Johne M.],
Ganapathiraman, S.[Subburengan],
Hou, Z.[Zhen],
Efficient 3D characterization of raised topological defects in smooth
specular coatings,
IVC(27), No. 4, 3 March 2009, pp. 319-330.
Elsevier DOI
0804
Surface reflectance model; Surface quality of specular coatings;
Defect characterization; Camera calibration
BibRef
Kim, H.I.,
Lee, S.H.,
Cho, N.I.,
Automatic Defect Classification Using Frequency and Spatial Features in
a Boosting Scheme,
SPLetters(16), No. 5, May 2009, pp. 374-377.
IEEE DOI
0903
Uses histogram of spatial orientation and frequency.
BibRef
Hampel, U.,
Maas, H.G.,
Cascaded image analysis for dynamic crack detection in material testing,
PandRS(64), No. 4, July 2009, pp. 345-350.
Elsevier DOI
0907
Image matching; Image analysis; Deformation measurement
BibRef
Tsneg, Y.H.[Yan-Hsin],
Tsai, D.M.[Du-Ming],
Defect detection of uneven brightness in low-contrast images using
basis image representation,
PR(43), No. 3, March 2010, pp. 1129-1141.
Elsevier DOI
1001
Defect detection; Surface inspection; Basis image representation;
Independent component analysis; Particle swarm optimization
BibRef
Tsai, D.M.[Du-Ming],
Tsai, H.Y.[Hsin-Yang],
Low-contrast surface inspection of mura defects in liquid crystal
displays using optical flow-based motion analysis,
MVA(22), No. 4, July 2011, pp. 629-649.
WWW Link.
1107
BibRef
Burgess, G.,
Shortis, M.R.,
Scott, P.,
Photographic assessment of retroreflective film properties,
PandRS(66), No. 5, September 2011, pp. 743-750.
Elsevier DOI
1110
Retroreflective film; Retroreflectance; Luminance factor; Standards;
Performance
BibRef
Zou, Q.[Qin],
Cao, Y.[Yu],
Li, Q.Q.[Qing-Quan],
Mao, Q.Z.[Qing-Zhou],
Wang, S.[Song],
Automatic inpainting by removing fence-like structures in RGBD images,
MVA(25), No. 7, October 2014, pp. 1841-1858.
WWW Link.
1410
BibRef
Satorres Martínez, S.,
Gómez Ortega, J.,
Gámez García, J.,
Sánchez García, A.,
A machine vision system for defect characterization on transparent
parts with non-plane surfaces,
MVA(23), No. 1, January 2012, pp. 1-13.
WWW Link.
1201
BibRef
Gunkel, C.[Christina],
Stepper, A.[Alexander],
Müller, A.C.[Arne C.],
Müller, C.H.[Christine H.],
Micro crack detection with Dijkstra's shortest path algorithm,
MVA(23), No. 3, May 2012, pp. 589-601.
WWW Link.
1204
BibRef
Tolba, A.S.[Ahmad Said],
A novel multiscale-multidirectional autocorrelation approach for defect
detection in homogeneous flat surfaces,
MVA(23), No. 4, July 2012, pp. 739-750.
WWW Link.
1206
BibRef
Wang, X.S.[Xiao-Song],
Mirmehdi, M.[Majid],
Archive Film Defect Detection and Removal: An Automatic Restoration
Framework,
IP(21), No. 8, August 2012, pp. 3757-3769.
IEEE DOI
1208
BibRef
Earlier:
Archive Film Restoration Based on Spatiotemporal Random Walks,
ECCV10(V: 478-491).
Springer DOI
1009
BibRef
Earlier:
HMM based Archive Film Defect Detection with Spatial and Temporal
Constraints,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Tsai, D.M.[Du-Ming],
Chen, M.C.[Ming-Chun],
Li, W.C.[Wei-Chen],
Chiu, W.Y.[Wei-Yao],
A fast regularity measure for surface defect detection,
MVA(23), No. 5, September 2012, pp. 869-886.
WWW Link.
1208
BibRef
Jahanshahi, M.R.[Mohammad R.],
Masri, S.F.[Sami F.],
Padgett, C.W.[Curtis W.],
Sukhatme, G.S.[Gaurav S.],
An innovative methodology for detection and quantification of cracks
through incorporation of depth perception,
MVA(24), No. 2, February 2013, pp. 227-241.
WWW Link.
1302
BibRef
Tsai, Z.D.[Zong-Da],
Perng, M.H.[Ming-Hwei],
Defect detection in periodic patterns using a multi-band-pass filter,
MVA(24), No. 3, April 2013, pp. 551-565.
WWW Link.
1303
BibRef
Li, G.H.[Guo-Hui],
Shi, J.F.[Jin-Fang],
Luo, H.S.[Hong-Sen],
Tang, M.G.[Mian-Gang],
A computational model of vision attention for inspection of surface
quality in production line,
MVA(24), No. 4, May 2013, pp. 835-844.
WWW Link.
1304
BibRef
Lu, H.T.[Hong-Tao],
Huang, W.[Wei],
Automatic Defect Classification of TFT-LCD Panels with Shape,
Histogram and Color Features,
IJIG(13), No. 03, 2013, pp. 1350011.
DOI Link
1309
BibRef
Anwar, S.[Said],
Abdullah, M.[Mohd],
Micro-crack detection of multicrystalline solar cells featuring an
improved anisotropic diffusion filter and image segmentation
technique,
JIVP(2014), No. 1, 2014, pp. 15.
DOI Link
1404
BibRef
Haddad, B.[Bashar],
Jarrah, A.[Amin],
Semi-Automatic Cracks Correction Based on Seam Processing, Stochastic
Analysis and Learning Process,
IJIG(13), No. 04, 2013, pp. 1350020.
DOI Link
1404
BibRef
Zhao, G.T.[Guo-Teng],
Wang, T.Q.[Tong-Qing],
Ye, J.Y.[Jun-Yong],
Anisotropic clustering on surfaces for crack extraction,
MVA(26), No. 5, July 2015, pp. 675-688.
WWW Link.
1506
BibRef
Hung, M.H.[Mao-Hsiung],
Hsieh, C.H.[Chaur-Heh],
A novel algorithm for defect inspection of touch panels,
IVC(41), No. 1, 2015, pp. 11-25.
Elsevier DOI
1508
Automatic optical inspection
BibRef
Bhattacharjee, S.[Sudipta],
Deb, D.[Debasis],
Development of a crack growth predictor for geomaterials using
detrended fluctuation analysis and optical flow method,
SIViP(10), No. 1, January 2016, pp. 121-128.
WWW Link.
1601
BibRef
Liebold, F.,
Maas, H.G.,
Advanced spatio-temporal filtering techniques for photogrammetric
image sequence analysis in civil engineering material testing,
PandRS(111), No. 1, 2016, pp. 13-21.
Elsevier DOI
1601
Material testing
BibRef
Weigl, E.[Eva],
Heidl, W.[Wolfgang],
Lughofer, E.[Edwin],
Radauer, T.[Thomas],
Eitzinger, C.[Christian],
On improving performance of surface inspection systems by online active
learning and flexible classifier updates,
MVA(27), No. 1, January 2016, pp. 103-127.
Springer DOI
1601
BibRef
Chen, S.H.,
Inspecting lens collars for defects using discrete cosine
transformation based on an image restoration scheme,
IET-IPR(10), No. 6, 2016, pp. 474-482.
DOI Link
1606
curve fitting
BibRef
Ortner, T.[Thomas],
Sorger, J.[Johannes],
Piringer, H.[Harald],
Hesina, G.[Gerd],
Gröller, E.[Eduard],
Visual analytics and rendering for tunnel crack analysis,
VC(32), No. 6-8, June 2016, pp. 859-869.
Springer DOI
1608
BibRef
Dobson, J.,
Cawley, P.,
Independent Component Analysis for Improved Defect Detection in
Guided Wave Monitoring,
PIEEE(104), No. 8, August 2016, pp. 1620-1631.
IEEE DOI
1608
Corrosion
BibRef
Wang, H.C.[Hong-Cheng],
Xiong, Z.Y.[Zi-You],
Finn, A.M.[Alan M.],
Chaudhry, Z.[Zaffir],
A context-driven approach to image-based crack detection,
MVA(27), No. 7, October 2016, pp. 1103-1114.
Springer DOI
1610
BibRef
Salucci, M.[Marco],
Anselmi, N.[Nicola],
Oliveri, G.[Giacomo],
Calmon, P.[Pierre],
Miorelli, R.[Roberto],
Reboud, C.[Christophe],
Massa, A.[Andrea],
Real-Time NDT-NDE Through an Innovative Adaptive Partial Least
Squares SVR Inversion Approach,
GeoRS(54), No. 11, November 2016, pp. 6818-6832.
IEEE DOI
1610
NDT: Nondestructive testing.
Current measurement
BibRef
Krishnamoorthy, R.[Ramasamy],
Ganesh, M.[Mani],
A simple computational framework for defect detection system with
orthogonal polynomials transcoded coefficients,
JVCIR(41), No. 1, 2016, pp. 31-46.
Elsevier DOI
1612
Block classification
BibRef
Hanzaei, S.H.[Saeed Hosseinzadeh],
Afshar, A.[Ahmad],
Barazandeh, F.[Farshad],
Automatic detection and classification of the ceramic tiles' surface
defects,
PR(66), No. 1, 2017, pp. 174-189.
Elsevier DOI
1704
Ceramic tile
BibRef
Abraham, R.[Romain],
Bergounioux, M.[Maïtine],
Debs, P.[Pierre],
Automatic Choice of the Threshold of a Grain Filter via Galton-Watson
Trees: Application to Granite Cracks Detection,
JMIV(60), No. 1, January 2018, pp. 50-69.
Springer DOI
1801
BibRef
Lin, Z.[Zhe],
Zhao, X.H.[Xiao-Hua],
Geometrical flow-guided fast beamlet transform for crack detection,
IET-IPR(12), No. 3, March 2018, pp. 382-388.
DOI Link
1802
BibRef
Gao, B.,
Li, X.,
Woo, W.L.,
Tian, G.Y.,
Physics-Based Image Segmentation Using First Order Statistical
Properties and Genetic Algorithm for Inductive Thermography Imaging,
IP(27), No. 5, May 2018, pp. 2160-2175.
IEEE DOI
1804
crack detection, eddy current testing, feature extraction,
genetic algorithms, image segmentation, infrared imaging,
non-destructive testing and evaluation
BibRef
Deng, X.J.[Xiao-Juan],
Zuo, F.F.[Fei-Fei],
Li, H.W.[Hong-Wei],
Cracks Detection Using Iterative Phase Congruency,
JMIV(60), No. 7, September 2018, pp. 1065-1080.
WWW Link.
1808
BibRef
Makaremi, M.[Mohammad],
Razmjooy, N.[Navid],
Ramezani, M.[Mehdi],
A new method for detecting texture defects based on modified local
binary pattern,
SIViP(12), No. 7, October 2018, pp. 1395-1401.
WWW Link.
1809
BibRef
Peng, L.[Lin],
Liu, J.[Jun],
Detection and analysis of large-scale WT blade surface cracks based on
UAV-taken images,
IET-IPR(12), No. 11, November 2018, pp. 2059-2064.
DOI Link
1810
BibRef
Zou, Q.,
Zhang, Z.,
Li, Q.,
Qi, X.,
Wang, Q.,
Wang, S.,
DeepCrack: Learning Hierarchical Convolutional Features for Crack
Detection,
IP(28), No. 3, March 2019, pp. 1498-1512.
IEEE DOI
1812
crack detection, edge detection,
feature extraction, image fusion, image representation,
convolutional neural network
BibRef
Cao, T.[Ting],
Wang, W.X.[Wei-Xing],
Tighe, S.[Susan],
Wang, S.L.[Sheng-Lin],
Crack image detection based on fractional differential and fractal
dimension,
IET-CV(13), No. 1, February 2019, pp. 79-85.
DOI Link
1902
BibRef
Goodall, T.R.,
Bovik, A.C.,
Detecting and Mapping Video Impairments,
IP(28), No. 6, June 2019, pp. 2680-2691.
IEEE DOI
1905
BibRef
And:
Artifact Detection Maps Learned using Shallow Convolutional Networks,
Southwest18(101-104)
IEEE DOI
1809
data compression, neural nets, object detection, probability,
quantisation (signal), statistical analysis, video coding,
detection.
Training, Detectors, Feature extraction, Task analysis,
Nonlinear distortion, Convolution, VID-MAP, Artifacts,
Source Inspection
BibRef
Jeelani, H.,
Liang, H.,
Acton, S.T.,
Weller, D.S.,
Content-Aware Enhancement of Images With Filamentous Structures,
IP(28), No. 7, July 2019, pp. 3451-3461.
IEEE DOI
1906
biomedical optical imaging, calcium, crack detection,
image denoising, image enhancement, materials science computing,
crack detection
BibRef
Yan, Y.P.[Ya-Ping],
Kaneko, S.[Shun'ichi],
Asano, H.[Hirokazu],
Accumulated and aggregated shifting of intensity for defect detection
on micro 3D textured surfaces,
PR(98), 2020, pp. 107057.
Elsevier DOI
1911
Defect detection,
Accumulated and aggregated shifting of intensity (AASI) procedure,
Illumination invariance
BibRef
Liebold, F.,
Maas, H.G.,
Deutsch, J.,
Photogrammetric determination of 3D crack opening vectors from 3D
displacement fields,
PandRS(164), 2020, pp. 1-10.
Elsevier DOI
2005
Material testing, Image sequence analysis,
Deformation measurement, Crack analysis
BibRef
Makuch, M.[Maria],
Gawronek, P.[Pelagia],
3D Point Cloud Analysis for Damage Detection on Hyperboloid Cooling
Tower Shells,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Marzec, M.[Mariusz],
Duda, P.[Piotr],
Wróbel, Z.[Zygmunt],
Analysis of microtomographic images in automatic defect localization
and detection,
MVA(31), No. 5, July 2020, pp. Article35.
WWW Link.
2006
BibRef
dela Calle, F.J.,
García, D.[Daniel],
Usamentiaga, R.[Rubén],
Generation of differential topographic images for surface inspection of
long products,
RealTimeIP(17), No. 4, August 2020, pp. 967-980.
Springer DOI
2007
BibRef
Fang, F.[Fen],
Li, L.Y.[Li-Yuan],
Gu, Y.[Ying],
Zhu, H.Y.[Hong-Yuan],
Lim, J.H.[Joo-Hwee],
A novel hybrid approach for crack detection,
PR(107), 2020, pp. 107474.
Elsevier DOI
2008
Crack detection, Defect detection, Object detection,
Convolutional neural network, Faster R-CNN, Bayesian fusion
BibRef
Chen, F.C.[Fu-Chen],
Jahanshahi, M.R.[Mohammad R.],
ARF-Crack: rotation invariant deep fully convolutional network for
pixel-level crack detection,
MVA(31), No. 6, August 2020, pp. Article47.
WWW Link.
2008
BibRef
Zhang, J.B.[Jia-Bin],
Su, H.[Hu],
Zou, W.[Wei],
Gong, X.Y.[Xin-Yi],
Zhang, Z.T.[Zheng-Tao],
Shen, F.[Fei],
CADN: A weakly supervised learning-based category-aware object
detection network for surface defect detection,
PR(109), 2021, pp. 107571.
Elsevier DOI
2009
Weakly supervised learning, Automated surface inspection,
Defect detection, Knowledge distillation
BibRef
Drouyer, S.[Sébastien],
An 'All Terrain' Crack Detector Obtained by Deep Learning on
Available Databases,
IPOL(10), 2020, pp. 105-123.
DOI Link
2009
Survey, Crack Detection.
Code, Crack Detection.
BibRef
Hu, B.,
Gao, B.,
Woo, W.L.,
Ruan, L.,
Jin, J.,
Yang, Y.,
Yu, Y.,
A Lightweight Spatial and Temporal Multi-Feature Fusion Network for
Defect Detection,
IP(30), 2021, pp. 472-486.
IEEE DOI
2012
Image segmentation, Feature extraction, Semantics, Convolution,
Task analysis, Principal component analysis, Data mining,
defect detection
BibRef
Xiang, S.[Sheng],
Liang, D.[Dong],
Kaneko, S.[Shun'ichi],
Asano, H.[Hirokazu],
Robust defect detection in 2D images printed on 3D micro-textured
surfaces by multiple paired pixel consistency in orientation codes,
IET-IPR(14), No. 14, December 2020, pp. 3373-3384.
DOI Link
2012
BibRef
Trybala, P.[Pawel],
Blachowski, J.[Jan],
Blazej, R.[Ryszard],
Zimroz, R.[Radoslaw],
Damage Detection Based on 3D Point Cloud Data Processing from Laser
Scanning of Conveyor Belt Surface,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wu, X.H.[Xin-Hua],
Liu, X.J.[Xiu-Jie],
Building crack identification and total quality management method
based on deep learning,
PRL(145), 2021, pp. 225-231.
Elsevier DOI
2104
Crack detection, Image segmentation, Deep learning,
Quality management, Image recognition
BibRef
Zhou, Q.[Qiang],
Qu, Z.[Zhong],
Cao, C.[Chong],
Mixed pooling and richer attention feature fusion for crack detection,
PRL(145), 2021, pp. 96-102.
Elsevier DOI
2104
Crack detection, Mixed pooling, Spatial attention, Channel-wise attention
BibRef
Qu, Z.[Zhong],
Chen, W.[Wen],
Wang, S.Y.[Shi-Yan],
Yi, T.M.[Tu-Ming],
Liu, L.[Ling],
A Crack Detection Algorithm for Concrete Pavement Based on Attention
Mechanism and Multi-Features Fusion,
ITS(23), No. 8, August 2022, pp. 11710-11719.
IEEE DOI
2208
Feature extraction, Semantics, Decoding, Encoding,
Intelligent transportation systems, Detection algorithms,
multi-features fusion
BibRef
Papadopoulos, S.[Stavros],
Dimitriou, N.[Nikolaos],
Drosou, A.[Anastasios],
Tzovaras, D.[Dimitrios],
Modelling spatio-temporal ageing phenomena with deep Generative
Adversarial Networks,
SP:IC(94), 2021, pp. 116200.
Elsevier DOI
2104
BibRef
Earlier: A2, A1, A3, A4:
A 3D-CNN Approach for the Spatio-Temporal Modeling of Surface
Deterioration Phenomena,
IVMSP18(1-5)
IEEE DOI
1809
BibRef
Earlier: A1, A3, A4, Only:
Modelling of Material Ageing with Generative Adversarial Networks,
IVMSP18(1-5)
IEEE DOI
1809
Ageing simulation, Adversarial learning, Conditional GANs.
Aging, Solid modeling, Training,
Surface treatment, Feature extraction, Degradation.
Degradation, Generators, Training,
Generative adversarial networks, Aging, Task analysis
BibRef
Zhang, F.[Fan],
Hu, Z.Q.[Zhen-Qi],
Yang, K.[Kun],
Fu, Y.K.[Yao-Kun],
Feng, Z.W.[Ze-Wei],
Bai, M.B.[Ming-Bo],
The Surface Crack Extraction Method Based on Machine Learning of
Image and Quantitative Feature Information Acquisition Method,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Rudolph, M.[Marco],
Wandt, B.[Bastian],
Rosenhahn, B.[Bodo],
Same Same But DifferNet: Semi-Supervised Defect Detection with
Normalizing Flows,
WACV21(1906-1915)
IEEE DOI
2106
Training, Location awareness, Fabrication,
Magnetic resonance imaging, Feature extraction, Robustness, Product design
BibRef
Niu, S.L.[Shuan-Long],
Li, B.[Bin],
Wang, X.G.[Xing-Gang],
He, S.[Songping],
Peng, Y.[Yaru],
Defect attention template generation cycleGAN for weakly supervised
surface defect segmentation,
PR(123), 2022, pp. 108396.
Elsevier DOI
2112
Weakly supervised learning, Defect detection,
Image segmentation, Generative adversarial network (GAN), Attention model
BibRef
Zhu, Y.[Ying],
Ding, R.[Runwei],
Huang, W.[Weibo],
Wei, P.[Peng],
Yang, G.[Ge],
Wang, Y.[Yong],
HMFCA-Net: Hierarchical multi-frequency based Channel attention net
for mobile phone surface defect detection,
PRL(153), 2022, pp. 118-125.
Elsevier DOI
2201
Defect detection, HMFCA-Net,
Multi-frequency channel information, Local cross-channel interaction
BibRef
Wang, T.[Tao],
Zhang, C.[Can],
Ding, R.[Runwei],
Yang, G.[Ge],
Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN,
ICPR21(9371-9377)
IEEE DOI
2105
Training, Quantization (signal), Machine vision, Production, Manuals,
Inspection, Feature extraction, Surface defect detection, BEGAN,
RoI Align
BibRef
Parrany, A.M.[Ahmad Mahdian],
Mirzaei, M.[Mohsen],
A new image processing strategy for surface crack identification in
building structures under non-uniform illumination,
IET-IPR(16), No. 2, 2022, pp. 407-415.
DOI Link
2201
BibRef
Hu, B.[Bing],
Wang, J.H.[Jian-Hui],
A weighted multi-source domain adaptation approach for surface defect
detection,
IET-IPR(16), No. 8, 2022, pp. 2210-2218.
DOI Link
2205
BibRef
Guo, J.M.[Jing-Ming],
Markoni, H.[Herleeyandi],
Lee, J.D.[Jiann-Der],
BARNet: Boundary Aware Refinement Network for Crack Detection,
ITS(23), No. 7, July 2022, pp. 7343-7358.
IEEE DOI
2207
Roads, Image edge detection, Feature extraction, Deep learning,
Convolution, Surface cracks, Support vector machines,
supervision
BibRef
Angelou, N.[Nikolas],
Sjöholm, M.[Mikael],
Data Reliability Enhancement for Wind-Turbine-Mounted Lidars,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, D.[Dan],
Li, T.[Tieshan],
Chen, C.L.P.[C.L. Philip],
Wang, L.[Li],
A Xanthoceras sorbifolium crack segmentation method based on an
improved level set,
IET-IPR(17), No. 5, 2023, pp. 1510-1519.
DOI Link
2304
level set, local and edge information, distance regularization, Xanthoceras sorbifolium crack segmentation
BibRef
Wan, B.[Bin],
Zhou, X.F.[Xiao-Fei],
Zhu, B.[Bin],
Xiao, M.[Mang],
Sun, Y.Q.[Yao-Qi],
Zheng, B.[Bolun],
Zhang, J.Y.[Ji-Yong],
Yan, C.G.[Cheng-Gang],
CANet: Context-aware Aggregation Network for Salient Object Detection
of Surface Defects,
JVCIR(93), 2023, pp. 103820.
Elsevier DOI
2305
Defect detection, Salient object detection,
Weighted convolution pyramid, Cascaded fusion structure
BibRef
de León, G.[Gonzalo],
Fiorentini, N.[Nicholas],
Leandri, P.[Pietro],
Losa, M.[Massimo],
A New Region-Based Minimal Path Selection Algorithm for Crack
Detection and Ground Truth Labeling Exploiting Gabor Filters,
RS(15), No. 11, 2023, pp. 2722.
DOI Link
2306
BibRef
Zhang, Q.[Quan],
Lai, J.H.[Jian-Huang],
Zhu, J.Y.[Jun-Yong],
Xie, X.H.[Xiao-Hua],
Wavelet-Guided Promotion-Suppression Transformer for Surface-Defect
Detection,
IP(32), 2023, pp. 4517-4528.
IEEE DOI
2309
BibRef
Xiang, X.Y.[Xin-Yuan],
Liu, M.Q.[Mei-Qin],
Zhang, S.L.[Sen-Lin],
Wei, P.[Ping],
Chen, B.D.[Ba-Dong],
Multi-scale attention and dilation network for small defect detection,
PRL(172), 2023, pp. 82-88.
Elsevier DOI
2309
Small object detection, Dilated convolution blocks,
Convolutional block attention module (CBAM), Perceptual field
BibRef
Mao, W.S.[Wei-Sheng],
Li, L.S.[Lin-Sheng],
Tao, Y.F.[Yi-Fan],
Zhou, W.Y.[Wen-Yi],
Surface Defect Image Classification of Lithium Battery Pole Piece Based
on Deep Learning,
IEICE(E106-D), No. 9, September 2023, pp. 1546-1555.
WWW Link.
2310
BibRef
Xing, Y.[Ying],
Qian, X.M.[Xiao-Meng],
Guan, Y.[Yu],
Yang, B.[Bin],
Zhang, Y.W.[Yu-Wei],
Cross-project defect prediction based on G-LSTM model,
PRL(160), 2022, pp. 50-57.
Elsevier DOI
2208
Computational language processing,
Cross-project defect prediction, Generative adversarial network
BibRef
Inoue, Y.[Yuki],
Nagayoshi, H.[Hiroto],
Weakly-Supervised Crack Detection,
ITS(24), No. 11, November 2023, pp. 12050-12061.
IEEE DOI
2311
BibRef
Chen, F.Q.[Fa-Quan],
Deng, M.[Miaolei],
Gao, H.[Hui],
Yang, X.Y.[Xiao-Ya],
Zhang, D.[Dexian],
NHD-YOLO: Improved YOLOv8 using optimized neck and head for product
surface defect detection with data augmentation,
IET-IPR(18), No. 7, 2024, pp. 1915-1926.
DOI Link
2405
computer vision, convolutional neural nets, image recognition,
object detection, quality control
BibRef
Chen, H.[Hao],
Qiu, J.L.[Jian-Lin],
Gao, D.[Depeng],
Qian, L.[Lanmei],
Li, X.J.[Xiu-Jing],
Research on surface defect detection model of steel strip based on
MFFA-YOLOv5,
IET-IPR(18), No. 8, 2024, pp. 2105-2113.
DOI Link
2406
convolutional neural nets, image processing, image recognition
BibRef
Zhang, P.C.[Peng-Cheng],
Zheng, P.X.[Pei-Xiao],
Guo, X.[Xin],
Chen, E.[Enqing],
Few-shot defect classification via feature aggregation based on graph
neural network,
JVCIR(101), 2024, pp. 104172.
Elsevier DOI Code:
WWW Link.
2406
Few-shot learning, Graph neural networks(GNNs),
Distribution learning, Surface defect classification
BibRef
Li, H.[Han],
Chang, X.[Xu],
Hao, J.[Jinlai],
Hydraulic Fracturing Shear/Tensile/Compressive Crack Investigation
Using Microseismic Data,
RS(16), No. 11, 2024, pp. 1902.
DOI Link
2406
BibRef
Zhao, L.Y.[Lang-Yue],
Wu, Y.Q.[Yi-Quan],
Yuan, Y.[Yubin],
Tong, K.[Kang],
MACN: A cascade defect detection for complex background based on
mixture attention mechanism,
IET-IPR(18), No. 9, 2024, pp. 2434-2448.
DOI Link
2407
automatic defect detection, complex background,
attention network, cross-channel interaction
BibRef
Hu, Z.Q.[Zi-Qiang],
Chu, H.[Hao],
Zhang, Y.Z.[Yun-Zhou],
Shan, D.X.[De-Xing],
Shen, Y.[You],
Self-supervised assisted multi-task learning network for one-shot
defect segmentation with fake defect generation,
PRL(184), 2024, pp. 89-96.
Elsevier DOI Code:
WWW Link.
2408
One-shot segmentation, Self-supervised learning,
Texture defect segmentation, Multi-task learning
BibRef
Yang, M.H.[Ming-Hui],
Liu, J.[Jing],
Yang, Z.W.[Zhi-Wei],
Wu, Z.Y.[Zhao-Yang],
SLSG: Industrial image anomaly detection with improved feature
embeddings and one-class classification,
PR(156), 2024, pp. 110862.
Elsevier DOI
2408
Anomaly detection, One-class classification,
Self-supervised learning, Graph convolutional network
BibRef
Liu, B.[Binhui],
Guo, T.[Tianchu],
Luo, B.[Bin],
Cui, Z.[Zhen],
Yang, J.[Jian],
Cross-Attention Regression Flow for Defect Detection,
IP(33), 2024, pp. 5183-5193.
IEEE DOI
2410
Feature extraction, Anomaly detection, Transforms,
Defect detection, Visualization, Fitting, Testing, Defect detection,
autoregression
BibRef
Tao, H.Q.[Hua-Qi],
Liu, B.X.[Bing-Xi],
Cui, J.Q.[Jin-Qiang],
Zhang, H.[Hong],
A Convolutional-Transformer Network for Crack Segmentation with
Boundary Awareness,
ICIP23(86-90)
IEEE DOI Code:
WWW Link.
2312
BibRef
Lei, J.R.[Jia-Rui],
Hu, X.B.[Xiao-Bo],
Wang, Y.[Yue],
Liu, D.[Dong],
PyramidFlow: High-Resolution Defect Contrastive Localization Using
Pyramid Normalizing Flow,
CVPR23(14143-14152)
IEEE DOI
2309
BibRef
Wang, Y.[Yue],
Peng, J.L.[Jin-Long],
Zhang, J.N.[Jiang-Ning],
Yi, R.[Ran],
Wang, Y.[Yabiao],
Wang, C.J.[Cheng-Jie],
Multimodal Industrial Anomaly Detection via Hybrid Fusion,
CVPR23(8032-8041)
IEEE DOI
2309
BibRef
Lee, X.Y.[Xian Yeow],
Vidyaratne, L.[Lasitha],
Alam, M.[Mahbubul],
Farahat, A.[Ahmed],
Ghosh, D.[Dipanjan],
Diaz, T.G.[Teresa Gonzalez],
Gupta, C.[Chetan],
XDNet: A Few-Shot Meta-Learning Approach for Cross-Domain Visual
Inspection,
VISION23(4375-4384)
IEEE DOI
2309
BibRef
Liu, W.Z.[Wei-Zhi],
Liu, C.[Chang],
Liu, Q.[Qiang],
Yu, D.[Dahai],
Assigned MURA Defect Generation Based on Diffusion Model,
VISION23(4395-4402)
IEEE DOI
2309
BibRef
Jang, J.K.[Jun-Kyu],
Hwang, E.[Eugene],
Park, S.H.[Sung-Hyuk],
N-pad : Neighboring Pixel-based Industrial Anomaly Detection,
VISION23(4365-4374)
IEEE DOI
2309
BibRef
Xu, L.[Liang],
Zou, H.[Han],
Okatani, T.[Takayuki],
How Do Label Errors Affect Thin Crack Detection by DNNs,
VISION23(4414-4423)
IEEE DOI
2309
BibRef
Long, J.[Jun],
Yang, Y.X.[Yu-Xi],
Hua, L.[Liujie],
Ou, Y.Q.[Yi-Qi],
Self-supervised Augmented Patches Segmentation for Anomaly Detection,
ACCV22(II:93-107).
Springer DOI
2307
WWW Link.
BibRef
Kulkarni, S.[Shreyas],
Singh, S.[Shreyas],
Balakrishnan, D.[Dhananjay],
Sharma, S.[Siddharth],
Devunuri, S.[Saipraneeth],
Korlapati, S.C.R.[Sai Chowdeswara Rao],
Crackseg9k: A Collection and Benchmark for Crack Segmentation Datasets
and Frameworks,
CVCivil22(179-195).
Springer DOI
2304
BibRef
Zhang, X.[Xiaohu],
Huang, H.F.[Hai-Feng],
LightAUNet: A Lightweight Fusing Attention Based UNet for Crack
Detection,
ICIVC22(178-182)
IEEE DOI
2301
Image segmentation, Adaptation models, Convolution,
Computational modeling, Transfer learning, Interference,
crack segmentation
BibRef
Orti, J.[Joan],
Moreno-Noguer, F.[Francesc],
Puig, V.[Vicenç],
Guided-Crop Image Augmentation for Small Defect Classification,
ICPR22(104-110)
IEEE DOI
2212
Industries, Training, Image segmentation,
Magnetic resonance imaging, Process control, Inspection, Steel
BibRef
Fang, F.[Fen],
Xu, Q.L.[Qian-Li],
Lim, J.H.[Joo-Hwee],
Hierarchical Defect Detection Based On Reinforcement Learning,
ICIP22(791-795)
IEEE DOI
2211
Location awareness, Deep learning, Technological innovation,
Image resolution, Reinforcement learning, Object detection,
High Resolution Images
BibRef
Wang, B.[Bohua],
Zhou, H.[Hao],
Luo, W.R.[Wen-Rui],
Li, C.Y.[Chen-Yang],
Li, Z.B.[Zhou-Bing],
Tian, Z.Q.[Zhi-Qiang],
psi-Net is an Efficient Tiny Defect Detector,
ICIP22(796-800)
IEEE DOI
2211
Adaptation models, Sensitivity, Image coding, Costs,
Computational modeling, Detectors, Attention, defect defection,
tiny object
BibRef
Ofir, N.[Nati],
Yacobi, R.[Ran],
Granoviter, O.[Omer],
Levant, B.[Boris],
Shtalrid, O.[Ore],
Automatic Defect Segmentation by Unsupervised Anomaly Learning,
ICIP22(306-310)
IEEE DOI
2211
Training, Image segmentation, Head, Shape, Manuals, Implants,
Semiconductor device manufacture, Defect Segmentation,
Contrastive Learning
BibRef
Tian, H.[Huang],
Li, X.[Xiang],
Yang, L.F.[Ling-Feng],
Li, J.[Jun],
Yang, J.[Jian],
Du, W.D.[Wei-Dong],
PPT: Anomaly Detection Dataset of Printed Products with Templates,
ICIP22(506-510)
IEEE DOI
2211
Printing, Industries, Visualization, Inspection, Benchmark testing,
Kernel, Anomaly detection, dataset, printed product, template
BibRef
Chen, Z.Z.[Zhuang-Zhuang],
Zhang, J.[Jin],
Lai, Z.[Zhuonan],
Chen, J.[Jie],
Liu, Z.[Zun],
Li, J.Q.[Jian-Qiang],
Geometry-Aware Guided Loss for Deep Crack Recognition,
CVPR22(4693-4702)
IEEE DOI
2210
Training, Shape, Face recognition, Benchmark testing,
Noise measurement, Task analysis, Recognition: detection,
Deep learning architectures and techniques
BibRef
Liu, H.J.[Hua-Jun],
Miao, X.Y.[Xiang-Yu],
Mertz, C.[Christoph],
Xu, C.Z.[Cheng-Zhong],
Kong, H.[Hui],
CrackFormer: Transformer Network for Fine-Grained Crack Detection,
ICCV21(3763-3772)
IEEE DOI
2203
Semantics, Feature extraction, Transformers,
Decoding, Topology, Detection and localization in 2D and 3D,
grouping and shape
BibRef
Rudolph, M.[Marco],
Wehrbein, T.[Tom],
Rosenhahn, B.[Bodo],
Wandt, B.[Bastian],
Fully Convolutional Cross-Scale-Flows for Image-based Defect
Detection,
WACV22(1829-1838)
IEEE DOI
2202
Tensors, Manufacturing processes,
Magnetic resonance imaging, Computational modeling, Learning and Optimization
BibRef
Park, J.H.[Jin-Hyung],
Chen, Y.C.[Yi-Chun],
Li, Y.J.[Yu-Jhe],
Kitani, K.[Kris],
Crack Detection and Refinement Via Deep Reinforcement Learning,
ICIP21(529-533)
IEEE DOI
2201
Image segmentation, Shape, Refining, Reinforcement learning,
Predictive models, Prediction algorithms, Reinforcement learning,
deep learning
BibRef
Padalkar, M.G.[Milind G.],
Beltrán-González, C.[Carlos],
del Bue, A.[Alessio],
Multi-Illumination Fusion With Crack Enhancement Using
Cycle-Consistent Losses,
ICIP21(2898-2902)
IEEE DOI
2201
Visualization, Tiles, Image processing, Lighting, Inspection,
Generators, Multi-illumination fusion, crack detection,
cycle-consistent loss
BibRef
Sindel, A.[Aline],
Maier, A.[Andreas],
Christlein, V.[Vincent],
Craquelurenet: Matching the Crack Structure In Historical Paintings
for Multi-Modal Image Registration,
ICIP21(994-998)
IEEE DOI
2201
Photography, Image registration, Visualization, Image resolution,
Detectors, Fluorescence, Feature extraction, crack detection
BibRef
Guan, Z.H.[Zhi-Hao],
Guo, Z.D.[Zi-Dong],
Lyu, J.[Jie],
Yuan, Z.[Zejian],
Defect Inspection using Gravitation Loss and Soft Labels,
ICIP21(1184-1188)
IEEE DOI
2201
Image processing, Neural networks, Inspection, Noise measurement,
Resins, Defect inspection, discriminative embedding features,
soft labels
BibRef
Lin, D.Y.[Dong-Yun],
Li, Y.Q.[Yi-Qun],
Prasad, S.[Shitala],
Nwe, T.L.[Tin Lay],
Dong, S.[Sheng],
Oo, Z.M.[Zaw Min],
Cam-Guided U-Net With Adversarial Regularization for Defect
Segmentation,
ICIP21(1054-1058)
IEEE DOI
2201
Training, Image segmentation, Annotations, Product design, Cams,
Quality assessment, Defect Segmentation, U-Net, Adversarial Regularization
BibRef
Kobayashi, H.[Hiroki],
Miyoshi, R.[Ryo],
Hashimoto, M.[Manabu],
Normal Image Generation-Based Defect Detection by Generative
Adversarial Network with Chaotic Random Images,
ISVC21(I:353-365).
Springer DOI
2112
BibRef
Benz, C.[Christian],
Rodehorst, V.[Volker],
Model-based Crack Width Estimation using Rectangle Transform,
MVA21(1-5)
DOI Link
2109
Fitting, Estimation, Transforms, Manuals, Gray-scale, Solids
BibRef
Kondo, Y.[Yuki],
Ukita, N.[Norimichi],
Crack Segmentation for Low-Resolution Images using Joint Learning
with Super- Resolution,
MVA21(1-6)
DOI Link
2109
Image segmentation, Superresolution, Object segmentation, Kernel, Videos
BibRef
Tan, D.S.[Daniel Stanley],
Chen, Y.C.[Yi-Chun],
Chen, T.P.C.[Trista Pei-Chun],
Chen, W.C.[Wei-Chao],
TrustMAE: A Noise-Resilient Defect Classification Framework using
Memory-Augmented Auto-Encoders with Trust Regions,
WACV21(276-285)
IEEE DOI
2106
Training, Data collection,
Noise robustness, Anomaly detection, Image reconstruction
BibRef
Zhang, G.J.[Gong-Jie],
Cui, K.W.[Kai-Wen],
Hung, T.Y.[Tzu-Yi],
Lu, S.J.[Shi-Jian],
Defect-GAN: High-Fidelity Defect Synthesis for Automated Defect
Inspection,
WACV21(2523-2533)
IEEE DOI
2106
Training, Neural networks,
Inspection, Maintenance engineering, Image restoration
BibRef
Padalkar, M.G.[Milind G.],
Beltrán-González, C.[Carlos],
Bustreo, M.[Matteo],
del Bue, A.[Alessio],
Murino, V.[Vittorio],
A Versatile Crack Inspection Portable System based on Classifier
Ensemble and Controlled Illumination,
ICPR21(4009-4016)
IEEE DOI
2105
Training, Visualization, Tiles, Lighting, Inspection,
Pattern recognition, Ceramics
BibRef
Guo, T.Y.[Tian-Yu],
Zhang, L.L.[Lin-Lin],
Ding, R.[Runwei],
Yang, G.[Ge],
EDD-Net: An Efficient Defect Detection Network,
ICPR21(8899-8905)
IEEE DOI
2105
Oils, Production, Detectors, Object detection, Tools,
Mobile handsets, User experience
BibRef
Božic, J.[Jakob],
Tabernik, D.[Domen],
Skocaj, D.[Danijel],
End-to-end training of a two-stage neural network for defect
detection,
ICPR21(5619-5626)
IEEE DOI
2105
Training, Image segmentation, Uncertainty, Annotations,
Neural networks, Transforms, Pattern recognition
BibRef
Nava, R.[Rodrigo],
Fehr, D.[Duc],
Petry, F.[Frank],
Tamisier, T.[Thomas],
Tire Surface Segmentation in Infrared Imaging with Convolutional Neural
Networks,
IMTA20(51-62).
Springer DOI
2103
BibRef
Luan, C.,
Cui, R.,
Sun, L.,
Lin, Z.,
A Siamese Network Utilizing Image Structural Differences For
Cross-Category Defect Detection,
ICIP20(778-782)
IEEE DOI
2011
Neural networks, Training, Testing, Indexes, Machine learning,
Cats, Siamese neural network, defect detection
BibRef
Lin, D.,
Li, Y.,
Prasad, S.,
Nwe, T.L.,
Dong, S.,
Oo, Z.M.,
CAM-UNET: Class Activation MAP Guided UNET with Feedback Refinement
for Defect Segmentation,
ICIP20(2131-2135)
IEEE DOI
2011
Image segmentation, Training, Decoding, Benchmark testing,
Task analysis, Cameras, Defect Segmentation, Class Activation Map, UNet
BibRef
Boyadjian, Q.[Quentin],
Vanderesse, N.[Nicolas],
Toews, M.[Matthew],
Bocher, P.[Philippe],
Detecting Defects in Materials Using Deep Convolutional Neural Networks,
ICIAR20(I:293-306).
Springer DOI
2007
BibRef
Xie, Y.,
Zhu, F.,
Fu, Y.,
Main-Secondary Network for Defect Segmentation of Textured Surface
Images,
WACV20(3520-3529)
IEEE DOI
2006
Image segmentation, Feature extraction,
Frequency-domain analysis, Inspection, Task analysis, Wavelet transforms
BibRef
Sidorov, O.,
Hardeberg, J.Y.,
Craquelure as a Graph: Application of Image Processing and Graph
Neural Networks to the Description of Fracture Patterns,
eHeritage19(1429-1436)
IEEE DOI
2004
art, cracks, feature extraction, graph theory, image classification,
image representation, learning (artificial intelligence),
Paintings classification
BibRef
Ting, Y.C.[Yu-Chieh],
Lin, D.T.[Daw-Tung],
Chen, C.F.[Chih-Feng],
Tsai, B.C.[Bor-Chen],
Automatic Optical Inspection for Millimeter Scale Probe Surface
Stripping Defects Using Convolutional Neural Network,
ACIVS20(360-369).
Springer DOI
2003
BibRef
Fang, F.,
Li, L.,
Rice, M.,
Lim, J.,
Towards Real-Time Crack Detection Using a Deep Neural Network With a
Bayesian Fusion Algorithm,
ICIP19(2976-2980)
IEEE DOI
1910
Deep neural network, objection detection, image segmentation, Bayesian fusion
BibRef
Mayr, M.,
Hoffmann, M.,
Maier, A.,
Christlein, V.,
Weakly Supervised Segmentation of Cracks on Solar Cells Using
Normalized Lp Norm,
ICIP19(1885-1889)
IEEE DOI
1910
crack detection, weakly supervised semantic segmentation,
EL imaging, solar cell, normalized Lp norm
BibRef
Jang, C.[Chanhee],
Yun, S.[Sangyun],
Hwang, H.[Hyejin],
Shin, H.[Hyunmin],
Kim, S.[SeongSoo],
Park, Y.[Yangsub],
A Defect Inspection Method for Machine Vision Using Defect Probability
Image with Deep Convolutional Neural Network,
ACCV18(I:142-154).
Springer DOI
1906
BibRef
Kobayashi, T.[Takumi],
Spiral-Net with F1-Based Optimization for Image-Based Crack Detection,
ACCV18(I:88-104).
Springer DOI
1906
BibRef
Dong, X.H.[Xing-Hui],
Taylor, C.J.[Chris J.],
Cootes, T.F.[Tim F.],
Small Defect Detection Using Convolutional Neural Network Features and
Random Forests,
CEFR-LCV18(IV:398-412).
Springer DOI
1905
BibRef
Costa-Jover, A.,
Coll-Pla, S.,
Queral Llaberia, J.,
Moreno García, D.,
Gas Llatge, A.,
Terrestrial Laser Scanner and Fast Characterization of Superficial
Lesions in Architectural Diagnosis,
3DARCH19(283-287).
DOI Link
1904
BibRef
Inoue, Y.,
Nagayoshi, H.,
Deployment Conscious Automatic Surface Crack Detection,
WACV19(686-694)
IEEE DOI
1904
automatic optical inspection, condition monitoring,
crack detection, geotechnical structures, image segmentation,
Semantics
BibRef
Yan, Y.,
Xiang, S.,
Asano, H.,
Kaneko, S.,
Accumulated Aggregation Shifting Based on Feature Enhancement for
Defect Detection on 3D Textured Low-Contrast Surfaces,
ICPR18(2965-2970)
IEEE DOI
1812
Surface treatment, Risk management,
Mathematical model, Visualization, Feature extraction, Brightness
BibRef
Ranzi, G.[Gianluca],
Vallati, O.[Osvaldo],
Cashen, I.[Ian],
A Methodology for the Inspection and Monitoring of the Roof Tiles and
Concrete Components of the Sydney Opera House,
EuroMed18(I:689-699).
Springer DOI
1811
BibRef
Ma, J.,
Wang, Y.,
Shi, C.,
Lu, C.,
Fast Surface Defect Detection Using Improved Gabor Filters,
ICIP18(1508-1512)
IEEE DOI
1809
Surface cracks, Hysteresis, Surface treatment, Rough surfaces,
Surface roughness, Standards, Surface texture, Defect Detection,
Surface Inspection
BibRef
Racki, D.,
Tomazevic, D.,
Skocaj, D.,
A Compact Convolutional Neural Network for Textured Surface Anomaly
Detection,
WACV18(1331-1339)
IEEE DOI
1806
cellular neural nets, feature extraction,
feedforward neural nets, image classification,
Visualization
BibRef
Kondo, N.,
Harada, M.,
Takagi, Y.,
Efficient Training for Automatic Defect Classification by Image
Augmentation,
WACV18(226-233)
IEEE DOI
1806
image classification, manufacturing processes,
production engineering computing,
Training
BibRef
Yu, N.,
Shen, X.,
Lin, Z.,
Mech, R.,
Barnes, C.,
Learning to Detect Multiple Photographic Defects,
WACV18(1387-1396)
IEEE DOI
1806
feedforward neural nets, image colour analysis, image denoising,
image filtering, image restoration,
Tools
BibRef
Filisbino, T.A.[Tiene A.],
Giraldi, G.A.[Gilson A.],
Simao, L.[Lucas],
Thomaz, C.E.[Carlos E.],
Combining Deep Learning and Multi-class Discriminant Analysis for
Granite Tiles Classification,
WVC17(19-24)
IEEE DOI
1804
feature extraction, image classification, image texture,
learning (artificial intelligence), neural nets, CNN,
texture classification
BibRef
Zapata, D.[Daniel],
Cruz-Roa, A.[Angel],
Jiménez, A.[Andrés],
Automatic Classification of Optical Defects of Mirrors from Ronchigram
Images Using Bag of Visual Words and Support Vector Machines,
CIARP17(719-726).
Springer DOI
1802
BibRef
Yu, Z.Y.[Zhi-Yang],
Wu, X.J.[Xiao-Jun],
Gu, X.D.[Xiao-Dong],
Fully Convolutional Networks for Surface Defect Inspection in
Industrial Environment,
CVS17(417-426).
Springer DOI
1711
BibRef
Bakri, A.E.,
Berrada, Y.,
Boumhidi, I.,
Bayesian regularized artificial neural network for fault detection
and isolation in wind turbine,
ISCV17(1-6)
IEEE DOI
1710
Artificial neural networks, Bayes methods, Fault detection,
Mathematical model, Sensors, Training, Wind turbines,
Artificial neural network, Bayesian regularization, DFIG,
Fault detection and isolation, Wind, Turbine
BibRef
Tassine, F.,
Ismail, B.,
Hybrid classifier for fault detection and isolation in wind turbine
based on data-driven,
ISCV17(1-8)
IEEE DOI
1710
Decision trees, Generators, Mathematical model, Neural networks,
Rotors, Sensors, Wind turbines, Back-propagation Neural Networks,
Bayes Statistical Algorithm, Classification, Data-Driven,
Decision Tree, Fault Detection and Isolation (FDI), Learning, wind, turbine
BibRef
Strisciuglio, N.[Nicola],
Azzopardi, G.[George],
Petkov, N.[Nicolai],
Brain-Inspired Robust Delineation Operator,
BrainDriven18(III:555-565).
Springer DOI
1905
BibRef
Earlier:
Detection of Curved Lines with B-COSFIRE Filters:
A Case Study on Crack Delineation,
CAIP17(I: 108-120).
Springer DOI
1708
BibRef
Schmugge, S.J.,
Rice, L.,
Lindberg, J.,
Grizziy, R.,
Joffey, C.,
Shin, M.C.,
Crack Segmentation by Leveraging Multiple Frames of Varying
Illumination,
WACV17(1045-1053)
IEEE DOI
1609
Image segmentation, Inspection, Lighting, Power generation, Videos,
Visualization, Welding
BibRef
Villalon-Hernandez, M.T.[Miyuki-Teri],
Almanza-Ojeda, D.L.[Dora-Luz],
Ibarra-Manzano, M.A.[Mario-Alberto],
Color-Texture Image Analysis for Automatic Failure Detection in Tiles,
MCPR17(159-168).
Springer DOI
1706
BibRef
Veitch-Michaelis, J.,
Tao, Y.,
Walton, D.,
Muller, J.P.,
Crutchley, B.,
Storey, J.,
Paterson, C.,
Chown, A.,
Crack Detection in 'As-Cast' Steel Using Laser Triangulation and
Machine Learning,
CRV16(342-349)
IEEE DOI
1612
3D reconstruction
BibRef
Kubatur, S.S.,
Comer, M.L.,
Rare event simulation for Markov random fields with application to
grain growth in crystals,
ICIP16(3748-3752)
IEEE DOI
1610
Computational modeling
BibRef
Chen, P.H.,
Ho, S.S.,
Is overfeat useful for image-based surface defect classification
tasks?,
ICIP16(749-753)
IEEE DOI
1610
Feature extraction
BibRef
Loyola-González, O.[Octavio],
Martínez-Trinidad, J.F.[José F.],
Carrasco-Ochoa, J.A.[Jesús A.],
Hernández-Tamayo, D.[Dayton],
García-Borroto, M.[Milton],
Detecting Pneumatic Failures on Temporary Immersion Bioreactors,
MCPR16(293-302).
Springer DOI
1608
BibRef
López-Leyva, R.[Rafael],
Rojas-Domínguez, A.[Alfonso],
Flores-Mendozaa, J.P.[Juan Pablo],
Casillas-Araiza, M.Á.[Miguel Ángel],
Santiago-Montero, R.[Raúl],
Comparing Threshold-Selection Methods for Image Segmentation:
Application to Defect Detection in Automated Visual Inspection Systems,
MCPR16(33-43).
Springer DOI
1608
BibRef
Schmugge, S.J.,
Rice, L.,
Nguyen, N.R.,
Lindberg, J.,
Grizzi, R.,
Joffe, C.,
Shin, M.C.,
Detection of cracks in nuclear power plant using spatial-temporal
grouping of local patches,
WACV16(1-7)
IEEE DOI
1606
Imaging
BibRef
Chmielewski, L.J.[Leszek J.],
Orlowski, A.[Arkadiusz],
Smietanska, K.[Katarzyna],
Górski, J.[Jaroslaw],
Krajewski, K.[Krzysztof],
Janowicz, M.[Maciej],
Wilkowski, J.[Jacek],
Kietlinska, K.[Krystyna],
Detection of Surface Defects of Type 'orange skin' in Furniture
Elements with Conventional Image Processing Methods,
GPID15(26-37).
Springer DOI
1603
BibRef
Williams, C.D.[Christopher D.],
Paul, M.[Manoranjan],
Debnath, T.[Tanmoy],
Enhancing Automated Defect Detection in Collagen Based Manufacturing by
Employing a Smart Machine Vision Technique,
RV15(155-166).
Springer DOI
1603
BibRef
Stent, S.[Simon],
Gherardi, R.[Riccardo],
Stenger, B.[Björn],
Cipolla, R.[Roberto],
Detecting Change for Multi-View, Long-Term Surface Inspection,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Cheng, J.R.[Jie-Rong],
Xiong, W.[Wei],
Wang, Y.[Yue],
Chia, S.C.[Shue Ching],
Chen, W.Y.[Wen-Yu],
Du, J.[Jia],
Gu, Y.[Ying],
Kow, V.T.S.[Victor Ter Shen],
CHORD: Cascaded and a contrario method for hole crack detection,
ICIP15(3300-3304)
IEEE DOI
1512
BibRef
Lagache, T.[Thibault],
Marcou, Q.[Quentin],
Bardonnet, A.[Antoine],
Rotureau, B.[Brice],
Bastin, P.[Philippe],
Olivo-Marin, J.C.[Jean-Christophe],
Using steerable wavelets and minimal paths to reconstruct
automatically filaments in fluorescence imaging,
ICIP15(706-709)
IEEE DOI
1512
Filament detection
BibRef
Funahashi, T.,
Taki, K.,
Koshimizu, H.,
Kaneko, A.,
Fast and robust visual inspection system for tire surface thin defect,
FCV15(1-6)
IEEE DOI
1506
inspection
BibRef
Drogoul, A.[Audric],
Aubert, G.[Gilles],
Auroux, D.[Didier],
Topological gradient for a fourth order PDE and application to the
detection of fine structures in 2D and 3D images,
ICIP14(1703-1707)
IEEE DOI
1502
e.g. filaments.
BibRef
Tsai, Y.C.J.[Yi-Chang James],
Jiang, C.L.[Cheng-Long],
Wang, Z.H.[Zhao-Hua],
Implementation of automatic crack evaluation using Crack Fundamental
Element,
ICIP14(773-777)
IEEE DOI
1502
Accuracy
BibRef
von Enzberg, S.[Sebastian],
Al-Hamadi, A.[Ayoub],
A Defect Recognition System for Automated Inspection of Non-rigid
Surfaces,
ICPR14(1812-1816)
IEEE DOI
1412
Inspection
BibRef
Ma, L.[Ling],
Liu, W.[Wei],
Liu, Y.M.[Yu-Min],
Jiang, H.Q.[Hui-Qin],
An Automatic Detection Algorithm for Surface Defects in TFT-LCD,
ACPR13(847-851)
IEEE DOI
1408
cost reduction
BibRef
Landstrom, A.,
Thurley, M.J.,
Jonsson, H.,
Sub-Millimeter Crack Detection in Casted Steel Using Color
Photometric Stereo,
DICTA13(1-7)
IEEE DOI
1412
cracks
BibRef
Delis, S.[Sotirios],
Nikolaidis, N.[Nikos],
Pitas, I.[Ioannis],
Automatic 3D defects identification in stereoscopic videos,
ICIP13(2227-2231)
IEEE DOI
1412
3D quality; disparity; stereo video
BibRef
Briceño, C.[Carlos],
Rivera-Rovelo, J.[Jorge],
Acuña, N.[Narciso],
Crack's Detection, Measuring and Counting for Resistance's Tests Using
Images,
CIARP13(II:142-149).
Springer DOI
1311
BibRef
Hahn, A.[Andreas],
Ziebarth, M.[Mathias],
Heizmann, M.[Michael],
Rieder, A.[Andreas],
Defect Classification on Specular Surfaces Using Wavelets,
SSVM13(501-512).
Springer DOI
1305
BibRef
Choi, J.[Jiwon],
Kim, C.[Changick],
Unsupervised detection of surface defects: A two-step approach,
ICIP12(1037-1040).
IEEE DOI
1302
BibRef
von Enzberg, S.[Sebastian],
Michaelis, B.[Bernd],
Surface Quality Inspection of Deformable Parts with Variable B-spline
Surfaces,
DAGM12(175-184).
Springer DOI
1209
BibRef
Shih, Y.C.[Yi Chang],
Davis, A.[Abe],
Hasinoff, S.W.[Samuel W.],
Durand, F.[Fredo],
Freeman, W.T.[William T.],
Laser speckle photography for surface tampering detection,
CVPR12(33-40).
IEEE DOI
1208
BibRef
Liu, L.H.[Ling-Hui],
Zeng, L.[Li],
Bi, B.[Bi],
A Unified Method Based on Wavelet Transform and C-V Model for Crack
Segmentation of 3D Industrial CT Images,
ICIG11(12-16).
IEEE DOI
1109
BibRef
Hu, H.[Han],
Gu, Q.Q.[Quan-Quan],
Zhou, J.[Jie],
HTF: a novel feature for general crack detection,
ICIP10(1633-1636).
IEEE DOI
1009
BibRef
Oliveira, H.[Henrique],
Correia, P.L.[Paulo Lobato],
CrackIT: An image processing toolbox for crack detection and
characterization,
ICIP14(798-802)
IEEE DOI
1502
Classification algorithms
BibRef
Hampel, U.,
Crack Detection In Load Tests For Civil Engineering Material Testing By
Digital Closed Range Photogrammetry: Algorithms And Applications,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Skarlatos, D.,
Bakolias, C.,
Industrial Inspection And Checking Of Marble Tiles,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Aiger, D.[Dror],
Talbot, H.[Hugues],
The phase only transform for unsupervised surface defect detection,
CVPR10(295-302).
IEEE DOI
1006
BibRef
Cheng, J.Z.[Jian-Zheng],
Li, D.J.[De-Jun],
Wei, Z.G.[Zhi-Gang],
Chu, M.J.[Mei-Juan],
Zhang, D.J.[De-Jun],
Application of Fuzzy Pattern Recognition in Ultrasonic Transverse Wave
Detection of Wheel Flaws,
CISP09(1-5).
IEEE DOI
0910
BibRef
Nakazawa, M.[Mitsuru],
Aoki, Y.[Yoshimitsu],
Kobayashi, M.[Masakazu],
Toda, H.[Hiroyuki],
3D image analysis for evaluating internal deformation/fracture
characteristics of materials,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tirronen, V.[Ville],
Neri, F.[Ferrante],
Karkkainen, T.[Tommi],
Majava, K.[Kirsi],
Rossi, T.[Tuomo],
A Memetic Differential Evolution in Filter Design for Defect Detection
in Paper Production,
EvoIASP07(320-329).
Springer DOI
0704
BibRef
d'Orazio, T.,
Leo, M.,
Guaragnella, C.,
Distante, A.,
Analysis of Image Sequences for Defect Detection in Composite Materials,
ACIVS07(855-864).
Springer DOI
0708
BibRef
Yue, K.[Kui],
Huber, D.F.[Daniel F.],
Akinci, B.[Burcu],
Krishnamurti, R.[Ramesh],
The ASDMCon Project:
The Challenge of Detecting Defects on Construction Sites,
3DPVT06(1048-1055).
IEEE DOI
0606
BibRef
Chowdhury, A.S.,
Bhattacharya, A.,
Bhandarkar, S.M.,
Datta, G.S.,
Yu, J.C.,
Figueroa, R.,
Hairline Fracture Detection using MRF and Gibbs Sampling,
WACV07(56-56).
IEEE DOI
0702
BibRef
Urano, T.,
Kaneko, S.,
Tanaka, T.,
Robust registration of defect set by local consistency of point data,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Frau, D.C.[David Cuesta],
Hernández-Fenollosa, M.Á.[María Ángeles],
Tormos, P.M.[Pau Micó],
Linares-Pellicer, J.[Jordi],
Segmentation of Nanocolumnar Crystals from Microscopic Images,
ICIAR05(55-62).
Springer DOI
0509
BibRef
Limas Serafim, A.F.,
Segmentation of natural images based on multiresolution pyramids
linking of the parameters of an autoregressive rotation invariant
model. Application to leather defects detection,
ICPR92(III:41-44).
IEEE DOI
9208
BibRef
Vieira, S.M.[Susana M.],
Sousa, J.M.C.[João M. C.],
Pinto, J.R.C.[João R. Caldas],
Ant Based Fuzzy Modeling Applied to Marble Classification,
ICIAR06(II: 90-101).
Springer DOI
0610
See also Intelligent Real-Time Fabric Defect Detection.
BibRef
Sousa, J.M.C.[João M.C.],
Pinto, J.R.C.[João R. Caldas],
Comparison of Intelligent Classification Techniques Applied to Marble
Classification,
ICIAR04(II: 802-809).
Springer DOI
0409
BibRef
Amano, T.[Toshiyuki],
Correlation Based Image Defect Detection,
ICPR06(I: 163-166).
IEEE DOI
0609
BibRef
Bruno, R.[Roberto],
Cuoghi, L.[Lorenza],
Laurenge, P.[Pascal],
Quantitative Identification of Marbles Aesthetical Features,
IbPRIA05(II:674).
Springer DOI
0509
BibRef
Viana, R.[Roberto],
Rodrigues, R.B.[Ricardo B.],
Alvarez, M.A.[Marco A.],
Pistori, H.[Hemerson],
SVM with Stochastic Parameter Selection for Bovine Leather Defect
Classification,
PSIVT07(600-612).
Springer DOI
0712
BibRef
Ai, J.Y.[Jiao-Yan],
Di, L.[Liu],
Zhu, X.F.[Xue-Feng],
Combination of wavelet analysis and color applied to automatic color
grading of ceramic tiles,
ICPR04(III: 235-238).
IEEE DOI
0409
BibRef
Jia, H.B.[Hong-Bin],
Murphey, Y.L.[Yi Lu],
Shi, J.J.[Jian-Jun],
Chang, T.S.[Tzyy-Shuh],
An intelligent real-time vision system for surface defect detection,
ICPR04(III: 239-242).
IEEE DOI
0409
BibRef
Eisele, H.,
Hamprecht, F.A.,
A New Approach for Defect Detection in X-ray CT Images,
DAGM02(345 ff.).
Springer DOI
0303
BibRef
Toth, D.,
Condurache, A.P.[Alexandru Paul],
Aach, T.[Til],
A two-stage-classifier for defect classification in optical media
inspection,
ICPR02(IV: 373-376).
IEEE DOI
0211
BibRef
Gupta, P.,
Doermann, D.,
DeMenthon, D.F.,
Beam search for feature selection in automatic SVM defect
classification,
ICPR02(II: 212-215).
IEEE DOI
0211
BibRef
Maalmi, K.,
El-Ouaazizi, A.,
Benslimane, R.,
Lew, L.F.C.,
Voon, Y.[Yan],
Diou, A.,
Gorria, P.,
Crack defect detection and localization using genetic-based inverse
voting Hough transform,
ICPR02(III: 257-260).
IEEE DOI
0211
BibRef
Martínez-Cabeza-de-Vaca-Alajarín, J.[Juan],
Tomás-Balibrea, L.M.[Luis-Manuel],
Automatic Classification System of Marble Slabs in Production Line
According to Texture and Color Using Artificial Neural Networks,
CAIP99(167-174).
Springer DOI
9909
BibRef
Chetverikov, D.[Dmitry],
Khenokh, Y.[Yuri],
Matching for Shape Defect Detection,
CAIP99(367-374).
Springer DOI
9909
BibRef
Kobayashi, H.H.,
Hara, Y.,
Doi, H.,
Takai, K.,
Sumiya, A.,
Hybrid Defect Detection Method Based on Shape Measurement and
Feature Extraction for Complex Patterns,
MVA98(xx-yy).
BibRef
9800
Pakkanen, J.[Jussi],
Ilvesmäki, A.[Antti],
Iivarinen, J.[Jukka],
Defect Image Classification and Retrieval with MPEG-7 Descriptors,
SCIA03(349-355).
Springer DOI
0310
BibRef
Visa, A.[Ari],
Iivarinen, J.[Jukka],
An Adaptive Texture and Shape Based Defect Classification,
ICPR98(Vol I: 117-122).
IEEE DOI
9808
BibRef
Iivarinen, J.[Jukka],
Rauhamaa, J.[Juhani], and
Visa, A.[Ari],
An Adaptive Two-Stage Approach to Classification of Surface Defects,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Anzalone, A.,
Machí, A.,
Visual detection of defects in moulded plastic drippers,
CAIP95(802-807).
Springer DOI
9509
BibRef
Bruzzone, L.,
Roli, F.,
Serpico, S.B.,
Crack detection by a measure of texture anisotropy,
CIAP95(743-747).
Springer DOI
9509
BibRef
Azencott, R.,
Yao, J.,
Automated detection of cowhide defects using Markov random field
techniques,
ICPR94(A:791-793).
IEEE DOI
9410
BibRef
Sokolov, S.M.,
Treskunov, A.S.,
Automatic vision system for final test of liquid crystal display,
CRA92(1578-1582).
WWW Link.
BibRef
9200
Silven, O.,
Westman, T.,
Huotari, S.,
Hakalahti, H.,
A Defect Analysis Method for Visual Inspection,
ICPR86(868-870).
BibRef
8600
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Glass, Panes, Panels, Bottles .