Huber, P.J.,
Robust Statistics,
John
Wiley&Sons, New York, 1981.
The place to start to know what it all means.
BibRef
8100
Besl, P.J.,
Birch, J.B.,
Watson, L.T.,
Robust Window Operators,
MVA(2), 1989, pp. 179-191.
BibRef
8900
Earlier:
ICCV88(591-600).
IEEE DOI
BibRef
Gupta, L.[Lalit],
Sayeh, M.R.[Mohammad R.],
Tammana, R.[Ravi],
A Neural Network Approach to Robust Shape Classification,
PR(23), No. 6, 1990, pp. 563-568.
Elsevier DOI 3 layer net.
BibRef
9000
Gutfinger, D.,
Sklansky, J.,
Robust classifiers by mixed adaptation,
PAMI(13), No. 6, June 1991, pp. 552-567.
IEEE DOI
BibRef
9106
Zhuang, X.,
Wang, T., and
Zhang, P.,
A Highly Robust Estimator through Partially Likelihood Function Modeling
and Its Application in Computer Vision,
PAMI(14), No. 1, January 1992, pp. 19-35.
IEEE DOI
BibRef
9201
Zhuang, X., and
Zhang, P.,
A Highly Robust Estimator for Computer Vision,
ICPR90(I: 545-550).
IEEE DOI
BibRef
9000
Hampshire, II, J.B., and
Waibel, A.,
The Meta-Pi Network: Building Distributed Knowledge Representations
for Robust Multisource Pattern Recognition,
PAMI(14), No. 7, July 1992, pp. 751-769.
IEEE DOI
BibRef
9207
Meer, P.[Peter],
Mintz, D.[Doron],
Kim, D.Y.[Dong Yoon],
Rosenfeld, A.[Azriel],
Robust Regression Methods for Computer Vision: A Review,
IJCV(6), No. 1, April 1991, pp. 59-70.
Springer DOI
BibRef
9104
Mintz, D.,
Meer, P., and
Rosenfeld, A.,
Consensus by Decomposition: A Paradigm for Fast High Breakdown
Point Robust Estimation,
DARPA92(345-362). More on the topic.
BibRef
9200
Meer, P.[Peter],
Robust High Breakdown Estimation and Consensus,
AMV Strategies921992, pp. 23-33.
See
See also Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.
BibRef
9200
Meer, P.,
Mintz, D., and
Rosenfeld, A.,
Analysis of the Least median of Squares Estimator for
Computer Vision Applications,
CVPR92(621-623).
IEEE DOI
BibRef
9200
Earlier:
Least Median of Squares Based Robust Analysis of Image Structure,
DARPA90(231-254).
Least Median. They also have papers in the Robust Vision Workshop on similar topics.
See also Robust Consensus Based Edge-Detection.
BibRef
Meer, P.,
Mintz, D., and
Rosenfeld, A.,
Robust Recovery of Precursive Polynomial Image Structure,
Robust90(xx).
BibRef
9000
Kim, D.Y.,
Kim, J.J.,
Meer, P.,
Mintz, D.,
Rosenfeld, A.,
Robust Computer Vision: A Least Median of Squares Based Approach,
DARPA89(1117-1134).
BibRef
8900
Mintz, D.,
Meer, P., and
Rosenfeld, A.,
A Fast, High Breakdown Point Robust Estimator for
Computer Vision Applications,
DARPA90(255-257).
BibRef
9000
Mintz, D.,
Robustness by Consensus,
UMD-CAR-TR-576. 1991.
BibRef
9100
Olson, C.F.[Clark F.],
An Approximation Algorithm for Least Median of Squares Regression,
IPL(63), No. 5, September 1997, 237-241.
Elsevier DOI
BibRef
9709
Li, S.Z.,
Discontinuous MRF Prior and Robust Statistics: A Comparative-Study,
IVC(13), No. 3, April 1995, pp. 227-233.
Elsevier DOI
BibRef
9504
Mount, D.M.,
Netanyahu, N.S.,
Computationally Efficient Algorithms for
High-Dimensional Robust Estimators,
GMIP(56), No. 4, July 1994, pp. 289-303.
BibRef
9407
Ney, H.[Hermann],
Essen, U.[Ute],
Kneser, R.[Reinhard],
On the Estimation of 'Small' Probabilities by Leaving-One-Out,
PAMI(17), No. 12, December 1995, pp. 1202-1212.
IEEE DOI Training samples are less than the number of possible classes.
BibRef
9512
Brunelli, R.,
Messelodi, S.,
Robust Estimation Of Correlation With Applications To Computer Vision,
PR(28), No. 6, June 1995, pp. 833-841.
Elsevier DOI
BibRef
9506
Zhou, P.,
Pycock, D.,
Robust Statistical-Models for Cell Image Interpretation,
IVC(15), No. 4, April 1997, pp. 307-316.
Elsevier DOI
9706
BibRef
Earlier:
Robust Statistical Model-Based Cell Image Interpretation,
BMVC95(xx-yy).
PDF File.
9509
BibRef
And:
Robust Model-Based Boundary Cue Generation for Cell Image
Interpretation,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Bosdogianni, P.,
Petrou, M.,
Kittler, J.V.,
Mixture-Models with Higher-Order Moments,
GeoRS(35), No. 2, March 1997, pp. 341-353.
IEEE Top Reference.
9704
BibRef
Bosdogianni, P.,
Petrou, M.,
Kittler, J.V.,
Mixed Pixel Classification with Robust Statistics,
GeoRS(35), No. 3, May 1997, pp. 551-559.
IEEE Top Reference.
9706
BibRef
Earlier:
Mixed Pixel Classification in Remote Sensing,
SPIE(2315), Image and Signal Processing for Remote Sensing,
Rome, September 1994, pp. 494-505.
BibRef
Bosdogianni, P.,
Kalviainen, H.,
Petrou, M.,
Kittler, J.V.,
Robust Unmixing of Large Sets of Mixed Pixels,
PRL(18), No. 5, May 1997, pp. 415-424.
9708
BibRef
Bosdogianni, P.,
Petrou, M.,
Kittler, J.V.,
Classification of Sets of Mixed Pixels with the
Hypothesis-Testing Hough Transform,
VISP(145), No. 1, February 1998, pp. 57-64.
9804
See also Hough Transform Algorithm with a 2D Hypothesis-Testing Kernel, A.
BibRef
Kalviainen, H.,
Bosdogianni, P.,
Petrou, M.,
Kittler, J.V.,
Mixed Pixel Classification with the Randomized Hough Transform,
ICPR96(II: 576-580).
IEEE DOI
9608
(Univ. of Surrey, UK)
BibRef
Lang, G.K.,
Seitz, P.,
Robust Classification of Arbitrary Object Classes Based on
Hierarchical Spatial Feature-Matching,
MVA(10), No. 3, 1997, pp. 123-135.
Springer DOI
9709
BibRef
Kundur, D.,
Hatzinakos, D., and
Leung, H.,
Robust Classification of Blurred Imagery,
IP(9), No. 2, February 2000, pp. 243-255.
IEEE DOI
0003
BibRef
Earlier:
A Novel Approach to Robust Blind Classification of
Remote Sensing Imagery,
ICIP97(III: 130-133).
IEEE DOI
BibRef
Meer, P.[Peter],
Stewart, C.V.[Charles V.],
Tyler, D.E.[David E.],
Robust Computer Vision: An Interdisciplinary Challenge,
CVIU(78), No. 1, April 2000, pp. 1-7.
DOI Link
HTML Version. Robust Techniques. Special Issue introduction.
0004
BibRef
Meer, P.[Peter],
From a robust hierarchy to a hierarchy of robustness,
FIU01(323-347).
HTML Version.
BibRef
0100
Kim, M.H.[Mun-Hwa],
Jang, D.S.[Dong-Sik],
Yang, Y.K.[Young-Kyu],
A robust-invariant pattern recognition model using Fuzzy ART,
PR(34), No. 8, August 2001, pp. 1685-1696.
Elsevier DOI
0105
BibRef
Shoham, S.[Shy],
Robust clustering by deterministic agglomeration EM of mixtures of
multivariate t-distributions,
PR(35), No. 5, May 2002, pp. 1127-1142.
Elsevier DOI
0202
BibRef
Li, Y.H.[Yu-Hua],
Pont, M.J.[Michael J.],
Jones, N.B.[N. Barrie],
Improving the performance of radial basis function classifiers in
condition monitoring and fault diagnosis applications where 'unknown' faults
may occur,
PRL(23), No. 5, March 2002, pp. 569-577.
Elsevier DOI
0202
BibRef
Wang, Z.D.[Zi-Dong],
Liu, X.H.[Xiao-Hui],
Robust stability of two-dimensional uncertain discrete systems,
SPLetters(10), No. 5, May 2003, pp. 133-136.
IEEE Top Reference.
0304
BibRef
And:
Corrections:
SPLetters(10), No. 8, August 2003, pp. 250-250.
IEEE Abstract.
0308
BibRef
Sebe, N.[Nicu],
Lew, M.S.[Michael S.],
Robust Computer Vision Theory and Applications,
KluwerApril 2003.
ISBN 1-4020-1293-4.
WWW Link.
BibRef
0304
Ouyang, S.,
Ching, P.C.,
Lee, T.,
Robust adaptive quasi-Newton algorithms for eigensubspace estimation,
VISP(150), No. 4, October 2003, pp. 321-330.
IEEE Abstract.
0401
BibRef
Li, Y.M.[Yong-Min],
On incremental and robust subspace learning,
PR(37), No. 7, July 2004, pp. 1509-1518.
Elsevier DOI
0405
BibRef
Meer, P.[Peter],
Robust Techniques for Computer Vision,
ETCV04(Chapter 4).
BibRef
0400
Ma, J.H.[Jiang-Hong],
Leung, Y.[Yee],
Luo, J.C.[Jian-Cheng],
A highly robust estimator for regression models,
PRL(27), No. 1, 1 January 2006, pp. 29-36.
Elsevier DOI
0512
BibRef
Fidler, S.[Sanja],
Skocaj, D.[Danijel],
Leonardis, A.[Ale],
Combining Reconstructive and Discriminative Subspace Methods for Robust
Classification and Regression by Subsampling,
PAMI(28), No. 3, March 2006, pp. 337-350.
IEEE DOI
0602
PCA can help in reconstructing missing data. LDA for classification.
BibRef
Skocaj, D.[Danijel],
Leonardis, A.[Ale],
Bischof, H.[Horst],
Weighted and robust learning of subspace representations,
PR(40), No. 5, May 2007, pp. 1556-1569.
Elsevier DOI
0702
BibRef
Earlier: A1, A2, Only:
Weighted and robust incremental method for subspace learning,
ICCV03(1494-1501).
IEEE DOI
0311
Appearance-based modeling; Robust learning; Principal component analysis;
Weighted PCA; Missing pixels; Robust PCA
BibRef
Skocaj, D.[Danijel],
Leonardis, A.[Ales],
Incremental and robust learning of subspace representations,
IVC(26), No. 1, 1 January 2008, pp. 27-38.
Elsevier DOI
0711
Subspace learning; Incremental learning; Robust learning
BibRef
Skocaj, D.[Danijel],
Leonardis, A.[Ale],
Robust recognition and pose determination of 3-D objects using range
images in eigenspace approach,
3DIM01(171-178).
IEEE DOI
0106
BibRef
Franti, P.[Pasi],
Virmajoki, O.[Olli],
Hautamaki, V.,
Fast Agglomerative Clustering Using a k-Nearest Neighbor Graph,
PAMI(28), No. 11, November 2006, pp. 1875-1881.
IEEE DOI
0609
BibRef
Hautamaki, V.[Ville],
Kinnunen, T.[Tomi],
Franti, P.[Pasi],
Text-independent speaker recognition using graph matching,
PRL(29), No. 9, 1 July 2008, pp. 1427-1432.
Elsevier DOI
0711
Affine transformation invariance; Graph matching; Structural matching;
kNN graph; Clustering; Speaker recognition
BibRef
Hillenbrand, U.[Ulrich],
Consistent parameter clustering: Definition and analysis,
PRL(28), No. 9, 1 July 2007, pp. 1112-1122.
Elsevier DOI
0704
Robust estimation; Clustering; Hough transform; Statistical consistency
BibRef
Hoseinnezhad, R.[Reza],
Bab-Hadiashar, A.[Alireza],
Consistency of robust estimators in multi-structural visual data
segmentation,
PR(40), No. 12, December 2007, pp. 3677-3690.
Elsevier DOI
0709
BibRef
And:
A Novel High Breakdown M-estimator for Visual Data Segmentation,
ICCV07(1-6).
IEEE DOI
0710
Robust scale estimation; Robust model fitting; Consistent estimators
BibRef
Hoseinnezhad, R.[Reza],
Bab-Hadiashar, A.[Alireza],
An M-estimator for high breakdown robust estimation in computer vision,
CVIU(115), No. 8, August 2011, pp. 1145-1156.
Elsevier DOI
1101
Image segmentation; Image motion analysis; Optimization methods;
Parameter estimation
BibRef
Bab-Hadiashar, A.[Alireza],
Hoseinnezhad, R.[Reza],
Bridging Parameter and Data Spaces for Fast Robust Estimation in
Computer Vision,
DICTA08(1-8).
IEEE DOI
0812
BibRef
Hoseinnezhad, R.[Reza],
Bab-Hadiashar, A.[Alireza],
Multi-Bernoulli sample consensus for simultaneous robust fitting of
multiple structures in machine vision,
SIViP(9), No. 7, October 2015, pp. 1727-1736.
WWW Link.
1509
BibRef
Teng, F.[Fei],
Chen, Y.X.[Yi-Xin],
Dang, X.[Xin],
Multiclass classification with potential function rules:
Margin distribution and generalization,
PR(45), No. 1, 2012, pp. 540-551.
Elsevier DOI
1410
Multiclass classification
BibRef
Polikar, R.[Robi],
DePasquale, J.[Joseph],
Mohammed, H.S.[Hussein Syed],
Brown, G.[Gavin],
Kuncheva, L.I.[Ludmilla I.],
Learn++.MF: A random subspace approach for the missing feature problem,
PR(43), No. 11, November 2010, pp. 3817-3832.
Elsevier DOI
1008
Missing data; Missing features; Ensemble of classifiers; Random subspace method
BibRef
Masnadi-Shirazi, H.[Hamed],
Vasconcelos, N.M.[Nuno M.],
Cost-Sensitive Boosting,
PAMI(33), No. 2, February 2011, pp. 294-309.
IEEE DOI
1101
losses minimized, emphaxize neighborhood of target boundary.
BibRef
Masnadi-Shirazi, H.[Hamed],
Mahadevan, V.[Vijay],
Vasconcelos, N.M.[Nuno M.],
On the design of robust classifiers for computer vision,
CVPR10(779-786).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Bhattacharyya, R.[Ramkishore],
Isolating top-k dense regions with filtration of sparse background,
PRL(32), No. 13, 1 October 2011, pp. 1554-1563.
Elsevier DOI
1109
Cohesion; Core clustering; Cohesive clusters; Top-k clustering
Find the optimal subset of points that cluster properly.
BibRef
Yu, J.[Jun],
Lin, F.[Feng],
Seah, H.S.[Hock-Soon],
Li, C.H.[Cui-Hua],
Lin, Z.Y.[Zi-Yu],
Image classification by multimodal subspace learning,
PRL(33), No. 9, 1 July 2012, pp. 1196-1204.
Elsevier DOI
1202
Subspace; Image classification; Semi-supervised learning;
Multimodality
BibRef
Kalina, J.[Jan],
Implicitly Weighted Methods in Robust Image Analysis,
JMIV(44), No. 3, November 2012, pp. 449-462.
WWW Link.
1209
BibRef
Ma, J.Y.[Jia-Yi],
Zhao, J.[Ji],
Tian, J.W.[Jin-Wen],
Bai, X.[Xiang],
Tu, Z.W.[Zhuo-Wen],
Regularized vector field learning with sparse approximation for
mismatch removal,
PR(46), No. 12, 2013, pp. 3519-3532.
Elsevier DOI
1308
Vector field learning
BibRef
Zhong, F.J.[Fu-Jin],
Li, D.F.[De-Fang],
Zhang, J.S.[Jia-Shu],
Robust locality preserving projection based on maximum correntropy
criterion,
JVCIR(25), No. 7, 2014, pp. 1676-1685.
Elsevier DOI
1410
Locality preserving projections
BibRef
Deng, Y.[Yue],
Bao, F.[Feng],
Deng, X.S.[Xue-Song],
Wang, R.P.[Rui-Ping],
Kong, Y.Y.[You-Yong],
Dai, Q.H.[Qiong-Hai],
Deep and Structured Robust Information Theoretic Learning for Image
Analysis,
IP(25), No. 9, September 2016, pp. 4209-4221.
IEEE DOI
1609
biological tissues
BibRef
Li, J.Y.[Jia-Yuan],
Hu, Q.W.[Qing-Wu],
Ai, M.Y.[Ming-Yao],
Zhong, R.F.[Ruo-Fei],
Robust feature matching via support-line voting and affine-invariant
ratios,
PandRS(132), No. 1, 2017, pp. 61-76.
Elsevier DOI
1710
Robust feature matching
BibRef
Li, Y.Q.[Ye-Qing],
Chen, C.[Chen],
Yang, F.[Fei],
Huang, J.Z.[Jun-Zhou],
Hierarchical Sparse Representation for Robust Image Registration,
PAMI(40), No. 9, September 2018, pp. 2151-2164.
IEEE DOI
1808
BibRef
Earlier:
Deep sparse representation for robust image registration,
CVPR15(4894-4901)
IEEE DOI
1510
BibRef
And: A1, A2, A4, Only:
Transformation-Invariant Collaborative Sub-representation,
ICPR14(3738-3743)
IEEE DOI
1412
Robustness, TV, Image registration, Tensile stress, Distortion,
Distortion measurement, Feature extraction, Image registration,
sparse learning.
Accuracy
BibRef
Wang, Y.L.[Yu-Long],
Tang, Y.Y.[Yuan Yan],
Li, L.Q.[Luo-Qing],
Zheng, X.W.[Xian-Wei],
Block sparse representation for pattern classification:
Theory, extensions and applications,
PR(88), 2019, pp. 198-209.
Elsevier DOI
1901
Representation based classifier, Block sparsity, Subspace, M-estimator
BibRef
Wang, Y.L.[Yu-Long],
Tang, Y.Y.[Yuan Yan],
Li, L.Q.[Luo-Qing],
Wang, P.[Patrick],
Information-theoretic atomic representation for robust pattern
classification,
ICPR16(3685-3690)
IEEE DOI
1705
Computational modeling, Databases,
Face recognition, Robustness, Training, data
BibRef
Ye, X.L.[Xu-Lun],
Zhao, J.Y.[Jie-Yu],
Multi-manifold clustering: A graph-constrained deep nonparametric
method,
PR(93), 2019, pp. 215-227.
Elsevier DOI
1906
Multi-manifold clustering, Image generation,
Dirichlet process mixture model, Variational inference, Graph,
Deep neural network
BibRef
Liang, Z.Z.[Zhi-Zheng],
Chen, X.W.[Xue-Wen],
Zhang, L.[Lei],
Liu, J.[Jin],
Zhou, Y.[Yong],
Correlation classifiers based on data perturbation:
New formulations and algorithms,
PR(100), 2020, pp. 107106.
Elsevier DOI
2005
Correlation classifiers, data perturbation, divergence, PMMO,
Data classification
BibRef
Zhang, X.,
Liu, C.,
Suen, C.Y.,
Towards Robust Pattern Recognition: A Review,
PIEEE(108), No. 6, June 2020, pp. 894-922.
IEEE DOI
2006
Pattern recognition, Robustness, Task analysis, Neural networks,
Distributed control, Big Data, Machine intelligence,
robust pattern recognition
BibRef
Li, J.,
Zhang, J.,
Pang, N.,
Qin, X.,
Weighted Outlier Detection of High-Dimensional Categorical Data Using
Feature Grouping,
SMCS(50), No. 11, November 2020, pp. 4295-4308.
IEEE DOI
1806
Feature extraction, Anomaly detection, Correlation,
Machine learning algorithms, Clustering algorithms, Entropy,
outlier detection
BibRef
Zhang, M.H.[Miao-Hua],
Gao, Y.S.[Yong-Sheng],
Zhou, J.[Jun],
A unified weight learning and low-rank regression model for robust
complex error modeling,
PR(120), 2021, pp. 108147.
Elsevier DOI
2109
Regression, Weight learning, Low-rank approximation,
Generalized correntropy, Robust learning
BibRef
Li, Y.M.[Yi-Ming],
Wu, B.Y.[Bao-Yuan],
Feng, Y.[Yan],
Fan, Y.B.[Yan-Bo],
Jiang, Y.[Yong],
Li, Z.F.[Zhi-Feng],
Xia, S.T.[Shu-Tao],
Semi-supervised robust training with generalized perturbed
neighborhood,
PR(124), 2022, pp. 108472.
Elsevier DOI
2203
Adversarial Defense, Adversarial Learning,
Semi-supervised Learning, AI Security, Deep Learning, Classification
BibRef
Xu, Q.Q.[Qian-Qian],
Yang, Z.Y.[Zhi-Yong],
Jiang, Y.B.[Yang-Bangyan],
Cao, X.C.[Xiao-Chun],
Yao, Y.[Yuan],
Huang, Q.M.[Qing-Ming],
Not All Samples are Trustworthy: Towards Deep Robust SVP Prediction,
PAMI(44), No. 6, June 2022, pp. 3154-3169.
IEEE DOI
2205
Noise measurement, Annotations, Task analysis, Predictive models,
Robustness, Visualization, Training, probabilistic model
BibRef
Wei, J.F.[Jie-Fei],
Meng, Q.G.[Qing-Gang],
Yao, L.[Luyan],
Self-Adaptive Logit Balancing for Deep Learning Robustness in Computer
Vision,
CIAP22(I:548-559).
Springer DOI
2205
BibRef
Zhang, X.[Xue],
Sheng, Z.[Zehua],
Shen, H.L.[Hui-Liang],
FocusNet: Classifying better by focusing on confusing classes,
PR(129), 2022, pp. 108709.
Elsevier DOI
2206
Image classification, Inter-class correlations, Confusing classes
BibRef
Srivastava, A.[Amber],
Velicheti, R.K.[Raj K.],
Salapaka, S.M.[Srinivasa M.],
On the choice of number of superstates in the aggregation of Markov
chains,
PRL(159), 2022, pp. 181-188.
Elsevier DOI
2206
BibRef
Liu, C.[Cheng],
Wang, T.[Tong],
Liu, K.[Kun],
Zhang, X.Y.[Xin-Ying],
A Novel Sparse Bayesian Space-Time Adaptive Processing Algorithm to
Mitigate Off-Grid Effects,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Barath, D.[Daniel],
Noskova, J.[Jana],
Matas, J.G.[Jiri G.],
Marginalizing Sample Consensus,
PAMI(44), No. 11, November 2022, pp. 8420-8432.
IEEE DOI
2210
Data models, Estimation, Adaptation models, Optimization,
Computational modeling, Upper bound, Testing,
marginalization
BibRef
Baráth, D.,
Noskova, J.,
Ivashechkin, M.,
Matas, J.G.,
MAGSAC++, a Fast, Reliable and Accurate Robust Estimator,
CVPR20(1301-1309)
IEEE DOI
2008
Robustness, Data models, Estimation, Noise level,
Pattern recognition, Kernel
BibRef
He, J.C.[Jia-Cheng],
Wang, G.[Gang],
Cao, K.[Kui],
Diao, H.[He],
Wang, G.[Guotai],
Peng, B.[Bei],
Generalized minimum error entropy for robust learning,
PR(135), 2023, pp. 109188.
Elsevier DOI
2212
Generalized Gaussian density, Generalized error entropy,
Quantized generalized error entropy, Adaptive filtering, Multilayer perceptron
BibRef
Truong, G.[Giang],
Le, H.[Huu],
Zhang, E.[Erchuan],
Suter, D.[David],
Gilani, S.Z.[Syed Zulqarnain],
Unsupervised Learning for Maximum Consensus Robust Fitting: A
Reinforcement Learning Approach,
PAMI(45), No. 3, March 2023, pp. 3890-3903.
IEEE DOI
2302
BibRef
Earlier: A1, A3, A4, A3, A5:
Unsupervised Learning for Robust Fitting:
A Reinforcement Learning Approach,
CVPR21(10343-10352)
IEEE DOI
2111
Fitting, Unsupervised learning, Computational modeling, Q-learning,
Encoding, Task analysis, Maximum consensus, robust fitting,
reinforcement learning.
Structure from motion, Estimation, Training data.
BibRef
Pellegrino, N.[Nicholas],
Fieguth, P.W.[Paul W.],
Reza, P.H.[Parsin Haji],
K-Means for noise-insensitive multi-dimensional feature learning,
PRL(170), 2023, pp. 113-120.
Elsevier DOI
2306
Feature learning, Clustering, Photoacoustic remote sensing
BibRef
Han, X.Z.[Xin-Zhe],
Wang, S.H.[Shu-Hui],
Su, C.[Chi],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
General Greedy De-Bias Learning,
PAMI(45), No. 8, August 2023, pp. 9789-9805.
IEEE DOI
2307
Task analysis, Correlation, Training, Data models,
Question answering (information retrieval), Visualization,
robust learning
BibRef
Dolatabadi, H.M.[Hadi M.],
Erfani, S.M.[Sarah M.],
Leckie, C.[Christopher],
Adversarial Coreset Selection for Efficient Robust Training,
IJCV(131), No. 12, December 2023, pp. 3307-3331.
Springer DOI
2311
BibRef
Drenkow, N.[Nathan],
Unberath, M.[Mathias],
RobustCLEVR: A Benchmark and Framework for Evaluating Robustness in
Object-centric Learning,
WACV24(4506-4515)
IEEE DOI
2404
Training, Representation learning, Sensitivity, Image synthesis,
Computational modeling, Benchmark testing, Algorithms,
Image recognition and understanding
BibRef
Sarkar, S.[Soumyendu],
Babu, A.R.[Ashwin Ramesh],
Mousavi, S.[Sajad],
Carmichael, Z.[Zachariah],
Gundecha, V.[Vineet],
Ghorbanpour, S.[Sahand],
Gutierrez, R.L.[Ricardo Luna],
Guillen, A.[Antonio],
Naug, A.[Avisek],
Benchmark Generation Framework with Customizable Distortions for
Image Classifier Robustness,
WACV24(4406-4415)
IEEE DOI
2404
Analytical models, Sensitivity, Image color analysis,
Perturbation methods, Gaussian noise, Reinforcement learning,
adversarial attack and defense methods
BibRef
Yucel, M.K.[Mehmet Kerim],
Cinbis, R.G.[Ramazan Gokberk],
Duygulu, P.[Pinar],
HybridAugment++: Unified Frequency Spectra Perturbations for Model
Robustness,
ICCV23(5695-5705)
IEEE DOI
2401
BibRef
Bu, Q.W.[Qing-Wen],
Huang, D.[Dong],
Cui, H.M.[He-Ming],
Towards Building More Robust Models with Frequency Bias,
ICCV23(4379-4388)
IEEE DOI
2401
BibRef
Hong, H.[Hanbin],
Wang, B.H.[Bing-Hui],
Hong, Y.[Yuan],
UniCR: Universally Approximated Certified Robustness via Randomized
Smoothing,
ECCV22(V:86-103).
Springer DOI
2211
BibRef
Wei, X.[Xian],
Xu, Y.[Yangyu],
Huang, Y.H.[Yan-Hui],
Lv, H.R.[Hai-Rong],
Lan, H.[Hai],
Chen, M.S.[Ming-Song],
Tang, X.[Xuan],
Learning Extremely Lightweight and Robust Model with Differentiable
Constraints on Sparsity and Condition Number,
ECCV22(IV:690-707).
Springer DOI
2211
BibRef
Paul, W.[William],
Burlina, P.[Philippe],
Robustness and Adaptation to Hidden Factors of Variation,
ArtOfRobust22(122-129)
IEEE DOI
2210
Measurement, Semantics, Robustness, Data models, Pattern recognition
BibRef
Wang, Z.Q.[Zi-Qi],
Loog, M.[Marco],
Enhancing Classifier Conservativeness and Robustness by Polynomiality,
CVPR22(13317-13326)
IEEE DOI
2210
Deep learning, Computational modeling, Neural networks,
Training data, Tail, Robustness, Transfer/low-shot/long-tail learning
BibRef
Saikia, T.[Tonmoy],
Schmid, C.[Cordelia],
Brox, T.[Thomas],
Improving robustness against common corruptions with frequency biased
models,
ICCV21(10191-10200)
IEEE DOI
2203
Training, TV, Image coding, Convolution, Object detection, Distortion,
Representation learning,
BibRef
Yeo, T.[Teresa],
Kar, O.F.[Oguzhan Fatih],
Zamir, A.[Amir],
Robustness via Cross-Domain Ensembles,
ICCV21(12169-12179)
IEEE DOI
2203
Uncertainty, Neural networks, Merging, Training data, Robustness,
Task analysis, Machine learning architectures and formulations,
Scene analysis and understanding
BibRef
Liu, H.Z.[Hao-Zhe],
Wu, H.Q.[Hao-Qian],
Xie, W.C.[Wei-Cheng],
Liu, F.[Feng],
Shen, L.L.[Lin-Lin],
Group-wise Inhibition based Feature Regularization for Robust
Classification,
ICCV21(468-476)
IEEE DOI
2203
Training, Codes, Heuristic algorithms, Robustness,
Classification algorithms, Convolutional neural networks,
Representation learning
BibRef
Yuan, S.Y.[Si-Yang],
Li, Y.T.[Yi-Tong],
Wang, D.[Dong],
Bai, K.[Ke],
Carin, L.[Lawrence],
Carlson, D.[David],
Learning to Weight Filter Groups for Robust Classification,
WACV22(3321-3330)
IEEE DOI
2202
Training, Neural networks, Training data,
Data visualization, Big Data, Benchmark testing,
Deep Learning Object Detection/Recognition/Categorization
BibRef
Sarkar, A.[Anindya],
Sarkar, A.[Anirban],
Balasubramanian, V.N.[Vineeth N.],
Leveraging Test-Time Consensus Prediction for Robustness against
Unseen Noise,
WACV22(3564-3573)
IEEE DOI
2202
Training, Representation learning, Gaussian noise,
Speckle, Predictive models, Robustness,
Deep Learning -> Efficient Training and
Inference Methods for Networks Vision Systems and Applications
BibRef
Ibrahimi, S.[Sarah],
Sors, A.[Arnaud],
de Rezende, R.S.[Rafael Sampaio],
Clinchant, S.[Stéphane],
Learning with Label Noise for Image Retrieval by Selecting
Interactions,
WACV22(468-477)
IEEE DOI
2202
Training, Image retrieval, Benchmark testing,
Noise measurement, Image classification, Learning and Optimization
BibRef
Go, H.[Hyojun],
Byun, J.[Junyoung],
Kim, C.[Changick],
Rethinking Training Schedules for Verifiably Robust Networks,
ICIP21(464-468)
IEEE DOI
2201
Training, Deep learning, Schedules, Analytical models,
Perturbation methods, Image processing, Adversarial robustness
BibRef
Lakshya, L.[Lakshya],
Behaviour of Sample Selection Techniques Under Explicit Regularization,
ISVC21(I:331-340).
Springer DOI
2112
BibRef
Chang, C.H.[Chun-Hao],
Adam, G.A.[George Alexandru],
Goldenberg, A.[Anna],
Towards Robust Classification Model by Counterfactual and Invariant
Data Generation,
CVPR21(15207-15216)
IEEE DOI
2111
Industries, Correlation, Image recognition,
Annotations, Computational modeling, Machine learning
BibRef
Ortego, D.[Diego],
Arazo, E.[Eric],
Albert, P.[Paul],
O'Connor, N.E.[Noel E.],
McGuinness, K.[Kevin],
Multi-Objective Interpolation Training for Robustness to Label Noise,
CVPR21(6602-6611)
IEEE DOI
2111
Training, Deep learning, Interpolation, Prototypes, Robustness,
Noise robustness, Pattern recognition
BibRef
Qu, Y.T.[Yun-Tao],
Mo, S.S.[Sha-Sha],
Niu, J.W.[Jian-Wei],
DAT: Training Deep Networks Robust to Label-Noise by Matching the
Feature Distributions,
CVPR21(6817-6825)
IEEE DOI
2111
Training, Codes, Feature extraction,
Extraterrestrial measurements, Generators, Pattern recognition
BibRef
Cazenavette, G.[George],
Murdock, C.[Calvin],
Lucey, S.[Simon],
Architectural Adversarial Robustness: The Case for Deep Pursuit,
CVPR21(7146-7154)
IEEE DOI
2111
Deep learning, Resistance, Sensitivity,
Sparse representation, Robustness
BibRef
Awasthi, P.[Pranjal],
Yu, G.[George],
Ferng, C.S.[Chun-Sung],
Tomkins, A.[Andrew],
Juan, D.C.[Da-Cheng],
Adversarial Robustness Across Representation Spaces,
CVPR21(7604-7612)
IEEE DOI
2111
Training, Deep learning, Perturbation methods,
Neural networks, Robustness, Pattern recognition
BibRef
Nam, H.[Hyeonseob],
Lee, H.J.[Hyun-Jae],
Park, J.[Jongchan],
Yoon, W.J.[Won-Jun],
Yoo, D.G.[Dong-Geun],
Reducing Domain Gap by Reducing Style Bias,
CVPR21(8686-8695)
IEEE DOI
2111
Adaptation models, Shape, Decision making,
Aerospace electronics, Robustness, Encoding
BibRef
Zhang, H.Y.[Hai-Yang],
Xing, X.M.[Xi-Ming],
Liu, L.[Liang],
DualGraph: A graph-based method for reasoning about label noise,
CVPR21(9649-9658)
IEEE DOI
2111
Training, Recurrent neural networks,
Reliability engineering, Graph neural networks, Robustness, Pattern recognition
BibRef
Mackowiak, R.[Radek],
Ardizzone, L.[Lynton],
Köthe, U.[Ullrich],
Rother, C.[Carsten],
Generative Classifiers as a Basis for Trustworthy Image
Classification,
CVPR21(2970-2980)
IEEE DOI
2111
Training, Deep learning, Computational modeling,
Robustness, Pattern recognition
BibRef
Burns, C.[Collin],
Steinhardt, J.[Jacob],
Limitations of Post-Hoc Feature Alignment for Robustness,
CVPR21(2525-2533)
IEEE DOI
2111
To improve robustness.
Training, Knowledge engineering, Neural networks,
Buildings, Benchmark testing, Robustness
BibRef
Collier, M.[Mark],
Mustafa, B.[Basil],
Kokiopoulou, E.[Efi],
Jenatton, R.[Rodolphe],
Berent, J.[Jesse],
Correlated Input-Dependent Label Noise in Large-Scale Image
Classification,
CVPR21(1551-1560)
IEEE DOI
2111
Training, Correlation, Uncertainty, Neural networks, Estimation,
Probabilistic logic, Pattern recognition
BibRef
Serrurier, M.[Mathieu],
Mamalet, F.[Franck],
González-Sanz, A.[Alberto],
Boissin, T.[Thibaut],
Loubes, J.M.[Jean-Michel],
del Barrio, E.[Eustasio],
Achieving robustness in classification using optimal transport with
hinge regularization,
CVPR21(505-514)
IEEE DOI
2111
Computational modeling, Transportation,
Estimation, Fasteners, Robustness, Pattern recognition
BibRef
Shibzukhov, Z.M.[Zaur M.],
Semenov, T.A.[Timofey A.],
Machine Learning Based on Minimizing Robust Mean Estimates,
IMTA20(112-119).
Springer DOI
2103
BibRef
Li, A.[Ao],
Chen, J.J.[Jia-Jia],
Chen, D.[Deyun],
Sun, G.L.[Guang-Lu],
Multiview Similarity Learning for Robust Visual Clustering,
MMHUA20(168-183).
Springer DOI
2103
BibRef
Sun, G.[Guolei],
Khan, S.[Salman],
Li, W.[Wen],
Cholakkal, H.[Hisham],
Khan, F.S.[Fahad Shahbaz],
Van Gool, L.J.[Luc J.],
Fixing Localization Errors to Improve Image Classification,
ECCV20(XXV:271-287).
Springer DOI
2011
BibRef
Peng, X.J.[Xiao-Jiang],
Wang, K.[Kai],
Zeng, Z.Y.[Zhao-Yang],
Li, Q.[Qing],
Yang, J.F.[Jian-Fei],
Qiao, Y.[Yu],
Suppressing Mislabeled Data via Grouping and Self-attention,
ECCV20(XVI: 786-802).
Springer DOI
2010
BibRef
Sarhan, M.H.[Mhd Hasan],
Navab, N.[Nassir],
Eslami, A.[Abouzar],
Albarqouni, S.[Shadi],
Fairness by Learning Orthogonal Disentangled Representations,
ECCV20(XXIX: 746-761).
Springer DOI
2010
BibRef
Hayes, J.[Jamie],
Extensions and limitations of randomized smoothing for robustness
guarantees,
AML-CV20(3413-3421)
IEEE DOI
2008
Smoothing methods, Robustness, Perturbation methods,
Random variables, Visualization
BibRef
Li, Y.,
Vasconcelos, N.M.[Nuno M.],
Background Data Resampling for Outlier-Aware Classification,
CVPR20(13215-13224)
IEEE DOI
2008
Training, Data models, Image recognition, Task analysis, Standards,
Entropy, Computational complexity
BibRef
Laugros, A.,
Caplier, A.,
Ospici, M.,
Are Adversarial Robustness and Common Perturbation Robustness
Independent Attributes ?,
RLQ19(1045-1054)
IEEE DOI
2004
neural nets, perturbation techniques, robust control,
adversarial robustness, adversarial examples study,
Adversarial Examples
BibRef
Huang, W.[Wei],
Yue, X.D.[Xiao-Dong],
Zhong, C.M.[Cai-Ming],
Zhang, N.[Nan],
Rough Neighborhood Covering Reduction for robust classification,
ICPR16(3308-3313)
IEEE DOI
1705
Algorithm design and analysis, Approximation algorithms,
Classification algorithms, Data models, Robustness, Rough sets, Uncertainty
BibRef
Vinh, N.X.[Nguyen Xuan],
Erfani, S.,
Paisitkriangkrai, S.,
Bailey, J.,
Leckie, C.,
Ramamohanarao, K.,
Training robust models using Random Projection,
ICPR16(531-536)
IEEE DOI
1705
Artificial neural networks, Data models, Learning systems,
Robustness, Training, Training data
BibRef
Hou, J.[Jian],
E, X.[Xu],
Chi, L.[Lei],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
Robust Clustering Based on Dominant Sets,
ICPR14(1466-1471)
IEEE DOI
1412
Clustering algorithms
BibRef
Hou, J.[Jian],
Xu, E.,
Chi, L.[Lei],
Xia, Q.[Qi],
Qi, N.M.[Nai-Ming],
DSET: A robust clustering algorithm,
ICIP13(3795-3799)
IEEE DOI
1402
clustering
BibRef
Huang, D.[Dong],
Cabral, R.S.[Ricardo Silveira],
de la Torre, F.[Fernando],
Robust Regression,
ECCV12(IV: 616-630).
Springer DOI
1210
BibRef
Lu, C.Y.[Can-Yi],
Min, H.[Hai],
Zhao, Z.Q.[Zhong-Qiu],
Zhu, L.[Lin],
Huang, D.S.[De-Shuang],
Yan, S.C.[Shui-Cheng],
Robust and Efficient Subspace Segmentation via Least Squares Regression,
ECCV12(VII: 347-360).
Springer DOI
1210
BibRef
Evans, H.,
Zhang, M.,
Particle swarm optimisation for object classification,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Bauckhage, C.[Christian],
Probabilistic Diffusion Classifiers for Object Detection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Robust Tensor Classifiers for Color Object Recognition,
ICIAR07(352-363).
Springer DOI
0708
BibRef
Raducanu, B.[Bogdan],
Vitriŕ, J.[Jordi],
Incremental Subspace Learning for Cognitive Visual Processes,
BVAI07(214-223).
Springer DOI
0710
BibRef
Ferraz, L.,
Felip, R.,
Martínez, B.,
Binefa, X.,
A Density-Based Data Reduction Algorithm for Robust Estimators,
IbPRIA07(II: 355-362).
Springer DOI
0706
BibRef
Xiong, L.[Liang],
Li, J.G.[Jian-Guo],
Zhang, C.S.[Chang-Shui],
Discriminant Additive Tangent Spaces for Object Recognition,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Khurd, P.[Parmeshwar],
Baloch, S.H.[Sajjad H.],
Gur, R.[Ruben],
Davatzikos, C.[Christos],
Verma, R.[Ragini],
Manifold Learning Techniques in Image Analysis of High-dimensional
Diffusion Tensor Magnetic Resonance Images,
ComponentAnalysis07(1-7).
IEEE DOI
0706
BibRef
Duin, R.P.W.[Robert P. W.],
Fred, A.L.N.[Ana L.N.],
Loog, M.[Marco],
Pekalska, E.[El˙zbieta],
Mode Seeking Clustering by KNN and Mean Shift Evaluated,
SSSPR12(51-59).
Springer DOI
1211
BibRef
Zheng, W.M.[Wen-Ming],
Tang, X.[Xiaoou],
A Robust Algorithm for Generalized Orthonormal Discriminant Vectors,
ICPR06(II: 784-787).
IEEE DOI
0609
BibRef
Felsberg, M.[Michael],
Granlund, G.H.[Gosta H.],
P-Channels: Robust Multivariate M-Estimation of Large Datasets,
ICPR06(III: 262-267).
IEEE DOI
0609
BibRef
Yang, F.W.[Fu-Wen],
Lin, H.J.[Hwei-Jen],
Wang, P.S.P.[Patrick S. P.],
Wu, H.H.[Hung-Hsuan],
Robust Clustering based on Winner-Population Markov Chain,
ICPR06(II: 589-592).
IEEE DOI
0609
BibRef
Cao, W.B.[Wen-Bo],
Haralick, R.M.[Robert M.],
Nonlinear Manifold Clustering By Dimensionality,
ICPR06(I: 920-924).
IEEE DOI
0609
BibRef
Hou, X.W.[Xin-Wen],
Liu, C.L.[Cheng-Lin],
Tan, T.N.[Tie-Niu],
Learning Boosted Asymmetric Classifiers for Object Detection,
CVPR06(I: 330-338).
IEEE DOI
0606
BibRef
Kaufhold, J.[John],
Abbott, J.[Justin],
Kaucic, R.[Robert],
Distributed Cost Boosting and Bounds on Mis-classification Cost,
CVPR06(I: 146-153).
IEEE DOI
0606
Cost sensitive boosting for industrial applications.
BibRef
Yan, W.[Wang],
Liu, Q.S.[Qing-Shan],
Lu, H.Q.[Han-Qing],
Ma, S.D.[Song-De],
Multiple Similarities Based Kernel Subspace Learning for Image
Classification,
ACCV06(II:244-253).
Springer DOI
0601
BibRef
Grossmann, E.[Etienne],
AdaTree: Boosting a Weak Classifier into a Decision Tree,
LCV04(105).
IEEE DOI
0406
BibRef
Souvenir, R.[Richard],
Pless, R.[Robert],
Manifold Clustering,
ICCV05(I: 648-653).
IEEE DOI
0510
Separating intersecting classes.
BibRef
Herbin, S.,
Robust multihypothesis discrimination of controlled I.I.D. processes,
ICPR04(I: 200-203).
IEEE DOI
0409
BibRef
Chen, H.F.[Hai-Feng],
Shimshoni, I.,
Meer, P.,
Model based object recognition by robust information fusion,
ICPR04(III: 57-60).
IEEE DOI
0409
BibRef
Ying, Z.[Zhao],
Keong, K.C.[Kwoh Chee],
Fast leave-one-out evaluation and improvement on inference for LS-SVMs,
ICPR04(III: 494-497).
IEEE DOI
0409
BibRef
Chen, H.F.[Hai-Feng],
Meer, P.,
Robust regression with projection based m-estimators,
ICCV03(878-885).
IEEE DOI
0311
BibRef
Lepetit, V.,
Shahrokni, A.,
Fua, P.,
Robust data association for online applications,
CVPR03(I: 281-288).
IEEE DOI
0307
BibRef
Choukroun, A.[Ariel],
Charvillat, V.[Vincent],
Bucketing Techniques in Robust Regression for Computer Vision,
SCIA03(609-616).
Springer DOI
0310
BibRef
Ben Hamza, A.[Abdessamad],
Krim, H.,
Robust influence functionals for image filtering,
ICIP03(III: 361-364).
IEEE DOI
0312
See also Geodesic Matching of Triangulated Surfaces.
BibRef
Izquierdo, E.[Ebroul],
A Highly Robust Regressor and its Application in Computer Vision,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Myatt, D.R.,
Torr, P.H.S.[Philip H.S.],
Nasuto, S.J.,
Bishop, J.M.,
Craddock, R.,
NAPSAC:
High Noise, High Dimensional Robust Estimation - it's in the Bag,
BMVC02(Computer Vision Tools).
0208
BibRef
Comby, F.[Frederic],
Strauss, O.[Olivier],
Aldon, M.J.[Marie-José],
Possibility Theory and Rough Histograms for Motion Estimation in a
Video Sequence,
VF01(473 ff.).
Springer DOI
0209
BibRef
Strauss, O.,
Comby, F.,
Aldon, M.J.,
Rough Histograms for Robust Statistics,
ICPR00(Vol II: 684-687).
IEEE DOI
0009
BibRef
Barakat, H.,
Blostein, D.,
Training with positive and negative data samples:
Effects on a classifier for hand-drawn geometric shapes,
ICDAR01(1017-1021).
IEEE DOI
0109
BibRef
Ohya, J.,
Sengupta, K.,
Generating Virtual Environments for Human Communications: Virtual
Metamorphosis System and Novel View Generation,
CVVRHC98(Sensing and Rendering Real Scenes).
BibRef
9800
Bischof, H.[Horst],
Leonardis, A.[Ales],
Pezzei, F.[Florian],
A Robust Subspace Classifier,
ICPR98(Vol I: 114-116).
IEEE DOI
9808
BibRef
Schunck, B.G.[Brian G.],
Robust Computational Vision,
Robust90(xx).
BibRef
9000
Zhuang, X.H.[Xin-Hua], and
Haralick, R.M.[Robert M.],
Developing Robust Techniques for Computer Vision,
Robust90(xx).
BibRef
9000
Chen, C.H.[Chien-Huei], and
Mulgaonkar, P.G.[Prasanna G.],
Robust Vision-Programs Based on Statistical Feature Measurements,
Robust90(xx).
BibRef
9000
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Noisy Labels for Learning .