Fischler, M.A., and
Bolles, R.C.,
Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography,
CACM(24), No. 6, June 1981, pp. 381-395.
BibRef
8106
And:
RCV87(726-740).
BibRef
Earlier:
DARPA80(71-88).
BibRef
And:
SRI-TN-213, March 1980.
WWW Link.
RANSAC.
Robust Technique.
BibRef
And:
A RANSAC-Based Approach to Model Fitting and Its Application to
Finding Cylinders in Range Data,
IJCAI81(637-643).
RANSAC algorithm for matching data points to the model. This
allows error points to be eliminated and thus ignored - find a
match that a majority of the points are happy with.
BibRef
Bolles, R.C.,
Robust Feature Matching Through Maximal Cliques,
SPIE(182), Imaging Applications for Automated Industrial Inspection
and Assembly, 1979, pp. 140-149.
BibRef
7900
Roth, G.[Gerhard], and
Levine, M.D.[Martin D.],
Minimal Subset Random Sampling for Pose Determination and Refinement,
AMV Strategies921992, pp. 1-21.
RANSAC.
See also Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. RANSAC is good and can be generalized and extended.
BibRef
9200
Matas, J.G.[Jirí G.],
Chum, O.[Ondrej],
Randomized RANSAC with Td,d test,
IVC(22), No. 10, 1 September 2004, pp. 837-842.
Elsevier DOI
0409
BibRef
Earlier:
Randomized RANSAC with T(d,d) test,
BMVC02(Computer Vision Tools).
0208
Time savings from evaluating only a part of the points.
BibRef
Chum, O.[Ondrej],
Matas, J.G.[Jirí G.],
Optimal Randomized RANSAC,
PAMI(30), No. 8, August 2008, pp. 1472-1482.
IEEE DOI
0806
BibRef
Earlier:
Geometric Hashing with Local Affine Frames,
CVPR06(I: 879-884).
IEEE DOI
0606
BibRef
Earlier:
Matching with PROSAC: Progressive Sample Consensus,
CVPR05(I: 220-226).
IEEE DOI
0507
BibRef
And: A2, A1:
Randomized RANSAC with Sequential Probability Ratio Test,
ICCV05(II: 1727-1732).
IEEE DOI
0510
BibRef
Mikulik, A.[Andrej],
Matas, J.G.[Jiri G.],
Perdoch, M.[Michal],
Chum, O.[Ondrej],
Construction of Precise Local Affine Frames,
ICPR10(3565-3569).
IEEE DOI
1008
BibRef
Chum, O.[Ondrej],
Matas, J.G.[Jiri G.],
Kittler, J.V.[Josef V.],
Locally Optimized RANSAC,
DAGM03(236-243).
Springer DOI
0310
BibRef
Chum, O.[Ondrej],
Matas, J.G.[Jirí G.],
Planar Affine Rectification from Change of Scale,
ACCV10(IV: 347-360).
Springer DOI
1011
BibRef
Nistér, D.[David],
Preemptive RANSAC for live structure and motion estimation,
MVA(16), No. 5, December 2005, pp. 321-329.
Springer DOI
0601
BibRef
Earlier:
ICCV03(199-206).
IEEE DOI
0311
BibRef
Cheng, C.M.[Chia-Ming],
Lai, S.H.[Shang-Hong],
A consensus sampling technique for fast and robust model fitting,
PR(42), No. 7, July 2009, pp. 1318-1329.
Elsevier DOI
0903
RANSAC; Robust estimation; Model fitting; Fundamental matrix estimation
BibRef
Scherer-Negenborn, N.[Norbert],
Schaefer, R.[Rolf],
Model Fitting with Sufficient Random Sample Coverage,
IJCV(89), No. 1, August 2010, pp. xx-yy.
Springer DOI
1004
RANSAC. Compute how many iterations should really be needed.
BibRef
Toldo, R.[Roberto],
Fusiello, A.[Andrea],
Real-time Incremental J-Linkage for Robust Multiple Structures
Estimation,
3DPVT10(xx-yy).
WWW Link.
1005
BibRef
Earlier:
Automatic Estimation of the Inlier Threshold in Robust Multiple
Structures Fitting,
CIAP09(123-131).
Springer DOI
0909
BibRef
Earlier:
Robust Multiple Structures Estimation with J-Linkage,
ECCV08(I: 537-547).
Springer DOI
0810
Deal with multiple instances of the same structure, which complicate RANSAC
operation.
BibRef
Raguram, R.[Rahul],
Chum, O.[Ondrej],
Pollefeys, M.[Marc],
Matas, J.G.[Jiri G.],
Frahm, J.M.[Jan-Michael],
USAC: A Universal Framework for Random Sample Consensus,
PAMI(35), No. 8, 2013, pp. 2022-2038.
IEEE DOI
1307
RANSAC; robust estimation
BibRef
Hassner, T.[Tal],
Assif, L.[Liav],
Wolf, L.B.[Lior B.],
When standard RANSAC is not enough:
Cross-media visual matching with hypothesis relevancy,
MVA(25), No. 4, May 2014, pp. 971-983.
WWW Link.
1404
BibRef
Imre, E.[Evren],
Hilton, A.[Adrian],
Order Statistics of RANSAC and Their Practical Application,
IJCV(111), No. 3, February 2015, pp. 276-297.
WWW Link.
1503
BibRef
Djurovic, I.,
A WD-RANSAC Instantaneous Frequency Estimator,
SPLetters(23), No. 5, May 2016, pp. 757-761.
IEEE DOI
1604
Complexity theory
BibRef
Djurovic, I.,
QML-RANSAC Instantaneous Frequency Estimator for Overlapping
Multicomponent Signals in the Time-Frequency Plane,
SPLetters(25), No. 3, March 2018, pp. 447-451.
IEEE DOI
1802
Frequency estimation, Frequency modulation,
Maximum likelihood estimation, Signal processing algorithms,
short-time Fourier transform (STFT)
BibRef
Wang, Y.[Yue],
Zheng, J.[Jin],
Xu, Q.Z.[Qi-Zhi],
Li, B.[Bo],
Hu, H.M.[Hai-Miao],
An improved RANSAC based on the scale variation homogeneity,
JVCIR(40, Part B), No. 1, 2016, pp. 751-764.
Elsevier DOI
1610
Scale variation homogeneity
BibRef
Li, Y.M.[Ying-Mao],
Gans, N.R.[Nicholas R.],
Predictive RANSAC: Effective model fitting and tracking approach
under heavy noise and outliers,
CVIU(161), No. 1, 2017, pp. 99-113.
Elsevier DOI
1708
Robust estimation
BibRef
Le, V.H.[Van-Hung],
Vu, H.[Hai],
Nguyen, T.T.[Thuy Thi],
Le, T.L.[Thi-Lan],
Tran, T.H.[Thanh-Hai],
Acquiring qualified samples for RANSAC using geometrical constraints,
PRL(102), 2018, pp. 58-66.
Elsevier DOI
1802
RANSAC, RANSAC family, Sampling method, Geometrical analysis
BibRef
Tran, N.,
Le Tan, D.,
Doan, A.,
Do, T.,
Bui, T.,
Tan, M.,
Cheung, N.,
On-Device Scalable Image-Based Localization via Prioritized Cascade
Search and Fast One-Many RANSAC,
IP(28), No. 4, April 2019, pp. 1675-1690.
IEEE DOI
1901
feature extraction, image retrieval, pose estimation,
search problems, extensive city regions, mobile devices,
RANSAC
BibRef
Sangappa, H.K.[Hemanth Kumar],
Ramakrishnan, K.R.,
A probabilistic analysis of a common RANSAC heuristic,
MVA(30), No. 1, February 2019, pp. 71-89.
WWW Link.
1904
BibRef
Zhou, H.Y.[Hao-Yin],
Zhang, T.[Tao],
Jagadeesan, J.[Jayender],
Re-weighting and 1-Point RANSAC-Based PnnP Solution to Handle
Outliers,
PAMI(41), No. 12, December 2019, pp. 3022-3033.
IEEE DOI
1911
Cameras, Iterative methods, Linear programming, Time complexity,
Pose estimation,
robustness to outliers
BibRef
Xiang, H.Y.[Heng-Yong],
Zhou, L.[Li],
Ba, X.H.[Xiao-Hui],
Chen, J.[Jie],
Matching with GUISAC-Guided Sample Consensus,
IEICE(E104-D), No. 2, February 2021, pp. 346-349.
WWW Link.
2102
BibRef
Riu, C.[Clément],
Nozick, V.[Vincent],
Monasse, P.[Pascal],
Automatic RANSAC by Likelihood Maximization,
IPOL(12), 2022, pp. 27-49.
DOI Link
2204
Code, RANSAC.
See also Likelihood-Ratio Test and Efficient Robust Estimation, The.
BibRef
Barath, D.[Daniel],
Matas, J.G.[Jiri G.],
Graph-Cut RANSAC: Local Optimization on Spatially Coherent Structures,
PAMI(44), No. 9, September 2022, pp. 4961-4974.
IEEE DOI
2208
BibRef
Earlier:
Graph-Cut RANSAC,
CVPR18(6733-6741)
IEEE DOI
1812
Spatial coherence, Optimization, Data models, Estimation, Standards,
Labeling, Computational modeling, Robust model estimation, RANSAC, graph-cut.
Optimization, Spatial coherence, Standards, Minimization.
BibRef
Chung, K.L.[Kuo-Liang],
Tseng, Y.C.[Ya-Chi],
Chen, H.Y.[Hsuan-Ying],
A Novel and Effective Cooperative RANSAC Image Matching Method Using
Geometry Histogram-Based Constructed Reduced Correspondence Set,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wei, T.[Tong],
Patel, Y.[Yash],
Shekhovtsov, A.[Alexander],
Matas, J.[Jirí],
Barath, D.[Daniel],
Generalized Differentiable RANSAC,
ICCV23(17603-17614)
IEEE DOI Code:
WWW Link.
2401
BibRef
Piedade, V.[Valter],
Miraldo, P.[Pedro],
BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus,
ICCV23(3715-3724)
IEEE DOI Code:
WWW Link.
2401
BibRef
Cavalli, L.[Luca],
Pollefeys, M.[Marc],
Barath, D.[Daniel],
NeFSAC: Neurally Filtered Minimal Samples,
ECCV22(XXXII:351-366).
Springer DOI
2211
WWW Link.
BibRef
Barath, D.[Daniel],
Valasek, G.[Gábor],
Space-Partitioning RANSAC,
ECCV22(XXXII:721-737).
Springer DOI
2211
BibRef
Barath, D.[Daniel],
Cavalli, L.[Luca],
Pollefeys, M.[Marc],
Learning to Find Good Models in RANSAC,
CVPR22(15723-15732)
IEEE DOI
2210
Geometry, Adaptation models, Filtering, Pose estimation, Pipelines,
3D from multi-view and sensors, Low-level vision
BibRef
Le, H.,
Zach, C.,
A Graduated Filter Method for Large Scale Robust Estimation,
CVPR20(5558-5567)
IEEE DOI
2008
Robustness, Optimization, Kernel, Estimation, Schedules, Task analysis,
Parameter estimation
BibRef
Cohen, A.,
Zach, C.,
The Likelihood-Ratio Test and Efficient Robust Estimation,
ICCV15(2282-2290)
IEEE DOI
1602
RANSAC
Computational modeling
See also Automatic RANSAC by Likelihood Maximization.
BibRef
Elashry, A.,
Sluis, B.,
Toth, C.,
Improving Ransac Feature Matching Based on Geometric Relation,
ISPRS21(B2-2021: 321-327).
DOI Link
2201
BibRef
Shen, X.[Xi],
Darmon, F.[François],
Efros, A.A.[Alexei A.],
Aubry, M.[Mathieu],
RANSAC-flow: Generic Two-stage Image Alignment,
ECCV20(IV:618-637).
Springer DOI
2011
BibRef
Kluger, F.,
Brachmann, E.,
Ackermann, H.,
Rother, C.,
Yang, M.Y.,
Rosenhahn, B.,
CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus,
CVPR20(4633-4642)
IEEE DOI
2008
Estimation, Robustness, Data models, Neural networks,
Computational modeling, Task analysis
BibRef
Brachmann, E.,
Rother, C.,
Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses,
ICCV19(4321-4330)
IEEE DOI
2004
computational geometry, feature extraction,
learning (artificial intelligence), neural nets, optimisation,
Cameras
BibRef
Korman, S.,
Litman, R.,
Latent RANSAC,
CVPR18(6693-6702)
IEEE DOI
1812
Estimation, Pipelines, Transforms,
Cameras, Computational modeling
BibRef
Zhang, S.T.[Song-Tao],
Chao, L.[Li],
Li, L.Q.[Li-Qing],
An improved method for eliminating false matches,
ICIVC17(133-137)
IEEE DOI
1708
Bidirectional control, Feature extraction,
Filtering algorithms, Image matching, Matched filters, BF, ORB, RANSAC,
bi-direction matching, distance-ratio criterion,
eliminating false matches
BibRef
Litman, R.[Roee],
Korman, S.[Simon],
Bronstein, A.M.[Alex M.],
Avidan, S.[Shai],
Inverting RANSAC: Global model detection via inlier rate estimation,
CVPR15(5243-5251)
IEEE DOI
1510
BibRef
Fragoso, V.[Victor],
Sen, P.[Pradeep],
Rodriguez, S.[Sergio],
Turk, M.[Matthew],
EVSAC: Accelerating Hypotheses Generation by Modeling Matching Scores
with Extreme Value Theory,
ICCV13(2472-2479)
IEEE DOI
1403
extreme value theory; ransac; robust estimation
BibRef
Lebeda, K.[Karel],
Matas, J.G.[Jirí G.],
Chum, O.[Ondrej],
Fixing the Locally Optimized RANSAC,
BMVC12(95).
DOI Link
1301
BibRef
Otte, S.[Sebastian],
Schwanecke, U.[Ulrich],
Zell, A.[Andreas],
ANTSAC:
A Generic RANSAC Variant Using Principles of Ant Colony Algorithms,
ICPR14(3558-3563)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Distante, C.[Cosimo],
Indiveri, G.[Giovanni],
RANSAC-LEL: An optimized version with least entropy like estimators,
ICIP11(1425-1428).
IEEE DOI
1201
BibRef
Monnin, D.[David],
Bieber, E.[Etienne],
Schmitt, G.[Gwenaél],
Schneider, A.[Armin],
An Effective Rigidity Constraint for Improving RANSAC in Homography
Estimation,
ACIVS10(II: 203-214).
Springer DOI
1012
BibRef
Meler, A.[Antoine],
Decrouez, M.[Marion],
Crowley, J.L.[James L.],
Betasac: A New Conditional Sampling for RANSAC,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Sattler, T.[Torsten],
Leibe, B.[Bastian],
Kobbelt, L.[Leif],
SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency
filter,
ICCV09(2090-2097).
IEEE DOI
0909
BibRef
Lara-Alvarez, C.[Carlos],
Romero, L.[Leonardo],
Flores, J.F.[Juan F.],
Gomez, C.[Cuauhtemoc],
A Simple Sample Consensus Algorithm to Find Multiple Models,
CIARP09(918-925).
Springer DOI
0911
MuSAC alternative to RANSAC
BibRef
Zhang, L.[Liang],
Wang, D.[Demin],
LLN-based Model-Driven Validation of Data Points for Random Sample
Consensus Methods,
ICPR10(3436-3439).
IEEE DOI
1008
BibRef
Zhang, L.[Liang],
Rastgar, H.[Houman],
Wang, D.[Demin],
Vincent, A.[André],
Maximum Likelihood Estimation Sample Consensus with Validation of
Individual Correspondences,
ISVC09(I: 447-456).
Springer DOI
0911
BibRef
He, Z.C.[Zhou-Can],
Wang, Q.[Qing],
Yang, H.[Heng],
TOCSAC: TOpology Constraint SAmple Consensus for Fast and Reliable
Feature Correspondence,
ISVC09(II: 608-618).
Springer DOI
0911
BibRef
Choi, S.[Sunglok],
Kim, T.[Taemin],
Yu, W.[Wonpil],
Performance Evaluation of RANSAC Family,
BMVC09(xx-yy).
PDF File.
0909
Evaluation, RANSAC.
RANSAC.
BibRef
Choi, J.M.[Jong-Moo],
Medioni, G.[Gerard],
StaRSaC: Stable random sample consensus for parameter estimation,
CVPR09(675-682).
IEEE DOI
0906
BibRef
Raguram, R.[Rahul],
Frahm, J.M.[Jan-Michael],
RECON: Scale-adaptive robust estimation via Residual Consensus,
ICCV11(1299-1306).
IEEE DOI
1201
Robust method for noisy data.
BibRef
Raguram, R.[Rahul],
Frahm, J.M.[Jan-Michael],
Pollefeys, M.[Marc],
Exploiting uncertainty in random sample consensus,
ICCV09(2074-2081).
IEEE DOI
0909
BibRef
Earlier:
A Comparative Analysis of RANSAC Techniques Leading to Adaptive
Real-Time Random Sample Consensus,
ECCV08(II: 500-513).
Springer DOI
0810
BibRef
Marquez-Neila, P.[Pablo],
Miro, J.G.[Jacobo Garcia],
Buenaposada, J.M.[Jose M.],
Baumela, L.[Luis],
Improving RANSAC for fast landmark recognition,
VisLoc08(1-8).
IEEE DOI
0806
BibRef
Zhang, W.[Wei],
Kosecka, J.[Jana],
Generalized RANSAC Framework for Relaxed Correspondence Problems,
3DPVT06(854-860).
IEEE DOI
0606
BibRef
Rodehorst, V.[Volker],
Hellwich, O.[Olaf],
Genetic Algorithm SAmple Consensus (GASAC):
A Parallel Strategy for Robust Parameter Estimation,
RANSAC06(103).
IEEE DOI
0609
BibRef
Subbarao, R.[Raghav],
Meer, P.[Peter],
Beyond RANSAC: User Independent Robust Regression,
RANSAC06(101).
IEEE DOI
0609
BibRef
Frahm, J.M.[Jan-Michael],
Pollefeys, M.[Marc],
RANSAC for (Quasi-)Degenerate data (QDEGSAC),
CVPR06(I: 453-460).
IEEE DOI
0606
BibRef
Capel, D.P.,
An Effective Bail-out Test for RANSAC Consensus Scoring,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Zuliani, M.,
Kenney, C.S.,
Manjunath, B.S.,
The Multiransac Algorithm and its Application to Detect Planar
Homographies,
ICIP05(III: 153-156).
IEEE DOI
0512
BibRef
Rozenfeld, S.[Stas],
Shimshoni, I.[Ilan],
The Modified pbM-Estimator Method and a Runtime Analysis Technique for
the RANSAC Family,
CVPR05(I: 1113-1120).
IEEE DOI
0507
See also Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography.
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
String Matching, Text Matching .