Boykov, Y.Y.[Yuri Y.],
Funka-Lea, G.[Gareth],
Graph Cuts and Efficient N-D Image Segmentation,
IJCV(70), No. 2, November 2006, pp. 109-131.
Springer DOI
0608
Combine boundary regularization with region properties.
BibRef
Boykov, Y.Y.[Yuri Y.],
Jolly, M.P.[Marie-Pierre],
Interactive Graph Cuts for Optimal Boundary and Region Segmentation of
Objects in N-D Images,
ICCV01(I: 105-112).
IEEE DOI
0106
BibRef
And:
Demonstration of Segmentation with Interactive Graph Cuts,
ICCV01(II: 741).
IEEE DOI
0106
Interactive segmentation.
Find a balance between region properties (color) and boundary properties
(contrast).
BibRef
Peng, B.,
Veksler, O.,
Parameter Selection for Graph Cut Based Image Segmentation,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Boykov, Y.Y.[Yuri Y.],
Veksler, O.[Olga],
Graph cuts in vision and graphics: Theories and applications,
MMCV05(79-96).
BibRef
0500
Liu, Y.[Yu],
Veksler, O.[Olga],
Animated Classic Mosaics from Video,
ISVC09(II: 1085-1096).
Springer DOI
0911
BibRef
Liu, Y.[Yu],
Veksler, O.[Olga],
Juan, O.[Olivier],
Simulating Classic Mosaics with Graph Cuts,
EMMCVPR07(55-70).
Springer DOI
0708
BibRef
Veksler, O.[Olga],
Star Shape Prior for Graph-Cut Image Segmentation,
ECCV08(III: 454-467).
Springer DOI
0810
BibRef
Veksler, O.[Olga],
Image Segmentation by Nested Cuts,
CVPR00(I: 339-344).
IEEE DOI
0005
BibRef
Juan, O.[Olivier],
Boykov, Y.Y.[Yuri Y.],
Capacity Scaling for Graph Cuts in Vision,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Earlier:
Active Graph Cuts,
CVPR06(I: 1023-1029).
IEEE DOI
0606
BibRef
Boykov, Y.Y.[Yuri Y.],
Kolmogorov, V.[Vladimir],
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy
Minimization in Vision,
PAMI(26), No. 9, September 2004, pp. 1124-1137.
IEEE DOI
0409
BibRef
Earlier:
EMMCVPR01(359-374).
Springer DOI
0205
Code, Segmentation.
BibRef
Earlier:
Computing geodesics and minimal surfaces via graph cuts,
ICCV03(26-33).
IEEE DOI
0311
Combine geodesic active contours with graph cuts.
See also Exact Maximum a Posterori Estimation for Binary Images. Code is available:
WWW Link.
Code, Energy Minimization.
BibRef
Kolmogorov, V.[Vladimir],
Boykov, Y.Y.[Yuri Y.],
Rother, C.[Carsten],
Applications of parametric maxflow in computer vision,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Marin, D.[Dmitrii],
Tang, M.[Meng],
Ben Ayed, I.[Ismail],
Boykov, Y.Y.[Yuri Y.],
Kernel Clustering: Density Biases and Solutions,
PAMI(41), No. 1, January 2019, pp. 136-147.
IEEE DOI
1812
BibRef
Earlier: A2, A1, A3, A4:
Normalized Cut Meets MRF,
ECCV16(II: 748-765).
Springer DOI
1611
BibRef
Earlier: A2, A3, A1, A4:
Secrets of GrabCut and Kernel K-Means,
ICCV15(1555-1563)
IEEE DOI
1602
Kernel, Entropy, Standards, Bandwidth, Estimation, Histograms,
Decision trees, Kernel methods, kernel clustering, kernel k-means,
dominant set.
BibRef
Tang, M.[Meng],
Marin, D.[Dmitrii],
Ben Ayed, I.[Ismail],
Boykov, Y.Y.[Yuri Y.],
Kernel Cuts: Kernel and Spectral Clustering Meet Regularization,
IJCV(127), No. 5, May 2019, pp. 477-511.
Springer DOI
1903
Bridge kernel clustering and regularization-based segmentation.
BibRef
Boykov, Y.Y.[Yuri Y.],
Isack, H.[Hossam],
Olsson, C.[Carl],
Ben Ayed, I.[Ismail],
Volumetric Bias in Segmentation and Reconstruction:
Secrets and Solutions,
ICCV15(1769-1777)
IEEE DOI
1602
Computational modeling
BibRef
Bae, E.[Egil],
Shi, J.,
Tai, X.C.[Xue-Cheng],
Graph Cuts for Curvature Based Image Denoising,
IP(20), No. 5, May 2011, pp. 1199-1210.
IEEE DOI
1104
See also Piecewise Constant Level Set Methods and Image Segmentation.
BibRef
Bae, E.[Egil],
Tai, X.C.[Xue-Cheng],
Efficient Global Minimization Methods for Image Segmentation Models
with Four Regions,
JMIV(51), No. 1, January 2015, pp. 71-97.
WWW Link.
1503
BibRef
Earlier:
Efficient Global Minimization for the Multiphase Chan-Vese Model of
Image Segmentation,
EMMCVPR09(28-41).
Springer DOI
0908
BibRef
And:
Graph Cut Optimization for the Piecewise Constant Level Set Method
Applied to Multiphase Image Segmentation,
SSVM09(1-13).
Springer DOI
0906
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Kolmogorov, V.[Vladimir],
Rother, C.[Carsten],
Minimizing Nonsubmodular Functions with Graph Cuts-A Review,
PAMI(29), No. 7, July 2007, pp. 1274-1279.
IEEE DOI
0706
BibRef
Vicente, S.[Sara],
Rother, C.[Carsten],
Kolmogorov, V.[Vladimir],
Object cosegmentation,
CVPR11(2217-2224).
IEEE DOI
1106
BibRef
Lempitsky, V.[Victor],
Blake, A.[Andrew],
Rother, C.[Carsten],
Branch-and-Mincut: Global Optimization for Image Segmentation with
High-Level Priors,
JMIV(44), No. 3, November 2012, pp. 315-329.
WWW Link.
1209
BibRef
Vicente, S.[Sara],
Kolmogorov, V.[Vladimir],
Rother, C.[Carsten],
Joint optimization of segmentation and appearance models,
ICCV09(755-762).
IEEE DOI
0909
BibRef
Earlier:
Graph cut based image segmentation with connectivity priors,
CVPR08(1-8).
IEEE DOI
0806
For interactive segmentation. combine segmentation evaluation and appearance
evaluation.
BibRef
Lempitsky, V.[Victor],
Kohli, P.[Pushmeet],
Rother, C.[Carsten],
Sharp, T.[Toby],
Image segmentation with a bounding box prior,
ICCV09(277-284).
IEEE DOI
0909
BibRef
Lempitsky, V.[Victor],
Blake, A.[Andrew],
Rother, C.[Carsten],
Image Segmentation by Branch-and-Mincut,
ECCV08(IV: 15-29).
Springer DOI
0810
See also Fusion Moves for Markov Random Field Optimization.
BibRef
Delong, A.[Andrew],
Boykov, Y.Y.[Yuri Y.],
Globally optimal segmentation of multi-region objects,
ICCV09(285-292).
IEEE DOI
0909
BibRef
Cremers, D.[Daniel],
Grady, L.[Leo],
Statistical Priors for Efficient Combinatorial Optimization Via Graph
Cuts,
ECCV06(III: 263-274).
Springer DOI
0608
BibRef
Grady, L.[Leo],
Sinop, A.K.[Ali Kemal],
Fast approximate Random Walker segmentation using eigenvector
precomputation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Earlier: A2, A1:
A Seeded Image Segmentation Framework Unifying Graph Cuts And Random
Walker Which Yields A New Algorithm,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Sinop, A.K.[Ali Kemal],
Grady, L.[Leo],
Uninitialized, Globally Optimal, Graph-Based Rectilinear Shape
Segmentation: The Opposing Metrics Method,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Lombaert, H.[Herve],
Sun, Y.Y.[Yi-Yong],
Grady, L.[Leo],
Xu, C.Y.[Chen-Yang],
A Multilevel Banded Graph Cuts Method for Fast Image Segmentation,
ICCV05(I: 259-265).
IEEE DOI
0510
BibRef
Boykov, Y.Y.[Yuri Y.],
Kolmogorov, V.[Vladimir],
Cremers, D.[Daniel],
Delong, A.[Andrew],
An Integral Solution to Surface Evolution PDEs Via Geo-cuts,
ECCV06(III: 409-422).
Springer DOI
0608
BibRef
Earlier: A2, A1:
What Metrics Can Be Approximated by Geo-Cuts, Or Global Optimization of
Length/Area and Flux,
ICCV05(I: 564-571).
IEEE DOI
0510
BibRef
Xu, N.[Ning],
Ahuja, N.[Narendra],
Bansal, R.[Ravi],
Object segmentation using graph cuts based active contours,
CVIU(107), No. 3, September 2007, pp. Computer Vision and Image Understanding, Volume 107, Issue 3, September 2007, 210-224.
Elsevier DOI
0709
BibRef
Earlier: A1, A3, A2:
CVPR03(II: 46-53).
IEEE DOI
0307
BibRef
Earlier: A1, A2, Only:
Object contour tracking using graph cuts based active contours,
ICIP02(III: 277-280).
IEEE DOI
0210
Object segmentation; Active contours; Snakes; Graph cut
BibRef
Komodakis, N.[Nikos],
Tziritas, G.[Georgios],
Approximate Labeling via Graph Cuts Based on Linear Programming,
PAMI(29), No. 8, August 2007, pp. 1436-1453.
IEEE DOI
0707
BibRef
Earlier:
A New Framework for Approximate Labeling via Graph Cuts,
ICCV05(II: 1018-1025).
IEEE DOI
0510
BibRef
Kim, J.S.[Jong-Sung],
Hong, K.S.[Ki-Sang],
A new graph cut-based multiple active contour algorithm without initial
contours and seed points,
MVA(19), No. 3, May 2008, pp. 181-193.
Springer DOI
0803
BibRef
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Dynamic Graph Cuts for Efficient Inference in Markov Random Fields,
PAMI(29), No. 12, December 2007, pp. 2079-2088.
IEEE DOI
0711
BibRef
Earlier:
Measuring Uncertainty in Graph Cut Solutions:
Efficiently Computing Min-marginal Energies Using Dynamic Graph Cuts,
ECCV06(II: 30-43).
Springer DOI
0608
BibRef
Earlier:
Efficiently Solving Dynamic Markov Random Fields Using Graph Cuts,
ICCV05(II: 922-929).
IEEE DOI
0510
mincut/max-flow problem.
Given the solution of the max-flow problem on a graph, the dynamic
algorithm efficiently computes the maximum flow in a modified version
of the graph.
Apply to object background segmentation in video.
BibRef
Kumar, M.P.[M. Pawan],
Torr, P.H.S.[Philip H.S.],
Zisserman, A.[Andrew],
OBJCUT: Efficient Segmentation Using Top-Down and Bottom-Up Cues,
PAMI(32), No. 3, March 2010, pp. 530-545.
IEEE DOI
1002
BibRef
Earlier:
Solving Markov Random Fields using Second Order Cone Programming
Relaxations,
CVPR06(I: 1045-1052).
IEEE DOI
0606
BibRef
And:
An Object Category Specific MRF for Segmentation,
CLOR06(596-616).
Springer DOI
0711
Automatically obtain the pose, incorporate top-down information in addition
to grid.
Compare to results from
Leibe and Schiele
(
See also Robust Object Detection with Interleaved Categorization and Segmentation. )
and
Schoenemann and Cremers (
See also Combinatorial Solution for Model-Based Image Segmentation and Real-Time Tracking, A. ).
BibRef
Hou, Q.B.[Qi-Bin],
Massiceti, D.[Daniela],
Dokania, P.K.[Puneet Kumar],
Wei, Y.C.[Yun-Chao],
Cheng, M.M.[Ming-Ming],
Torr, P.H.S.[Philip H. S.],
Bottom-Up Top-Down Cues for Weakly-Supervised Semantic Segmentation,
EMMCVPR17(263-277).
Springer DOI
1805
BibRef
Kohli, P.[Pushmeet],
Kumar, M.P.[M. Pawan],
Energy minimization for linear envelope MRFs,
CVPR10(1863-1870).
IEEE DOI
1006
BibRef
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H.S.],
Measuring uncertainty in graph cut solutions,
CVIU(112), No. 1, October 2008, pp. 30-38.
Elsevier DOI
0810
Parameter learning; Inference; Min-marginals; Graph cuts
BibRef
Torr, P.H.S.[Philip H.S.],
Dynamic Markov Random Fields,
IMVIP08(21-26).
IEEE DOI
0809
BibRef
Bugeau, A.[Aurélie],
Pérez, P.[Patrick],
Track and Cut: Simultaneous Tracking and Segmentation of Multiple
Objects with Graph Cuts,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0811
BibRef
Earlier:
Joint Tracking and Segmentation of Objects Using Graph Cuts,
ACIVS07(628-639).
Springer DOI
0708
BibRef
Zeng, Y.[Yun],
Samaras, D.[Dimitris],
Chen, W.[Wei],
Peng, Q.S.[Qun-Sheng],
Topology cuts: A novel min-cut/max-flow algorithm for topology
preserving segmentation in N-D images,
CVIU(112), No. 1, October 2008, pp. 81-90.
Elsevier DOI
0810
Image segmentation; Min-cut/max-flow; Topology preservation;
Topology cuts; Graph cuts
BibRef
Chai, D.F.[Deng-Feng],
Lin, H.W.[Hong-Wei],
Peng, Q.S.[Qun-Sheng],
Bisection approach for pixel labelling problem,
PR(43), No. 5, May 2010, pp. 1826-1834.
Elsevier DOI
1003
Pixel labelling; Markov random fields; Graph cut; Stereo
BibRef
Chai, D.F.[Deng-Feng],
SQL: Superpixels via quaternary labeling,
PR(92), 2019, pp. 52-63.
Elsevier DOI
1905
Superpixels, Segmentation, Seaming, Pixel labeling, Graph cuts
BibRef
Das, P.[Piali],
Veksler, O.[Olga],
Zavadsky, V.[Vyacheslav],
Boykov, Y.Y.[Yuri Y.],
Semiautomatic Segmentation with Compact Shape Prior,
IVC(27), No. 1-2, January 2009, pp. 206-219.
Elsevier DOI
0811
BibRef
Earlier: A1, A2, Only:
CRV06(28-28).
IEEE DOI
0607
Based on
See also Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. Segmentation; Shape prior; Graph cut; Parameter estimation
BibRef
Fukuda, K.[Keita],
Takiguchi, T.[Tetsuya],
Ariki, Y.[Yasuo],
Graph Cuts Segmentation by Using Local Texture Features of
Multiresolution Analysis,
IEICE(E92-D), No. 7, July 2009, pp. 1453-1461.
WWW Link.
0907
BibRef
Suga, A.[Akira],
Fukuda, K.[Keita],
Takiguchi, T.[Tetsuya],
Ariki, Y.[Yasuo],
Object recognition and segmentation using SIFT and Graph Cuts,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Han, S.D.[Shou-Dong],
Tao, W.B.[Wen-Bing],
Wu, X.L.[Xiang-Lin],
Tai, X.C.[Xue-Cheng],
Wang, T.J.[Tian-Jiang],
Fast image segmentation based on multilevel banded closed-form method,
PRL(31), No. 3, 1 February 2010, pp. 216-225.
Elsevier DOI
1001
Graph Cuts; Closed-form; Multi-seeds; Interactive image segmentation
BibRef
Han, S.D.[Shou-Dong],
Tao, W.B.[Wen-Bing],
Wu, X.L.[Xiang-Lin],
Texture segmentation using independent-scale component-wise
Riemannian-covariance Gaussian mixture model in KL measure based
multi-scale nonlinear structure tensor space,
PR(44), No. 3, March 2011, pp. 503-518.
Elsevier DOI
1011
Texture segmentation; Graph Cuts; Independent-scale component-wise
Riemannian-covariance Gaussian mixture model (ICRGMM); Multi-scale
nonlinear structure tensor (MSNST)
BibRef
Feng, W.[Wei],
Jia, J.Y.[Jia-Ya],
Liu, Z.Q.[Zhi-Qiang],
Self-Validated Labeling of Markov Random Fields for Image Segmentation,
PAMI(32), No. 10, October 2010, pp. 1871-1887.
IEEE DOI
1008
Optimize MRF with unknown number of labels.
Extend graph cut. Split and merge approach to reduce the problem.
BibRef
Feng, W.[Wei],
Liu, Z.Q.[Zhi-Qiang],
Self-Validated and Spatially Coherent Clustering with Net-Structured
MRF and Graph Cuts,
ICPR06(IV: 37-40).
IEEE DOI
0609
BibRef
El-Zehiry, N.Y.[Noha Youssry],
Sahoo, P.[Prasanna],
Elmaghraby, A.[Adel],
Combinatorial Optimization of the piecewise constant Mumford-Shah
functional with application to scalar/vector valued and volumetric
image segmentation,
IVC(29), No. 6, May 2011, pp. 365-381.
Elsevier DOI
1104
Active contours; Graph cuts; Image segmentation
BibRef
El-Zehiry, N.Y.[Noha Youssry],
Elmaghraby, A.[Adel],
Graph cut based deformable model with statistical shape priors,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
A graph cut based active contour without edges with relaxed homogeneity
constraint,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
A graph cut based active contour for multiphase image segmentation,
ICIP08(3188-3191).
IEEE DOI
0810
BibRef
Tabatabaei, S.S.[Seyed Salim],
Coates, M.[Mark],
Rabbat, M.[Michael],
GANC: Greedy agglomerative normalized cut for graph clustering,
PR(45), No. 2, February 2012, pp. 831-843.
Elsevier DOI
1110
Graph clustering; Normalized cut; Model order selection; Large scale graphs
BibRef
Tao, W.,
Iterative Narrowband-Based Graph Cuts Optimization for Geodesic Active
Contours With Region Forces (GACWRF),
IP(21), No. 1, January 2012, pp. 284-296.
IEEE DOI
1112
BibRef
Chen, X.,
Udupa, J.K.,
Bagci, U.,
Zhuge, Y.,
Yao, J.,
Medical Image Segmentation by Combining Graph Cuts and Oriented Active
Appearance Models,
IP(21), No. 4, April 2012, pp. 2035-2046.
IEEE DOI
1204
BibRef
Danek, O.[Ondrej],
Matula, P.[Pavel],
Maška, M.[Martin],
Kozubek, M.[Michal],
Smooth Chan-Vese segmentation via graph cuts,
PRL(33), No. 10, 15 July 2012, pp. 1405-1410.
Elsevier DOI
1205
Image segmentation; Graph cut framework; Chan-Vese model; Memory
efficiency; Boundary smoothness
See also Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, A.
BibRef
Liu, Z.,
Shi, R.,
Shen, L.,
Xue, Y.,
Ngan, K.N.,
Zhang, Z.,
Unsupervised Salient Object Segmentation Based on Kernel Density
Estimation and Two-Phase Graph Cut,
MultMed(14), No. 4, 2012, pp. 1275-1289.
IEEE DOI
1208
BibRef
Wang, Q.[Quan],
Boyer, K.L.[Kim L.],
The active geometric shape model:
A new robust deformable shape model and its applications,
CVIU(116), No. 12, December 2012, pp. 1178-1194.
Elsevier DOI
1210
Active geometric shape model; Parametric equation; Cubic spline
contour; Graph cuts segmentation
BibRef
Wang, H.[Hui],
Zhang, H.[Hong],
Ray, N.[Nilanjan],
Adaptive shape prior in graph cut image segmentation,
PR(46), No. 5, May 2013, pp. 1409-1414.
Elsevier DOI
1302
Template; Adaptive shape prior; Graph cut; Image segmentation
BibRef
Wang, H.[Hui],
Zhang, H.[Hong],
Adaptive shape prior in graph cut segmentation,
ICIP10(3029-3032).
IEEE DOI
1009
BibRef
Wang, H.[Hui],
Ray, N.[Nilanjan],
Zhang, H.[Hong],
Graph-cut optimization of the ratio of functions and its application to
image segmentation,
ICIP08(749-752).
IEEE DOI
0810
BibRef
Schmitzer, B.[Bernhard],
Schnörr, C.[Christoph],
Modelling Convex Shape Priors and Matching Based on the
Gromov-Wasserstein Distance,
JMIV(46), No. 1, May 2013, pp. 143-159.
WWW Link.
1303
BibRef
And:
A Hierarchical Approach to Optimal Transport,
SSVM13(452-464).
Springer DOI
1305
BibRef
Earlier:
Weakly Convex Coupling Continuous Cuts and Shape Priors,
SSVM11(423-434).
Springer DOI
1201
BibRef
Schmitzer, B.[Bernhard],
Schnörr, C.[Christoph],
Globally Optimal Joint Image Segmentation and Shape Matching Based on
Wasserstein Modes,
JMIV(52), No. 3, July 2015, pp. 436-458.
WWW Link.
1506
BibRef
Schmitzer, B.[Bernhard],
A Sparse Multiscale Algorithm for Dense Optimal Transport,
JMIV(56), No. 2, October 2016, pp. 238-259.
WWW Link.
1609
BibRef
Earlier:
A sparse algorithm for dense optimal transport,
SSVM15(629-641).
Springer DOI
1506
BibRef
Fundana, K.[Ketut],
Heyden, A.[Anders],
Gosch, C.[Christian],
Schnorr, C.[Christoph],
Continuous graph cuts for prior-based object segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chen, X.J.[Xin-Jian],
Udupa, J.K.[Jayaram K.],
Alavi, A.[Abass],
Torigian, D.A.[Drew A.],
GC-ASM: Synergistic integration of graph-cut and active shape model
strategies for medical image segmentation,
CVIU(117), No. 5, May 2013, pp. 513-524.
Elsevier DOI
1303
Object recognition; Image segmentation; Statistical shape models; Graph
cut
BibRef
Khokher, M.R.[Muhammad Rizwan],
Ghafoor, A.[Abdul],
Siddiqui, A.M.[Adil Masood],
Image segmentation using multilevel graph cuts and graph development using fuzzy rule-based system,
IET-IPR(7), No. 3, 2013, pp. xx-yy.
DOI Link
1307
BibRef
Earlier:
Image segmentation using fuzzy rule based system and graph cuts,
ICARCV12(1148-1153).
IEEE DOI
1304
BibRef
And:
Multilevel Graph Cuts Based Image Segmentation,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Kechichian, R.[Razmig],
Valette, S.[Sebastien],
Desvignes, M.[Michel],
Prost, R.[Remy],
Shortest-Path Constraints for 3D Multiobject Semiautomatic
Segmentation Via Clustering and Graph Cut,
IP(22), No. 11, 2013, pp. 4224-4236.
IEEE DOI
1310
BibRef
Earlier:
Efficient multi-object segmentation of 3D medical images using
clustering and graph cuts,
ICIP11(2149-2152).
IEEE DOI
1201
Graph Cut
BibRef
Hu, H.[Han],
Feng, J.J.[Jian-Jiang],
Yu, C.[Chuan],
Zhou, J.[Jie],
Multi-Class Constrained Normalized Cut With Hard, Soft, Unary and
Pairwise Priors and its Applications to Object Segmentation,
IP(22), No. 11, 2013, pp. 4328-4340.
IEEE DOI
1310
image segmentation
See also Normalized Cuts and Image Segmentation.
BibRef
Kéchichian, R.[Razmig],
Valette, S.[Sébastien],
Desvignes, M.[Michel],
Automatic Multiorgan Segmentation via Multiscale Registration and
Graph Cut,
MedImg(37), No. 12, December 2018, pp. 2739-2749.
IEEE DOI
1812
Image segmentation, Feature extraction, Shape, Biomedical imaging,
Robustness, Training, Segmentation,
graph cut
BibRef
Kéchichian, R.[Razmig],
Valette, S.[Sébastien],
Sdika, M.[Michaël],
Desvignes, M.[Michel],
Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using
Spatial Relations and Hierarchically-Registered Atlases,
MCV14(201-209).
Springer DOI
1501
BibRef
Sashida, S.[Satoshi],
Okabe, Y.[Yutaka],
Lee, H.K.[Hwee Kuan],
Comparison of multi-label graph cuts method and Monte Carlo
simulation with block-spin transformation for the piecewise constant
Mumford-Shah segmentation model,
CVIU(119), No. 1, 2014, pp. 15-26.
Elsevier DOI
1402
Mumford-Shah segmentation model
BibRef
Sashida, S.[Satoshi],
Okabe, Y.[Yutaka],
Lee, H.K.[Hwee Kuan],
Application of Monte Carlo simulation with block-spin transformation
based on the Mumford-Shah segmentation model to three-dimensional
biomedical images,
CVIU(152), No. 1, 2016, pp. 176-189.
Elsevier DOI
1609
Mumford-Shah segmentation model
BibRef
Pujadas, E.R.,
Reisert, M.,
Shape-Based Normalized Cuts Using Spectral Relaxation for Biomedical
Segmentation,
IP(23), No. 1, January 2014, pp. 163-170.
IEEE DOI
1402
eigenvalues and eigenfunctions
See also Normalized Cuts and Image Segmentation.
BibRef
Duan, J.M.[Jin-Ming],
Pan, Z.K.[Zhen-Kuan],
Yin, X.F.[Xiang-Feng],
Wei, W.B.[Wei-Bo],
Wang, G.D.[Guo-Dong],
Some fast projection methods based on Chan-Vese model for image
segmentation,
JIVP(2014), No. 1, 2014, pp. 7.
DOI Link
1402
BibRef
Bresson, X.[Xavier],
Tai, X.C.[Xue-Cheng],
Chan, T.F.[Tony F.],
Szlam, A.[Arthur],
Multi-class Transductive Learning Based on L_1 Relaxations of Cheeger
Cut and Mumford-Shah-Potts Model,
JMIV(49), No. 1, May 2014, pp. 191-201.
Springer DOI
1404
BibRef
Houhou, N.[Nawal],
Bresson, X.[Xavier],
Szlam, A.[Arthur],
Chan, T.F.[Tony F.],
Thiran, J.P.[Jean-Philippe],
Semi-supervised Segmentation Based on Non-local Continuous Min-Cut,
SSVM09(112-123).
Springer DOI
0906
BibRef
Yin, S.[Shibai],
Zhao, X.M.[Xiang-Mo],
Wang, W.X.[Wei-Xing],
Gong, M.L.[Ming-Lun],
Efficient multilevel image segmentation through fuzzy entropy
maximization and graph cut optimization,
PR(47), No. 9, 2014, pp. 2894-2907.
Elsevier DOI
1406
Image segmentation
BibRef
Yin, S.[Shibai],
Qian, Y.M.[Yi-Ming],
Gong, M.L.[Ming-Lun],
Unsupervised hierarchical image segmentation through fuzzy entropy
maximization,
PR(68), No. 1, 2017, pp. 245-259.
Elsevier DOI
1704
Image segmentation
BibRef
Ge, T.Z.[Tie-Zheng],
He, K.M.[Kai-Ming],
Ke, Q.[Qifa],
Sun, J.[Jian],
Optimized Product Quantization,
PAMI(36), No. 4, April 2014, pp. 744-755.
IEEE DOI
1404
BibRef
Earlier:
Optimized Product Quantization for Approximate Nearest Neighbor
Search,
CVPR13(2946-2953)
IEEE DOI
1309
Artificial neural networks.
nearest neighbor search; product quantization
BibRef
Ge, T.Z.[Tie-Zheng],
He, K.[Kaiming],
Sun, J.[Jian],
Product Sparse Coding,
CVPR14(939-946)
IEEE DOI
1409
BibRef
Earlier:
Graph Cuts for Supervised Binary Coding,
ECCV14(VII: 250-264).
Springer DOI
1408
BibRef
Andrews, S.[Shawn],
Changizi, N.,
Hamarneh, G.[Ghassan],
The Isometric Log-Ratio Transform for Probabilistic Multi-Label
Anatomical Shape Representation,
MedImg(33), No. 9, September 2014, pp. 1890-1899.
IEEE DOI
1410
biomedical MRI
BibRef
Andrews, S.[Shawn],
Hamarneh, G.[Ghassan],
The Generalized Log-Ratio Transformation: Learning Shape and
Adjacency Priors for Simultaneous Thigh Muscle Segmentation,
MedImg(34), No. 9, September 2015, pp. 1773-1787.
IEEE DOI
1509
Image segmentation
BibRef
Nosrati, M.S.[Masoud S.],
Hamarneh, G.[Ghassan],
Local Optimization Based Segmentation of Spatially-Recurring,
Multi-Region Objects With Part Configuration Constraints,
MedImg(33), No. 9, September 2014, pp. 1845-1859.
IEEE DOI
1410
image segmentation
BibRef
Nosrati, M.S.[Masoud S.],
Andrews, S.[Shawn],
Hamarneh, G.[Ghassan],
Bounded Labeling Function for Global Segmentation of Multi-part
Objects with Geometric Constraints,
ICCV13(2032-2039)
IEEE DOI
1403
Global segmentation
BibRef
Andrews, S.[Shawn],
McIntosh, C.[Chris],
Hamarneh, G.[Ghassan],
Convex multi-region probabilistic segmentation with shape prior in the
isometric log-ratio transformation space,
ICCV11(2096-2103).
IEEE DOI
1201
BibRef
Rao, J.[Josna],
Abu-Gharbieh, R.[Rafeef],
Hamarneh, G.[Ghassan],
Adaptive Regularization for Image Segmentation Using Local Image
Curvature Cues,
ECCV10(IV: 651-665).
Springer DOI
1009
BibRef
Earlier: A1, A3, A2:
Adaptive Contextual Energy Parameterization for Automated Image
Segmentation,
ISVC09(I: 1089-1100).
Springer DOI
0911
BibRef
Hamarneh, G.[Ghassan],
Multi-label MRF Optimization via a Least Squares s-t Cut,
ISVC09(I: 1055-1066).
Springer DOI
0911
BibRef
Peng, Y.[Yi],
Chen, L.[Li],
Ou-Yang, F.X.[Fang-Xin],
Chen, W.[Wei],
Yong, J.H.[Jun-Hai],
JF-Cut: A Parallel Graph Cut Approach for Large-Scale Image and Video,
IP(24), No. 2, February 2015, pp. 655-666.
IEEE DOI
1502
computational complexity
BibRef
Wang, X.,
Tang, Y.,
Masnou, S.,
Chen, L.,
A Global/Local Affinity Graph for Image Segmentation,
IP(24), No. 4, April 2015, pp. 1399-1411.
IEEE DOI
1503
Bipartite graph
BibRef
Tuysuzoglu, A.,
Karl, W.C.,
Stojanovic, I.,
Castanon, D.,
Unlu, M.S.,
Graph-Cut Based Discrete-Valued Image Reconstruction,
IP(24), No. 5, May 2015, pp. 1614-1627.
IEEE DOI
1504
Approximation methods
BibRef
Fix, A.[Alexander],
Gruber, A.[Aritanan],
Boros, E.[Endre],
Zabih, R.[Ramin],
A Hypergraph-Based Reduction for Higher-Order Binary Markov Random
Fields,
PAMI(37), No. 7, July 2015, pp. 1387-1395.
IEEE DOI
1506
BibRef
Earlier:
A graph cut algorithm for higher-order Markov Random Fields,
ICCV11(1020-1027).
IEEE DOI
1201
BibRef
Wang, C.[Chen],
Zabih, R.[Ramin],
Relaxation-Based Preprocessing Techniques for Markov Random Field
Inference,
CVPR16(5830-5838)
IEEE DOI
1612
BibRef
Fix, A.[Alexander],
Wang, C.[Chen],
Zabih, R.[Ramin],
A Primal-Dual Algorithm for Higher-Order Multilabel Markov Random
Fields,
CVPR14(1138-1145)
IEEE DOI
1409
Markov Random Fields; Optimization; primal-dual algorithms
BibRef
Wang, T.[Tao],
Ji, Z.X.[Ze-Xuan],
Sun, Q.S.[Quan-Sen],
Chen, Q.A.[Qi-Ang],
Han, S.D.[Shou-Dong],
Image segmentation based on weighting boundary information via graph
cut,
JVCIR(33), No. 1, 2015, pp. 10-19.
Elsevier DOI
1512
Image segmentation
BibRef
Wang, T.[Tao],
Sun, Q.S.[Quan-Sen],
Ji, Z.X.[Ze-Xuan],
Chen, Q.A.[Qi-Ang],
Fu, P.[Peng],
Multi-layer graph constraints for interactive image segmentation via
game theory,
PR(55), No. 1, 2016, pp. 28-44.
Elsevier DOI
1604
Image segmentation
BibRef
Wang, T.[Tao],
Ji, Z.X.[Ze-Xuan],
Sun, Q.S.[Quan-Sen],
Chen, Q.A.[Qi-Ang],
Jing, X.Y.,
Interactive Multilabel Image Segmentation via Robust Multilayer Graph
Constraints,
MultMed(18), No. 12, December 2016, pp. 2358-2371.
IEEE DOI
1612
Computational complexity
BibRef
Ji, Z.X.[Ze-Xuan],
Huang, Y.[Yubo],
Sun, Q.S.[Quan-Sen],
Cao, G.[Guo],
A spatially constrained generative asymmetric Gaussian mixture model
for image segmentation,
JVCIR(40, Part B), No. 1, 2016, pp. 611-626.
Elsevier DOI
1610
Asymmetric Gaussian mixture model
BibRef
Ji, Z.X.[Ze-Xuan],
Liu, J.Y.[Jin-Yao],
Yuan, H.D.[Heng-Dong],
Huang, Y.[Yubo],
Sun, Q.S.[Quan-Sen],
A Spatially Constrained Asymmetric Gaussian Mixture Model for Image
Segmentation,
PSIVT15(697-708).
Springer DOI
1602
BibRef
Arias-Lorza, A.M.[Andres M.],
Petersen, J.[Jens],
van Engelen, A.[Arna],
Selwaness, M.[Mariana],
van der Lugt, A.,
Niessen, W.J.,
de Bruijne, M.,
Carotid Artery Wall Segmentation in Multispectral MRI by Coupled
Optimal Surface Graph Cuts,
MedImg(35), No. 3, March 2016, pp. 901-911.
IEEE DOI
1603
Bifurcation
BibRef
Arias-Lorza, A.M.[Andres M.],
Petersen, J.[Jens],
van Engelen, A.[Arna],
Tang, H.[Hui],
Selwaness, M.[Mariana],
Carotid Artery Wall Segmentation by Coupled Surface Graph Cuts,
MCVM12(38-47).
Springer DOI
1305
BibRef
Fishbain, B.,
Hochbaum, D.S.[Dorit S.],
Mueller, S.[Stefan],
A competitive study of the pseudoflow algorithm for the minimum s-t cut
problem in vision applications,
RealTimeIP(11), No. 3, March 2016, pp. 589-609.
Springer DOI
1604
BibRef
Zhong, Y.F.[Yan-Fei],
Gao, R.R.[Rong-Rong],
Zhang, L.P.[Liang-Pei],
Multiscale and Multifeature Normalized Cut Segmentation for High
Spatial Resolution Remote Sensing Imagery,
GeoRS(54), No. 10, October 2016, pp. 6061-6075.
IEEE DOI
1610
geophysical image processing
BibRef
Zheng, Z.[Zhuo],
Zhong, Y.F.[Yan-Fei],
Wang, J.[Junjue],
Ma, A.[Ailong],
Zhang, L.P.[Liang-Pei],
FarSeg++: Foreground-Aware Relation Network for Geospatial Object
Segmentation in High Spatial Resolution Remote Sensing Imagery,
PAMI(45), No. 11, November 2023, pp. 13715-13729.
IEEE DOI
2310
BibRef
Han, X.B.[Xiao-Bing],
Zhong, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
An Efficient and Robust Integrated Geospatial Object Detection
Framework for High Spatial Resolution Remote Sensing Imagery,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zheng, Z.[Zhuo],
Zhong, Y.F.[Yan-Fei],
Ma, A.L.[Ai-Long],
Han, X.B.[Xiao-Bing],
Zhao, J.[Ji],
Liu, Y.F.[Yan-Fei],
Zhang, L.P.[Liang-Pei],
HyNet: Hyper-Scale Object Detection Network Framework for Multiple
Spatial Resolution Remote Sensing Imagery,
PandRS(166), 2020, pp. 1-14.
Elsevier DOI
2007
Hyper-scale feature representation,
Convolutional neural network, Multiple spatial resolution, Remote sensing
BibRef
Han, X.B.[Xiao-Bing],
Zhong, Y.F.[Yan-Fei],
Cao, L.Q.[Li-Qin],
Zhang, L.P.[Liang-Pei],
Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision
for High Spatial Resolution Remote Sensing Image Scene Classification,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zheng, Z.[Zhuo],
Zhong, Y.F.[Yan-Fei],
Wang, J.J.[Jun-Jue],
Ma, A.L.[Ai-Long],
Foreground-Aware Relation Network for Geospatial Object Segmentation
in High Spatial Resolution Remote Sensing Imagery,
CVPR20(4095-4104)
IEEE DOI
2008
Semantics, Geospatial analysis, Remote sensing,
Object segmentation, Image segmentation, Optimization, Feature extraction
BibRef
Yu, M.,
Shen, S.,
Hu, Z.,
Dynamic Parallel and Distributed Graph Cuts,
IP(25), No. 12, December 2016, pp. 5511-5525.
IEEE DOI
1612
computer vision
BibRef
Yu, M.,
Shen, S.,
Hu, Z.,
Dynamic Graph Cuts in Parallel,
IP(26), No. 8, August 2017, pp. 3775-3788.
IEEE DOI
1707
graph theory, image segmentation,
parallel processing, video signal processing, GrabCut, MRF models,
foreground-background segmentation,
max-flow problem, parallel computation,
parallel dynamic graph cuts, video segmentation,
Algorithm design and analysis, Data structures,
Heuristic algorithms, Merging, Parallel algorithms,
Particle separators, Dynamic graph cuts, GrabCut,
parallel computation, video, segmentation
BibRef
Sangüesa, A.A.[Adrià A.],
Jorgensen, N.K.[Nicolai K.],
Larsen, C.A.[Christian A.],
Nasrollahi, K.[Kamal],
Moeslund, T.B.[Thomas B.],
Initiating GrabCut by color difference for automatic foreground
extraction of passport imagery,
IPTA16(1-6)
IEEE DOI
1703
image segmentation
BibRef
Holuša, M.[Michael],
Sojka, E.[Eduard],
The k-max distance in graphs and images,
PRL(98), No. 1, 2017, pp. 103-109.
Elsevier DOI
1710
BibRef
Earlier:
A k-max Geodesic Distance and Its Application in Image Segmentation,
CAIP15(I:618-629).
Springer DOI
1511
BibRef
Earlier:
Image Segmentation Using Iterated Graph Cuts with Residual Graph,
ISVC13(I:228-237).
Springer DOI
1310
BibRef
Earlier:
Object Detection from Multiple Images Based on the Graph Cuts,
ISVC12(I: 262-271).
Springer DOI
1209
Distance measuring
BibRef
Holuša, M.[Michael],
Sukhanov, A.[Andrey],
Sojka, E.[Eduard],
Image Segmentation Based on Solving the Flow in the Mesh with the
Connections of Limited Capacities,
ICIAR17(163-170).
Springer DOI
1706
BibRef
Lu, Y.W.[Yu-Wei],
Jiang, J.G.[Jian-Guo],
Qi, M.B.[Mei-Bin],
Zhan, S.[Shu],
Yang, J.[Jie],
Segmentation method for medical image based on improved GrabCut,
IJIST(27), No. 4, 2017, pp. 383-390.
DOI Link
1712
figure of foreground, Gaussian Mixture model,
GrabCut algorithm, image segmentation, training set
BibRef
Essa, E.[Ehab],
Xie, X.H.[Xiang-Hua],
Automatic segmentation of cross-sectional coronary arterial images,
CVIU(165), No. 1, 2017, pp. 97-110.
Elsevier DOI
1712
IVUS
BibRef
Essa, E.[Ehab],
Xie, X.H.[Xiang-Hua],
Sazonov, I.[Igor],
Nithiarasu, P.[Perumal],
Automatic IVUS media-adventitia border extraction using double
interface graph cut segmentation,
ICIP11(69-72).
IEEE DOI
1201
BibRef
Essa, E.[Ehab],
Xie, X.H.[Xiang-Hua],
Sazonov, I.[Igor],
Nithiarasu, P.[Perumal],
Smith, D.[Dave],
Shape Prior Model for Media-Adventitia Border Segmentation in IVUS
Using Graph Cut,
MCVM12(114-123).
Springer DOI
1305
BibRef
Jones, J.L.[Jonathan-Lee],
Essa, E.[Ehab],
Xie, X.H.[Xiang-Hua],
Interactive Segmentation of Media-Adventitia Border in IVUS,
CAIP13(II:466-474).
Springer DOI
1311
BibRef
Cheng, Z.[Ziang],
Liu, Y.[Yang],
Liu, G.J.[Guo-Jun],
A new primal-dual algorithm for multilabel graph-cuts problems with
approximate moves,
CVIU(165), No. 1, 2017, pp. 75-84.
Elsevier DOI
1712
MRF-MAP inference
BibRef
Furuta, R.[Ryosuke],
Tsubaki, I.[Ikuko],
Yamasak, T.[Toshihiko],
Fast Volume Seam Carving With Multipass Dynamic Programming,
CirSysVideo(28), No. 5, May 2018, pp. 1087-1101.
IEEE DOI
1805
BibRef
Earlier:
ICIP16(1818-1822)
IEEE DOI
1610
Heuristic algorithms, Image quality, Memory management,
Minimization, Surface treatment,
video retargeting
Cost function. Graph cut process is expensive.
BibRef
Zheng, Q.A.[Qi-Ang],
Li, H.L.[Hong-Lun],
Fan, B.D.[Bao-De],
Wu, S.H.[Shuan-Hu],
Xu, J.D.[Jin-Dong],
Integrating support vector machine and graph cuts for medical image
segmentation,
JVCIR(55), 2018, pp. 157-165.
Elsevier DOI
1809
Support vector machine, Graph cuts, Medical image segmentation
BibRef
Peng, Y.[Yan],
Zhang, Z.M.[Zhao-Ming],
He, G.J.[Guo-Jin],
Wei, M.Y.[Ming-Yue],
An Improved GrabCut Method Based on a Visual Attention Model for
Rare-Earth Ore Mining Area Recognition with High-Resolution Remote
Sensing Images,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Ke, X.[Xin],
He, G.J.[Guo-Jin],
Visual attention based model for target detection in high resolution
remote sensing images,
CVRS12(84-89).
IEEE DOI
1302
aircraft in Quick-Bird images.
BibRef
Bejar, H.H.C.[Hans H.C.],
Ferzoli Guimaraes, S.J.[Silvio Jamil],
Miranda, P.A.V.[Paulo A.V.],
Efficient hierarchical graph partitioning for image segmentation by
optimum oriented cuts,
PRL(131), 2020, pp. 185-192.
Elsevier DOI
2004
Unsupervised segmentation, Hierarchical graph partitioning, Graph-cut measure
BibRef
de Moraes Braz, C.[Caio],
Miranda, P.A.V.[Paulo A. V.],
Ciesielski, K.C.[Krzysztof Chris],
Cappabianco, F.A.M.[Fábio A. M.],
Optimum Cuts in Graphs by General Fuzzy Connectedness with Local Band
Constraints,
JMIV(62), No. 5, June 2020, pp. 659-672.
Springer DOI
2007
BibRef
Wang, F.Q.[Fa-Qiang],
Zhao, C.C.[Cui-Cui],
Liu, J.[Jun],
Huang, H.Y.[Hai-Yang],
A Variational Image Segmentation Model Based on Normalized Cut with
Adaptive Similarity and Spatial Regularization,
SIIMS(13), No. 2, 2020, pp. 651-684.
DOI Link
2007
BibRef
Lermé, N.[Nicolas],
Le Hégarat-Mascle, S.[Sylvie],
Malgouyres, F.[François],
Lachaize, M.[Marie],
Multilayer Joint Segmentation Using MRF and Graph Cuts,
JMIV(62), No. 6-7, July 2020, pp. 961-981.
Springer DOI
2007
BibRef
Zhu, H.,
Zhang, J.,
Xu, G.,
Deng, L.,
Tensor Field Graph-Cut for Image Segmentation:
A Non-Convex Perspective,
CirSysVideo(31), No. 3, March 2021, pp. 1103-1113.
IEEE DOI
2103
Tensile stress, Image segmentation, Optimization,
Image edge detection, Shape, Anisotropic magnetoresistance,
hypergraph cut
BibRef
Jia, L.[Lu],
Zhang, T.T.[Tian-Tian],
Fang, J.[Jing],
Dong, F.[Feibiao],
Multiple Kernel Graph Cut for SAR Image Change Detection,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Chakraborty, S.[Sujoy],
Kirchner, M.[Matthias],
Sensor-based image manipulation localization with Discriminative
Random fields and Graph Cut,
JVCIR(80), 2021, pp. 103273.
Elsevier DOI
2110
Photo-response non-uniformity, Discriminative random field,
Manipulation localization, Correlation predictor
BibRef
Zhu, L.[Lei],
Kang, X.J.[Xue-Jing],
Ye, L.[Lizhu],
Ming, A.[Anlong],
Explored Normalized Cut With Random Walk Refining Term for Image
Segmentation,
IP(31), No. 2022, pp. 2893-2906.
IEEE DOI
2204
Image segmentation, Image edge detection, Task analysis,
Computational modeling, Analytical models,
graph signal processing
BibRef
Wang, C.[Chen],
Chen, X.J.[Xiao-Jun],
Nie, F.P.[Fei-Ping],
Huang, J.Z.[Joshua Zhexue],
Directly solving normalized cut for multi-view data,
PR(130), 2022, pp. 108809.
Elsevier DOI
2206
Clustering, Graph cut, Multi-view
BibRef
Wang, Y.T.[Yang-Tao],
Shen, X.[Xi],
Yuan, Y.[Yuan],
Du, Y.M.[Yu-Ming],
Li, M.[Maomao],
Hu, S.X.[Shell Xu],
Crowley, J.L.[James L.],
Vaufreydaz, D.[Dominique],
TokenCut: Segmenting Objects in Images and Videos With
Self-Supervised Transformer and Normalized Cut,
PAMI(45), No. 12, December 2023, pp. 15790-15801.
IEEE DOI
2311
BibRef
Jenner, E.[Erik],
Sanmartín, E.F.[Enrique Fita],
Hamprecht, F.A.[Fred A.],
Extensions of Karger's Algorithm: Why They Fail in Theory and How
They Are Useful in Practice,
ICCV21(4582-4591)
IEEE DOI
2203
Image segmentation, Machine learning algorithms, Runtime,
Machine learning, Semisupervised learning, Minimization,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Sun, J.X.[Jun-Xiao],
Zhang, Y.[Yan],
Zhu, J.[Jian],
Wu, J.S.[Jia-Song],
Kong, Y.Y.[You-Yong],
Semi-Supervised Medical Image Semantic Segmentation with Multi-scale
Graph Cut Loss,
ICIP21(624-628)
IEEE DOI
2201
Image segmentation, Annotations, Semantics,
Semisupervised learning, Convolutional neural networks,
Semantic Segmentation
BibRef
Zheng, Z.[Zhou],
Oda, M.[Masahiro],
Mori, K.[Kensaku],
Graph Cuts Loss to Boost Model Accuracy and Generalizability for
Medical Image Segmentation,
CVAMD21(3297-3306)
IEEE DOI
2112
Image segmentation,
Supervised learning, Liver, Computer architecture, Cost function
BibRef
Cahill, N.D.,
Hayes, T.L.,
Meinhold, R.T.,
Hamilton, J.F.,
Compassionately Conservative Balanced Cuts for Image Segmentation,
CVPR18(1683-1691)
IEEE DOI
1812
Image segmentation, Minimization,
Linear programming, Indexes, Partitioning algorithms
BibRef
Aykut, M.[Murat],
Akturk, S.M.[Saffet Murat],
An Improvement on GrabCut with CLAHE for the Segmentation of the
Objects with Ambiguous Boundaries,
ICIAR18(116-122).
Springer DOI
1807
BibRef
Chen, X.,
Haung, J.Z.,
Nie, F.,
Chen, R.,
Wu, Q.,
A Self-Balanced Min-Cut Algorithm for Image Clustering,
ICCV17(2080-2088)
IEEE DOI
1802
content-based retrieval, eigenvalues and eigenfunctions,
image retrieval, image segmentation, iterative methods,
Software algorithms
BibRef
Kirillov, A.,
Levinkov, E.,
Andres, B.,
Savchynskyy, B.,
Rother, C.[Carsten],
InstanceCut: From Edges to Instances with MultiCut,
CVPR17(7322-7331)
IEEE DOI
1711
Automobiles, Image edge detection, Image segmentation, Pipelines,
Proposals, Semantics
BibRef
Brzoza, A.,
Muszynski, G.,
An approach to image segmentation based on shortest paths in graphs,
WSSIP17(1-5)
IEEE DOI
1707
Benchmark testing, Gaussian distribution, Histograms,
Image segmentation, Measurement, Synchronous digital hierarchy,
Graph theory, Image Texture Analysis, Image processing,
Image segmentation, Shortest, path, problem
BibRef
Fuse, T.,
Harada, R.,
Development Of Image Selection Method Using Graph Cuts,
ISPRS16(B5: 641-646).
DOI Link
1610
BibRef
Cheng, D.,
Meng, G.,
Pan, C.,
Sea-land segmentation via hierarchical region merging and edge
directed graph cut,
ICIP16(1274-1278)
IEEE DOI
1610
Image color analysis
BibRef
Chew, S.E.,
Cahill, N.D.,
Semi-Supervised Normalized Cuts for Image Segmentation,
ICCV15(1716-1723)
IEEE DOI
1602
Chlorine
BibRef
Keuper, M.,
Levinkov, E.,
Bonneel, N.,
Lavoue, G.,
Brox, T.,
Andres, B.,
Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts,
ICCV15(1751-1759)
IEEE DOI
1602
Algorithm design and analysis
BibRef
Humayun, A.,
Li, F.,
Rehg, J.M.,
The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for
Object Proposals,
ICCV15(1600-1608)
IEEE DOI
1602
Image segmentation
BibRef
Xing, Q.[Qi],
Li, Y.F.[Yi-Fan],
Wiggins, B.[Brendan],
Demer, J.L.[Joseph L.],
Wei, Q.[Qi],
Automatic Segmentation of Extraocular Muscles Using Superpixel and
Normalized Cuts,
ISVC15(I: 501-510).
Springer DOI
1601
BibRef
Hrkac, T.[Tomislav],
Brkic, K.[Karla],
Iterative Automated Foreground Segmentation in Video Sequences Using
Graph Cuts,
GCPR15(308-319).
Springer DOI
1511
BibRef
Beier, T.[Thorsten],
Hamprecht, F.A.[Fred A.],
Kappes, J.H.[Jorg H.],
Fusion moves for correlation clustering,
CVPR15(3507-3516)
IEEE DOI
1510
BibRef
Hsiao, Y.M.[Yu-Min],
Chang, L.W.[Long-Wen],
Unsupervised figure-ground segmentation using edge detection and
game-theoretical graph-cut approach,
MVA15(353-356)
IEEE DOI
1507
Computer science
BibRef
Singh, B.[Bharat],
Han, X.T.[Xin-Tong],
Wu, Z.[Zhe],
Davis, L.S.[Larry S.],
PSPGC: Part-Based Seeds for Parametric Graph-Cuts,
ACCV14(III: 360-375).
Springer DOI
1504
BibRef
Ackermann, H.[Hanno],
Scheuermann, B.[Björn],
Chin, T.J.[Tat-Jun],
Rosenhahn, B.[Bodo],
Randomly Walking Can Get You Lost:
Graph Segmentation with Unknown Edge Weights,
EMMCVPR15(450-463).
Springer DOI
1504
BibRef
Humayun, A.[Ahmad],
Li, F.X.[Fu-Xin],
Rehg, J.M.[James M.],
RIGOR: Reusing Inference in Graph Cuts for Generating Object Regions,
CVPR14(336-343)
IEEE DOI
1409
Boosting; Graph Cuts; Object Proposals; Object Segmentation; Reuse
BibRef
Ishikawa, H.[Hiroshi],
Higher-Order Clique Reduction without Auxiliary Variables,
CVPR14(1362-1369)
IEEE DOI
1409
Graph cuts; Higher order; Order reduction; Pseudo-Boolean functions
BibRef
Bai, J.J.[Jun-Jie],
Wu, X.D.[Xiao-Dong],
Error-Tolerant Scribbles Based Interactive Image Segmentation,
CVPR14(392-399)
IEEE DOI
1409
error-tolerante; graph-cut; interactive segmentation; ratio optimization
BibRef
Yang, J.[Jimei],
Tsai, Y.H.[Yi-Hsuan],
Yang, M.H.[Ming-Hsuan],
Exemplar Cut,
ICCV13(857-864)
IEEE DOI
1403
BibRef
Tang, M.[Meng],
Gorelick, L.[Lena],
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
GrabCut in One Cut,
ICCV13(1769-1776)
IEEE DOI
1403
MRF; color separation; graph cut; segmentation
BibRef
Gorelick, L.[Lena],
Delong, A.[Andrew],
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Recursive MDL via graph cuts: Application to segmentation,
ICCV11(890-897).
IEEE DOI
1201
BibRef
Kyrgyzov, O.[Olexiy],
Bloch, I.[Isabelle],
Yang, Y.[Yuan],
Wiart, J.[Joe],
Souloumiac, A.[Antoine],
Data Ranking and Clustering via Normalized Graph Cut Based on
Asymmetric Affinity,
CIAP13(II:562-571).
Springer DOI
1309
BibRef
Majeed, T.[Tahir],
Fundana, K.[Ketut],
Kiriyanthan, S.[Silja],
Beinemann, J.[Jörg],
Cattin, P.[Philippe],
Graph Cut Segmentation Using a Constrained Statistical Model with
Non-linear and Sparse Shape Optimization,
MCVM12(48-58).
Springer DOI
1305
BibRef
Paulhac, L.[Ludovic],
Ta, V.T.[Vinh-Thong],
Megret, R.[Remi],
Relaxed Cheeger Cut for image segmentation,
ICPR12(3321-3324).
WWW Link.
1302
BibRef
Verma, T.[Tanmay],
Batra, D.[Dhruv],
MaxFlow Revisited: An Empirical Comparison of Maxflow Algorithms for
Dense Vision Problems,
BMVC12(61).
DOI Link
1301
BibRef
Lermé, N.[Nicolas],
Malgouyres, F.[François],
Simultaneous Segmentation and Filtering via Reduced Graph Cuts,
ACIVS12(201-212).
Springer DOI
1209
BibRef
Tarlow, D.[Daniel],
Adams, R.P.[Ryan P.],
Revisiting uncertainty in graph cut solutions,
CVPR12(2440-2447).
IEEE DOI
1208
BibRef
Jamriska, O.[Ondrej],
Sykora, D.[Daniel],
Hornung, A.[Alexander],
Cache-efficient graph cuts on structured grids,
CVPR12(3673-3680).
IEEE DOI
1208
BibRef
Huang, X.S.[Xiang-Sheng],
Gong, L.[Lujin],
Shortest Path Based Planar Graph Cuts for Bi-layer Segmentation of
Binocular Stereo Video,
CVMAR10(82-91).
Springer DOI
1109
BibRef
Jegelka, S.[Stefanie],
Bilmes, J.[Jeff],
Submodularity beyond submodular energies: Coupling edges in graph cuts,
CVPR11(1897-1904).
IEEE DOI
1106
BibRef
Scheuermann, B.[Björn],
Rosenhahn, B.[Bodo],
SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction,
EMMCVPR11(219-232).
Springer DOI
1107
See also Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence.
BibRef
Lerme, N.[Nicolas],
Malgouyres, F.[Francois],
Letocart, L.[Lucas],
Reducing graphs in graph cut segmentation,
ICIP10(3045-3048).
IEEE DOI
1009
BibRef
Pham, V.Q.[Viet-Quoc],
Takahashi, K.[Keita],
Naemura, T.[Takeshi],
Bounding-Box Based Segmentation with Single Min-cut Using Distant Pixel
Similarity,
ICPR10(4420-4423).
IEEE DOI
1008
BibRef
Nicolls, F.[Fred],
Torr, P.H.S.[Philip H. S.],
Discrete minimum ratio curves and surfaces,
CVPR10(2133-2140).
IEEE DOI
1006
Biases in graph-cuts for segmentations.
BibRef
Liu, J.Y.[Jiang-Yu],
Sun, J.[Jian],
Parallel graph-cuts by adaptive bottom-up merging,
CVPR10(2181-2188).
IEEE DOI
1006
BibRef
Candemir, S.[Sema],
Akgül, Y.S.[Yusuf Sinan],
Statistical Significance Based Graph Cut Segmentation for Shrinking
Bias,
ICIAR11(I: 304-313).
Springer DOI
1106
BibRef
Earlier:
Adaptive Regularization Parameter for Graph Cut Segmentation,
ICIAR10(I: 117-126).
Springer DOI
1006
BibRef
Garrett, Z.A.[Zachary A.],
Saito, H.[Hideo],
Real-Time Online Video Object Silhouette Extraction Using Graph Cuts on
the GPU,
CIAP09(985-994).
Springer DOI
0909
BibRef
Earlier:
Live video object tracking and segmentation using graph cuts,
ICIP08(1576-1579).
IEEE DOI
0810
BibRef
Koo, H.I.[Hyung Il],
Cho, N.I.[Nam Ik],
Graph cuts using a Riemannian metric induced by tensor voting,
ICCV09(514-520).
IEEE DOI
0909
Combine tensor voting into graph cuts.
BibRef
Birkbeck, N.[Neil],
Cobzas, D.[Dana],
Jagersand, M.[Martin],
Murtha, A.[Albert],
Kesztyues, T.[Tibor],
An interactive graph cut method for brain tumor segmentation,
WACV09(1-7).
IEEE DOI
0912
BibRef
Massoptier, L.,
Misra, A.,
Sowmya, A.,
Automatic lung segmentation in HRCT images with diffuse parenchymal
lung disease using graph-cut,
IVCNZ09(266-270).
IEEE DOI
0911
BibRef
Cooke, T.,
Two Applications of Graph-Cuts to Image Processing,
DICTA08(498-504).
IEEE DOI
0812
BibRef
Park, A.[Anjin],
Kim, J.W.[Jung-Whan],
Min, S.K.[Seung-Ki],
Yun, S.J.[Sung-Ju],
Jung, K.C.[Kee-Chul],
Graph Cuts-Based Automatic Color Image Segmentation,
DICTA08(564-571).
IEEE DOI
0812
BibRef
Carr, P.[Peter],
Hartley, R.I.[Richard I.],
Solving Multilabel Graph Cut Problems with Multilabel Swap,
DICTA09(532-539).
IEEE DOI
0912
BibRef
Rastogi, A.[Anubha],
Krishnamurthy, B.[Balaji],
Localized Hierarchical Graph Cuts,
ICCVGIP08(163-170).
IEEE DOI
0812
BibRef
Chen, J.H.[Jiun-Hung],
Shapiro, L.G.[Linda G.],
Medical image segmentation via min s-t cuts with sides constraints,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Delaunoy, A.[Amael],
Fundana, K.[Ketut],
Prados, E.[Emmanuel],
Heyden, A.[Anders],
Convex multi-region segmentation on manifolds,
ICCV09(662-669).
IEEE DOI
0909
BibRef
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Silhouette extraction based on iterative spatio-temporal local color
transformation and graph-cut segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Moore, D.[Douglas],
Stevens, J.[John],
Lundberg, S.[Scott],
Draper, B.A.[Bruce A.],
Top down image segmentation using congealing and graph-cut,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Cigla, C.[Cevahir],
Alatan, A.A.[A. Aydin],
Efficient graph-based image segmentation via speeded-up turbo pixels,
ICIP10(3013-3016).
IEEE DOI
1009
BibRef
Earlier:
Region-based image segmentation via graph cuts,
ICIP08(2272-2275).
IEEE DOI
0810
BibRef
Sakurikar, P.[Parikshit],
Narayanan, P.J.,
Fast graph cuts using shrink-expand reparameterization,
WACV12(65-71).
IEEE DOI
1203
BibRef
Vineet, V.[Vibhav],
Narayanan, P.J.,
CUDA cuts: Fast graph cuts on the GPU,
CVGPU08(1-8).
IEEE DOI
0806
BibRef
Zhu-Jacquot, J.[Jie],
Graph Cuts Segmentation with Geometric Shape Priors for Medical Images,
Southwest08(109-112).
IEEE DOI
0803
BibRef
Tang, P.[Peng],
Gao, L.[Lin],
Video object segmentation based on graph cut with dynamic shape prior
constraint,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Mu, Y.[Ying],
Zhang, H.[Hong],
Wang, H.[Helong],
Zuo, W.[Wei],
Automatic Video Object Segmentation using Graph Cut,
ICIP07(III: 377-380).
IEEE DOI
0709
BibRef
Corrigan, D.[David],
Harte, N.[Naomi],
Kokaram, A.[Anil],
Automated Segmentation of Torn Frames using the Graph Cuts Technique,
ICIP07(I: 557-560).
IEEE DOI
0709
BibRef
Chang, H.[Hang],
Yang, Q.[Qing],
Auer, M.[Manfred],
Parvin, B.[Bahram],
Modeling of Front Evolution with Graph Cut Optimization,
ICIP07(I: 241-244).
IEEE DOI
0709
BibRef
Malcolm, J.[James],
Rathi, Y.[Yogesh],
Tannenbaum, A.[Allen],
Graph Cut Segmentation with Nonlinear Shape Priors,
ICIP07(IV: 365-368).
IEEE DOI
0709
BibRef
And:
A Graph Cut Approach to Image Segmentation in Tensor Space,
ComponentAnalysis07(1-8).
IEEE DOI
0706
See also Label Space: A Multi-object Shape Representation.
BibRef
Nagahashi, T.[Tomoyuki],
Fujiyoshi, H.[Hironobu],
Kanade, T.[Takeo],
Video Segmentation Using Iterated Graph Cuts Based on Spatio-temporal
Volumes,
ACCV09(II: 655-666).
Springer DOI
0909
BibRef
Earlier:
Image Segmentation Using Iterated Graph Cuts Based on Multi-scale
Smoothing,
ACCV07(II: 806-816).
Springer DOI
0711
BibRef
Sormann, M.[Mario],
Zach, C.[Christopher],
Bauer, J.[Joachim],
Karner, K.[Konrad],
Bishof, H.[Horst],
Watertight Multi-view Reconstruction Based on Volumetric Graph-Cuts,
SCIA07(393-402).
Springer DOI
0706
BibRef
Sormann, M.[Mario],
Zach, C.[Christopher],
Karner, K.[Konrad],
Graph Cut Based Multiple View Segmentation for 3D Reconstruction,
3DPVT06(1085-1092).
IEEE DOI
0606
BibRef
Chia, A.,
Zagorodnov, V.,
Graph Cut Based Segmentation of Convoluted Objects,
ICIP05(III: 848-851).
IEEE DOI
0512
BibRef
Zabih, R.[Ramin],
Kolmogorov, V.[Valdimir],
Spatially coherent clustering using graph cuts,
CVPR04(II: 437-444).
IEEE DOI
0408
Segmentation by clustering.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Geodesic Active Contours .