Huang, T.[Timothy],
Russell, S.[Stuart],
Object identification:
A Bayesian analysis with application to traffic surveillance,
AI(103), No. 1-2, August 1998, pp. 77-93.
Elsevier DOI The task of deciding that two objects are really the same object.
Define an identity criterion and an appearance probability.
Recognize cars in widely spaced cameras.
BibRef
9808
Koller, D.[Dieter],
Weber, J.W.[Joseph W.],
Huang, T.S.,
Malik, J.,
Ogasawara, G.,
Rao, B.,
Russell, S.,
Towards Robust Automatic Traffic Scene Analysis in Real-Time,
ICPR94(A:126-131).
IEEE DOI
BibRef
9400
Aste, M.,
Rossi, M.,
Cattoni, R.,
Caprile, B.,
Visual Routines for Real Time Monitoring of Vehicle Behavior,
MVA(11), No. 1, 1998, pp. 16-23.
Springer DOI
9808
BibRef
Burlina, P.,
Chellappa, R.,
Temporal Analysis of Motion in Video Sequences
Through Predictive Operators,
IJCV(28), No. 2, June-July 1998, pp. 175-192.
DOI Link
9808
BibRef
Burlina, P.,
Chellappa, R.,
Lin, C.L.,
A Spectral Attentional Mechanism Tuned to Object Configurations,
IP(6), No. 8, August 1997, pp. 1117-1128.
IEEE DOI
9708
See also Adaptive Target Detection in Foliage-Penetrating SAR Images Using Alpha-Stable Models.
BibRef
Chellappa, R.,
Burlina, P.,
Zheng, Q.,
Shekhar, C.,
Davis, L.S.,
Temporal Analysis of Vehicular Activities from SAR/EO,
DARPA97(415-424).
BibRef
9700
Chellappa, R.[Rama],
Burlina, P.[Phillipe],
Davis, L.S.[Larry S.],
Rosenfeld, A.[Azriel],
SAR/EO Vehicular Activity Analysis System Guided by Temporal and
Contextual Information,
DARPA98(615-620).
BibRef
9800
Burlina, P.[Philippe],
Lin, B.[Bruce],
Chellappa, R.[Rama],
On a Spectral Attentional Mechanism,
CVPR96(120-127).
IEEE DOI Find areas with vehicles, using spectral computations.
BibRef
9600
Tunali, G.D.[Gamze D.],
Chellappa, R.[Rama],
Burlina, P.[Philippe],
Following and Monitoring Roads on Airborne Video,
UMD--TR3990, February 1999.
WWW Link.
BibRef
9902
Cetintemel, G.D.,
Burlina, P.,
On-the-fly snake construction from video,
ICIP98(III: 638-642).
IEEE DOI
9810
BibRef
Burlina, P.,
Cetintemel, G.D.,
On-the-Fly Road Tracking from video,
DARPA98(223-227).
Snakes
BibRef
9800
Davis, L.S.[Larry S.],
Challappa, R.[Rama],
Rosenfeld, A.[Azriel],
Harwood, D.[David],
Haritaoglu, I.[Ismail],
Cutler, R.[Ross],
Visual Surveillance and Monitoring,
DARPA98(73-76).
BibRef
9800
Chellappa, R.,
Burlina, P.,
Phillips, W.,
Cetintemel, G.D.,
Shekhar, C.,
Parameswaran, V.,
Davis, L.S., and
Rosenfeld, A.,
Context-based Analysis and Reasoning on Vehicular Activities
in SAR-EO Imagery,
UMD-- F33615, February 1998.
Tracking and understanding of vehicular activity from
intermittent observations.
PS File.
BibRef
9802
Pavlidis, I.,
Morellas, V.,
Papanikolopoulos, N.P.,
A vehicle occupant counting system based on near-infrared phenomenology
and fuzzy neural classification,
ITS(1), No. 2, June 2000, pp. 72-85.
IEEE Abstract.
0402
BibRef
Pavlidis, I.,
Symosek, P.,
Fritz, B.,
Bazakos, M.,
Papanikolopoulos, N.P.,
Automatic detection of vehicle occupants:
The Imaging Problem and its solution,
MVA(11), No. 6, 2000, pp. 313-320.
Springer DOI
0005
BibRef
Pavlidis, I.,
Symosek, P.,
Fritz, B.,
Papanikolopoulos, N.P.,
A Near-Infrared Fusion Scheme for Automatic Detection of Vehicle
Passengers,
CVBVS99(41).
IEEE DOI
BibRef
9900
Masoud, O.T.,
Papanikolopoulos, N.P.,
Kwon, E.,
The use of computer vision in monitoring weaving sections,
ITS(2), No. 1, March 2001, pp. 18-25.
IEEE Abstract.
0402
BibRef
Veeraraghavan, H.,
Masoud, O.T.,
Papanikolopoulos, N.P.,
Computer vision algorithms for intersection monitoring,
ITS(4), No. 2, June 2003, pp. 78-89.
IEEE Abstract.
0402
BibRef
Atev, S.,
Arumugam, H.,
Masoud, O.T.,
Janardan, R.,
Papanikolopoulos, N.P.,
A vision-based approach to collision prediction at traffic
intersections,
ITS(6), No. 4, December 2005, pp. 416-423.
IEEE DOI
0601
BibRef
Atev, S.,
Miller, G.,
Papanikolopoulos, N.P.,
Clustering of Vehicle Trajectories,
ITS(11), No. 3, September 2010, pp. 647-657.
IEEE DOI
1003
BibRef
Ferryman, J.M.[James M.],
Maybank, S.J.[Stephen J.],
Worrall, A.D.[Anthony D.],
Visual Surveillance for Moving Vehicles,
IJCV(37), No. 2, June 2000, pp. 187-197.
DOI Link
0008
BibRef
Earlier:
VS98(Monitoring and Surveillance of Traffic Scenes).
BibRef
Morris, R.J.,
Hogg, D.C.,
Statistical Models of Object Interaction,
IJCV(37), No. 2, June 2000, pp. 209-215.
DOI Link
0008
BibRef
Earlier:
VS98(Monitoring and Surveillance of Traffic Scenes).
BibRef
Shekhar, C.[Chandra], and
Chellappa, R.[Rama],
Airborne Video Registration for Activity Monitoring,
VideoRegister03(Chapter 6).
BibRef
0300
Jung, Y.K.[Young-Kee],
Lee, K.W.[Kyu-Won],
Ho, Y.S.[Yo-Sung],
Content-based event retrieval using semantic scene interpretation for
automated traffic surveillance,
ITS(2), No. 3, September 2001, pp. 151-163.
IEEE Abstract.
0402
BibRef
Manolakis, D.E.,
Comment on 'Content-Based Event Retrieval Using Semantic Scene
Interpretation for Automated Traffic Surveillance',
ITS(5), No. 3, September 2004, pp. 219-219.
IEEE Abstract.
0501
See also Content-based event retrieval using semantic scene interpretation for automated traffic surveillance.
BibRef
Srinivasan, D.,
Jin, X.[Xin],
Cheu, R.L.,
Evaluation of adaptive neural network models for freeway incident
detection,
ITS(5), No. 1, March 2004, pp. 1-11.
IEEE Abstract.
0501
BibRef
Tang, S.,
Gao, H.,
Traffic-Incident Detection-Algorithm Based on Nonparametric Regression,
ITS(6), No. 1, March 2005, pp. 38-42.
IEEE Abstract.
0501
BibRef
Oh, C.[Cheol],
Ritchie, S.G.[Stephen G.],
Recognizing vehicle classification information from blade sensor
signature,
PRL(28), No. 9, 1 July 2007, pp. 1041-1049.
Elsevier DOI
0704
Probabilistic neural network; Vehicle classification; Traffic surveillance
BibRef
Takagi, A.[Akira],
Imanishi, M.[Masayuki],
Goto, T.[Tomoyuki],
Sato, H.[Hironori],
Apparatus for protecting occupant in vehicle,
US_Patent7,139,410, Nov 21, 2006
WWW Link.
BibRef
0611
Micheloni, C.[Christian],
Snidaro, L.[Lauro],
Foresti, G.L.[Gian Luca],
Exploiting Temporal Statistics for Events Analysis and Understanding,
IVC(27), No. 10, 2 September 2009, pp. 1459-1469.
Elsevier DOI
0906
BibRef
And:
Add A3:
Piciarelli, C.[Claudio],
CIAP07(530-535).
IEEE DOI
0709
BibRef
Earlier: A3, A1, A2:
Event classification for automatic visual-based surveillance of parking
lots,
ICPR04(III: 314-317).
IEEE DOI
0409
Apply to parking lots.
Event analysis; Event understanding; Video surveillance; Security
BibRef
Falcone, P.,
Ali, M.,
Sjoberg, J.,
Predictive Threat Assessment via Reachability Analysis and Set
Invariance Theory,
ITS(12), No. 4, December 2011, pp. 1352-1361.
IEEE DOI
1112
BibRef
Huang, S.S.,
Discriminatively trained patch-based model for occupant classification,
IET-ITS(6), No. 2, 2012, pp. 132-138.
DOI Link
1206
BibRef
Chiverton, J.,
Helmet presence classification with motorcycle detection and tracking,
IET-ITS(6), No. 2, 2012, pp. 259-269.
DOI Link
1209
BibRef
Ranta, R.,
Decoster, Y.,
Orlewski, P.,
Detection of human presence in a vehicle by vibration analysis,
IET-ITS(6), No. 4, 2012, pp. 413-420.
DOI Link
1302
BibRef
Untaroiu, C.D.,
Adam, T.J.,
Performance-Based Classification of Occupant Posture to Reduce
the Risk of Injury in a Collision,
ITS(14), No. 2, 2013, pp. 565-573.
IEEE DOI
1307
crash simulations; injury risk reduction; occupant posture;
BibRef
Zheng, R.[Rencheng],
Nakano, K.,
Okamoto, Y.,
Ohori, M.,
Hori, S.,
Suda, Y.,
Evaluation of Sternocleidomastoid Muscle Activity of a Passenger in
Response to a Car's Lateral Acceleration While Slalom Driving,
HMS(43), No. 4, 2013, pp. 405-415.
IEEE DOI
1307
biomechanics
BibRef
Li, N.,
Jain, J.J.,
Busso, C.,
Modeling of Driver Behavior in Real World Scenarios Using Multiple
Noninvasive Sensors,
MultMed(15), No. 5, 2013, pp. 1213-1225.
IEEE DOI
1307
Accuracy
BibRef
Levchuk, G.[Georgiy],
Detecting co-ordinated activities from persistent surveillance,
SPIE(Newsroom), June 5, 2013
DOI Link
1307
Algorithms identifying the behavior patterns of people and vehicles in
wide-area motion imagery can extract intelligence from data that is
too large to process manually.
BibRef
Martin, S.,
Tawari, A.,
Trivedi, M.M.,
Toward Privacy-Protecting Safety Systems for Naturalistic Driving
Videos,
ITS(15), No. 4, August 2014, pp. 1811-1822.
IEEE DOI
1410
behavioural sciences computing
BibRef
Hwang, Y.[Yoonsook],
Yoon, D.[Daesub],
Kim, H.S.[Hyun Suk],
Kim, K.H.[Kyong-Ho],
A Validation Study on a Subjective Driving Workload Prediction Tool,
ITS(15), No. 4, August 2014, pp. 1835-1843.
IEEE DOI
1410
automobiles
BibRef
Yu, T.[Teng],
Shin, H.[Hyunchul],
Detecting partially occluded vehicles with geometric and likelihood
reasoning,
IET-CV(9), No. 2, 2015, pp. 174-183.
DOI Link
1506
geometry
BibRef
Agostino, C.,
Saidi, A.,
Scouarnec, G.,
Chen, L.,
Learning-Based Driving Events Recognition and Its Application to
Digital Roads,
ITS(16), No. 4, August 2015, pp. 2155-2166.
IEEE DOI
1508
Acceleration
BibRef
Yan, C.,
Coenen, F.,
Zhang, B.,
Driving posture recognition by convolutional neural networks,
IET-CV(10), No. 2, 2016, pp. 103-114.
DOI Link
1603
driver information systems
BibRef
Moreira-Matias, L.,
Farah, H.,
On Developing a Driver Identification Methodology Using In-Vehicle
Data Recorders,
ITS(18), No. 9, September 2017, pp. 2387-2396.
IEEE DOI
1709
Cohen Kappa agreement score,
driver identification methodology,
Face, Iris recognition
BibRef
Zhou, X.[Xiang],
Yao, D.[Di],
Zhu, M.K.[Mian-Kuan],
Zhang, X.L.[Xiao-Liang],
Qi, L.F.[Ling-Fei],
Pan, H.Y.[Hong-Ye],
Zhu, X.[Xin],
Wang, Y.[Yuan],
Zhang, Z.[Zutao],
Vigilance detection method for high-speed rail using wireless wearable
EEG collection technology based on low-rank matrix decomposition,
IET-ITS(12), No. 8, October 2018, pp. 819-825.
DOI Link
1809
BibRef
Xu, M.L.[Ming-Liang],
Fang, H.[Hao],
Lv, P.[Pei],
Cui, L.[Lisha],
Zhang, S.[Shuo],
Zhou, B.[Bing],
D-STC: Deep learning with spatio-temporal constraints for train
drivers detection from videos,
PRL(119), 2019, pp. 222-228.
Elsevier DOI
1902
Deep learning, Train driver detection,
Spatio-temporal constraints, Dynamic adjustment
BibRef
Saruchi, S.A.[Sarah Atifah],
Ariff, M.H.M.[Mohd Hatta Mohammed],
Zamzuri, H.[Hairi],
Hassan, N.[Nurhaffizah],
Wahid, N.[Nurbaiti],
Artificial neural network for modelling of the correlation between
lateral acceleration and head movement in a motion sickness study,
IET-ITS(13), No. 2, February 2019, pp. 340-346.
DOI Link
1902
BibRef
Nneji, V.C.,
Cummings, M.L.,
Stimpson, A.J.,
Predicting Locomotive Crew Performance in Rail Operations with Human
and Automation Assistance,
HMS(49), No. 3, June 2019, pp. 250-258.
IEEE DOI
1906
Task analysis, Rails, Automation, Conductors, Load modeling,
Interviews, Transportation, Automation,
workload
BibRef
Yogameena, B.,
Menaka, K.,
Perumaal, S.S.[S. Saravana],
Deep learning-based helmet wear analysis of a motorcycle rider for
intelligent surveillance system,
IET-ITS(13), No. 7, July 2019, pp. 1190-1198.
DOI Link
1906
BibRef
Hu, Y.C.[Yao-Cong],
Lu, M.Q.[Ming-Qi],
Lu, X.B.[Xiao-Bo],
Driving behaviour recognition from still images by using multi-stream
fusion CNN,
MVA(30), No. 5, July 2019, pp. 851-865.
Springer DOI
1907
BibRef
He, D.,
Donmez, B.,
Liu, C.C.,
Plataniotis, K.N.,
High Cognitive Load Assessment in Drivers Through Wireless
Electroencephalography and the Validation of a Modified N-Back Task,
HMS(49), No. 4, August 2019, pp. 362-371.
IEEE DOI
1908
Task analysis, Electroencephalography, Vehicles,
Wireless communication, Roads, Wireless sensor networks,
physiological measures
BibRef
Young, K.L.[Kristie L.],
Osborne, R.[Rachel],
Koppel, S.[Sjaan],
Charlton, J.L.[Judith L.],
Grzebieta, R.[Raphael],
Williamson, A.[Ann],
Haworth, N.[Narelle],
Woolley, J.[Jeremy],
Senserrick, T.[Teresa],
What contextual and demographic factors predict drivers' decision to
engage in secondary tasks?,
IET-ITS(13), No. 8, August 2019, pp. 1218-1223.
DOI Link
1908
BibRef
Petzoldt, T.[Tibor],
Schleinitz, K.[Katja],
To text or not to text- drivers' interpretation of traffic situations
as the basis for their decision to (not) engage in text messaging,
IET-ITS(13), No. 8, August 2019, pp. 1224-1229.
DOI Link
1908
BibRef
Perttula, A.[Arto],
Nguyen, N.[Nhan],
Collin, J.[Jussi],
Jokinen, J.P.[Jani-Pekka],
Vehicle type detection and passenger satisfaction analysis using
smartphone sensors and digital surveys,
IET-ITS(13), No. 10, October 2019, pp. 1499-1506.
DOI Link
1909
BibRef
Liu, Y.,
Lasang, P.,
Pranata, S.,
Shen, S.,
Zhang, W.,
Driver Pose Estimation Using Recurrent Lightweight Network and
Virtual Data Augmented Transfer Learning,
ITS(20), No. 10, October 2019, pp. 3818-3831.
IEEE DOI
1910
Pose estimation, Task analysis, Face, Computational modeling,
Data models, Training, Driver joints detection,
transfer learning
BibRef
Jagacinski, R.J.,
Rizzi, E.,
Bloom, B.J.,
Turkkan, O.A.,
Morrison, T.N.,
Su, H.,
Wang, J.,
Drivers' Attentional Instability on a Winding Roadway,
HMS(49), No. 6, December 2019, pp. 498-507.
IEEE DOI
1912
Vehicle driving, Optimal control, Pattern formation,
Biological system modeling, Tracking, Attention, driving,
tracking
BibRef
Yao, Z.J.[Zhi-Jie],
Liu, Y.Z.[Ya-Zhou],
Ji, Z.X.[Ze-Xuan],
Sun, Q.S.[Quan-Sen],
Lasang, P.[Pongsak],
Shen, S.G.[Shen-Gmei],
3D driver pose estimation based on joint 2D-3D network,
IET-CV(14), No. 3, April 2020, pp. 84-91.
DOI Link
2003
BibRef
Earlier:
ICIP19(2546-2550)
IEEE DOI
1910
Point Cloud, Infrared Image, CNNs, 3D Human Pose Estimation, Joint Network
BibRef
Gonzalez-Trejo, E.,
Mögele, H.,
Pfleger, N.,
Hannemann, R.,
Strauss, D.J.,
Electroencephalographic Phase-Amplitude Coupling in Simulated Driving
With Varying Modality-Specific Attentional Demand,
HMS(49), No. 6, December 2019, pp. 589-598.
IEEE DOI
1912
Task analysis, Electroencephalography, Vehicle driving, Biomarkers,
Advanced driver assistance systems, Attention, driving,
phase-amplitude coupling (PAC)
BibRef
Abouelenien, M.,
Burzo, M.,
Detecting Thermal Discomfort of Drivers Using Physiological Sensors
and Thermal Imaging,
IEEE_Int_Sys(34), No. 5, September 2019, pp. 3-13.
IEEE DOI
1912
Physiology, Feature extraction, Intelligent systems,
Temperature sensors, Sensors
BibRef
Hu, Y.C.[Yao-Cong],
Lu, M.Q.[Ming-Qi],
Lu, X.B.[Xiao-Bo],
Feature refinement for image-based driver action recognition via
multi-scale attention convolutional neural network,
SP:IC(81), 2020, pp. 115697.
Elsevier DOI
1912
Driver action, Attention mechanism, Maximum selection unit, Fine-grained
BibRef
Zheng, W.,
Gao, K.,
Li, G.,
Liu, W.,
Liu, C.,
Liu, J.,
Wang, G.,
Lu, B.,
Vigilance Estimation Using a Wearable EOG Device in Real Driving
Environment,
ITS(21), No. 1, January 2020, pp. 170-184.
IEEE DOI
2001
Electrodes, Fabrics, Electroencephalography, Estimation, Forehead,
Electrooculography, Biomedical monitoring, Vigilance estimation,
real-world driving environment
BibRef
Zepf, S.[Sebastian],
Hernandez, J.[Javier],
Schmitt, A.[Alexander],
Minker, W.[Wolfgang],
Picard, R.W.[Rosalind W.],
Driver Emotion Recognition for Intelligent Vehicles: A Survey,
Surveys(53), No. 3, June 2020, pp. xx-yy.
DOI Link
2007
Survey, Driver Monitoring. machine learning, emotion measurement, literature survey,
Affective computing, road safety, intelligent user sensing
BibRef
Pronker, A.J.,
Abbink, D.A.,
van Paassen, M.M.,
Mulder, M.,
Estimating an LPV Model of Driver Neuromuscular Admittance Using Grip
Force as Scheduling Variable,
HMS(50), No. 5, October 2020, pp. 454-464.
IEEE DOI
2009
Admittance, Force, Linear systems, Computational modeling, Vehicles,
Perturbation methods, Task analysis, Driving behavior, grip force,
neuromuscular admittance
BibRef
Hu, C.H.,
Zhang, Y.,
Wu, F.,
Lu, X.B.,
Liu, P.,
Jing, X.Y.,
Toward Driver Face Recognition in the Intelligent Traffic Monitoring
Systems,
ITS(21), No. 12, December 2020, pp. 4958-4971.
IEEE DOI
2012
Lighting, Face, Face recognition, Vehicles, Deep learning, Monitoring,
Facial features, Traffic driver face recognition,
single sample problem
BibRef
Avizzano, C.A.,
Tripicchio, P.,
Ruffaldi, E.,
Filippeschi, A.,
Jacinto-Villegas, J.M.,
Real-Time Embedded Vision System for the Watchfulness Analysis of
Train Drivers,
ITS(22), No. 1, January 2021, pp. 208-218.
IEEE DOI
2012
Vehicles, Face, Cameras, Monitoring, Biomedical monitoring, Robustness,
Amplitude modulation, drowsiness,
driver monitoring
BibRef
Hu, H.Y.[Hong-Yu],
Liu, J.R.[Jia-Rui],
Gao, Z.H.[Zhen-Hai],
Wang, P.[Pin],
Driver identification using 1D convolutional neural networks with
vehicular CAN signals,
IET-ITS(14), No. 13, 15 December 2020, pp. 1799-1809.
DOI Link
2102
BibRef
Xia, K.,
Gu, X.,
Chen, B.,
Cross-Dataset Transfer Driver Expression Recognition via Global
Discriminative and Local Structure Knowledge Exploitation in Shared
Projection Subspace,
ITS(22), No. 3, March 2021, pp. 1765-1776.
IEEE DOI
2103
Face recognition, Vehicles, Image recognition, Accidents,
Target recognition, Training, Emotion recognition,
kernel trick
BibRef
Qian, P.,
Yuan, K.,
Yao, J.,
Fan, C.,
Zhang, H.,
Liu, Y.,
Lu, X.,
Residual-Network-Leveraged Vehicle-Thrown-Waste Identification in
Real-Time Traffic Surveillance Videos,
ITS(22), No. 3, March 2021, pp. 1817-1826.
IEEE DOI
2103
Videos, Search problems, Real-time systems, Surveillance, Training,
Manuals, Inspection, Throwing waste from vehicles (TWV),
intelligent traffic
BibRef
Naveed, H.[Humza],
Jafri, F.[Fareed],
Javed, K.[Kashif],
Babri, H.A.[Haroon Atique],
Driver activity recognition by learning spatiotemporal features of
pose and human object interaction,
JVCIR(77), 2021, pp. 103135.
Elsevier DOI
2106
Driver activity recognition, Feature extraction,
Spatiotemporal features, Driver activity recognition dataset
BibRef
Kouchak, S.M.[Shokoufeh Monjezi],
Gaffar, A.[Ashraf],
Detecting Driver Behavior Using Stacked Long Short Term Memory
Network With Attention Layer,
ITS(22), No. 6, June 2021, pp. 3420-3429.
IEEE DOI
2106
Automobiles, Brain modeling, Data models, Accidents, Task analysis,
Safety, Artificial neural networks, attention network,
vehicle safety
BibRef
Pan, C.P.[Chao-Peng],
Cao, H.T.[Hao-Tian],
Zhang, W.W.[Wei-Wei],
Song, X.L.[Xiao-Lin],
Li, M.J.[Ming-Jun],
Driver activity recognition using spatial-temporal graph
convolutional LSTM networks with attention mechanism,
IET-ITS(15), No. 2, 2021, pp. 297-307.
DOI Link
2106
BibRef
Du, G.L.[Guang-Long],
Wang, Z.Y.[Zhi-Yao],
Gao, B.[Boyu],
Mumtaz, S.[Shahid],
Abualnaja, K.M.[Khamael M.],
Du, C.F.[Cui-Feng],
A Convolution Bidirectional Long Short-Term Memory Neural Network for
Driver Emotion Recognition,
ITS(22), No. 7, July 2021, pp. 4570-4578.
IEEE DOI
2107
Heart rate, Emotion recognition, Feature extraction,
Real-time systems, Facial features, Brightness, Face, CBLNN
BibRef
Gu, Y.[Yuwan],
Wang, Y.S.[Yu-Sheng],
Shi, L.[Lin],
Li, N.[Ning],
Zhuang, L.H.[Li-Hua],
Xu, S.[Shoukun],
Automatic detection of safety helmet wearing based on head region
location,
IET-IPR(15), No. 11, 2021, pp. 2441-2453.
DOI Link
2108
BibRef
Chen, L.W.[Lien-Wu],
Chen, H.M.[Hsien-Min],
Driver Behavior Monitoring and Warning With Dangerous Driving
Detection Based on the Internet of Vehicles,
ITS(22), No. 11, November 2021, pp. 7232-7241.
IEEE DOI
2112
Vehicles, Monitoring, Cameras, Image sensors, Biomedical monitoring,
Head, Intelligent transportation system, Internet of Vehicles,
vehicle-to-vehicle communication
BibRef
Jia, W.[Wei],
Xu, S.[Shiquan],
Liang, Z.[Zhen],
Zhao, Y.[Yang],
Min, H.[Hai],
Li, S.[Shujie],
Yu, Y.[Ye],
Real-time automatic helmet detection of motorcyclists in urban
traffic using improved YOLOv5 detector,
IET-IPR(15), No. 14, 2021, pp. 3623-3637.
DOI Link
2112
BibRef
Köpüklü, O.[Okan],
Hörmann, S.[Stefan],
Herzog, F.[Fabian],
Cevikalp, H.[Hakan],
Rigoll, G.[Gerhard],
Dissected 3D CNNs: Temporal skip connections for efficient online
video processing,
CVIU(215), 2022, pp. 103318.
Elsevier DOI
2201
Temporal skip connections, Efficient online video processing,
3D convolutional neural networks
BibRef
Köpüklü, O.[Okan],
Herzog, F.[Fabian],
Rigoll, G.[Gerhard],
Comparative Analysis of CNN-based Spatiotemporal Reasoning in Videos,
HCAU20(186-202).
Springer DOI
2103
BibRef
Köpüklü, O.[Okan],
Ledwon, T.,
Rong, Y.,
Kose, N.,
Rigoll, G.[Gerhard],
DriverMHG: A Multi-Modal Dataset for Dynamic Recognition of Driver
Micro Hand Gestures and a Real-Time Recognition Framework,
FG20(77-84)
IEEE DOI
2102
Gesture recognition, Face recognition,
hand gesture recognition, dataset for driver gestures, 3D CNNs
BibRef
Behera, A.[Ardhendu],
Wharton, Z.[Zachary],
Keidel, A.[Alexander],
Debnath, B.[Bappaditya],
Deep CNN, Body Pose, and Body-Object Interaction Features for
Drivers' Activity Monitoring,
ITS(23), No. 3, March 2022, pp. 2874-2881.
IEEE DOI
2203
Vehicles, Feature extraction, Semantics, Computational modeling,
Activity recognition, Monitoring, Image recognition,
neural network-based fusion
BibRef
Lu, Y.[Ying],
Liu, Y.[Yufa],
Shu, Y.[Yu],
Yin, Y.Z.[Yue-Zhou],
Injury prediction algorithm for rear-seat occupants in advanced
automatic crash notification systems,
IET-ITS(16), No. 4, 2022, pp. 474-488.
DOI Link
2203
BibRef
Perello-March, J.R.[Jaume R.],
Burns, C.G.[Christopher G.],
Woodman, R.[Roger],
Elliott, M.T.[Mark T.],
Birrell, S.A.[Stewart A.],
Driver State Monitoring: Manipulating Reliability Expectations in
Simulated Automated Driving Scenarios,
ITS(23), No. 6, June 2022, pp. 5187-5197.
IEEE DOI
2206
Vehicles, Complexity theory, Biomedical monitoring, Monitoring,
Task analysis, Reliability, Heart rate variability,
trust in automation
BibRef
Martinelli, F.[Fabio],
Mercaldo, F.[Francesco],
Nardone, V.[Vittoria],
Santone, A.[Antonella],
Driver Identification Through Formal Methods,
ITS(23), No. 6, June 2022, pp. 5625-5637.
IEEE DOI
2206
Vehicles, Hidden Markov models, Model checking, Feature extraction,
Automobiles, Brakes, Data models, Automotive, formal methods,
safety
BibRef
Walocha, F.[Fabian],
Drewitz, U.[Uwe],
Ihme, K.[Klas],
Activity and Stress Estimation Based on OpenPose and
Electrocardiogram for User-Focused Level-4-Vehicles,
HMS(52), No. 4, August 2022, pp. 538-546.
IEEE DOI
2208
Stress, Rail to rail inputs, Automation, Activity recognition,
Task analysis, Hidden Markov models, Biomedical monitoring,
vehicle automation
BibRef
Wang, J.Y.[Ji-Yang],
Chai, W.H.[Wei-Heng],
Venkatachalapathy, A.[Archana],
Tan, K.L.[Kai Liang],
Haghighat, A.[Arya],
Velipasalar, S.[Senem],
Adu-Gyamfi, Y.[Yaw],
Sharma, A.[Anuj],
A Survey on Driver Behavior Analysis From In-Vehicle Cameras,
ITS(23), No. 8, August 2022, pp. 10186-10209.
IEEE DOI
2208
Vehicles, Task analysis, Feature extraction, Cameras, Accidents,
Data mining, Driver behavior analysis, gaze, face detection, survey
BibRef
Tan, M.K.[Ming-Kui],
Ni, G.Q.[Geng-Qin],
Liu, X.[Xu],
Zhang, S.L.[Shi-Liang],
Wu, X.M.[Xiang-Miao],
Wang, Y.W.[Yao-Wei],
Zeng, R.[Runhao],
Bidirectional Posture-Appearance Interaction Network for Driver
Behavior Recognition,
ITS(23), No. 8, August 2022, pp. 13242-13254.
IEEE DOI
2208
Feature extraction, Vehicles, Task analysis, Skeleton,
Optical sensors, Nickel, Deep learning,
graph convolutional networks
BibRef
Jiang, R.Q.[Run-Qiang],
Chen, L.L.[Lan-Lan],
Driving Stress Estimation in Physiological Signals Based on
Hierarchical Clustering and Multi-View Intact Space Learning,
ITS(23), No. 8, August 2022, pp. 13141-13154.
IEEE DOI
2208
Stress, Vehicles, Feature extraction, Biomedical monitoring,
Physiology, Task analysis, Electrocardiography, Driving stress,
physiological signals
BibRef
Ding, Z.Z.[Zhe-Zhang],
Xu, D.H.[Dong-Hao],
Tu, C.F.[Chen-Feng],
Zhao, H.J.[Hui-Jing],
Moze, M.[Mathieu],
Aioun, F.[François],
Guillemard, F.[Franck],
Driver Identification Through Heterogeneity Modeling in Car-Following
Sequences,
ITS(23), No. 10, October 2022, pp. 17143-17156.
IEEE DOI
2210
Vehicles, Data models, Automobiles, Analytical models,
Feature extraction, Time series analysis, Indexes, machine learning
BibRef
Chen, Z.S.[Zhong-Shan],
Feng, X.N.[Xin-Ning],
Zhang, S.W.[Sheng-Wei],
Emotion detection and face recognition of drivers in autonomous
vehicles in IoT platform,
IVC(128), 2022, pp. 104569.
Elsevier DOI
2212
IoT, Machine learning, FR, ED
BibRef
Liang, H.[Han],
Seo, S.Y.[Su-Young],
UAV Low-Altitude Remote Sensing Inspection System Using a Small
Target Detection Network for Helmet Wear Detection,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wu, X.[Xiao],
Li, Y.P.[Yu-Peng],
Long, J.H.[Ji-Hui],
Zhang, S.[Shun],
Wan, S.[Shuai],
Mei, S.H.[Shao-Hui],
A Remote-Vision-Based Safety Helmet and Harness Monitoring System
Based on Attribute Knowledge Modeling,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Lee, S.[Sooeon],
Lee, S.[Seungheyon],
Kim, H.[Hyunbum],
Differential Security Barriers for Virtual Emotion Detection in
Maritime Transportation Stations With Cooperative Mobile Robots and
UAVs,
ITS(24), No. 2, February 2023, pp. 2461-2471.
IEEE DOI
2302
Security, Mobile robots, Transportation, Surveillance,
Emotion recognition, Communication system security,
UAVs
BibRef
Tavakoli, A.[Arash],
Boker, S.[Steven],
Heydarian, A.[Arsalan],
Driver State Modeling Through Latent Variable State Space Framework
in the Wild,
ITS(24), No. 2, February 2023, pp. 1879-1893.
IEEE DOI
2302
Vehicles, Human factors, Temperature measurement,
Stress measurement, Task analysis, Analytical models, Psychology,
transportation safety
BibRef
Li, W.B.[Wen-Bo],
Cui, Y.D.[Yao-Dong],
Ma, Y.[Yintao],
Chen, X.X.[Xing-Xin],
Li, G.F.[Guo-Fa],
Zeng, G.Z.[Guan-Zhong],
Guo, G.[Gang],
Cao, D.P.[Dong-Pu],
A Spontaneous Driver Emotion Facial Expression (DEFE) Dataset for
Intelligent Vehicles: Emotions Triggered by Video-Audio Clips in
Driving Scenarios,
AffCom(14), No. 1, January 2023, pp. 747-760.
IEEE DOI
2303
Solid modeling, Emotion recognition, Safety, Task analysis,
Intelligent vehicles, Vehicle dynamics, Physiology, Driving safety,
intelligent vehicles
BibRef
Xu, J.W.[Jia-Wei],
Pan, S.C.[Si-Cheng],
Sun, P.Z.H.[Poly Z. H.],
Park, S.H.[Seop Hyeong],
Guo, K.[Kun],
Human-Factors-in-Driving-Loop: Driver Identification and Verification
via a Deep Learning Approach using Psychological Behavioral Data,
ITS(24), No. 3, March 2023, pp. 3383-3394.
IEEE DOI
2303
Vehicles, Behavioral sciences, Deep learning, Data models, Sensors,
Global Positioning System, Smart phones,
human factors in driving loop
BibRef
Alsaid, A.[Areen],
Lee, J.D.[John D.],
Noejovich, S.I.[Sofia I.],
Chehade, A.[Abdallah],
The Effect of Vehicle Automation Styles on Drivers' Emotional State,
ITS(24), No. 4, April 2023, pp. 3963-3973.
IEEE DOI
2304
Automation, Vehicles, Monitoring, Modeling, Emotion recognition,
Behavioral sciences, Affective computing, Video analysis,
multilevel Bayesian modeling
BibRef
Jain, D.K.[Deepak Kumar],
Dutta, A.K.[Ashit Kumar],
Verdú, E.[Elena],
Alsubai, S.[Shtwai],
Sait, A.R.W.[Abdul Rahaman Wahab],
An automated hyperparameter tuned deep learning model enabled facial
emotion recognition for autonomous vehicle drivers,
IVC(133), 2023, pp. 104659.
Elsevier DOI
2305
Autonomous driving systems, Emotion recognition, Deep learning,
Facial expressions, Object detection, Metaheuristics
BibRef
Kumar, R.P.[Rahul Prasanna],
Melcher, D.[David],
Buttolo, P.[Pietro],
Jia, Y.[Yunyi],
Tracking Occupant Activities in Autonomous Vehicles Using Capacitive
Sensing,
ITS(24), No. 7, July 2023, pp. 6800-6819.
IEEE DOI
2307
Capacitance, Sensors, Hidden Markov models, Autonomous vehicles,
Capacitance measurement, Feature extraction,
recurrent neural networks
BibRef
Hu, C.H.[Chang-Hui],
Liu, Y.[Yu],
Xu, L.T.[Lin-Tao],
Jing, X.Y.[Xiao-Yuan],
Lu, X.B.[Xiao-Bo],
Yang, W.K.[Wan-Kou],
Liu, P.[Pan],
Joint Image-to-Image Translation for Traffic Monitoring Driver Face
Image Enhancement,
ITS(24), No. 8, August 2023, pp. 7961-7973.
IEEE DOI
2308
Degradation, Face recognition, Faces, Vehicles, Monitoring,
Image edge detection, Training, Joint image-to-image translation,
traffic monitoring driver face image
BibRef
Chai, W.H.[Wei-Heng],
Chen, J.J.[Jia-Jing],
Wang, J.[Jiyang],
Velipasalar, S.[Senem],
Venkatachalapathy, A.[Archana],
Adu-Gyamfi, Y.[Yaw],
Merickel, J.[Jennifer],
Sharma, A.[Anuj],
Driver Head Pose Detection From Naturalistic Driving Data,
ITS(24), No. 9, September 2023, pp. 9368-9377.
IEEE DOI
2310
BibRef
Bang, J.S.[Ji-Seon],
Won, D.O.[Dong-Ok],
Kam, T.E.[Tae-Eui],
Lee, S.W.[Seong-Whan],
Motion Sickness Prediction Based on Dry EEG in Real Driving
Environment,
ITS(24), No. 5, May 2023, pp. 5442-5455.
IEEE DOI
2305
Electroencephalography, Vehicles, Motion sickness,
Feature extraction, Brain modeling, Automobiles, Automation,
convolutional neural network
BibRef
Ko, K.L.[Kwang-Lim],
Yoo, J.S.[Jun-Sang],
Han, C.W.[Chang-Woo],
Kim, J.[Jungyeop],
Jung, S.W.[Seung-Won],
Pose and Shape Estimation of Humans in Vehicles,
ITS(25), No. 1, January 2024, pp. 402-416.
IEEE DOI
2402
Shape, Three-dimensional displays, Pose estimation, Monitoring,
Annotations, Training, Cameras, Deep learning, shape estimation
BibRef
Govers, W.[Wim],
Yurtman, A.[Aras],
Aslandere, T.[Turgay],
Eikelenberg, N.[Nicole],
Meert, W.[Wannes],
Davis, J.[Jesse],
Time-Shifted Transformers for Driver Identification Using Vehicle
Data,
ITS(25), No. 5, May 2024, pp. 3767-3776.
IEEE DOI
2405
Vehicles, Time series analysis, Transformers, Sensors, Computer architecture,
Behavioral sciences, Task analysis, multivariate time series
BibRef
Karas, V.[Vincent],
Schuller, D.M.[Dagmar M.],
Schuller, B.W.[Björn W.],
Audiovisual Affect Recognition for Autonomous Vehicles:
Applications and Future Agendas,
ITS(25), No. 6, June 2024, pp. 4918-4932.
IEEE DOI
2406
Vehicles, Automobiles, Monitoring, Cameras, Autonomous vehicles,
Intelligent sensors, Autonomous vehicles, interior sensing,
emotion recognition
BibRef
Angkan, P.[Prithila],
Behinaein, B.[Behnam],
Mahmud, Z.[Zunayed],
Bhatti, A.[Anubhav],
Rodenburg, D.[Dirk],
Hungler, P.[Paul],
Etemad, A.[Ali],
Multimodal Brain-Computer Interface for In-Vehicle Driver Cognitive
Load Measurement: Dataset and Baselines,
ITS(25), No. 6, June 2024, pp. 5949-5964.
IEEE DOI
2406
Cognitive load, Task analysis, Vehicles, Physiology, Electroencephalography,
Load modeling, Electrocardiography, Driver, deep learning
BibRef
Gharamohammadi, A.[Ali],
Dabak, A.G.[Anand G.],
Yang, Z.G.[Zi-Gang],
Khajepour, A.[Amir],
Shaker, G.[George],
Volume-Based Occupancy Detection for In-Cabin Applications by
Millimeter Wave Radar,
RS(16), No. 16, 2024, pp. 3068.
DOI Link
2408
Is the child in the vehicle.
BibRef
Hasan, M.D.T.[M.D. Tanim],
Alghamdi, H.[Huda],
Taamneh, S.[Salah],
Manser, M.[Mike],
Wunderlich, R.[Robert],
Tsiamyrtzis, P.[Panagiotis],
Pavlidis, I.[Ioannis],
Investigating Cardiovascular Activation of Young Adults in Routine
Driving,
AffCom(15), No. 3, July 2024, pp. 769-786.
IEEE DOI
2409
Vehicles, Behavioral sciences, Smart phones, Biomedical monitoring,
Heart rate, Automobiles, Accidents, Affective computing,
trait anxiety
BibRef
Xu, Z.[Zhuoyan],
Xu, J.[Jingke],
GR-Former: Graph-reinforcement transformer for skeleton-based driver
action recognition,
IET-CV(18), No. 7, 2024, pp. 982-991.
DOI Link
2411
pose estimation
BibRef
Gao, Q.[Qi],
He, D.[Di],
Xu, G.L.[Gui-Lin],
Improving YOLOv8 with parallel frequency channel attention for taxi
passengers,
IET-IPR(18), No. 13, 2024, pp. 4422-4431.
DOI Link
2411
convolutional neural nets, object detection
BibRef
Kim, S.H.[Seo-Hee],
Jung, E.[Eunseo],
Shin, H.[Hyojin],
Yang, I.B.[In-Beom],
Woo, J.Y.[Ji-Young],
Boosting Weak Learners With Multi-Agent Reinforcement Learning for
Enhanced Stacking Models: An Application on Driver Emotion
Classification,
ITS(25), No. 12, December 2024, pp. 20478-20492.
IEEE DOI
2412
Brain modeling, Vehicles, Biological system modeling,
Reinforcement learning, Stacking, Electroencephalography,
driver emotion detection
BibRef
Pang, J.[Junbiao],
Sabir, M.A.[Muhammad Ayub],
Wang, Z.[Zuyun],
Hu, A.[Anjing],
Yang, X.[Xue],
Yu, H.T.[Hai-Tao],
Huang, Q.M.[Qing-Ming],
Finding a Taxi With Illegal Driver Substitution Activity via Behavior
Modelings,
ITS(25), No. 12, December 2024, pp. 20309-20319.
IEEE DOI
2412
Public transportation, Global Positioning System, Vehicles,
Feature extraction, Trajectory, Object recognition,
pooling
BibRef
Fu, F.J.[Feng-Jie],
Cai, Z.[Zhenegyi],
Jin, S.[Sheng],
Xu, C.[Cheng],
Monitoring ride-hailing passenger security risk:
An approach using human geography data,
IET-ITS(19), No. 1, 2025, pp. e12601.
DOI Link
2501
big data, global positioning system, pattern clustering,
risk analysis, security
BibRef
Zhou, G.L.[Gui-Liang],
Xu, K.W.[Kai-Wen],
Chen, J.[Jian],
Mao, L.[Lina],
Identifying abnormal driving states of drunk drivers using UAV,
IET-ITS(19), No. 1, 2025, pp. e12608.
DOI Link
2501
traffic, transportation
BibRef
Zhang, H.[Hongpu],
Cui, Z.[Zhe],
Su, F.[Fei],
A Coarse-to-fine Two-stage Helmet Detection Method for Motorcyclists,
AICity24(7066-7074)
IEEE DOI
2410
Visualization, Head, Target tracking, Urban areas, Motorcycles,
Detectors, Safety, Motorcyclist Helmet Detection,
Object Detection
BibRef
Luong, T.V.[Thien Van],
Nguyen, H.S.P.[Huu Si Phuc],
Dinh, D.K.[Duy Khanh],
Duong, V.H.[Viet Hung],
Vo, D.H.S.[Duy Hong Sam],
Vu, H.[Huan],
Hoang, M.T.[Minh Tuan],
Nguyen, T.C.[Tien Cuong],
Motorcyclist Helmet Violation Detection Framework by Leveraging
Robust Ensemble and Augmentation Methods,
AICity24(7027-7036)
IEEE DOI
2410
Deep learning, Head, Urban areas, Transportation, Motorcycles,
Object detection, Data augmentation
BibRef
Chen, Y.[Yunliang],
Zhou, W.[Wei],
Zhou, Z.[Zicen],
Ma, B.[Bing],
Wang, C.[Chen],
Shang, Y.[Yingda],
Guo, A.[An],
Chu, T.S.[Tian-Shu],
An Effective Method for Detecting Violation of Helmet Rule for
Motorcyclists,
AICity24(7085-7090)
IEEE DOI
2410
Training, Head, Computational modeling, Urban areas, Motorcycles,
Transformers, Video surveillance
BibRef
Vo, H.[Hao],
Tran, S.[Sieu],
Nguyen, D.M.[Duc Minh],
Nguyen, T.[Thua],
Do, T.[Tien],
Le, D.D.[Duy-Dinh],
Ngo, T.D.[Thanh Duc],
Robust Motorcycle Helmet Detection in Real-World Scenarios:
Using Co-DETR and Minority Class Enhancement,
AICity24(7163-7171)
IEEE DOI
2410
Head, Navigation, Urban areas, Motorcycles, Lighting, Object detection, Safety
BibRef
Dong, Z.[Zhekang],
Hu, C.H.[Chen-Hao],
Zhou, S.Q.[Shi-Qi],
Zhu, L.Y.[Li-Yan],
Wang, J.[Junfan],
Chen, Y.[Yi],
Lv, X.D.[Xu-Dong],
Ji, X.Y.[Xiao-Yue],
DECNet: A Non-Contacting Dual-Modality Emotion Classification Network
for Driver Health Monitoring,
CVPM24(371-379)
IEEE DOI Code:
WWW Link.
2410
Smart cities, Pressing, Feature extraction, Multitasking,
Road safety, Safety
BibRef
Agrawal, D.[Deeksha],
Tapaswi, S.[Shashikala],
Identifying Occurrences of Abnormal and Drunk Driving Using
Smartphones,
ICCVMI23(1-9)
IEEE DOI
2403
Radio frequency, Drugs, Roads, Machine learning, Prediction algorithms,
Automobiles, Vehicle dynamics, accelerometer data
BibRef
Saadi, I.[Ibtissam],
Cunningham, D.W.[Douglas W.],
Abdelmalik, T.A.[Taleb-Ahmed],
Hadid, A.[Abdenour],
El Hillali, Y.[Yassin],
Driver's Facial Expression Recognition Using Global Context Vision
Transformer,
ICCVMI23(1-8)
IEEE DOI
2403
Emotion recognition, Head, Face recognition, Lighting, Transformers,
Feature extraction, Data augmentation,
global context vision transformer
BibRef
Wang, X.F.[Xiao-Feng],
Zhu, Z.[Zheng],
Xu, W.B.[Wen-Bo],
Zhang, Y.P.[Yun-Peng],
Wei, Y.[Yi],
Chi, X.[Xu],
Ye, Y.[Yun],
Du, D.L.[Da-Long],
Lu, J.W.[Ji-Wen],
Wang, X.G.[Xin-Gang],
OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic
Occupancy Perception,
ICCV23(17804-17813)
IEEE DOI
2401
E.g. driver.
BibRef
Guo, Y.[Yuyu],
Bai, Y.C.[Yan-Cheng],
Shi, D.[Daiqi],
Cai, Y.[Yang],
Bian, W.[Wei],
DPOSE: Online Keypoint-CAM Guided Inference for Driver Pose
Estimation with GMM-based Balanced Sampling,
Precognition23(3656-3665)
IEEE DOI
2309
BibRef
Ma, Y.S.[Yun-Sheng],
Yuan, L.Q.[Liang-Qi],
Abdelraouf, A.[Amr],
Han, K.T.[Kyung-Tae],
Gupta, R.[Rohit],
Li, Z.H.[Zi-Hao],
Wang, Z.[Ziran],
M2DAR: Multi-View Multi-Scale Driver Action Recognition with Vision
Transformer,
AICity23(5287-5294)
IEEE DOI
2309
BibRef
Ma, Y.M.[Yi-Ming],
Sanchez, V.[Victor],
Nikan, S.[Soodeh],
Upadhyay, D.[Devesh],
Atote, B.[Bhushan],
Guha, T.[Tanaya],
Robust Multiview Multimodal Driver Monitoring System Using Masked
Multi-Head Self-Attention,
MULA23(2617-2625)
IEEE DOI
2309
BibRef
Cui, S.[Shun],
Zhang, T.T.[Tian-Tian],
Sun, H.[Hao],
Zhou, X.Y.[Xu-Yang],
Yu, W.Q.[Wen-Qing],
Zhen, A.G.[Ai-Gong],
Wu, Q.H.[Qi-Hang],
He, Z.J.[Zhong-Jiang],
An Effective Motorcycle Helmet Object Detection Framework for
Intelligent Traffic Safety,
AICity23(5470-5476)
IEEE DOI
2309
BibRef
Wang, B.S.[Bor-Shiun],
Chen, P.Y.[Ping-Yang],
Hsieh, Y.K.[Yi-Kuan],
Hsieh, J.W.[Jun-Wei],
Chang, M.C.[Ming-Ching],
He, J.[JiaXin],
Teng, S.Y.[Shin-You],
Yue, H.[HaoYuan],
Tseng, Y.C.[Yu-Chee],
PRB-FPN+: Video Analytics for Enforcing Motorcycle Helmet Laws,
AICity23(5477-5485)
IEEE DOI
2309
BibRef
Tran, D.N.N.[Duong Nguyen-Ngoc],
Pham, L.H.[Long Hoang],
Jeon, H.J.[Hyung-Joon],
Nguyen, H.H.[Huy-Hung],
Jeon, H.M.[Hyung-Min],
Tran, T.H.P.[Tai Huu-Phuong],
Jeon, J.W.[Jae Wook],
Robust Automatic Motorcycle Helmet Violation Detection for an
Intelligent Transportation System,
AICity23(5341-5349)
IEEE DOI
2309
BibRef
Aboah, A.[Armstrong],
Wang, B.[Bin],
Bagci, U.[Ulas],
Adu-Gyamfi, Y.[Yaw],
Real-time Multi-Class Helmet Violation Detection Using Few-Shot Data
Sampling Technique and YOLOv8,
AICity23(5350-5358)
IEEE DOI
2309
BibRef
Tsai, C.M.[Chun-Ming],
Hsieh, J.W.[Jun-Wei],
Chang, M.C.[Ming-Ching],
He, G.L.[Guan-Lin],
Chen, P.Y.[Ping-Yang],
Chang, W.T.[Wei-Tsung],
Hsieh, Y.K.[Yi-Kuan],
Video Analytics for Detecting Motorcyclist Helmet Rule Violations,
AICity23(5366-5374)
IEEE DOI
2309
BibRef
Duong, V.H.[Viet Hung],
Tran, Q.H.[Quang Huy],
Nguyen, H.S.P.[Huu Si Phuc],
Nguyen, D.Q.[Duc Quyen],
Nguyen, T.C.[Tien Cuong],
Helmet Rule Violation Detection for Motorcyclists using a Custom
Tracking Framework and Advanced Object Detection Techniques,
AICity23(5381-5390)
IEEE DOI
2309
BibRef
Zheng, J.X.[Jing-Xiao],
Shi, X.W.[Xin-Wei],
Gorban, A.[Alexander],
Mao, J.H.[Jun-Hua],
Song, Y.[Yang],
Qi, C.R.[Charles R.],
Liu, T.[Ting],
Chari, V.[Visesh],
Cornman, A.[Andre],
Zhou, Y.[Yin],
Li, C.C.[Cong-Cong],
Anguelov, D.[Dragomir],
Multi-modal 3D Human Pose Estimation with 2D Weak Supervision in
Autonomous Driving,
WAD22(4477-4486)
IEEE DOI
2210
Point cloud compression, Solid modeling, Image segmentation,
Laser radar, Pose estimation, Virtual reality
BibRef
Liang, J.W.[Jun-Wei],
Zhu, H.[He],
Zhang, E.[Enwei],
Zhang, J.[Jun],
Stargazer: A Transformer-based Driver Action Detection System for
Intelligent Transportation,
AICity22(3159-3166)
IEEE DOI
2210
Location awareness, Roads, Urban areas, Transformer cores,
Transformers, Behavioral sciences
BibRef
Vats, A.[Arpita],
Anastasiu, D.C.[David C.],
Key Point-Based Driver Activity Recognition,
AICity22(3273-3280)
IEEE DOI
2210
Conferences, Urban areas, Pose estimation, Activity recognition,
Predictive models, Feature extraction
BibRef
Hossain, M.I.[Md. Iqbal],
Muhib, R.B.[Raghib Barkat],
Chakrabarty, A.[Amitabha],
Identifying Bikers Without Helmets Using Deep Learning Models,
DICTA21(01-08)
IEEE DOI
2201
Deep learning, Head, Surveillance, Computational modeling,
Object detection, Real-time systems, Surveillance System,
Object Detection
BibRef
Lin, H.[Hanhe],
Chen, G.[Guangan],
Siebert, F.W.[Felix Wilhelm],
Positional Encoding: Improving Class-Imbalanced Motorcycle Helmet use
Classification,
ICIP21(1194-1198)
IEEE DOI
2201
Training, Head, Image coding, Motorcycles, Transforms,
Object detection, Road safety, Helmet use, image classification,
motorcycle safety
BibRef
Guesdon, R.[Romain],
Crispim-Junior, C.[Carlos],
Tougne, L.[Laure],
DriPE: A Dataset for Human Pose Estimation in Real-World Driving
Settings,
AVVision21(2865-2874)
IEEE DOI
2112
Measurement, Deep learning, Pose estimation, Road vehicles, Lighting
BibRef
Köpüklü, O.[Okan],
Zheng, J.P.[Jia-Peng],
Xu, H.[Hang],
Rigoll, G.[Gerhard],
Driver Anomaly Detection: A Dataset and Contrastive Learning Approach,
WACV21(91-100)
IEEE DOI
2106
Training, Measurement,
Benchmark testing, Task analysis, Anomaly detection, Monitoring
BibRef
Wharton, Z.[Zachary],
Behera, A.[Ardhendu],
Liu, Y.H.[Yong-Huai],
Bessis, N.[Nik],
Coarse Temporal Attention Network (CTA-Net) for Driver's Activity
Recognition,
WACV21(1278-1288)
IEEE DOI
2106
Visualization, Network topology, Focusing, Activity recognition,
Topology, Spatiotemporal phenomena, Task analysis
BibRef
Rundo, F.[Francesco],
Trenta, F.[Francesca],
Leotta, R.[Roberto],
Spampinato, C.[Concetto],
Piuri, V.[Vincenzo],
Conoci, S.[Sabrina],
Labati, R.D.[Ruggero Donida],
Scotti, F.[Fabio],
Battiato, S.[Sebastiano],
Advanced Temporal Dilated Convolutional Neural Network for a Robust Car
Driver Identification,
WMWB20(184-199).
Springer DOI
2103
BibRef
Kandeel, A.A.[Amany A.],
Abbas, H.M.[Hazem M.],
Hassanein, H.S.[Hossam S.],
Explainable Model Selection of a Convolutional Neural Network for
Driver's Facial Emotion Identification,
MPRSS20(699-713).
Springer DOI
2103
BibRef
Reiß, S.,
Roitberg, A.,
Haurilet, M.,
Stiefelhagen, R.,
Activity-aware Attributes for Zero-Shot Driver Behavior Recognition,
VL3W20(3950-3955)
IEEE DOI
2008
Semantics, Vehicles, Benchmark testing, Task analysis,
Feature extraction, Visualization, Training
BibRef
da Cruz, S.D.[Steve Dias],
Wasenmüller, O.[Oliver],
Beise, H.P.[Hans-Peter],
Stifter, T.[Thomas],
Stricker, D.[Didier],
SVIRO: Synthetic Vehicle Interior Rear Seat Occupancy Dataset and
Benchmark,
WACV20(962-971)
IEEE DOI
2006
Dataset, Vehicle Surveilance.
WWW Link. Task analysis, Benchmark testing, Training, Automobiles,
Cameras, Lightning
BibRef
Chairat, A.,
Dailey, M.N.[Matthew N.],
Limsoonthrakul, S.,
Ekpanyapong, M.[Mongkol],
Low Cost, High Performance Automatic Motorcycle Helmet Violation
Detection,
WACV20(3549-3557)
IEEE DOI
2006
Motorcycles, Training, Cameras, Roads, Graphics processing units,
Law enforcement, Neural networks
BibRef
Chun, S.,
Ghalehjegh, N.H.,
Choi, J.,
Schwarz, C.,
Gaspar, J.,
McGehee, D.,
Baek, S.,
NADS-Net: A Nimble Architecture for Driver and Seat Belt Detection
via Convolutional Neural Networks,
ADW19(2413-2421)
IEEE DOI
2004
convolutional neural nets, driver information systems,
feature extraction, mobile robots, object detection, Seat Belt Detection
BibRef
Rangesh, A.,
Trivedi, M.M.,
Forced Spatial Attention for Driver Foot Activity Classification,
ACVR19(2514-2521)
IEEE DOI
2004
entropy, image classification, learning (artificial intelligence),
Driver Safety
BibRef
Ou, C.J.[Chao-Jie],
Zhao, Q.A.[Qi-Ang],
Karray, F.[Fakhri],
El Khatib, A.[Alaa],
Design of an End-to-End Dual Mode Driver Distraction Detection System,
ICIAR19(II:199-207).
Springer DOI
1909
BibRef
Faust-Christmann, C.A.[Corinna A.],
Reinhard, R.[René],
Hoffmann, A.[Alexandra],
Lachmann, T.[Thomas],
Bleser, G.[Gabriele],
A Face Validation Study for the Investigation of Proteus Effects
Targeting Driving Behavior,
VAMR19(I:335-348).
Springer DOI
1909
BibRef
Behera, A.[Ardhendu],
Keidel, A.[Alexander],
Debnath, B.[Bappaditya],
Context-driven Multi-stream LSTM (M-LSTM) for Recognizing Fine-Grained
Activity of Drivers,
GCPR18(298-314).
Springer DOI
1905
BibRef
Miyamoto, S.,
Passenger in vehicle counting method of HOV/HOT system,
ICPR18(1536-1541)
IEEE DOI
1812
Face detection, Cameras, Face, Algorithms, Image processing,
Streaming media, Dispatching, number of passenger in vehicle,
HOT
BibRef
Artan, Y.[Yusuf],
Balci, B.[Burak],
Elihos, A.[Alperen],
Alkan, B.[Bensu],
Vision Based Driver Smoking Behavior Detection Using Surveillance
Camera Images,
CIAP19(II:468-476).
Springer DOI
1909
BibRef
Earlier: A2, A4, A3, A1:
Front Seat Child Occupancy Detection Using Road Surveillance Camera
Images,
ICIP18(1927-1931)
IEEE DOI
1809
Face, Automotive components, Detectors, Face detection,
Task analysis, Cameras, Machine learning, Traffic Enforcement,
Image Classification
BibRef
Majdi, M.S.,
Ram, S.,
Gill, J.T.,
Rodríguez, J.J.,
Drive-Net: Convolutional Network for Driver Distraction Detection,
Southwest18(1-4)
IEEE DOI
1809
Forestry, Training, Vehicles, Vegetation, Cameras, Neural networks,
Image classification,
driver distraction
BibRef
Xue, Q.[Qing],
Sun, J.W.[Jia-Wei],
Hao, J.[Jia],
Liu, M.[Minxia],
The Research on Layout and Simulation of Human-Machine Interface in
Vehicle,
DHM18(97-108).
Springer DOI
1807
BibRef
Tao, X.Y.[Xin-Yi],
Ren, S.[Siyu],
Han, T.[Ting],
Mapping System Between Passenger Experience and the Factors of Aircraft
Cabin Design,
DHM18(109-125).
Springer DOI
1807
BibRef
Derman, E.,
Salah, A.A.,
Continuous Real-Time Vehicle Driver Authentication Using
Convolutional Neural Network Based Face Recognition,
FG18(577-584)
IEEE DOI
1806
Authentication, Automobiles, Cameras, Face, Feature extraction, Videos,
convolutional neural network, driver authentication,
real time face verification
BibRef
Tu, I.[Ian],
Bhalerao, A.[Abhir],
Griffiths, N.[Nathan],
Delgado, M.[Mauricio],
Popham, T.[Thomas],
Mouzakitis, A.[Alex],
Deep Passenger State Monitoring Using Viewpoint Warping,
CIAP17(II:137-148).
Springer DOI
1711
BibRef
Perrett, T.[Toby],
Mirmehdi, M.[Majid],
Cost-Based Feature Transfer for Vehicle Occupant Classification,
CVTSV16(I: 405-419).
Springer DOI
1704
BibRef
Yamada, K.[Keiichi],
Mitani, T.[Tomonori],
Estimating Driver Awareness of Crossing Pedestrians While Turning
Left Based on Vehicle Behavior Using Bayesian Approach,
ICPR14(1898-1903)
IEEE DOI
1412
Bayes methods
BibRef
Brun, L.[Luc],
Cappellania, B.[Benito],
Saggese, A.[Alessia],
Vento, M.[Mario],
Detection of anomalous driving behaviors by unsupervised learning of
graphs,
AVSS14(405-410)
IEEE DOI
1411
Clustering algorithms
BibRef
Artan, Y.[Yusuf],
Paul, P.[Peter],
Perronin, F.[Florent],
Burry, A.[Aaron],
Comparison of face detection and image classification for detecting
front seat passengers in vehicles,
WACV14(1006-1012)
IEEE DOI
1406
Cameras
BibRef
Buemi, F.[Francesco],
Esposito, M.[Mariana],
Empty Vehicle Detection with Video Analytics,
CIAP13(II:731-739).
Springer DOI
1309
BibRef
Hao, X.L.[Xiao-Li],
Chen, H.J.[Hou-Jin],
Yao, C.[Chang],
Yang, N.[Na],
Bi, H.J.[Hong-Jun],
Wang, C.L.[Chang-Li],
A near-infrared imaging method for capturing the interior of a vehicle
through windshield,
Southwest10(109-112).
IEEE DOI
1005
BibRef
Pérez-Jiménez, A.J.[Alberto J.],
Guardiola, J.L.[Jose Luis],
Pérez-Cortés, J.C.[Juan Carlos],
High Occupancy Vehicle Detection,
SSPR08(782-789).
Springer DOI
0812
BibRef
Denman, S.[Simon],
Fookes, C.[Clinton],
Cook, J.A.,
Davoren, C.,
Mamic, A.,
Farquharson, G.,
Chen, D.,
Chen, B.,
Sridharan, S.[Sridha],
Multi-view Intelligent Vehicle Surveillance System,
AVSBS06(26-26).
IEEE DOI
0611
BibRef
Denman, S.[Simon],
Chandran, V.[Vinod],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
A Multi-Class Tracker Using a Scalable Condensation Filter,
AVSBS06(25-25).
IEEE DOI
0611
BibRef
Kennedy, K.R.[Karl R.],
Nathan, J.F.[John F.],
Shridhar, M.,
An LVQ-based Automotive Occupant Classification System,
ICPR06(II: 662-665).
IEEE DOI
0609
BibRef
Teshima, T.[Tomoaki],
Saito, H.[Hideo],
Ozawa, S.J.[Shin-Ji],
Yamamoto, K.[Keiichi],
Ihara, T.[Toru],
Vehicle Lateral Position Estimation Method Based on Matching of
Top-View Images,
ICPR06(IV: 626-629).
IEEE DOI
0609
BibRef
Niu, C.W.[Chao-Wei],
Grimson, W.E.L.[W. Eric L.],
Recovering Non-overlapping Network Topology Using Far-field Vehicle
Tracking Data,
ICPR06(IV: 944-949).
IEEE DOI
0609
BibRef
Li, L.[Li],
Wang, F.Y.[Fei-Yue],
Approximate Vehicle Waiting Time Estimation Using Adaptive Video-Based
Vehicle Tracking,
IWICPAS06(105-114).
Springer DOI
0608
BibRef
Tan, R.[Rui],
Huo, H.[Hong],
Qian, J.[Jin],
Fang, T.[Tao],
Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model,
IWICPAS06(125-134).
Springer DOI
0608
BibRef
Liu, H.[Hong],
Li, J.T.[Jin-Tao],
Qian, Y.L.[Yue-Liang],
Lin, S.X.[Shou-Xun],
Liu, Q.[Qun],
Motion and Gray Based Automatic Road Segment Method MGARS in Urban
Traffic Surveillance,
IWICPAS06(85-94).
Springer DOI
0608
BibRef
Goktuk, S.B.,
Rafii, A.,
An Occupant Classification System Eigen Shapes or Knowledge-Based
Features,
MVIV05(III: 57-57).
IEEE DOI
0507
BibRef
Hosotani, D.[Daisuke],
Yoda, I.[Ikushi],
Sakaue, K.[Katsuhiko],
Development and Long-Term Verification of Stereo Vision Sensor System
for Controlling Safety at Railroad Crossing,
CVS09(154-163).
Springer DOI
0910
BibRef
Yoda, I.[Ikushi],
Sakaue, K.[Katsuhiko],
Hosotani, D.[Daisuke],
Multi-point Stereo Camera System for Controlling Safety at Railroad
Crossings,
CVS06(51).
IEEE DOI
0602
BibRef
Fujiyoshi, H.[Hironobu],
Komura, T.[Takeshi],
Eguchi, I.[Ikuko],
Kayama, K.[Kentaro],
Road Observation and Information Providing System for Supporting
Mobility of Pedestrian,
CVS06(37).
IEEE DOI
0602
BibRef
Li, X.K.[Xiao-Kun],
Porikli, F.M.,
A hidden markov model framework for traffic event detection using video
features,
ICIP04(V: 2901-2904).
IEEE DOI
0505
BibRef
Porikli, F.M.[Fatih M.],
Haga, T.[Tetsuji],
Event Detection by Eigenvector Decomposition Using Object and Frame
Features,
EventVideo04(114).
IEEE DOI
0502
BibRef
Chan, C.Y.[Ching-Yao],
Marco, D.,
Misener, J.,
Threat assessment of traffic moving toward a controlled intersection,
IVS04(931-936).
IEEE DOI
0411
BibRef
Yoon, J.J.,
Ellis, T.J.,
Real-time occupant detection system in an active illumination,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Kong, H.[Henry],
Sun, Q.[Qin],
Bauson, W.A.[William A.],
Kiselewich, S.J.[Stephen J.],
Ainslie, P.[Paul],
Hammoud, R.I.[Riad I.],
Disparity Based Image Segmentation for Occupant Classification,
OTCBVS04(126).
IEEE DOI
0502
BibRef
Wender, S.,
Loehlein, O.,
A cascade detector approach applied to vehicle occupant monitoring with
an omni-directional camera,
IVS04(345-350).
IEEE DOI
0411
BibRef
Leităo, A.P.,
Tilie, S.,
Ieng, S.S.,
Vigneron, V.,
Detecting and Classifying Road Turn Directions from a Sequence of
Images,
CAIP03(555-562).
Springer DOI
0311
BibRef
Lim, D.W.[Dae-Woon],
Choi, S.H.[Sung-Hoon],
Jun, J.S.[Joon-Suk],
Automated detection of all kinds of violations at a street intersection
using real time individual vehicle tracking,
Southwest02(126-129).
IEEE Top Reference.
0208
BibRef
Eikvil, L.[Line],
Huseby, R.B.[Ragnar Bang],
Traffic Surveillance in Real-time using Hidden Markov Models,
SCIA01(O-Tu3B).
0206
BibRef
Sacchi, C.,
Regazzoni, C.S.,
Gera, G.,
Foresti, G.L.,
Use of Neural Networks for Behaviour Understanding in Railway Transport
Monitoring Applications,
ICIP01(I: 541-544).
IEEE DOI
0108
BibRef
Lai, A.H.S.,
Yung, N.H.C.,
A Video-based System Methodology for Detecting Red Light Runners,
MVA98(xx-yy).
BibRef
9800
Bremond, F.[Francois], and
Medioni, G.[Gerard],
Scenario Recognition in Airborne Video Imagery,
DARPA98(211-216).
BibRef
9800
USC Computer Vision
BibRef
And:
Motion98(xx).
PDF File.
BibRef
Zingirian, N.,
Baglietto, P.,
Maresca, M.,
Migliardi, M.,
Customizing MPEG video compression algorithms to specific application
domains: The case of highway monitoring,
CIAP97(II: 46-53).
Springer DOI
9709
BibRef
Carswell, B.,
Chandran, V.,
Automated recognition of drunk driving on highways from video sequences,
ICIP94(II: 306-310).
IEEE DOI
9411
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Driver Monitoring, Mobile Phone Usage .