Rogelj, P.[Peter],
Kovacic, S.[Stanislav],
Gee, J.C.[James C.],
Point similarity measures for non-rigid registration of multi-modal
data,
CVIU(92), No. 1, October 2003, pp. 112-140.
Elsevier DOI
0310
BibRef
Hasan, M.[Mahmudul],
Pickering, M.R.[Mark R.],
Jia, X.P.[Xiu-Ping],
Robust Automatic Registration of Multimodal Satellite Images Using CCRE
With Partial Volume Interpolation,
GeoRS(50), No. 10, October 2012, pp. 4050-4061.
IEEE DOI
1210
BibRef
Earlier:
Multi-modal Registration of SAR and Optical Satellite Images,
DICTA09(447-453).
IEEE DOI
0912
BibRef
Sutour, C.[Camille],
Aujol, J.F.[Jean-François],
Deledalle, C.A.[Charles-Alban],
de Senneville, B.D.[Baudouin Denis],
Edge-Based Multi-modal Registration and Application for Night Vision
Devices,
JMIV(53), No. 2, October 2015, pp. 131-150.
Springer DOI
1508
BibRef
Yu, J.G.[Jin-Gang],
Gao, C.X.[Chang-Xin],
Tian, J.W.[Jin-Wen],
Collaborative multicue fusion using the cross-diffusion process for
salient object detection,
JOSA-A(33), No. 3, March 2016, pp. 404-415.
DOI Link
1603
Digital image processing
BibRef
Pitts, B.,
Riggs, S.L.,
Sarter, N.,
Crossmodal Matching:
A Critical but Neglected Step in Multimodal Research,
HMS(46), No. 3, June 2016, pp. 445-450.
IEEE DOI
1605
Equating perceived intensities of stimuli across two sensory modalities.
BibRef
Wang, K.[Kaiye],
He, R.[Ran],
Wang, L.[Liang],
Wang, W.[Wei],
Tan, T.N.[Tie-Niu],
Joint Feature Selection and Subspace Learning for Cross-Modal
Retrieval,
PAMI(38), No. 10, October 2016, pp. 2010-2023.
IEEE DOI
1609
BibRef
Earlier: A1, A2, A4, A3, A5:
Learning Coupled Feature Spaces for Cross-Modal Matching,
ICCV13(2088-2095)
IEEE DOI
1403
BibRef
And: A1, A4, A2, A3, A5:
Multi-modal Subspace Learning with Joint Graph Regularization for
Cross-Modal Retrieval,
ACPR13(236-240)
IEEE DOI
1408
Buildings.
graph theory
BibRef
Li, Q.[Qi],
Sun, Z.A.[Zhen-An],
He, R.[Ran],
Tan, T.N.[Tie-Niu],
Joint Alignment and Clustering via Low-Rank Representation,
ACPR13(591-595)
IEEE DOI
1408
image representation
BibRef
Wang, K.[Kaiye],
Wang, W.[Wei],
Wang, L.[Liang],
Learning unified sparse representations for multi-modal data,
ICIP15(3545-3549)
IEEE DOI
1512
Cross-modal retrieval
BibRef
Zu, C.[Chen],
Wang, Z.X.[Zheng-Xia],
Zhang, D.Q.[Dao-Qiang],
Liang, P.P.[Pei-Peng],
Shi, Y.H.[Yong-Hong],
Shen, D.G.[Ding-Gang],
Wu, G.R.[Guo-Rong],
Robust multi-atlas label propagation by deep sparse representation,
PR(63), No. 1, 2017, pp. 511-517.
Elsevier DOI
1612
Hierarchical sparse representation
BibRef
Song, G.L.[Guo-Li],
Wang, S.H.[Shu-Hui],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Multimodal Similarity Gaussian Process Latent Variable Model,
IP(26), No. 9, September 2017, pp. 4168-4181.
IEEE DOI
1708
BibRef
And:
Multimodal Gaussian Process Latent Variable Models with Harmonization,
ICCV17(5039-5047)
IEEE DOI
1802
BibRef
Earlier:
Similarity Gaussian Process Latent Variable Model for Multi-modal
Data Analysis,
ICCV15(4050-4058)
IEEE DOI
1602
Gaussian processes, content-based retrieval, gradient methods,
learning (artificial intelligence), pattern classification,
cross-modal content retrieval, distance preservation,
gradient descent techniques, heterogeneous modalities,
BibRef
Song, G.L.[Guo-Li],
Wang, S.H.[Shu-Hui],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Harmonized Multimodal Learning with Gaussian Process Latent Variable
Models,
PAMI(43), No. 3, March 2021, pp. 858-872.
IEEE DOI
2102
Data models, Kernel, Correlation, Semantics, Gaussian processes,
Learning systems, Probabilistic logic, Multimodal learning,
cross-modal retrieval
BibRef
Li, K.[Ke],
Zou, C.Q.[Chang-Qing],
Bu, S.H.[Shu-Hui],
Liang, Y.[Yun],
Zhang, J.[Jian],
Gong, M.L.[Ming-Lun],
Multi-modal feature fusion for geographic image annotation,
PR(73), No. 1, 2018, pp. 1-14.
Elsevier DOI
1709
Convolutional neural networks, (CNNs)
BibRef
Amer, M.R.[Mohamed R.],
Shields, T.[Timothy],
Siddiquie, B.[Behjat],
Tamrakar, A.[Amir],
Divakaran, A.[Ajay],
Chai, S.[Sek],
Deep Multimodal Fusion: A Hybrid Approach,
IJCV(126), No. 2-4, April 2018, pp. 440-456.
Springer DOI
1804
BibRef
Amer, M.R.[Mohamed R.],
Siddiquie, B.[Behjat],
Khan, S.[Saad],
Divakaran, A.[Ajay],
Sawhney, H.S.[Harpreet S.],
Multimodal fusion using dynamic hybrid models,
WACV14(556-563)
IEEE DOI
1406
Computational modeling
BibRef
Wang, R.[Ruili],
Ji, W.T.[Wan-Ting],
Liu, M.Z.[Ming-Zhe],
Wang, X.[Xun],
Weng, J.[Jian],
Deng, S.[Song],
Gao, S.Y.[Su-Ying],
Yuan, C.A.[Chang-An],
Review on mining data from multiple data sources,
PRL(109), 2018, pp. 120-128.
Elsevier DOI
1806
Multiple data source mining, Pattern analysis,
Data classification, Data clustering, Data fusion
BibRef
Alvén, J.[Jennifer],
Kahl, F.[Fredrik],
Landgren, M.[Matilda],
Larsson, V.[Viktor],
Ulén, J.[Johannes],
Enqvist, O.[Olof],
Shape-aware label fusion for multi-atlas frameworks,
PRL(124), 2019, pp. 109-117.
Elsevier DOI
1906
Multi-atlas label fusion, Shape models, Medical image segmentation
BibRef
Gao, L.[Lin],
Battistelli, G.[Giorgio],
Chisci, L.[Luigi],
Multiobject Fusion With Minimum Information Loss,
SPLetters(27), 2020, pp. 201-205.
IEEE DOI
2002
Generalized covariance intersection,
Kullback-Leibler divergence, random finite set, data fusion,
linear opinion pool
BibRef
Liu, R.S.[Ri-Sheng],
Liu, J.Y.[Jin-Yuan],
Jiang, Z.Y.[Zhi-Ying],
Fan, X.[Xin],
Luo, Z.X.[Zhong-Xuan],
A Bilevel Integrated Model With Data-Driven Layer Ensemble for
Multi-Modality Image Fusion,
IP(30), 2021, pp. 1261-1274.
IEEE DOI
2012
Image fusion, Task analysis, Transforms, Optimization,
Magnetic resonance imaging, Dictionaries,
neural networks
BibRef
Liu, J.Y.[Jin-Yuan],
Lin, R.J.[Run-Jia],
Wu, G.Y.[Guan-Yao],
Liu, R.S.[Ri-Sheng],
Luo, Z.X.[Zhong-Xuan],
Fan, X.[Xin],
CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion,
IJCV(132), No. 5, May 2024, pp. 1748-1775.
Springer DOI
2405
BibRef
Xu, H.[Han],
Ma, J.Y.[Jia-Yi],
Jiang, J.J.[Jun-Jun],
Guo, X.J.[Xiao-Jie],
Ling, H.B.[Hai-Bin],
U2Fusion: A Unified Unsupervised Image Fusion Network,
PAMI(44), No. 1, January 2022, pp. 502-518.
IEEE DOI
2112
Image fusion, Task analysis, Feature extraction, Measurement,
Supervised learning, Data mining, Training, Image fusion,
continual learning
BibRef
Mao, Y.D.[Yu-Dong],
Jiang, Q.P.[Qiu-Ping],
Cong, R.M.[Run-Min],
Gao, W.[Wei],
Shao, F.[Feng],
Kwong, S.[Sam],
Cross-Modality Fusion and Progressive Integration Network for
Saliency Prediction on Stereoscopic 3D Images,
MultMed(24), 2022, pp. 2435-2448.
IEEE DOI
2205
Feature extraction, Fuses, Decoding,
Predictive models, Pipelines, Visualization, Stereoscopic 3D image,
Progressive integration
BibRef
Wang, J.P.[Jin-Ping],
Li, J.[Jun],
Shi, Y.L.[Yan-Li],
Lai, J.H.[Jian-Huang],
Tan, X.J.[Xiao-Jun],
AM³Net: Adaptive Mutual-Learning-Based Multimodal Data Fusion Network,
CirSysVideo(32), No. 8, August 2022, pp. 5411-5426.
IEEE DOI
2208
Feature extraction, Laser radar, Convolution, Kernel,
Data integration, Convolutional neural networks,
and multimodal data classification
BibRef
Tu, H.W.[Huang-Wei],
Zhu, Y.[Yu],
Han, C.P.[Chang-Pei],
RI-LPOH: Rotation-Invariant Local Phase Orientation Histogram for
Multi-Modal Image Matching,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xu, H.[Han],
Yuan, J.[Jiteng],
Ma, J.Y.[Jia-Yi],
MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion,
PAMI(45), No. 10, October 2023, pp. 12148-12166.
IEEE DOI
2310
BibRef
Xu, H.[Han],
Ma, J.Y.[Jia-Yi],
Yuan, J.[Jiteng],
Le, Z.L.[Zhu-Liang],
Liu, W.[Wei],
RFNet: Unsupervised Network for Mutually Reinforcing Multi-modal
Image Registration and Fusion,
CVPR22(19647-19656)
IEEE DOI
2210
Measurement, Deformable models, Image registration,
Pattern recognition, Task analysis, Image fusion, Low-level vision
BibRef
Li, J.Y.[Jia-Yuan],
Hu, Q.W.[Qing-Wu],
Zhang, Y.J.[Yong-Jun],
Multimodal Image Matching:
A Scale-Invariant Algorithm and an Open Dataset,
PandRS(204), 2023, pp. 77-88.
Elsevier DOI
2310
Image matching, Feature descriptor, Dataset, SAR-optical, Multimodal images
BibRef
Zhou, Y.[Yang],
Han, Z.[Zhen],
Dou, Z.[Zeng],
Huang, C.B.[Cheng-Bin],
Cong, L.[Li],
Lv, N.[Ning],
Chen, C.[Chen],
Edge Consistency Feature Extraction Method for Multi-Source Image
Registration,
RS(15), No. 20, 2023, pp. 5051.
DOI Link
2310
BibRef
Lu, H.J.[Heng-Jie],
Xu, S.G.[Shu-Gong],
Wang, J.H.[Jia-Hao],
Multi-dataset fusion for multi-task learning on face attribute
recognition,
PRL(173), 2023, pp. 72-78.
Elsevier DOI
2310
Face attribute recognition, Multi-dataset fusion,
Multi-task learning, Knowledge distillation, Deep learning
BibRef
Wei, J.[Jiwei],
Yang, Y.[Yang],
Xu, X.[Xing],
Song, J.K.[Jing-Kuan],
Wang, G.Q.[Guo-Qing],
Shen, H.T.[Heng Tao],
Less is Better: Exponential Loss for Cross-Modal Matching,
CirSysVideo(33), No. 9, September 2023, pp. 5271-5280.
IEEE DOI
2310
BibRef
Islam, M.M.[Md Mofijul],
Yasar, M.S.[Mohammad Samin],
Iqbal, T.[Tariq],
MAVEN: A Memory Augmented Recurrent Approach for Multimodal Fusion,
MultMed(25), 2023, pp. 3694-3708.
IEEE DOI
2310
BibRef
Wang, Q.[Qun],
Yang, B.[Boli],
Li, L.[Luchun],
Liang, H.Y.[Hong-Yi],
Zhu, X.L.[Xiao-Lin],
Cao, R.[Ruyin],
Within-Season Crop Identification by the Fusion of Spectral
Time-Series Data and Historical Crop Planting Data,
RS(15), No. 20, 2023, pp. 5043.
DOI Link
2310
BibRef
Pang, H.X.[Hua-Xin],
Wei, S.[Shikui],
Zhang, G.[Gangjian],
Zhang, S.Y.[Shi-Yin],
Qiu, S.[Shuang],
Zhao, Y.[Yao],
Heterogeneous Feature Alignment and Fusion in Cross-Modal Augmented
Space for Composed Image Retrieval,
MultMed(25), 2023, pp. 6446-6457.
IEEE DOI
2311
BibRef
Zhang, J.[Jun],
Jiao, L.C.[Li-Cheng],
Ma, W.P.[Wen-Ping],
Liu, F.[Fang],
Liu, X.[Xu],
Li, L.L.[Ling-Ling],
Chen, P.[Puhua],
Yang, S.Y.[Shu-Yuan],
Transformer Based Conditional GAN for Multimodal Image Fusion,
MultMed(25), 2023, pp. 8988-9001.
IEEE DOI
2312
BibRef
Wang, J.P.[Jin-Ping],
Tan, X.J.[Xiao-Jun],
Mutually Beneficial Transformer for Multimodal Data Fusion,
CirSysVideo(33), No. 12, December 2023, pp. 7466-7479.
IEEE DOI
2312
BibRef
Luo, X.[Xing],
Fu, G.Z.[Gui-Zhong],
Yang, J.X.[Jiang-Xin],
Cao, Y.L.[Yan-Long],
Cao, Y.P.[Yan-Peng],
Multi-Modal Image Fusion via Deep Laplacian Pyramid Hybrid Network,
CirSysVideo(33), No. 12, December 2023, pp. 7354-7369.
IEEE DOI Code:
WWW Link.
2312
BibRef
Yan, X.[Xiaohu],
Cao, Y.H.[Yi-Hang],
Yang, Y.J.[Yi-Jun],
Yao, Y.X.[Yong-Xiang],
Multi-Modal Image Registration Based on Phase Exponent Differences of
the Gaussian Pyramid,
RS(15), No. 24, 2023, pp. 5764.
DOI Link
2401
BibRef
Chen, R.[Rui],
Zhao, L.[Long],
Two-Level Integrity-Monitoring Method for Multi-Source Information
Fusion Navigation,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Li, J.Y.[Jia-Yao],
Li, L.[Li],
Sun, R.Z.[Rui-Zhi],
Yuan, G.[Gang],
Wang, S.[Shufan],
Sun, S.[Shulin],
MMAN-M2: Multiple multi-head attentions network based on encoder with
missing modalities,
PRL(177), 2024, pp. 110-120.
Elsevier DOI
2401
Multi-modal fusion, Multi-head attention,
Random missing modalities, Encoder-decoder, Missing modalities
BibRef
Zhao, Z.X.[Zi-Xiang],
Bai, H.[Haowen],
Zhu, Y.Z.[Yuan-Zhi],
Zhang, J.S.[Jiang-She],
Xu, S.[Shuang],
Zhang, Y.[Yulun],
Zhang, K.[Kai],
Meng, D.Y.[De-Yu],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion,
ICCV23(8048-8059)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sun, Y.[Yuli],
Lei, L.[Lin],
Li, Z.[Zhang],
Kuang, G.Y.[Gang-Yao],
Similarity and dissimilarity relationships based graphs for
multimodal change detection,
PandRS(208), 2024, pp. 70-88.
Elsevier DOI Code:
WWW Link.
2402
Multimodal change detection, Dissimilarity relationship,
k-farthest neighbors, k-nearest neighbors, Image regression
BibRef
Zhao, Y.Y.[Yang-Yang],
Zheng, Q.[Qingchun],
Zhu, P.H.[Pei-Hao],
Zhang, X.[Xu],
Ma, W.P.[Wen-Peng],
TUFusion: A Transformer-Based Universal Fusion Algorithm for
Multimodal Images,
CirSysVideo(34), No. 3, March 2024, pp. 1712-1725.
IEEE DOI Code:
WWW Link.
2403
Image fusion, Transformers, Feature extraction, Biomedical imaging,
Deep learning, Heuristic algorithms, Visualization, fusion strategy
BibRef
Moreshet, A.[Aviad],
Keller, Y.[Yosi],
Attention-based multimodal image matching,
CVIU(241), 2024, pp. 103949.
Elsevier DOI
2403
Multisensor image matching, Deep learning, Attention-based
BibRef
Liu, J.Y.[Jin-Yang],
Li, S.T.[Shu-Tao],
Dian, R.[Renwei],
Song, Z.[Ze],
Focus Relationship Perception for Unsupervised Multi-Focus Image
Fusion,
MultMed(26), 2024, pp. 6155-6165.
IEEE DOI
2404
Image fusion, Feature extraction, Loss measurement, Data mining,
Visual perception, Tensors, Optimization, Multi-focus image fusion,
unsupervised learning
BibRef
He, X.W.[Xin-Wei],
Cheng, S.[Silin],
Liang, D.[Dingkang],
Bai, S.[Song],
Wang, X.[Xi],
Zhu, Y.Y.[Ying-Ying],
LATFormer: Locality-Aware Point-View Fusion Transformer for 3D shape
recognition,
PR(151), 2024, pp. 110413.
Elsevier DOI
2404
3D shape retrieval and classification, Point cloud, Multi-view,
Multimodal fusion, Transformer
BibRef
Almarines, N.R.[Nico R.],
Hashimoto, S.[Shizuka],
Pulhin, J.M.[Juan M.],
Tiburan, C.L.[Cristino L.],
Magpantay, A.T.[Angelica T.],
Saito, O.[Osamu],
Influence of Image Compositing and Multisource Data Fusion on
Multitemporal Land Cover Mapping of Two Philippine Watersheds,
RS(16), No. 12, 2024, pp. 2167.
DOI Link
2406
BibRef
Sun, L.[Le],
Tang, M.Q.[Meng-Qi],
Muhammad, G.[Ghulam],
CABnet: A channel attention dual adversarial balancing network for
multimodal image fusion,
IVC(147), 2024, pp. 105065.
Elsevier DOI
2406
Image processing, Infrared and visible image fusion,
Complementary information extract, Adaptive factor
BibRef
Deng, X.[Xin],
Liu, E.[Enpeng],
Gao, C.[Chao],
Li, S.X.[Sheng-Xi],
Gu, S.H.[Shu-Hang],
Xu, M.[Mai],
CrossHomo: Cross-Modality and Cross-Resolution Homography Estimation,
PAMI(46), No. 8, August 2024, pp. 5725-5742.
IEEE DOI
2407
Estimation, Image resolution, Feature extraction, Superresolution,
Deep learning, Task analysis, Spatial resolution,
multi-modal image registration
BibRef
Lin, S.Y.[Shu-Yuan],
Huang, F.R.[Fei-Ran],
Lai, T.T.[Tao-Tao],
Lai, J.H.[Jian-Huang],
Wang, H.Z.[Han-Zi],
Weng, J.[Jian],
Robust Heterogeneous Model Fitting for Multi-source Image
Correspondences,
IJCV(132), No. 8, August 2024, pp. 2907-2928.
Springer DOI
2408
BibRef
Li, C.[Can],
Zuo, Z.[Zhen],
Tong, X.Z.[Xiao-Zhong],
Huang, H.[Honghe],
Yuan, S.D.[Shu-Dong],
Dang, Z.Y.[Zhao-Yang],
CPROS: A Multimodal Decision-Level Fusion Detection Method Based on
Category Probability Sets,
RS(16), No. 15, 2024, pp. 2745.
DOI Link
2408
BibRef
Deng, Y.[Yaohua],
Liu, X.[Xiali],
Yang, K.[Kenan],
Li, Z.H.[Ze-Hang],
Flexible thin parts multi-target positioning method of multi-level
feature fusion,
IET-IPR(18), No. 11, 2024, pp. 2996-3012.
DOI Link
2409
Gaussian processes, image fusion, image recognition, object recognition
BibRef
Han, K.Y.[Kai-Yang],
Cao, F.[Fanzhi],
Shi, T.X.[Tian-Xin],
Wang, P.[Pu],
A Dual Attention Network for Multimodal Remote Sensing Image Matching,
CVIDL23(128-134)
IEEE DOI
2403
Training, Deep learning, Image matching, Nonlinear distortion,
Imaging, Sensors, multimodal image matching, attention mechanism
BibRef
Liu, B.[Bing],
Xu, Z.Q.[Zi-Qi],
Bao, X.L.[Xue-Liang],
Zhong, Z.[Zhaohao],
MUNformer: A strong encoder that uses multi-level features extracted
by different feature extractors for fusion,
CVIDL23(291-295)
IEEE DOI
2403
Semantics, Computer architecture,
Feature extraction, Transformers, Decoding, Data mining, component,
semantic segmentation
BibRef
He, C.M.[Chun-Ming],
Li, K.[Kai],
Xu, G.X.[Guo-Xia],
Zhang, Y.[Yulun],
Hu, R.[Runze],
Guo, Z.H.[Zhen-Hua],
Li, X.[Xiu],
Degradation-Resistant Unfolding Network for Heterogeneous Image
Fusion,
ICCV23(12577-12587)
IEEE DOI
2401
BibRef
Liu, J.Y.[Jin-Yuan],
Liu, Z.[Zhu],
Wu, G.Y.[Guan-Yao],
Ma, L.[Long],
Liu, R.S.[Ri-Sheng],
Zhong, W.[Wei],
Luo, Z.X.[Zhong-Xuan],
Fan, X.[Xin],
Multi-interactive Feature Learning and a Full-time Multi-modality
Benchmark for Image Fusion and Segmentation,
ICCV23(8081-8090)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sippel, F.[Frank],
Seiler, J.[Jürgen],
Kaup, A.[André],
Cross Spectral Image Reconstruction Using a Deep Guided Neural
Network,
ICIP23(226-230)
IEEE DOI
2312
BibRef
Myers, A.[Audun],
Kvinge, H.[Henry],
Emerson, T.[Tegan],
TopFusion: Using Topological Feature Space for Fusion and Imputation
in Multi-Modal Data,
TAG-PRA23(600-609)
IEEE DOI
2309
BibRef
Xue, Z.[Zihui],
Marculescu, R.[Radu],
Dynamic Multimodal Fusion,
MULA23(2575-2584)
IEEE DOI
2309
BibRef
Li, X.[Xin],
Ma, T.[Tao],
Hou, Y.N.[Yue-Nan],
Shi, B.[Botian],
Yang, Y.C.[Yu-Chen],
Liu, Y.[Youquan],
Wu, X.J.[Xing-Jiao],
Chen, Q.[Qin],
Li, Y.[Yikang],
Qiao, Y.[Yu],
He, L.[Liang],
LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global
Cross-Modal Fusion,
CVPR23(17524-17534)
IEEE DOI
2309
BibRef
Kong, L.K.[Ling-Ke],
Qi, X.S.[X. Sharon],
Shen, Q.J.[Qi-Jin],
Wang, J.C.[Jia-Cheng],
Zhang, J.Y.[Jing-Yi],
Hu, Y.[Yanle],
Zhou, Q.C.[Qi-Chao],
Indescribable Multi-Modal Spatial Evaluator,
CVPR23(9853-9862)
IEEE DOI
2309
WWW Link.
BibRef
Zhao, Z.X.[Zi-Xiang],
Bai, H.[Haowen],
Zhang, J.S.[Jiang-She],
Zhang, Y.[Yulun],
Xu, S.[Shuang],
Lin, Z.[Zudi],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion,
CVPR23(5906-5916)
IEEE DOI
2309
BibRef
Li, Y.[Yaowei],
Quan, R.J.[Rui-Jie],
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Efficient Multimodal Fusion via Interactive Prompting,
CVPR23(2604-2613)
IEEE DOI
2309
BibRef
Wetzer, E.[Elisabeth],
Lindblad, J.[Joakim],
Sladoje, N.[Nataša],
Can Representation Learning for Multimodal Image Registration be
Improved by Supervision of Intermediate Layers?,
IbPRIA23(261-275).
Springer DOI
2307
BibRef
Duan, J.L.[Jia-Li],
Chen, L.Q.[Li-Qun],
Tran, S.[Son],
Yang, J.[Jinyu],
Xu, Y.[Yi],
Zeng, B.[Belinda],
Chilimbi, T.[Trishul],
Multi-modal Alignment using Representation Codebook,
CVPR22(15630-15639)
IEEE DOI
2210
Training, Representation learning, Image coding, Dictionaries,
Benchmark testing, Pattern recognition, Vision + language
BibRef
Xue, Z.H.[Zi-Hui],
Ren, S.C.[Su-Cheng],
Gao, Z.Q.[Zheng-Qi],
Zhao, H.[Hang],
Multimodal Knowledge Expansion,
ICCV21(834-843)
IEEE DOI
2203
Multimodal sensors, Semisupervised learning, Data collection,
Data models, Internet, Task analysis, Vision + other modalities,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Zolfaghari, M.[Mohammadreza],
Zhu, Y.[Yi],
Gehler, P.[Peter],
Brox, T.[Thomas],
CrossCLR: Cross-modal Contrastive Learning For Multi-modal Video
Representations,
ICCV21(1430-1439)
IEEE DOI
2203
Vision + language, Vision + other modalities
BibRef
Panda, R.[Rameswar],
Chen, C.F.R.[Chun-Fu Richard],
Fan, Q.F.[Quan-Fu],
Sun, X.[Ximeng],
Saenko, K.[Kate],
Oliva, A.[Aude],
Feris, R.S.[Rogerio S.],
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition,
ICCV21(7556-7565)
IEEE DOI
2203
Adaptation models, Computational modeling, Standards,
Video analysis and understanding,
BibRef
Shi, Z.S.[Zhen-Sheng],
Liang, J.[Ju],
Li, Q.Q.[Qian-Qian],
Zheng, H.Y.[Hai-Yong],
Gu, Z.R.[Zhao-Rui],
Dong, J.Y.[Jun-Yu],
Zheng, B.[Bing],
Multi-Modal Multi-Action Video Recognition,
ICCV21(13658-13667)
IEEE DOI
2203
Convolutional codes, Visualization, Analytical models,
Computational modeling, Benchmark testing,
Video analysis and understanding
BibRef
Huang, S.C.[Shih-Cheng],
Shen, L.Y.[Li-Yue],
Lungren, M.P.[Matthew P.],
Yeung, S.[Serena],
GLoRIA: A Multimodal Global-Local Representation Learning Framework
for Label-efficient Medical Image Recognition,
ICCV21(3922-3931)
IEEE DOI
2203
Representation learning, Deep learning, Training,
Image segmentation, Image recognition, Image analysis,
Vision + language
BibRef
Chen, B.[Brian],
Rouditchenko, A.[Andrew],
Duarte, K.[Kevin],
Kuehne, H.[Hilde],
Thomas, S.[Samuel],
Boggust, A.[Angie],
Panda, R.[Rameswar],
Kingsbury, B.[Brian],
Feris, R.S.[Rogerio S.],
Harwath, D.[David],
Glass, J.[James],
Picheny, M.[Michael],
Chang, S.F.[Shih-Fu],
Multimodal Clustering Networks for Self-supervised Learning from
Unlabeled Videos,
ICCV21(7992-8001)
IEEE DOI
2203
Training, Optical losses, Location awareness, Annotations, Semantics,
Pipelines, Video analysis and understanding,
Vision + other modalities
BibRef
Liang, T.[Tao],
Lin, G.S.[Guo-Sheng],
Feng, L.[Lei],
Zhang, Y.[Yan],
Lv, F.M.[Feng-Mao],
Attention is not Enough: Mitigating the Distribution Discrepancy in
Asynchronous Multimodal Sequence Fusion,
ICCV21(8128-8136)
IEEE DOI
2203
Correlation, Fuses, Computational modeling, Benchmark testing,
Transformers, Acoustics, Video analysis and understanding,
BibRef
Liu, Y.Z.[Yun-Ze],
Fan, Q.N.[Qing-Nan],
Zhang, S.H.[Shang-Hang],
Dong, H.[Hao],
Funkhouser, T.[Thomas],
Yi, L.[Li],
Contrastive Multimodal Fusion with TupleInfoNCE,
ICCV21(734-743)
IEEE DOI
2203
Training, Representation learning, Benchmark testing,
Task analysis, Optimization, Vision + other modalities, Representation learning
BibRef
Son, C.H.,
Zhang, X.P.,
Multimodal fusion via a series of transfers for noise removal,
ICIP17(530-534)
IEEE DOI
1803
Image representation, Imaging,
Pattern recognition, Visual communication,
Near-infrared imaging, multimodal fusion
BibRef
Shrivastava, A.[Ashish],
Rastegari, M.[Mohammad],
Shekhar, S.[Sumit],
Chellappa, R.[Rama],
Davis, L.S.[Larry S.],
Class consistent multi-modal fusion with binary features,
CVPR15(2282-2291)
IEEE DOI
1510
BibRef
Kasiri, K.[Keyvan],
Fieguth, P.W.[Paul W.],
Clausi, D.A.[David A.],
Self-similarity measure for multi-modal image registration,
ICIP16(4498-4502)
IEEE DOI
1610
BibRef
Earlier:
Structural Representations for Multi-modal Image Registration Based on
Modified Entropy,
ICIAR15(82-89).
Springer DOI
1507
Brain.
BibRef
Glodek, M.[Michael],
Schels, M.[Martin],
Palm, G.[Gunther],
Schwenker, F.[Friedhelm],
Multi-modal Fusion based on classifiers using reject options and Markov
Fusion Networks,
ICPR12(1084-1087).
WWW Link.
1302
BibRef
Forsberg, D.[Daniel],
Farnebäck, G.[Gunnar],
Knutsson, H.[Hans],
Westin, C.F.[Carl-Fredrik],
Multi-modal Image Registration Using Polynomial Expansion and Mutual
Information,
WBIR12(40-49).
Springer DOI
1208
BibRef
Town, C.[Christopher],
Zhu, Z.G.[Zhi-Gang],
Sensor Fusion and Environmental Modelling for Multimodal Sentient
Computing,
MSCSAS07(1-2).
IEEE DOI
0706
BibRef
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Fusion, Range or Depth and Intensity or Color Data .