Clay, M.T.,
Ferree, T.C.,
Weighted regularization in electrical impedance tomography with
applications to acute cerebral stroke,
MedImg(21), No. 6, June 2002, pp. 629-637.
IEEE Top Reference.
0208
BibRef
Schormann, T.,
Kraemer, M.,
Voxel-guided morphometry ('VGM') and application to stroke,
MedImg(22), No. 1, January 2003, pp. 62-74.
IEEE Top Reference.
0304
BibRef
Charalampidis, D.,
Pascotto, M.,
Kerut, E.K.,
Lindner, J.R.,
Anatomy and Flow in Normal and Ischemic Microvasculature Based on a
Novel Temporal Fractal Dimension Analysis Algorithm Using Contrast
Enhanced Ultrasound,
MedImg(25), No. 8, August 2006, pp. 1079-1086.
IEEE DOI
0608
BibRef
Tan, T.L.,
Sim, K.S.,
Tso, C.P.,
Chong, A.K.,
Contrast enhancement of computed tomography images by adaptive
histogram equalization-application for improved ischemic stroke
detection,
IJIST(22), No. 3, September 2012, pp. 153-160.
DOI Link
1208
BibRef
Bae, K.T.[Kyongtae Ty],
Park, S.H.[Sung-Hong],
Shim, H.[Hackjoon],
Moon, C.H.[Chan-Hong],
Kim, J.H.[Jung-Hwan],
Nemoto, E.M.[Edwin M.],
Application of compatible dual-echo arteriovenography in stroke:
Preliminary observations,
IJIST(23), No. 2, 2013, pp. 152-156.
DOI Link
1307
stroke, compatible dual-echo arteriovenography, vessel enhancement
filtering, susceptibility weighted imaging, time-of-flight, blood
oxygenation level-dependent, angiogram, venogram
BibRef
Mamatjan, Y.[Yasin],
Imaging of hemorrhagic stroke in magnetic induction tomography:
An in vitro study,
IJIST(24), No. 2, 2014, pp. 161-166.
DOI Link
1405
magnetic induction tomography
BibRef
Wen, B.[Bo],
Ma, L.[Lin],
Weng, C.S.[Chang-Shui],
The impact of constraint induced movement therapy on brain activation
in chronic stroke patients with upper extremity paralysis:
An fMRI study,
IJIST(24), No. 3, 2014, pp. 270-275.
DOI Link
1408
fMRI, brain reorganization, CIMT, stroke
BibRef
Park, S.I.[Sang-In],
Lee, J.H.[Jin-Hee],
Chung, Y.A.[Yong-An],
Park, M.S.[Moon-Seo],
Sunwoo, H.[Hyun],
Lee, K.S.[Kwan-Sung],
Sunwoo, Y.Y.[Yun-Young],
The neuroprotective effect of a traditional herbal (kyung-ok-ko) on
transient middle cerebral artery occlusion-Induced ischemic rat brain,
IJIST(25), No. 2, 2015, pp. 131-138.
DOI Link
1506
stroke, transient ischemia, MCAO, Kyung-ok-ko, herb medicine
BibRef
Menze, B.H.,
van Leemput, K.,
Lashkari, D.,
Riklin-Raviv, T.,
Geremia, E.,
Alberts, E.,
Gruber, P.,
Wegener, S.,
Weber, M.A.,
Székely, G.,
Ayache, N.,
Golland, P.,
A Generative Probabilistic Model and Discriminative Extensions for
Brain Lesion Segmentation: With Application to Tumor and Stroke,
MedImg(35), No. 4, April 2016, pp. 933-946.
IEEE DOI
1604
Gaussian processes
BibRef
Jang, J.H.[Jin-Hee],
Ahn, K.J.[Kook-Jin],
Kim, B.Y.[Bom-Yi],
Porter, D.[David],
Stemmer, A.[Alto],
Choi, H.S.[Hyun Seok],
Jung, S.L.[So-Lyung],
Kim, B.S.[Bum-Soo],
The usefulness of diffusion-weighted readout-segmented EPI and fast
spin echo with BLADE (PROPELLER) k-space sampling: A comparison with
single-shot EPI for diffusion-weighted imaging in ischemic stroke
patients,
IJIST(26), No. 3, 2016, pp. 216-224.
DOI Link
1609
acute ischemic stroke
BibRef
Karthik, R.,
Menaka, R.,
A critical appraisal on wavelet based features from brain MR images for
efficient characterization of ischemic stroke injuries,
ELCVIA(15), No. 3, 2016, pp. 1.
DOI Link
1701
Ischemic Stroke, Watershed transformation, Discrete Wavelet, Feature
statistics
BibRef
Wang, L.[Lulu],
Electromagnetic induction holography imaging for stroke detection,
JOSA-A(34), No. 2, February 2017, pp. 294-298.
DOI Link
1702
Image reconstruction techniques
BibRef
Sivakumar, P.,
Ganeshkumar, P.,
An efficient automated methodology for detecting and segmenting the
ischemic stroke in brain MRI images,
IJIST(27), No. 3, 2017, pp. 265-272.
DOI Link
1708
brain stroke, classification, ischemic stroke,
morphological features, , texture, features
BibRef
Zhang, R.,
Zhao, L.,
Lou, W.,
Abrigo, J.M.,
Mok, V.C.T.,
Chu, W.C.W.,
Wang, D.,
Shi, L.,
Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D
Fully Convolutional DenseNets,
MedImg(37), No. 9, September 2018, pp. 2149-2160.
IEEE DOI
1809
Lesions, Image segmentation,
Biomedical imaging, Solid modeling,
deep learning
BibRef
Choi, W.J.,
Li, Y.,
Wang, R.K.,
Monitoring Acute Stroke Progression: Multi-Parametric OCT Imaging of
Cortical Perfusion, Flow, and Tissue Scattering in a Mouse Model of
Permanent Focal Ischemia,
MedImg(38), No. 6, June 2019, pp. 1427-1437.
IEEE DOI
1906
Imaging, Mice, Scattering, Injuries, Blood, Attenuation,
Acute ischemic stroke,
hemodynamic and tissue scattering responses
BibRef
Ho, K.C.,
Speier, W.,
Zhang, H.,
Scalzo, F.,
El-Saden, S.,
Arnold, C.W.,
A Machine Learning Approach for Classifying Ischemic Stroke Onset
Time From Imaging,
MedImg(38), No. 7, July 2019, pp. 1666-1676.
IEEE DOI
1907
Deep learning, Stroke (medical condition), Feature extraction,
Magnetic resonance imaging, Biomedical imaging, Deep learning,
MR perfusion imaging
BibRef
Anbumozhi, S.[Selladurai],
Computer aided detection and diagnosis methodology for brain stroke
using adaptive neuro fuzzy inference system classifier,
IJIST(30), No. 1, 2020, pp. 196-202.
DOI Link
2002
diagnosis, features, impulse noise, skull, stroke
BibRef
Doke, P.[Piyush],
Shrivastava, D.[Dhiraj],
Pan, C.[Chichun],
Zhou, Q.H.[Qing-Hua],
Zhang, Y.D.[Yu-Dong],
Using CNN with Bayesian optimization to identify cerebral micro-bleeds,
MVA(31), No. 5, July 2020, pp. Article36.
Springer DOI
2006
BibRef
Xiang, J.,
Dong, Y.,
Yang, Y.,
Multi-Frequency Electromagnetic Tomography for Acute Stroke Detection
Using Frequency-Constrained Sparse Bayesian Learning,
MedImg(39), No. 12, December 2020, pp. 4102-4112.
IEEE DOI
2012
Coils, Conductivity, Tomography, Sensitivity, Image reconstruction,
Data models, Acute stroke, electromagnetic tomography,
sparse Bayesian learning
BibRef
Xiao, W.[Wei],
Gao, Q.[Qian],
Kumar, R.[Rahul],
Yu, C.L.E.[C. L. Edwin],
Ho, Y.E.J.[Y. E. Janice],
Sheykhahmad, F.R.[Fatima Rashid],
Implementation of convolutional neural network categorizers in
coronary ischemia detection,
IJIST(31), No. 1, 2021, pp. 313-326.
DOI Link
2102
cardiac artery illness,
convolutional neural networks categorizers, software-based detection
BibRef
Su, R.S.[Rui-Sheng],
Cornelissen, S.A.P.[Sandra A. P.],
van der Sluijs, M.[Matthijs],
van Es, A.C.G.M.[Adriaan C. G. M.],
van Zwam, W.H.[Wim H.],
Dippel, D.W.J.[Diederik W. J.],
Lycklama, G.[Geert],
van Doormaal, P.J.[Pieter Jan],
Niessen, W.J.[Wiro J.],
van der Lugt, A.[Aad],
van Walsum, T.[Theo],
autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images
of Acute Ischemic Stroke Patients,
MedImg(40), No. 9, September 2021, pp. 2380-2391.
IEEE DOI
2109
Biomedical imaging, Imaging, Visualization, Radiology,
Motion segmentation, Image segmentation, Brain, Stroke, DSA, autoTICI,
MR CLEAN Registry
BibRef
Zhang, L.[Long],
Zhu, C.[Chuang],
Wu, Y.W.[Yue-Wei],
Yang, Y.[Yang],
Luo, Y.H.[Yi-Hao],
Song, R.N.[Ruo-Ning],
Liu, L.[Lian],
Yang, J.[Jie],
SFCN: Symmetric feature comparison network for detecting ischemic
stroke lesions on CT images,
IET-IPR(15), No. 12, 2021, pp. 2818-2832.
DOI Link
2109
BibRef
Zhu, J.Y.[Jing-Yi],
Liu, C.[Chao],
Liu, Y.[Yan],
Chen, J.B.[Jiang-Bo],
Zhang, Y.[Yachao],
Yao, K.[Kuanming],
Wang, L.[Lidai],
Self-Fluence-Compensated Functional Photoacoustic Microscopy,
MedImg(40), No. 12, December 2021, pp. 3856-3866.
IEEE DOI
2112
Optical imaging, Biomedical optical imaging, Optical attenuators,
Optical scattering, Optical saturation, Adaptive optics,
ischemic stroke
BibRef
Guo, L.,
Nguyen-Trong, N.,
AI-Saffar, A.,
Stancombe, A.,
Bialkowski, K.,
Abbosh, A.,
Calibrated Frequency-Division Distorted Born Iterative Tomography for
Real-Life Head Imaging,
MedImg(41), No. 5, May 2022, pp. 1087-1103.
IEEE DOI
2205
Antenna measurements, Radio frequency, Transmitting antennas,
Phantoms, Tomography, Microwave theory and techniques,
stroke imaging
BibRef
Zhao, B.[Bin],
Liu, Z.Y.[Zhi-Yang],
Liu, G.H.[Guo-Hua],
Wu, M.R.[Meng-Ran],
Cao, C.[Chen],
Jin, S.[Song],
Wu, H.[Hong],
Ding, S.X.[Shu-Xue],
Combine unlabeled with labeled MR images to measure acute ischemic
stroke lesion by stepwise learning,
IET-IPR(16), No. 14, 2022, pp. 3965-3976.
DOI Link
2212
BibRef
Kaya, B.[Buket],
Önal, M.[Muhammed],
A CNN transfer learning-based approach for segmentation and
classification of brain stroke from noncontrast CT images,
IJIST(33), No. 4, 2023, pp. 1335-1352.
DOI Link
2307
brain stroke, clinical decision support system,
computer tomography, convolution neural network, semantic segmentation
BibRef
Umirzakova, S.[Sabina],
Ahmad, S.[Shabir],
Mardieva, S.[Sevara],
Muksimova, S.[Shakhnoza],
Whangbo, T.K.[Taeg Keun],
Deep learning-driven diagnosis: A multi-task approach for segmenting
stroke and Bell's palsy,
PR(144), 2023, pp. 109866.
Elsevier DOI
2310
Segmentation, Face parsing, Early stroke detection, Bell's palsy detection
BibRef
Wang, X.Y.[Xin-Ying],
Yi, J.[Jian],
Li, Y.[Yang],
Cerebral stroke classification based on fusion model of 3D
EmbedConvNext and 3D Bi-LSTM network,
IJIST(33), No. 6, 2023, pp. 1944-1956.
DOI Link
2311
3D CNN, Bi-LSTM, ConvNeXt, deep learning, self-attention, stroke
BibRef
Alshehri, F.[Fatima],
Muhammad, G.[Ghulam],
A few-shot learning-based ischemic stroke segmentation system using
weighted MRI fusion,
IVC(140), 2023, pp. 104865.
Elsevier DOI
2312
Ischemic stroke segmentation, MRI, Few-shot learning,
Convolutional neural network
BibRef
Liu, J.Z.[Jin-Zhen],
Chen, L.M.[Li-Ming],
Xiong, H.[Hui],
An encoder-decoder and modified U-Net network for microwave imaging
of stroke,
IJIST(34), No. 2, 2024, pp. e22995.
DOI Link
2402
electromagnetic inverse scattering problems, encoder-decoder,
microwave imaging, stroke imaging, U-net
BibRef
Gao, Q.L.[Qin-Ling],
Fu, H.[Hao],
Zhao, X.J.[Xue-Jing],
Ge, Z.M.[Zhao-Ming],
Additive margin networks with adaptive feature recalibration and its
applications in Brain Stroke CT Image classification,
IET-IPR(18), No. 3, 2024, pp. 731-740.
DOI Link
2402
brain, image recognition, Convolutional neural networks,
Additive margin softmax loss, Adaptive feature recalibration
BibRef
Guo, R.[Rui],
Lin, Z.C.[Zhi-Chao],
Xin, J.Y.[Jing-Yu],
Li, M.[Maokun],
Yang, F.[Fan],
Xu, S.[Shenheng],
Abubakar, A.[Aria],
Three Dimensional Microwave Data Inversion in Feature Space for
Stroke Imaging,
MedImg(43), No. 4, April 2024, pp. 1365-1376.
IEEE DOI
2404
Codes,
Microwave theory and techniques, Microwave imaging, Head, data inversion
BibRef
Su, H.[Hao],
Liu, X.F.[Xue-Feng],
Niu, J.W.[Jian-Wei],
Cui, J.[Jiahe],
Wan, J.[Ji],
Wu, X.H.[Xing-Hao],
Wang, N.[Nana],
MARVEL: Raster Gray-Level Manga Vectorization via Primitive-Wise Deep
Reinforcement Learning,
CirSysVideo(34), No. 4, April 2024, pp. 2677-2693.
IEEE DOI
2404
Visualization, Predictive models, Learning systems,
Image resolution, Deep learning, Stroke (medical condition),
deep reinforcement learning
BibRef
Kuang, H.[Hulin],
Wang, Y.H.[Ya-Hui],
Liu, J.[Jin],
Wang, J.[Jie],
Cao, Q.[Quanliang],
Hu, B.[Bo],
Qiu, W.[Wu],
Wang, J.X.[Jian-Xin],
Hybrid CNN-Transformer Network With Circular Feature Interaction for
Acute Ischemic Stroke Lesion Segmentation on Non-Contrast CT Scans,
MedImg(43), No. 6, June 2024, pp. 2303-2316.
IEEE DOI
2406
Transformers, Convolutional neural networks, Lesions,
Image segmentation, Artificial intelligence, Biomedical imaging,
non-contrast CT
BibRef
Khan, M.O.[M. Owais],
Seresti, A.A.[Anahita Abbasnejad],
Menon, K.[Karthik],
Marsden, A.L.[Alison L.],
Nieman, K.[Koen],
Quantification and Visualization of CT Myocardial Perfusion Imaging
to Detect Ischemia-Causing Coronary Arteries,
MedImg(43), No. 11, November 2024, pp. 3690-3697.
IEEE DOI
2411
Arteries, Myocardium, Computed tomography, Lesions, Imaging, Diseases, Indexes,
Coronary artery disease, CT perfusion imaging, computed tomography angiography
BibRef
Li, G.Y.[Guang-Yu],
Gao, K.[Kai],
Liu, C.[Changlong],
Li, S.[Shanze],
Intracranial hematoma segmentation on head CT based on multiscale
convolutional neural network and transformer,
IET-IPR(18), No. 12, 2024, pp. 3480-3495.
DOI Link
2411
brain, image segmentation,
medical image processing, neural net architecture
BibRef
Sun, J.R.[Jia-Rui],
Li, Q.[Qiuxuan],
Liu, Y.H.[Yu-Hao],
Liu, Y.C.[Yi-Chuan],
Coatrieux, G.[Gouenou],
Coatrieux, J.L.[Jean-Louis],
Chen, Y.[Yang],
Lu, J.[Jie],
Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic
Stroke Infarct Segmentation,
MedImg(43), No. 12, December 2024, pp. 4146-4160.
IEEE DOI
2412
Artificial intelligence, Pathology, Image segmentation, Lesions,
Task analysis, Biomedical imaging, Brain modeling,
progressive learning
BibRef
Kumar, S.[Shubham],
Agarwal, A.[Arjun],
Golla, S.[Satish],
Tanamala, S.[Swetha],
Upadhyay, U.[Ujjwal],
Chattoraj, S.[Subhankar],
Putha, P.[Preetham],
Chilamkurthy, S.[Sasank],
Mind the Clot: Automated LVO Detection on CTA using Deep Learning,
CVAMD23(2495-2504)
IEEE DOI
2401
BibRef
Chennuri, S.[Saurav],
Lai, S.[Sha],
Billot, A.[Anne],
Varkanitsa, M.[Maria],
Braun, E.J.[Emily J.],
Kiran, S.[Swathi],
Venkataraman, A.[Archana],
Konrad, J.[Janusz],
Ishwar, P.[Prakash],
Betke, M.[Margrit],
Fusion Approaches to Predict Post-stroke Aphasia Severity from
Multimodal Neuroimaging Data,
CVAMD23(2636-2645)
IEEE DOI
2401
BibRef
Pleasure, M.[Mara],
Redekop, E.[Ekaterina],
Polson, J.S.[Jennifer S.],
Zhang, H.Y.[Hao-Yue],
Kaneko, N.[Naoki],
Speier, W.[William],
Arnold, C.W.[Corey W],
Pathology-Based Ischemic Stroke Etiology Classification via Clot
Composition Guided Multiple Instance Learning,
CVAMD23(2666-2675)
IEEE DOI
2401
BibRef
Gomes, N.B.[Nicolas Barbosa],
Yoshida, A.[Arissa],
de Oliveira, G.C.[Guilherme Camargo],
Roder, M.[Mateus],
Papa, J.P.[Joăo Paulo],
Facial Point Graphs for Stroke Identification,
CIARP23(I:685-699).
Springer DOI
2312
BibRef
Upadhyay, U.[Ujjwal],
Ranjan, M.[Mukul],
Golla, S.[Satish],
Tanamala, S.[Swetha],
Sreenivas, P.[Preetham],
Chilamkurthy, S.[Sasank],
Pandian, J.[Jeyaraj],
Tarpley, J.[Jason],
Deep-aspects: A Segmentation-assisted Model for Stroke Severity
Measurement,
MCV22(330-339).
Springer DOI
2304
BibRef
Wan, Q.[Qin],
Kuang, Z.[Zhuo],
Deng, X.B.[Xian-Bo],
Yu, L.[Li],
BGSNet: Bidirectional-Guided Semi-3D Network for Prediction of
Hematoma Expansion,
ICIP22(1106-1110)
IEEE DOI
2211
Training, Deep learning, Visualization, Solid modeling,
Predictive models, Feature extraction, Prediction, Attention mechanism
BibRef
Kalmutskiy, K.[Kirill],
Tulupov, A.[Andrey],
Berikov, V.[Vladimir],
Recognition of Tomographic Images in the Diagnosis of Stroke,
IMTA20(166-171).
Springer DOI
2103
BibRef
Bensalah, A.[Asma],
Chen, J.[Jialuo],
Fornés, A.[Alicia],
Carmona-Duarte, C.[Cristina],
Lladós, J.[Josep],
Ferrer, M.Á.[Miguel Ángel],
Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches,
AIHA20(476-489).
Springer DOI
2103
BibRef
Wang, Y.,
Wang, H.,
Chen, S.,
Katsaggelos, A.K.,
Martersteck, A.,
Higgins, J.,
Hill, V.B.,
Parrish, T.B.,
A 3D Cross-Hemisphere Neighborhood Difference Convnet for Chronic
Stroke Lesion Segmentation,
ICIP19(1545-1549)
IEEE DOI
1910
stroke lesion segmentation, brain symmetry, convolutional neural networks
BibRef
Ho, K.C.,
Scalzo, F.,
Sarma, K.V.,
El-Saden, S.,
Arnold, C.W.,
A temporal deep learning approach for MR perfusion parameter
estimation in stroke,
ICPR16(1315-1320)
IEEE DOI
1705
Biological neural networks, Biological tissues, Convolution,
Deconvolution, Estimation, Imaging, Parameter, estimation
BibRef
Yahiaoui, A.F.Z.,
Bessaid, A.,
Segmentation of ischemic stroke area from CT brain images,
ISIVC16(13-17)
IEEE DOI
1704
Band-pass filters
BibRef
Wang, Y.,
Katsaggelos, A.K.,
Wang, X.,
Parrish, T.B.,
A deep symmetry convnet for stroke lesion segmentation,
ICIP16(111-115)
IEEE DOI
1610
Biological neural networks
BibRef
Giacalone, M.,
Frindel, C.,
Robini, M.,
Rousseau, D.,
Interest of non-negativity constraint in perfusion DSC-MRI
deconvolution for acute stroke,
WSSIP16(1-4)
IEEE DOI
1608
biomedical MRI
BibRef
O'Reilly, C.[Christian],
Plamondon, R.[Rejean],
Looking for the brain stroke signature,
ICPR12(1811-1814).
WWW Link.
1302
BibRef
Mujumdar, S.[Shashank],
Varma, R.,
Kishore, L.T.,
A novel framework for segmentation of stroke lesions in Diffusion
Weighted MRI using multiple b-value data,
ICPR12(3762-3765).
WWW Link.
1302
BibRef
Scalzo, F.[Fabien],
Hao, Q.[Qing],
Alger, J.R.[Jeffrey R.],
Hu, X.[Xiao],
Liebeskind, D.S.[David S.],
Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models,
ISVC10(II: 292-301).
Springer DOI
1011
BibRef
Scalzo, F.[Fabien],
Hao, Q.[Qing],
Walczak, A.M.[Alan M.],
Hu, X.[Xiao],
Hoi, Y.[Yiemeng],
Hoffmann, K.R.[Kenneth R.],
Liebeskind, D.S.[David S.],
Computational Hemodynamics in Intracranial Vessels Reconstructed from
Biplane Angiograms,
ISVC10(III: 359-367).
Springer DOI
1011
BibRef
Chang, T.C.[Tzyh-Chyang],
Lee, J.D.[Jiann-Der],
Huang, C.H.[Chung-Hsien],
Wu, T.[Tony],
Chen, C.J.[Chi-Jen],
Wu, S.J.[Shwu-Jiuan],
The Diagnostic Application of Brain Image Processing and Analysis
System for Ischemic Stroke,
ISVC06(II: 31-38).
Springer DOI
0611
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain Development Analysis, Infant Brain .