Hartigan, J.A.,
Wong, M.A.,
A k-means clustering algorithm,
AppStat(28), 1979, pp. 100-108.
DOI Link
BibRef
7900
Selim, S.Z., and
Ismail, M.A.,
K-Means-Type Algorithms:
A Generalized Convergence Theorem and Characterization of Local Optimality,
PAMI(6), No. 1, January 1984, pp. 81-87.
See also Fuzzy C-Means: Optimality of solutions and effective termination of the algorithm.
BibRef
8401
Navarro, A.,
Allen, C.R.,
Adaptive Classifier Based on K-Means Clustering and
Dynamic Programming,
OptEng(36), No. 1, 1997, pp. 31-38.
Journal ref. may not be right.
BibRef
9700
Navarro, A.,
A Dynamic Feature Classifier Based on Dynamic Programming
and Clustering,
ICDAR97(Poste)
9708
In program, not in proceedings.
BibRef
Chen, C.W.,
Luo, J.B.,
Parker, K.J.,
Image Segmentation Via Adaptive K-Mean Clustering And Knowledge-Based
Morphological Operations With Biomedical Applications,
IP(7), No. 12, December 1998, pp. 1673-1683.
IEEE DOI
9812
BibRef
Chen, C.W.[Chang Wen],
Luo, J.B.[Jie-Bo],
Parker, K.J.,
Huang, T.S.,
A knowledge-based approach to volumetric medical image segmentation,
ICIP94(III: 493-497).
IEEE DOI
9411
BibRef
Tyree, E.W.,
Long, J.A.,
A Monte Carlo Evaluation of the Moving Method, K-means and
Self-Organising Neural Networks,
PAA(1), No. 2, 1998, pp. 79-90.
BibRef
9800
Su, M.C.[Mu-Chun],
Chou, C.H.[Chien-Hsing],
A Modified Version of the K-Means Algorithm with a
Distance Based on Cluster Symmetry,
PAMI(23), No. 6, June 2001, pp. 674-680.
IEEE DOI
0106
A non-metric distance based on point symmetry. Applied to face detection.
BibRef
Peńa, J.M.,
Lozano, J.A.,
Larrańaga, P.,
An empirical comparison of four initialization methods for the K-Means
algorithm,
PRL(20), No. 10, October 1999, pp. 1027-1040.
9911
BibRef
Ng, M.K.[Michael K.],
A note on constrained k-means algorithms,
PR(33), No. 3, March 2000, pp. 515-519.
Elsevier DOI
0001
BibRef
Kanungo, T.[Tapas],
Mount, D.M.[David M.],
Netanyahu, N.S.[Nathan S.],
Piatko, C.D.[Christine D.],
Silverman, R.[Ruth],
Wu, A.Y.[Angela Y.],
An Efficient k-Means Clustering Algorithm: Analysis and Implementation,
PAMI(24), No. 7, July 2002, pp. 881-892.
IEEE Abstract.
0207
BibRef
Earlier:
The Analysis of a Simple k-means Clustering Algorithm,
UMD--TR4098, January 2000.
WWW Link. Determine the k cluster centers. Simple implementation of
Lloyd's algorithm (
See also Least Squares Quantization in PCM. ).
BibRef
Mount, D.M.[David M.],
Netanyahu, N.S.[Nathan S.],
Piatko, C.D.[Christine D.],
Silverman, R.[Ruth],
Wu, A.Y.[Angela Y.],
Quantile Approximation for Robust Statistical Estimation
and k-enclosing Problems,
UMD--TR3941, October 1998.
least median-of-squares regression.
WWW Link.
BibRef
9810
Clausi, D.A.,
K-means Iterative Fisher (KIF) unsupervised clustering algorithm
applied to image texture segmentation,
PR(35), No. 9, September 2002, pp. 1959-1972.
Elsevier DOI
0206
BibRef
Likas, A.C.[Aristidis C.],
Vlassis, N.[Nikos],
Verbeek, J.J.[Jakob J.],
The global k-means clustering algorithm,
PR(36), No. 2, February 2003, pp. 451-461.
Elsevier DOI
0211
BibRef
Cheung, Y.M.[Yiu-Ming],
k*-Means: A new generalized k-means clustering algorithm,
PRL(24), No. 15, November 2003, pp. 2883-2893.
Elsevier DOI
0308
Clustering without a priori number of clusters.
BibRef
Tarsitano, A.[Agostino],
A computational study of several relocation methods for k-means
algorithms,
PR(36), No. 12, December 2003, pp. 2955-2966.
Elsevier DOI
0310
BibRef
Khan, S.S.[Shehroz S.],
Ahmad, A.[Amir],
Cluster center initialization algorithm for K-means clustering,
PRL(25), No. 11, August 2004, pp. 1293-1302.
Elsevier DOI
0409
BibRef
Maliatski, B.,
Yadid-Pecht, O.,
Hardware-Driven Adaptive K-Means Clustering for Real-Time Video
Imaging,
CirSysVideo(15), No. 1, January 2005, pp. 164-166.
IEEE Abstract.
0501
BibRef
Chan, E.Y.[Elaine Y.],
Ching, W.K.[Wai Ki],
Ng, M.K.[Michael K.],
Huang, J.Z.[Joshua Z.],
An optimization algorithm for clustering using weighted dissimilarity
measures,
PR(37), No. 5, May 2004, pp. 943-952.
Elsevier DOI
0405
BibRef
San, O.,
Huynh, V.,
Nakamori, Y.,
An Alternative Extension of the k-Means Algorithm
for Clustering Categorical Data,
JAMCS(14), No. 2, 2004, pp. 241-247.
i-Mode.
BibRef
0400
Huang, J.Z.[Joshua Zhexue],
Ng, M.K.[Michael K.],
Rong, H.Q.[Hong-Qiang],
Li, Z.C.[Zi-Chen],
Automated Variable Weighting in k-Means Type Clustering,
PAMI(27), No. 5, May 2005, pp. 657-668.
IEEE Abstract.
0501
Automatically update variable weights based on the current partition.
BibRef
Yu, J.[Jian],
General C-Means Clustering Model,
PAMI(27), No. 8, August 2005, pp. 1197-1211.
IEEE Abstract.
0506
BibRef
Earlier:
General C-Means Clustering Model and Its Application,
CVPR03(II: 122-127).
IEEE DOI
0307
BibRef
Charalampidis, D.,
A Modified K-Means Algorithm for Circular Invariant Clustering,
PAMI(27), No. 12, December 2005, pp. 1856-1865.
IEEE DOI
0512
Vector based for circular invariant clustering.
BibRef
Chung, K.L.[Kuo-Liang],
Lin, K.S.[Keng-Sheng],
An efficient line symmetry-based K-means algorithm,
PRL(27), No. 7, May 2006, pp. 765-772.
Elsevier DOI Clustering; Point symmetry; Line symmetry
0604
BibRef
Chung, K.L.[Kuo-Liang],
Lin, J.S.[Jhin-Sian],
Faster and more robust point symmetry-based K-means algorithm,
PR(40), No. 2, February 2007, pp. 410-422.
Elsevier DOI
0611
Inter-cluster; Intra-cluster; Point symmetry; Robustness; Speedup
BibRef
Laszlo, M.,
Mukherjee, S.,
A Genetic Algorithm Using Hyper-Quadtrees for Low-Dimensional K-means
Clustering,
PAMI(28), No. 4, April 2006, pp. 533-543.
IEEE DOI
0604
BibRef
Peters, G.[Georg],
Some refinements of rough k-means clustering,
PR(39), No. 8, August 2006, pp. 1481-1491.
Elsevier DOI
0606
Cluster algorithms; Soft computing; Data analysis; Forest data;
Bioinformatics data
BibRef
Redmond, S.J.[Stephen J.],
Heneghan, C.[Conor],
A method for initialising the K-means clustering algorithm using
kd-trees,
PRL(28), No. 8, 1 June 2007, pp. 965-973.
Elsevier DOI
0704
Clustering; K-means algorithm; Kd-tree; Initialisation, Density estimation
BibRef
Laszlo, M.[Michael],
Mukherjee, S.[Sumitra],
A genetic algorithm that exchanges neighboring centers for k-means
clustering,
PRL(28), No. 16, December 2007, pp. 2359-2366.
Elsevier DOI
0711
k-means algorithm; Clustering; Genetic algorithms; Optimal partition;
Center selection
BibRef
Saegusa, T.[Takashi],
Maruyama, T.[Tsutomu],
An FPGA implementation of real-time K-means clustering for color images,
RealTimeIP(2), No. 4, December 2007, pp. 309-318.
Springer DOI
0712
BibRef
Earlier: A2, Only:
Real-time K-Means Clustering for Color Images on Reconfigurable
Hardware,
ICPR06(II: 816-819).
IEEE DOI
0609
BibRef
Li, M.Q.[Min-Qiang],
Tian, J.[Jin],
Chen, F.Z.[Fu-Zan],
Improving multiclass pattern recognition with a co-evolutionary RBFNN,
PRL(29), No. 4, 1 March 2008, pp. 392-406.
Elsevier DOI
0711
RBFNN; Co-operative co-evolutionary algorithms; K-means clustering;
Multiclass classification
BibRef
Lu, J.F.,
Tang, J.B.,
Tang, Z.M.,
Yang, J.Y.,
Hierarchical initialization approach for K-Means clustering,
PRL(29), No. 6, 15 April 2008, pp. 787-795.
Elsevier DOI
0803
K-Means algorithm; K-Means initialization; Voronoi tessellation;
Hierarchical technique
BibRef
Mignotte, M.,
Segmentation by Fusion of Histogram-Based K-Means Clusters in
Different Color Spaces,
IP(17), No. 5, May 2008, pp. 780-787.
IEEE DOI
0804
BibRef
Zalik, K.R.[Krista Rizman],
An efficient k-means clustering algorithm,
PRL(29), No. 9, 1 July 2008, pp. 1385-1391.
Elsevier DOI
0711
Clustering analysis; k-Means; Cluster number; Cost-function; Rival penalized
BibRef
Zalik, K.R.[Krista Rizman],
Cluster validity index for estimation of fuzzy clusters of different
sizes and densities,
PR(43), No. 10, October 2010, pp. 3374-3390.
Elsevier DOI
1007
Unsupervised classification; Fuzzy clustering; Cluster validity; Fuzzy c-means
BibRef
Zalik, K.R.[Krista Rizman],
Zalik, B.[Borut],
Validity index for clusters of different sizes and densities,
PRL(32), No. 2, 15 January 2011, pp. 221-234.
Elsevier DOI
1101
Clustering; k-Means clustering; Unsupervised classification; Validity index
BibRef
Al Hasan, M.[Mohammad],
Chaoji, V.[Vineet],
Salem, S.[Saeed],
Zaki, M.J.[Mohammed J.],
Robust partitional clustering by outlier and density insensitive
seeding,
PRL(30), No. 11, 1 August 2009, pp. 994-1002.
Elsevier DOI
0909
k-Means; Seed selection; Robust initialization; Partitional clustering
BibRef
Tsai, C.F.[Chih-Fong],
Lin, C.Y.[Chia-Ying],
A triangle area based nearest neighbors approach to intrusion detection,
PR(43), No. 1, January 2010, pp. 222-229.
Elsevier DOI
0909
Intrusion detection; Machine learning; Triangle area; k-means;
k-nearest neighbors; Support vector machines
For networks, not vision.
BibRef
Hua, C.S.[Chun-Sheng],
Chen, Q.[Qian],
Wu, H.Y.[Hai-Yuan],
Wada, T.[Toshikazu],
RK-Means Clustering: K-Means with Reliability,
IEICE(E91-D), No. 1, January 2008, pp. 96-104.
DOI Link
0801
BibRef
Bagirov, A.M.[Adil M.],
Modified global k-means algorithm for minimum sum-of-squares clustering
problems,
PR(41), No. 10, October 2008, pp. 3192-3199.
Elsevier DOI
0808
Minimum sum-of-squares clustering; Nonsmooth optimization;
k-Means algorithm; Global k-means algorithm
BibRef
Li, J.[Jing],
Li, X.L.[Xue-Long],
Tao, D.C.[Da-Cheng],
KPCA for semantic object extraction in images,
PR(41), No. 10, October 2008, pp. 3244-3250.
Elsevier DOI
0808
Segmentation; KPCA; KMeans; Kernel KMeans; GMM; Kernel GMM
BibRef
Lai, J.Z.C.[Jim Z.C.],
Liaw, Y.C.[Yi-Ching],
Improvement of the k-means clustering filtering algorithm,
PR(41), No. 12, December 2008, pp. 3677-3681.
Elsevier DOI
0810
k-Means clustering; Nearest-neighbor search; Knowledge discovery
BibRef
Lai, J.Z.C.[Jim Z.C.],
Huang, T.J.[Tsung-Jen],
Liaw, Y.C.[Yi-Ching],
A fast k-means clustering algorithm using cluster center displacement,
PR(42), No. 11, November 2009, pp. 2551-2556.
Elsevier DOI
0907
k-Means clustering; Nearest-neighbor search; Knowledge discovery
BibRef
Liaw, Y.C.[Yi-Ching],
Leou, M.L.[Maw-Lin],
Wu, C.M.[Chien-Min],
Fast exact k nearest neighbors search using an orthogonal search tree,
PR(43), No. 6, June 2010, pp. 2351-2358.
Elsevier DOI
1003
k nearest neighbors; Fast algorithm; Principal axis search tree;
Orthonormal basis
BibRef
Lai, J.Z.C.[Jim Z.C.],
Huang, T.J.[Tsung-Jen],
Fast global k-means clustering using cluster membership and inequality,
PR(43), No. 5, May 2010, pp. 1954-1963.
Elsevier DOI
1003
Global k-means clustering; Nearest-neighbor search; Knowledge discovery
BibRef
Liaw, Y.C.[Yi-Ching],
Improvement of the fast exact pairwise-nearest-neighbor algorithm,
PR(42), No. 5, May 2009, pp. 867-870.
Elsevier DOI
0902
Data clustering; Pairwise-nearest-neighbor; Fast search algorithm
BibRef
Chen, G.L.[Guang-Liang],
Lerman, G.[Gilad],
Spectral Curvature Clustering (SCC),
IJCV(81), No. 3, March 2009, pp. xx-yy.
Springer DOI
0902
BibRef
And:
Motion segmentation by SCC on the hopkins 155 database,
WDV09(759-764).
IEEE DOI
0910
Linear storage and takes linear running time.
Iterative sampling to improve sampling, reduce outliers.
See also Tensor Decomposition for Geometric Grouping and Segmentation, A.
BibRef
Wang, X.[Xu],
Atev, S.[Stefan],
Wright, J.[John],
Lerman, G.[Gilad],
Fast Subspace Search via Grassmannian Based Hashing,
ICCV13(2776-2783)
IEEE DOI
1403
Grassmannian Based Hashing; Locality Sensitive Hashing; Subspace Search
BibRef
Chen, G.L.[Guang-Liang],
Atev, S.[Stefan],
Lerman, G.[Gilad],
Kernel Spectral Curvature Clustering (KSCC),
WDV09(765-772).
IEEE DOI
0910
BibRef
Zhang, T.[Teng],
Szlam, A.[Arthur],
Wang, Y.[Yi],
Lerman, G.[Gilad],
Hybrid Linear Modeling via Local Best-Fit Flats,
IJCV(100), No. 3, December 2012, pp. 217-240.
WWW Link.
1210
BibRef
Earlier:
Randomized hybrid linear modeling by local best-fit flats,
CVPR10(1927-1934).
IEEE DOI
1006
BibRef
Zhang, T.[Teng],
Szlam, A.[Arthur],
Lerman, G.[Gilad],
Median K-Flats for hybrid linear modeling with many outliers,
Subspace09(234-241).
IEEE DOI
0910
BibRef
Chang, D.X.[Dong-Xia],
Zhang, X.D.[Xian-Da],
Zheng, C.W.[Chang-Wen],
A genetic algorithm with gene rearrangement for K-means clustering,
PR(42), No. 7, July 2009, pp. 1210-1222.
Elsevier DOI
0903
Clustering; Evolutionary computation; Genetic algorithms; K-means
algorithm; Remote sensing image
BibRef
Chang, D.X.[Dong-Xia],
Zhang, X.D.[Xian-Da],
Zheng, C.W.[Chang-Wen],
Zhang, D.M.[Dao-Ming],
A robust dynamic niching genetic algorithm with niche migration for
automatic clustering problem,
PR(43), No. 4, April 2010, pp. 1346-1360.
Elsevier DOI
1002
Clustering; Genetic algorithms; Niching method; Niche migration;
Remote sensing image
BibRef
Xiong, H.,
Wu, J.,
Chen, J.,
K-Means Clustering Versus Validation Measures:
A Data-Distribution Perspective,
SMC-B(39), No. 2, April 2009, pp. 318-331.
IEEE DOI
0903
BibRef
Hong, Y.,
Kwong, S.,
Learning Assignment Order of Instances for the Constrained K-Means
Clustering Algorithm,
SMC-B(39), No. 2, April 2009, pp. 568-574.
IEEE DOI
0903
BibRef
Li, Q.,
Mitianoudis, N.,
Stathaki, T.,
Spatial kernel K-harmonic means clustering for multi-spectral image
segmentation,
IET-IPR(1), No. 2, June 2007, pp. 156-167.
DOI Link
0905
BibRef
Kashef, R.[Rasha],
Kamel, M.S.[Mohamed S.],
Enhanced bisecting k-means clustering using intermediate cooperation,
PR(42), No. 11, November 2009, pp. 2557-2569.
Elsevier DOI
0907
Bisecting clustering; Cooperative clustering; Quality measures
BibRef
Kashef, R.[Rasha],
Kamel, M.S.[Mohamed S.],
Cooperative clustering,
PR(43), No. 6, June 2010, pp. 2315-2329.
Elsevier DOI
1003
Cooperative clustering; Similarity histogram; Cooperative contingency graph
BibRef
Chitta, R.[Radha],
Murty, M.N.[M. Narasimha],
Two-level k-means clustering algorithm for k-tau relationship
establishment and linear-time classification,
PR(43), No. 3, March 2010, pp. 796-804.
Elsevier DOI
1001
Clustering; k-Means; Classification; Linear-time complexity; Support
vector machines; k-Nearest neighbor classifier
BibRef
Bagirov, A.M.[Adil M.],
Ugon, J.[Julien],
Webb, D.[Dean],
Fast modified global k-means algorithm for incremental cluster
construction,
PR(44), No. 4, April 2011, pp. 866-876.
Elsevier DOI
1101
Minimum sum-of-squares clustering; Nonsmooth optimization; k-means
algorithm; Global k-means algorithm
BibRef
Bagirov, A.M.[Adil M.],
Taheri, S.[Sona],
Ugon, J.[Julien],
Nonsmooth DC programming approach to the minimum sum-of-squares
clustering problems,
PR(53), No. 1, 2016, pp. 12-24.
Elsevier DOI
1602
Cluster analysis
BibRef
Karmitsa, N.[Napsu],
Bagirov, A.M.[Adil M.],
Taheri, S.[Sona],
Clustering in large data sets with the limited memory bundle method,
PR(83), 2018, pp. 245-259.
Elsevier DOI
1808
Cluster analysis, Nonsmooth optimization,
Nonconvex optimization, Bundle methods, Limited memory methods
BibRef
Erisoglu, M.[Murat],
Calis, N.[Nazif],
Sakallioglu, S.[Sadullah],
A new algorithm for initial cluster centers in k-means algorithm,
PRL(32), No. 14, 15 October 2011, pp. 1701-1705.
Elsevier DOI
1110
k-Means algorithm; Initial cluster centers; Rand index; Error
percentage; Wilks' lambda test statistic
BibRef
de Amorim, R.C.[Renato Cordeiro],
Mirkin, B.[Boris],
Minkowski metric, feature weighting and anomalous cluster initializing
in K-Means clustering,
PR(45), No. 3, March 2012, pp. 1061-1075.
Elsevier DOI
1111
K-means; Minkowski metric; Feature weights; Noise features; Anomalous cluster
BibRef
de Amorim, R.C.[Renato Cordeiro],
Shestakov, A.[Andrei],
Mirkin, B.[Boris],
Makarenkov, V.[Vladimir],
The Minkowski central partition as a pointer to a suitable distance
exponent and consensus partitioning,
PR(67), No. 1, 2017, pp. 62-72.
Elsevier DOI
1704
Clustering
BibRef
Yu, S.[Shi],
Tranchevent, L.[Leon],
Liu, X.H.[Xin-Hai],
Glanzel, W.[Wolfgang],
Suykens, J.A.K.[Johan A.K.],
de Moor, B.[Bart],
Moreau, Y.[Yves],
Optimized Data Fusion for Kernel k-Means Clustering,
PAMI(34), No. 5, May 2012, pp. 1031-1039.
IEEE DOI
1204
Combine multiple data sources for k-means.
Code, Clustering. Code:
HTML Version.
BibRef
Liu, F.H.[Fang-Hui],
Huang, X.L.[Xiao-Lin],
Chen, Y.D.[Yu-Dong],
Suykens, J.A.K.[Johan A. K.],
Random Features for Kernel Approximation:
A Survey on Algorithms, Theory, and Beyond,
PAMI(44), No. 10, October 2022, pp. 7128-7148.
IEEE DOI
2209
Kernel, Approximation algorithms, Taxonomy, Scalability,
Risk management, Prediction algorithms, Loss measurement,
over-parameterized models
BibRef
Cleuziou, G.[Guillaume],
Osom: A method for building overlapping topological maps,
PRL(34), No. 3, 1 February 2013, pp. 239-246.
Elsevier DOI
1301
BibRef
Earlier:
An extended version of the k-means method for overlapping clustering,
ICPR08(1-4).
IEEE DOI
0812
Unsupervised Learning; Overlapping clustering; Topological maps; Okm;
Som; Osom
BibRef
Sarma, T.H.[T. Hitendra],
Viswanath, P.,
Reddy, B.E.[B. Eswara],
Speeding-up the kernel k-means clustering method: A prototype based
hybrid approach,
PRL(34), No. 5, 1 April 2013, pp. 564-573.
Elsevier DOI
1303
BibRef
Earlier: A1, A2, Only:
Speeding-Up the K-Means Clustering Method: A Prototype Based Approach,
PReMI09(56-61).
Springer DOI
0912
Unsupervised classification; Kernel k-means clustering method; Leaders
clustering method
BibRef
Fang, C.L.[Chong-Lun],
Jin, W.[Wei],
Ma, J.W.[Jin-Wen],
K'-Means algorithms for clustering analysis with frequency sensitive
discrepancy metrics,
PRL(34), No. 5, 1 April 2013, pp. 580-586.
Elsevier DOI
1303
Clustering analysis; k-Means; Cluster number; Competitive learning;
Discrepancy metric
BibRef
Tzortzis, G.[Grigorios],
Likas, A.[Aristidis],
The MinMax k-Means clustering algorithm,
PR(47), No. 7, 2014, pp. 2505-2516.
Elsevier DOI
1404
Clustering
BibRef
Malinen, M.I.[Mikko I.],
Mariescu-Istodor, R.[Radu],
Fränti, P.[Pasi],
K-means: Clustering by gradual data transformation,
PR(47), No. 10, 2014, pp. 3376-3386.
Elsevier DOI
1406
BibRef
Earlier:
ICIG11(350-355).
IEEE DOI
1109
Or: K-means*?
Clustering.
BibRef
Malinen, M.I.[Mikko I.],
Fränti, P.[Pasi],
Balanced K-Means for Clustering,
SSSPR14(32-41).
Springer DOI
1408
BibRef
Xu, Q.[Qin],
Ding, C.[Chris],
Liu, J.P.[Jin-Pei],
Luo, B.[Bin],
PCA-guided search for K-means,
PRL(54), No. 1, 2015, pp. 50-55.
Elsevier DOI
1502
K-means
BibRef
Tsapanos, N.[Nikolaos],
Tefas, A.[Anastasios],
Nikolaidis, N.[Nikolaos],
Pitas, I.[Ioannis],
A distributed framework for trimmed Kernel k-Means clustering,
PR(48), No. 8, 2015, pp. 2685-2698.
Elsevier DOI
1505
BibRef
And:
Kernel matrix trimming for improved Kernel K-means clustering,
ICIP15(2285-2289)
IEEE DOI
1512
Data clustering
See also Motivating class-specific nonlinear projections for single and multiple view face verification.
BibRef
Soheily-Khah, S.[Saeid],
Douzal-Chouakria, A.[Ahlame],
Gaussier, E.[Eric],
Generalized k-means-based clustering for temporal data under weighted
and kernel time warp,
PRL(75), No. 1, 2016, pp. 63-69.
Elsevier DOI
1604
Temporal data
BibRef
Shantaiya, S.[Sanjivani],
Verma, K.[Kesari],
Mehta, K.K.[Kamal K.],
Multiple object clustering using FCM and K-means algorithms,
IJCVR(6), No. 4, 2016, pp. 331-343.
DOI Link
1610
BibRef
Rodrigues, É.O.[Érick Oliveira],
Torok, L.[Leonardo],
Liatsis, P.[Panos],
Viterbo, J.[José],
Conci, A.[Aura],
k-MS: A novel clustering algorithm based on morphological
reconstruction,
PR(66), No. 1, 2017, pp. 392-403.
Elsevier DOI
1704
K-Means
BibRef
Li, Z.Q.[Zhen-Qiang],
Guan, X.F.[Xue-Feng],
Wu, H.Y.[Hua-Yi],
Gong, J.Y.[Jian-Ya],
A Novel k-Means Clustering Based Task Decomposition Method for
Distributed Vector-Based CA Models,
IJGI(6), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Xu, J.,
Han, J.,
Nie, F.,
Li, X.,
Re-Weighted Discriminatively Embedded K-Means for Multi-View
Clustering,
IP(26), No. 6, June 2017, pp. 3016-3027.
IEEE DOI
1705
Algorithm design and analysis, Clustering algorithms,
Feature extraction, Iterative methods, Linear programming,
Optimization, Robustness, Multi-view clustering,
discriminatively embedded k-means,
iterative re-weighted least squares, low-dimensional, subspace
BibRef
Bai, L.[Liang],
Cheng, X.Q.[Xue-Qi],
Liang, J.[Jiye],
Shen, H.[Huawei],
Guo, Y.[Yike],
Fast density clustering strategies based on the k-means algorithm,
PR(71), No. 1, 2017, pp. 375-386.
Elsevier DOI
1707
Cluster, analysis
BibRef
Zhou, X.B.[Xiang-Bing],
Gu, J.G.[Jiang-Gang],
Shen, S.P.[Shao-Peng],
Ma, H.J.[Hong-Jiang],
Miao, F.[Fang],
Zhang, H.[Hua],
Gong, H.M.[Hua-Ming],
An Automatic K-Means Clustering Algorithm of GPS Data Combining a
Novel Niche Genetic Algorithm with Noise and Density,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
BibRef
Papp, D.[Dávid],
Szucs, G.[Gábor],
MMKK++ algorithm for clustering heterogeneous images into an unknown
number of clusters,
ELCVIA(16), No. 3, 2017, pp. 30-45.
DOI Link
1801
min-max kernel K-means plusplus.
BibRef
Ismkhan, H.[Hassan],
I-k-means-+: An iterative clustering algorithm based on an enhanced
version of the k-means,
PR(79), 2018, pp. 402-413.
Elsevier DOI
1804
Solution improving, Accurate k-means, Iterative improvement
BibRef
Márquez, D.G.[David G.],
Otero, A.[Abraham],
Félix, P.[Paulo],
García, C.A.[Constantino A.],
A novel and simple strategy for evolving prototype based clustering,
PR(82), 2018, pp. 16-30.
Elsevier DOI
1806
Evolving clustering, Data stream, Concept drift,
Gaussian mixture models, K-means, Cluster evolution
BibRef
Schellekens, V.,
Jacques, L.,
Quantized Compressive K-Means,
SPLetters(25), No. 8, August 2018, pp. 1211-1215.
IEEE DOI
1808
computational complexity, data compression, image coding,
learning (artificial intelligence), pattern clustering,
k-means clustering
BibRef
Dong, L.,
He, L.,
Mao, M.,
Kong, G.,
Wu, X.,
Zhang, Q.,
Cao, X.,
Izquierdo, E.,
CUNet: A Compact Unsupervised Network For Image Classification,
MultMed(20), No. 8, August 2018, pp. 2012-2021.
IEEE DOI
1808
feature extraction, image classification,
learning (artificial intelligence), neural nets,
K-means
BibRef
Gong, W.K.[Wei-Kang],
Zhao, R.[Renbo],
Grünewald, S.[Stefan],
Structured sparse K-means clustering via Laplacian smoothing,
PRL(112), 2018, pp. 63-69.
Elsevier DOI
1809
Structured sparse clustering, -means clustering,
Feature selection, Graph Laplacian smoothing
BibRef
Ganguly, D.[Debasis],
A Fast Partitional Clustering Algorithm based on Nearest Neighbours
Heuristics,
PRL(112), 2018, pp. 198-204.
Elsevier DOI
1809
Tweet clustering, Scalable K-means, Inverted index
BibRef
Gupta, A.[Avisek],
Datta, S.[Shounak],
Das, S.[Swagatam],
Fast automatic estimation of the number of clusters from the minimum
inter-center distance for k-means clustering,
PRL(116), 2018, pp. 72-79.
Elsevier DOI
1812
Data clustering, Inter-center distance,
Center-based clustering, Cluster number estimation
BibRef
Fränti, P.[Pasi],
Sieranoja, S.[Sami],
How much can k-means be improved by using better initialization and
repeats?,
PR(93), 2019, pp. 95-112.
Elsevier DOI
1906
Clustering algorithms, K-means, Initialization,
Clustering accuracy, Prototype selection
BibRef
Oktar, Y.[Yigit],
Turkan, M.[Mehmet],
K-polytopes: a superproblem of k-means,
SIViP(13), No. 6, September 2019, pp. 1207-1214.
WWW Link.
1908
BibRef
Lücke, J.[Jörg],
Forster, D.[Dennis],
k-means as a variational EM approximation of Gaussian mixture models,
PRL(125), 2019, pp. 349-356.
Elsevier DOI
1909
k-means, Gaussian mixture models, Expectation maximization,
Variational methods, Free energy
BibRef
Yu, H.[Hao],
Wen, G.Q.[Guo-Qiu],
Gan, J.Z.[Jiang-Zhang],
Zheng, W.[Wei],
Lei, C.[Cong],
Self-paced Learning for K-means Clustering Algorithm,
PRL(132), 2020, pp. 69-75.
Elsevier DOI
2005
BibRef
Moradi Fard, M.[Maziar],
Thonet, T.[Thibaut],
Gaussier, E.[Eric],
Deep k-Means: Jointly clustering with k-Means and learning
representations,
PRL(138), 2020, pp. 185-192.
Elsevier DOI
1806
Deep clustering, k-Means, Deep learning, Clustering
BibRef
Saha, J.[Jayasree],
Mukherjee, J.[Jayanta],
CNAK: Cluster number assisted K-means,
PR(110), 2021, pp. 107625.
Elsevier DOI
2011
clustering, Bipartite graph, Perfect matching, algorithm, Stability
BibRef
Vouros, A.[Avgoustinos],
Vasilaki, E.[Eleni],
A semi-supervised sparse K-Means algorithm,
PRL(142), 2021, pp. 65-71.
Elsevier DOI
2101
Semi-supervised clustering, sparse clustering, feature selection
BibRef
Mansueto, P.[Pierluigi],
Schoen, F.[Fabio],
Memetic differential evolution methods for clustering problems,
PR(114), 2021, pp. 107849.
Elsevier DOI
2103
Global optimization, Clustering, Minimum sum-of-squares,
Hybrid genetic algorithm, K-MEANS
BibRef
Jabi, M.[Mohammed],
Pedersoli, M.[Marco],
Mitiche, A.[Amar],
Ben Ayed, I.[Ismail],
Deep Clustering:
On the Link Between Discriminative Models and K-Means,
PAMI(43), No. 6, June 2021, pp. 1887-1896.
IEEE DOI
2106
Mutual information, Standards, Entropy, Neural networks,
Context modeling, Data models, Analytical models, Deep clustering,
multilogit regression
BibRef
Huang, S.D.[Shu-Dong],
Kang, Z.[Zhao],
Xu, Z.L.[Zeng-Lin],
Liu, Q.H.[Quan-Hui],
Robust deep k-means: An effective and simple method for data
clustering,
PR(117), 2021, pp. 107996.
Elsevier DOI
2106
-means algorithm, Robust clustering, Deep learning
BibRef
Xia, S.Y.[Shu-Yin],
Peng, D.[Daowan],
Meng, D.Y.[De-Yu],
Zhang, C.Q.[Chang-Qing],
Wang, G.Y.[Guo-Yin],
Giem, E.[Elisabeth],
Wei, W.[Wei],
Chen, Z.Z.[Zi-Zhong],
Ball k-Means: Fast Adaptive Clustering With No Bounds,
PAMI(44), No. 1, January 2022, pp. 87-99.
IEEE DOI
2112
Clustering algorithms, Approximation algorithms, Acceleration,
Partitioning algorithms, Standards, Laboratories, Time complexity,
neighbor cluster
BibRef
Nie, F.P.[Fei-Ping],
Xue, J.J.[Jing-Jing],
Wu, D.Y.[Dan-Yang],
Wang, R.[Rong],
Li, H.[Hui],
Li, X.L.[Xue-Long],
Coordinate Descent Method for k-means,
PAMI(44), No. 5, May 2022, pp. 2371-2385.
IEEE DOI
2204
Clustering algorithms, Optimization, Minimization,
Heuristic algorithms, Time complexity, Sparse matrices, Lloyd heuristic
BibRef
Wang, R.[Rong],
Lu, J.[Jitao],
Lu, Y.H.[Yi-Hang],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
Discrete and Parameter-Free Multiple Kernel k-Means,
IP(31), No. 2022, pp. 2796-2808.
IEEE DOI
2204
Kernel, Clustering algorithms, Optimization, Correlation,
Analytical models, Redundancy, Matrices, Kernel method,
coordinate descent
BibRef
Dorabiala, O.[Olga],
Kutz, J.N.[J. Nathan],
Aravkin, A.Y.[Aleksandr Y.],
Robust Trimmed K-Means,
PRL(161), 2022, pp. 9-16.
Elsevier DOI
2209
-Means, Clustering, Robust statistics, Trimming, Unsupervised learning
BibRef
Lin, Y.X.[Yun-Xia],
Chen, S.C.[Song-Can],
Rectified Euler k-means and beyond,
PR(137), 2023, pp. 109283.
Elsevier DOI
2302
Kernel -means, Euler kernel, Pseudo centroid, Rectified euler -means
BibRef
Mussabayev, R.[Rustam],
Mladenovic, N.[Nenad],
Jarboui, B.[Bassem],
Mussabayev, R.[Ravil],
How to Use K-means for Big Data Clustering?,
PR(137), 2023, pp. 109269.
Elsevier DOI
2302
Big data, Clustering, Minimum sum-of-squares,
Divide and conquer algorithm, Decomposition, K-means, Unsupervised learning
BibRef
Laber, E.[Eduardo],
Murtinho, L.[Lucas],
Oliveira, F.[Felipe],
Shallow decision trees for explainable k-means clustering,
PR(137), 2023, pp. 109239.
Elsevier DOI
2302
Clustering, Explainability, K-means, Decision trees
BibRef
Liu, X.W.[Xin-Wang],
SimpleMKKM: Simple Multiple Kernel K-Means,
PAMI(45), No. 4, April 2023, pp. 5174-5186.
IEEE DOI
2303
Kernel, Optimization, Clustering algorithms, Minimization,
Partitioning algorithms, Linear programming, Task analysis,
kernel alignment maximization
BibRef
Hu, H.[Haize],
Liu, J.X.[Jian-Xun],
Zhang, X.P.[Xiang-Ping],
Fang, M.G.[Meng-Ge],
An Effective and Adaptable K-means Algorithm for Big Data Cluster
Analysis,
PR(139), 2023, pp. 109404.
Elsevier DOI
2304
-means algorithm, Local optimization, Lévy flight,
Global search, Clustering centroids
BibRef
Rezaei, M.[Mohammad],
Fränti, P.[Pasi],
K-sets and k-swaps algorithms for clustering sets,
PR(139), 2023, pp. 109454.
Elsevier DOI
2304
Wrapper to prevent local minima.
Clustering sets, Similarity of sets, -means, -medoids,
Random swap, K-swaps, Customer segmentation, Clustering healthcare records
BibRef
Liu, H.F.[Hong-Fu],
Chen, J.X.[Jun-Xiang],
Dy, J.[Jennifer],
Fu, Y.[Yun],
Transforming Complex Problems Into K-Means Solutions,
PAMI(45), No. 7, July 2023, pp. 9149-9168.
IEEE DOI
2306
Clustering algorithms, Linear programming, Standards,
Iterative methods, Anomaly detection, Euclidean distance,
outlier detection
BibRef
Xin, H.[Haonan],
Lu, Y.H.[Yi-Hang],
Tang, H.L.[Hao-Liang],
Wang, R.[Rong],
Nie, F.P.[Fei-Ping],
Self-Weighted Euler k-Means Clustering,
SPLetters(30), 2023, pp. 1127-1131.
IEEE DOI
2310
BibRef
Guan, X.[Xin],
Terada, Y.[Yoshikazu],
Sparse kernel k-means for high-dimensional data,
PR(144), 2023, pp. 109873.
Elsevier DOI
2310
Clustering, Feature selection, Kernel method
BibRef
Ping, Y.[Yuan],
Li, H.[Huina],
Hao, B.[Bin],
Guo, C.[Chun],
Wang, B.[Baocang],
Beyond k-Means++: Towards better cluster exploration with geometrical
information,
PR(146), 2024, pp. 110036.
Elsevier DOI
2311
Cluster analysis, k-means++, Support vector data description,
Edge pattern, Division and aggregation
BibRef
He, L.[Li],
Zhang, H.[Hong],
Doubly Stochastic Distance Clustering,
CirSysVideo(33), No. 11, November 2023, pp. 6721-6732.
IEEE DOI
2311
BibRef
Lu, H.[Han],
Xu, H.[Huafu],
Wang, Q.Q.[Qian-Qian],
Gao, Q.X.[Quan-Xue],
Yang, M.[Ming],
Gao, X.B.[Xin-Bo],
Efficient Multi-View K-Means for Image Clustering,
IP(33), 2024, pp. 273-284.
IEEE DOI
2401
BibRef
Han, S.[Soohee],
Lee, J.[Jeongho],
Parallelized Inter-Image k-Means Clustering Algorithm for
Unsupervised Classification of Series of Satellite Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Shi, K.[Kegong],
Yan, J.J.[Jin-Jin],
Yang, J.[Jinquan],
A Semantic Partition Algorithm Based on Improved K-Means Clustering
for Large-Scale Indoor Areas,
IJGI(13), No. 2, 2024, pp. 41.
DOI Link
2402
BibRef
Pal, S.S.[Shankho Subhra],
Mukhopadhyay, J.[Jayanta],
Sarkar, S.[Sudeshna],
Finding hierarchy of clusters,
PRL(178), 2024, pp. 7-13.
Elsevier DOI
2402
Clustering, Hierarchical clustering, Hierarchical relationship,
k-means, Cluster Number Assisted k-Means (CNAK)
BibRef
Su, R.[Rina],
Guo, Y.[Yu],
Wu, C.[Caiying],
Jin, Q.Y.[Qi-Yu],
Zeng, T.Y.[Tie-Yong],
Kernel correlation-dissimilarity for Multiple Kernel k-Means
clustering,
PR(150), 2024, pp. 110307.
Elsevier DOI
2403
k-means, Multiple kernel learning, Consistency,
Frobenius inner product, Manhattan distance
BibRef
Wu, X.L.[Xiao-Ling],
Yu, Y.F.[Yu-Feng],
Chen, L.[Long],
Ding, W.P.[Wei-Ping],
Wang, Y.X.[Ying-Xu],
Robust deep fuzzy K-means clustering for image data,
PR(153), 2024, pp. 110504.
Elsevier DOI
2405
Locality preserving, Deep convolutional autoencoder,
Laplacian regularization, Unsupervised image clustering
BibRef
Heidari, J.,
Daneshpour, N.,
Zangeneh, A.,
A novel K-means and K-medoids algorithms for clustering
non-spherical-shape clusters non-sensitive to outliers,
PR(155), 2024, pp. 110639.
Elsevier DOI
2408
Initial centers, Number of clusters, Overlap space, Non-spherical
BibRef
Zhang, X.D.[Xiang-Dong],
Li, F.F.[Fang-Fang],
Shi, Z.Y.[Zhao-Yang],
Yang, M.[Ming],
Multi-view reduced dimensionality K-means clustering with sigma-norm
and Schatten p-norm,
PR(155), 2024, pp. 110675.
Elsevier DOI
2408
Multi-view, Dimensionality reduction, Matrix sigma-norm, Schatten p-norm
BibRef
Lu, Y.H.[Yi-Hang],
Zheng, X.[Xuan],
Wang, R.[Rong],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
A Unified Framework for Discrete Multi-kernel k-means with Kernel
Diversity Regularization,
ICPR22(4934-4940)
IEEE DOI
2212
Correlation, Diversity reception, Redundancy, Boosting,
Kernel, Task analysis
BibRef
Goel, A.[Anurag],
Majumdar, A.[Angshul],
Chouzenoux, E.[Emilie],
Chierchia, G.[Giovanni],
Deep Convolutional K-Means Clustering,
ICIP22(211-215)
IEEE DOI
2211
Deep learning, Training, Representation learning, Transforms,
Benchmark testing, Decoding, Convolutional Neural Network,
Convolutional Transform Learning
BibRef
Qian, Q.[Qi],
Xu, Y.H.[Yuan-Hong],
Hu, J.[Juhua],
Li, H.[Hao],
Jin, R.[Rong],
Unsupervised Visual Representation Learning by Online Constrained
K-Means,
CVPR22(16619-16628)
IEEE DOI
2210
Representation learning, Training, Visualization, Transformers,
Data structures, Computational efficiency,
Self- semi- meta- unsupervised learning
BibRef
Ren, Y.H.[Yuan-Hang],
Du, Y.[Ye],
Uniform and Non-uniform Sampling Methods for Sub-linear Time k-means
Clustering,
ICPR21(7775-7781)
IEEE DOI
2105
Image segmentation, Machine learning algorithms,
Clustering algorithms, Machine learning,
BibRef
Fukunaga, T.[Takumi],
Kasai, H.[Hiroyuki],
Wasserstein k-means with sparse simplex projection,
ICPR21(1627-1634)
IEEE DOI
2105
Degradation, Histograms, Heuristic algorithms,
Clustering algorithms, Sparse matrices, Proposals
BibRef
Chen, Q.,
Jiang, J.,
Du, M.,
Zhou, L.,
Jing, C.,
Lu, C.,
A Hybridization of An Improved Particle Swarm Optimization and Fuzzy
K-means Algorithm for Hyperspectral Image Classification,
HyperMLPA19(1833-1839).
DOI Link
1912
BibRef
Le, H.M.[Huu M.],
Eriksson, A.[Anders],
Do, T.T.[Thanh-Toan],
Milford, M.[Michael],
A Binary Optimization Approach for Constrained K-Means Clustering,
ACCV18(IV:383-398).
Springer DOI
1906
BibRef
Cai, G.,
Zhang, R.,
Nie, F.,
Li, X.,
Feature Selection via Incorporating Stiefel Manifold in Relaxed
K-Means,
ICIP18(1503-1507)
IEEE DOI
1809
Feature extraction, Manifolds, Clustering algorithms,
Approximation algorithms, Eigenvalues and eigenfunctions, Graph embedded
BibRef
Rastogi, R.[Reshma],
Sharma, S.[Sweta],
Tree-Based Structural Twin Support Tensor Clustering with Square Loss
Function,
PReMI17(28-34).
Springer DOI
1711
BibRef
Kumar, R.[Ritesh],
Bishnu, P.S.[Partha Sarathi],
Bhattacherjee, V.[Vandana],
K-Means Algorithm to Identify k1-Most Demanding Products,
PReMI17(451-457).
Springer DOI
1711
BibRef
Fatima, E.B.,
Abdelmajid, E.M.,
Study of efficiency k-means clustering using Z-test proprieties,
ISCV17(1-5)
IEEE DOI
1710
data mining, fuzzy set theory,
pattern clustering, K-means algorithm, Z value, Z-test proprieties,
efficiency k-means clustering, input data points,
Clustering algorithms, Complexity theory, Data mining, Sociology,
Z-test, clustering, data mining, k, means
BibRef
Ye, Y.K.[Yong-Kai],
Liu, X.,
Yin, J.,
Zhu, E.,
Co-regularized kernel k-means for multi-view clustering,
ICPR16(1583-1588)
IEEE DOI
1705
Algorithm design and analysis, Clustering algorithms,
Eigenvalues and eigenfunctions, Iterative methods, Kernel,
Optimization, Training
BibRef
Xu, J.L.[Jing-Lin],
Han, J.W.[Jun-Wei],
Nie, F.P.[Fei-Ping],
Discriminatively Embedded K-Means for Multi-view Clustering,
CVPR16(5356-5364)
IEEE DOI
1612
BibRef
Luchi, D.[Diego],
Santos, W.[Willian],
Rodrigues, A.[Alexandre],
Varejăo, F.M.[Flávio Miguel],
Genetic Sampling k-means for Clustering Large Data Sets,
CIARP15(691-698).
Springer DOI
1511
BibRef
Choi, Y.K.[Yu-Kyung],
Park, C.[Chaehoon],
Kweon, I.S.[In So],
Accelerated Kmeans Clustering Using Binary Random Projection,
ACCV14(II: 257-272).
Springer DOI
1504
BibRef
Fu, X.[Xiping],
McCane, B.[Brendan],
Mills, S.[Steven],
Albert, M.[Michael],
NOKMeans: Non-Orthogonal K-means Hashing,
ACCV14(I: 162-177).
Springer DOI
1504
BibRef
Yu, Z.D.[Zhi-Ding],
Xu, C.J.[Chun-Jing],
Meng, D.Y.[De-Yu],
Hui, Z.[Zhuo],
Xiao, F.Y.[Fan-Yi],
Liu, W.B.[Wen-Bo],
Liu, J.Z.[Jian-Zhuang],
Transitive Distance Clustering with K-Means Duality,
CVPR14(987-994)
IEEE DOI
1409
BibRef
Aroche-Villarruel, A.A.[Argenis A.],
Carrasco-Ochoa, J.A.,
Martínez-Trinidad, J.F.[José Francisco],
Olvera-López, J.A.[J. Arturo],
Pérez-Suárez, A.[Airel],
Study of Overlapping Clustering Algorithms Based on Kmeans through
FBcubed Metric,
MCPR14(112-121).
Springer DOI
1407
BibRef
Nakouri, H.[Haďfa],
Limam, M.[Mohamed],
Automatic Feature Detection and Clustering Using Random Indexing,
ICISP14(586-593).
Springer DOI
1406
BibRef
Earlier:
Discovering Features Contexts from Images Using Random Indexing,
IWCIA14(134-145).
Springer DOI
1405
BibRef
Li, Q.[Qun],
Qin, Z.[Zhen],
Chai, L.S.[Lun-Shao],
Zhang, H.G.[Hong-Gang],
Guo, J.[Jun],
Bhanu, B.[Bir],
Representative reference-set and betweenness centrality for scene
image categorization,
ICIP13(3254-3258)
IEEE DOI
1402
K-means
BibRef
Norouzi, M.[Mohammad],
Fleet, D.J.[David J.],
Cartesian K-Means,
CVPR13(3017-3024)
IEEE DOI
1309
approximate nearest neighbor search
BibRef
He, K.[Kaiming],
Wen, F.[Fang],
Sun, J.[Jian],
K-Means Hashing: An Affinity-Preserving Quantization Method for
Learning Binary Compact Codes,
CVPR13(2938-2945)
IEEE DOI
1309
binary embedding; hash; nearest neighbor search
BibRef
Havens, T.C.[Timothy C.],
Approximation of kernel k-means for streaming data,
ICPR12(509-512).
WWW Link.
1302
BibRef
Li, Z.Y.[Ze-Yu],
Vinyals, O.[Oriol],
Baker, H.[Harlyn],
Bajcsy, R.[Ruzena],
Feature learning using Generalized Extreme Value distribution based
K-means clustering,
ICPR12(1538-1541).
WWW Link.
1302
BibRef
Chavez, A.[Aaron],
Gustafson, D.[David],
Building an Effective Visual Codebook: Is K-means Clustering Useful?,
ISVC12(II: 517-525).
Springer DOI
1209
BibRef
Wang, J.[Jing],
Wang, J.D.[Jing-Dong],
Ke, Q.F.[Qi-Fa],
Zeng, G.[Gang],
Li, S.P.[Shi-Peng],
Fast approximate k-means via cluster closures,
CVPR12(3037-3044).
IEEE DOI
1208
BibRef
Thomas, J.C.R.[Juan Carlos Rojas],
A New Clustering Algorithm Based on K-Means Using a Line Segment as
Prototype,
CIARP11(638-645).
Springer DOI
1111
BibRef
Jamil, N.[Nursuriati],
Saadan, S.A.[Siti Aisyah],
Automatic Image Annotation Using Color K-Means Clustering,
IVIC09(645-652).
Springer DOI
0911
BibRef
Hung, C.C.[Chih-Cheng],
Wan, L.[Li],
Hybridization of particle swarm optimization with the K-Means algorithm
for image classification,
CIIP09(60-64).
IEEE DOI
0903
BibRef
Zhang, S.H.[Shao-Hong],
Wong, H.S.[Hau-San],
Partial closure-based constrained clustering with order ranking,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kashima, H.[Hisashi],
Hu, J.Y.[Jian-Ying],
Ray, B.[Bonnie],
Singh, M.[Moninder],
K-means clustering of proportional data using L1 distance,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Asgharbeygi, N.[Nima],
Maleki, A.[Arian],
Geodesic K-means clustering,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Oike, H.[Hiroshi],
Wu, H.Y.[Hai-Yuan],
Wada, T.[Toshikazu],
Adaptive selection of non-target cluster centers for K-means tracker,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ullah, S.[Sameeh],
Karray, F.[Fakhri],
Won, J.M.[Jin-Myung],
Non-dominated Sorting Evolution Strategy-based K-means clustering
algorithm for accent classification,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Liu, X.Z.[Xiao-Zhang],
Feng, G.C.[Guo-Can],
Kernel Bisecting k-means clustering for SVM training sample reduction,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bloisi, D.D.[Domenico Daniele],
Iocchi, L.[Luca],
Rek-Means: A k-Means Based Clustering Algorithm,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Ober, S.[Sandra],
Winter, M.[Martin],
Arth, C.[Clemens],
Bischof, H.[Horst],
Dual-Layer Visual Vocabulary Tree Hypotheses for Object Recognition,
ICIP07(VI: 345-348).
IEEE DOI
0709
Multilevel K-Means.
BibRef
Li, Z.G.[Zhen-Guo],
Liu, J.Z.[Jian-Zhuang],
Constrained clustering by spectral kernel learning,
ICCV09(421-427).
IEEE DOI
0909
BibRef
Li, Z.G.[Zhen-Guo],
Liu, J.Z.[Jian-Zhuang],
Tang, X.[Xiaoou],
Constrained clustering via spectral regularization,
CVPR09(421-428).
IEEE DOI
0906
Pairwise constraints. Must-have and must-not-have constraints.
BibRef
Ayaquica-Martínez, I.O.,
Martínez-Trinidad, J.F.[José Francisco],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Conceptual K-Means Algorithm Based on Complex Features,
CIARP06(491-501).
Springer DOI
0611
BibRef
Bouguessa, M.[Mohamed],
Wang, S.R.[Sheng-Rui],
Jiang, Q.S.[Qing-Shan],
A K-means-based Algorithm for Projective Clustering,
ICPR06(I: 888-891).
IEEE DOI
0609
BibRef
Cheng, S.S.[Shih-Sian],
Chao, Y.H.[Yi-Hsiang],
Wang, H.M.[Hsin-Min],
Fu, H.C.[Hsin-Chia],
A Prototypes-Embedded Genetic K-means Algorithm,
ICPR06(II: 724-727).
IEEE DOI
0609
BibRef
Morii, F.[Fujiki],
A Generalized K-Means Algorithm with Semi-Supervised Weight
Coefficients,
ICPR06(III: 198-201).
IEEE DOI
0609
BibRef
Qiu, B.[Bo],
Xu, C.S.[Chang Sheng],
Tian, Q.[Qi],
Efficient Relevance Feedback Using Semi-supervised Kernel-specified
K-means Clustering,
ICPR06(III: 316-319).
IEEE DOI
0609
BibRef
Hassanzadeh, A.[Aidin],
Kaarna, A.[Arto],
Kauranne, T.[Tuomo],
Outlier Robust Geodesic K-means Algorithm for High Dimensional Data,
SSSPR16(252-262).
Springer DOI
1611
BibRef
Xu, M.[Mantao],
Franti, P.,
A heuristic k-means clustering algorithm by kernel pca,
ICIP04(V: 3503-3506).
IEEE DOI
0505
BibRef
Xu, M.[Mantao],
Franti, P.,
Delta-MSE dissimilarity in suboptimal K-means clustering,
ICPR04(IV: 577-580).
IEEE DOI
0409
BibRef
Zhang, R.[Rong],
Rudnicky, A.I.,
A large scale clustering scheme for kernel k-means,
ICPR02(IV: 289-292).
IEEE DOI
0211
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
ISODATA Clustering .