Yokoi, S.[Shigeki],
Toriwaki, J.I.[Jun-Ichiro],
Fukumura, T.[Teruo],
An Analysis of Topological Properties of Digitized Binary Pictures
Using Local Features,
CGIP(4), No. 1, March 1975, pp. 63-73.
Elsevier DOI
0501
Connectivity number, coefficient of curvature.
BibRef
Dyer, C.R.[Charles R.],
Computing the Euler Number of an Image from its Quadtree,
CGIP(13), No. 3, July 1980, pp. 270-276.
Elsevier DOI
BibRef
8007
Bribiesca, E.[Ernesto],
Guzman, A.[Adolfo],
How to Describe Pure Form and How to Measure Differences in Shapes
Using Shape Numbers,
PR(12), No. 2, 1980, pp. 101-112.
Elsevier DOI
BibRef
8000
Earlier:
Shape Description and Shape Similarity Measurement
for Two-Dimensional Regions,
ICPR78(608-612).
Shape number. 2D non-intersecting closed curve.
BibRef
Mantyla, M.[Martti],
A Note on the Modeling Space of Euler Operators,
CVGIP(26), No. 1, April 1984, pp. 45-60.
Elsevier DOI
BibRef
8404
Kawai, S.[Satoru],
On the topology preservation property of local parallel operations,
CGIP(19), No. 3, July 1982, pp. 265-280.
Elsevier DOI Operations to preserve topology.
BibRef
8207
Kawai, S.[Satoru],
Topology Quasi-Preservation by Local Parallel Operations,
CVGIP(23), No. 3, September 1983, pp. 353-365.
Elsevier DOI
BibRef
8309
Shoukry, A.,
Amin, A.,
Topological and Statistical Analysis of Line Drawings,
PRL(1), No. 5-6, 1983, pp. 365-374.
BibRef
8300
Bieri, H.,
Nef, W.,
Algorithms for the Euler Characteristic and
Related Additive Functionals of Digital Objects,
CVGIP(28), No. 2, November 1984, pp. 166-175.
Elsevier DOI
BibRef
8411
Bieri, H.,
Computing the Euler Characteristic and Related Additive Functionals
of Digital Objects from Their Bintree Representation,
CVGIP(40), No. 1, October 1987, pp. 115-126.
Elsevier DOI
BibRef
8710
Kovalevsky, V.A.,
Discrete Topology and Contour Definition,
PRL(2), 1984, pp. 281-288.
BibRef
8400
Massone, L.,
Sandini, G.,
Tagliasco, V.,
'Form-Invariant' Topological Mapping Strategy for 2D Shape Recognition,
CVGIP(30), No. 2, May 1985, pp. 169-188.
Elsevier DOI
BibRef
8505
Rosenfeld, A.,
Fuzzy Digital Topology,
InfoControl(40), No. 1, January 1979, pp. 76-87.
BibRef
7901
Rosenfeld, A.,
Digital Topology,
AMM(86), 1979, pp. 621-630.
BibRef
7900
Rosenfeld, A.[Azriel],
Digital geometry: Introduction and bibliography,
UMD--TR3753, February 1997.
WWW Link.
BibRef
9702
Kong, T.Y.,
Rosenfeld, A.,
Digital Topology: Introduction and Survey,
CVGIP(48), No. 3, December 1989, pp. 357-393.
Elsevier DOI
Survey, Digital Topology.
Digital Topology, Survey.
Study of properties of image arrays
to provide a basis for image processing operations.
See also Three-Dimensional Digital Topology.
BibRef
8912
Kong, T.Y.,
Rosenfeld, A., (Eds.),
Topological Algorithms for Digital Image Processing,
North-HollandAmsterdam, 1996.
BibRef
9600
Lee, C.N.[Chung-Nim],
Poston, T.[Timothy],
Rosenfeld, A.[Azriel],
Holes and Genus of 2D and 3D Digital Images,
GMIP(55), No. 1, January 1993, pp. 20-yy.
BibRef
9301
Lee, C.N.,
Rosenfeld, A.,
Computing the Euler Number of a 3D Image,
ICCV87(567-571).
BibRef
8700
Atkinson, H.H.,
Gargantini, I.,
Walsh, T.R.S.,
Counting Regions, Holes, and Their Nesting Level in
Time Proportional to the Border,
CVGIP(29), No. 2, February 1985, pp. 196-215.
Elsevier DOI (Univ of Western Ont.)
Representation of the image with a linear quadtree, then the time
is border*number of regions.
BibRef
8502
Suzuki, S.,
Abe, K.,
Topological Structural Analysis of Digitized
Binary Images by Border Following,
CVGIP(30), No. 1, April 1985, pp. 32-46.
Elsevier DOI (Shizuoka U., Japan)
Border following seems standard (e.g.
See also Analysis of Natural Scenes. ), but
they build up a region/hole structure from the
sequence of borders.
BibRef
8504
Chen, M.H.,
Yan, P.F.,
A Fast Algorithm to Calculate the Euler Number for Binary Images,
PRL(8), 1988, pp. 295-297.
BibRef
8800
Latecki, L.J.[Longin J.],
Topological Connectedness and 8-Connectedness in Digital Pictures,
CVGIP(57), No. 2, March 1993, pp. 261-262.
DOI Link Chassery theorem simplification.
See also Connectivity and Consecutivity in Digital Pictures.
BibRef
9303
Chiavetta, F.,
di Gesu, V.,
Parallel Computation of the Euler Number via Connectivity Graph,
PRL(14), 1993, pp. 849-859.
BibRef
9300
Kong, T.Y.,
Rosenfeld, A.,
If We Use 4- or 8-Connectedness for Both the Objects and the
Background, the Euler Characteristic Is Not Locally Computable,
PRL(11), 1990, pp. 231-232.
BibRef
9000
Saha, P.K.,
Chaudhuri, B.B.,
A New Approach to Computing the Euler Characteristic,
PR(28), No. 12, December 1995, pp. 1955-1963.
Elsevier DOI
BibRef
9512
Qian, K.,
Bhattacharya, P.,
Determining Holes and Connectivity in Binary Images,
Computers&Graphics(16), 1992, pp. 283-288.
BibRef
9200
McAndrew, A.,
Osborne, C.,
A Survey of Algebraic Methods in Digital Topology,
JMIV(6), No. 2-3, June 1996, pp. 139-159.
9608
Survey, Digital Topology.
BibRef
Aharoni, R.,
Herman, G.T.,
Loebl, M.,
Jordan Graphs,
GMIP(58), No. 4, July 1996, pp. 345-359.
9609
Digital topology. Attempt to avoid the problems
of different adjacency on the plane
(1 and 0 treated differently).
BibRef
Díaz-de-León S., J.L.[Juan L.],
Sossa-Azuela, J.H.[Juan Humberto],
On the Computation of the Euler Number of a Binary Object,
PR(29), No. 3, March 1996, pp. 471-476.
Elsevier DOI Euler number via its skeleton. Terminal points and 3-edge points.
BibRef
9603
Malladi, R.,
Sethian, J.A.,
Vemuri, B.C.,
A Fast Level Set Based Algorithm For Topology-Independent
Shape Modeling,
JMIV(6), No. 2-3, June 1996, pp. 269-289.
9608
See also Shape Modeling with Front Propagation: A Level Set Approach.
BibRef
Nogly, D.,
Schladt, M.,
Digital-Topology on Graphs,
CVIU(63), No. 2, March 1996, pp. 394-396.
DOI Link
BibRef
9603
Lin, J.C.,
Tsai, W.H.,
Chen, J.A.,
Detecting Number of Folds by a Simple Mathematical Property,
PRL(15), No. 11, November 1994, pp. 1081-1088.
BibRef
9411
Lin, J.C.[Ja-Chen],
A Simplified Fold Number Detector for Shapes with Monotonic Radii,
PR(29), No. 6, June 1996, pp. 997-1005.
Elsevier DOI
9606
BibRef
Gotsman, C.,
Lindenbaum, M.,
On the metric properties of discrete space-filling curves,
IP(5), No. 5, May 1996, pp. 794-797.
IEEE DOI
0402
BibRef
Earlier:
ICPR94(C:98-102).
IEEE DOI
9410
BibRef
McAndrew, A.,
Osborne, C.,
The Euler Characteristic on the Face-Centered-Cubic Lattice,
PRL(18), No. 3, March 1997, pp. 229-237.
9706
BibRef
Agrawal, R.C.,
Sahasrabudhe, S.C.,
Shevgaonkar, R.K.,
Preservation of Topological Properties of a Simple Closed Curve
under Digitalization,
CVIU(67), No. 2, August 1997, pp. 99-111.
DOI Link
9708
BibRef
Kopperman, R.[Ralph],
The Khalimsky Line as a Foundation for Digital Topology,
MDSG94(3).
BibRef
9400
Ronse, C.[Christian],
Set-Theoretical Algebraic Approaches to Connectivity in Continuous Or Digital Spaces,
JMIV(8), No. 1, January 1998, pp. 41-58.
DOI Link
9803
BibRef
Rosenfeld, A.[Azriel],
Nakamura, A.[Akira],
Local Deformations of Digital Curves,
PRL(18), No. 7, July 1997, pp. 613-620.
9711
BibRef
Earlier:
UMDTR3650, June 1996
WWW Link. Preservation of topology for some deformations.
BibRef
Rosenfeld, A.[Azriel],
Kong, T.Y.[T. Yung],
Nakamura, A.[Akira],
Topology-Preserving Deformations of Two-Valued Digital Pictures,
GMIP(60), No. 1, January 1998, pp. 24-34.
BibRef
9801
Earlier:
(Gave A2 as Y.T.K):
UMD--TR3781R, June 1997.
PS File.
BibRef
Nakamura, A.[Akira],
Rosenfeld, A.[Azriel],
Digital knots,
PR(33), No. 9, September 2000, pp. 1541-1553.
Elsevier DOI
0005
6-Knots in Z3 relate to polygonal Knots in R3.
BibRef
Nakamura, A.[Akira],
Magnification in Digital Topology,
IWCIA04(260-275).
Springer DOI
0505
BibRef
Saha, P.K.,
Majumder, D.D.[D. Dutta],
Rosenfeld, A.[Azriel],
Local Topological Parameters in a Tetrahedral Representation,
GMIP(60), No. 6, November 1998, pp. 423-436.
BibRef
9811
And:
UMD--TR3826, August 1997.
Tetrahedral Representation.
WWW Link.
BibRef
Saha, P.K.[Punam K.],
Rosenfeld, A.[Azriel],
The Digital Topology of Sets of Convex Voxels,
GM(62), No. 5, September 2000, pp. 343-352.
0010
BibRef
And:
UMD--TR3899, April 1998
Topology with arbitrary convex voxels.
WWW Link.
BibRef
Saha, P.K.[Punam K.],
Rosenfeld, A.[Azriel],
Local and Global Topology Preservation in Locally Finite Sets of Tiles,
UMD-- TR3926, September 1998.
WWW Link.
BibRef
9809
Serra, J.[Jean],
Connectivity on Complete Lattices,
JMIV(9), No. 3, November 1998, pp. 231-251.
DOI Link
BibRef
9811
Serra, J.[Jean],
Viscous Lattices,
JMIV(22), No. 2-3, May 2005, pp. 269-282.
Springer DOI
0505
BibRef
Boxer, L.[Laurence],
A Classical Construction for the Digital Fundamental Group,
JMIV(10), No. 1, January 1999, pp. 51-62.
DOI Link Digital Topology
BibRef
9901
Boxer, L.[Laurence],
Properties of Digital Homotopy,
JMIV(22), No. 1, January 2005, pp. 19-26.
Springer DOI
0501
Study a variety of digitally-continuous functions that preserve homotopy
types or homotopy-related properties such as the digital fundamental group.
BibRef
Boxer, L.[Laurence],
Homotopy Properties of Sphere-Like Digital Images,
JMIV(24), No. 2, March 2006, pp. 167-175.
Springer DOI
0605
BibRef
Boxer, L.[Laurence],
Digital Products, Wedges, and Covering Spaces,
JMIV(25), No. 2, September 2006, pp. 159-171.
Springer DOI
0610
BibRef
Boxer, L.[Laurence],
Fundamental Groups of Unbounded Digital Images,
JMIV(27), No. 2, February 2007, pp. 121-127.
Springer DOI
0704
BibRef
Boxer, L.[Laurence],
Karaca, I.[Ismet],
The Classification of Digital Covering Spaces,
JMIV(32), No. 1, September 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Boxer, L.[Laurence],
Karaca, I.[Ismet],
Some Properties of Digital Covering Spaces,
JMIV(37), No. 1, May 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Imiya, A.[Atsushi],
Eckhardt, U.[Ulrich],
The Euler Characteristics of Discrete Objects and Discrete
Quasi-Objects,
CVIU(75), No. 3, September 1999, pp. 307-318.
DOI Link
BibRef
9909
Imiya, A.[Atsushi],
Eckhardt, U.[Ulrich],
Discrete Mean Curvature Flow,
ScaleSpace99(477-482).
BibRef
9900
Winter, S.[Stephan],
Frank, A.U.[Andrew U.],
Topology in Raster and Vector Representation,
GeoInfo(4), No. 1, March 2000, pp. 35-65.
DOI Link
0002
BibRef
Bretto, A.[Alain],
Comparability Graphs and Digital Topology,
CVIU(82), No. 1, April 2001, pp. 33-41.
DOI Link
0104
See also Hypergraph Imaging: An Overview.
BibRef
Xia, F.[Franck],
Normal vector and winding number in 2D digital images with their
application for hole detection,
PR(36), No. 6, June 2003, pp. 1383-1395.
Elsevier DOI
0304
BibRef
Earlier:
Abstract:
Normal vector and winding number in 2D digital images with application
for hole detection,
PR(34), No. 11, November 2001, pp. 2253-2258.
Elsevier DOI
0108
See also Holes and Genus of 2D and 3D Digital Images.
BibRef
Xia, F.[Franck],
On a new basic concept and topological invariant,
CIAP95(341-346).
Springer DOI
9509
BibRef
Kong, T.Y.[T. Yung],
Digital Topology,
FIU01(Chapter 3).
BibRef
0100
Alpers, A.[Andreas],
Digital Topology: Regular Sets and Root Images of the Cross-Median
Filter,
JMIV(17), No. 1, July 2002, pp. 7-14.
DOI Link
0211
BibRef
Rosenfeld, A.[Azriel],
Nakamura, A.[Akira],
Two simply connected sets that have the same area are IP-equivalent,
PR(35), No. 2, February 2002, pp. 537-541.
Elsevier DOI
0201
Prove for arbitrary cases the conjectre from:
See also Interchangeable pairs of pixels in two-valued digital images.
BibRef
Eckhardt, U.[Ulrich],
Latecki, L.J.[Longin Jan],
Topologies for the digital spaces Z2 and Z3,
CVIU(90), No. 3, June 2003, pp. 295-312.
Elsevier DOI
0307
Analysis of connectivity.
BibRef
Gau, C.J.,
Kong, T.Y.[T. Yung],
Minimal non-simple sets in 4D binary images,
GM(65), No. 1-3, May 2003, pp. 112-130.
Elsevier DOI
0309
Verify parallel thinning.
BibRef
Kong, T.Y.[T. Yung],
Gau, C.J.[Chyi-Jou],
Minimal Non-simple Sets in 4-Dimensional Binary Images with
(8,80)-Adjacency,
IWCIA04(318-333).
Springer DOI
0505
BibRef
Damiand, G.[Guillaume],
Bertrand, Y.[Yves],
Fiorio, C.[Christophe],
Topological Model for Two-Dimensional Image Representation:
Definition and Optimal Extraction Algorithm,
CVIU(93), No. 2, February 2004, pp. 111-154.
Elsevier DOI
0402
Topoloical map at top of hierarchy of definitions based on object
boundary.
See also Split-and-merge algorithms defined on topological maps for 3D image segmentation.
BibRef
Damiand, G.[Guillaume],
Coeurjolly, D.[David],
A Generic and Parallel Algorithm for 2D Image Discrete Contour
Reconstruction,
ISVC08(II: 792-801).
Springer DOI
0812
BibRef
Berthe, V.[Valerie],
Fiorio, C.[Christophe],
Jamet, D.[Damien],
Philippe, F.[Fabrice],
On some applications of generalized functionality for arithmetic
discrete planes,
IVC(25), No. 10, 1 October 2007, pp. 1671-1684.
Elsevier DOI
0709
Digital planes; Arithmetic planes; Local configurations;
Functionality of discrete planes
BibRef
Berthé, V.[Valérie],
Arithmetic Discrete Planes Are Quasicrystals,
DGCI09(1-12).
Springer DOI
0909
BibRef
Domenjoud, E.[Eric],
Jamet, D.[Damien],
Toutant, J.L.[Jean-Luc],
On the Connecting Thickness of Arithmetical Discrete Planes,
DGCI09(362-372).
Springer DOI
0909
BibRef
Jonker, P.P.[Pieter P.],
Discrete topology on N-dimensional square tessellated grids,
IVC(23), No. 2, 1 February 2004, pp. 213-225.
Elsevier DOI
0412
Topology preservation thinning.
BibRef
Godoy, F.[Francisco],
Rodríguez, A.[Andrea],
Defining and Comparing Content Measures of Topological Relations,
GeoInfo(8), No. 4, December 2004, pp. 347-371.
DOI Link
0501
BibRef
Kiderlen, M.[Markus],
Estimating the Euler Characteristic of a planar set from a digital
image,
JVCIR(17), No. 6, December 2006, pp. 1237-1255.
Elsevier DOI
0711
Euler characteristic; Digital morphology; Convex ring; Digitized image;
Multigrid convergence; Betti number
BibRef
Allili, M.[Madjid],
Corriveau, D.,
Topological analysis of shapes using Morse theory,
CVIU(105), No. 3, March 2007, pp. 188-199.
Elsevier DOI
0704
Shape representation; Shape similarity; Morse theory; Computational homology
BibRef
Allili, M.[Madjid],
Corriveau, D.,
Ziou, D.,
Morse homology descriptor for shape characterization,
ICPR04(IV: 27-30).
IEEE DOI
0409
BibRef
Corriveau, D.[David],
Allili, M.[Madjid],
Computing Homology: A Global Reduction Approach,
DGCI09(313-324).
Springer DOI
0909
BibRef
Carlsson, G.[Gunnar],
Ishkhanov, T.[Tigran],
de Silva, V.[Vin],
Zomorodian, A.[Afra],
On the Local Behavior of Spaces of Natural Images,
IJCV(76), No. 1, January 2008, pp. 1-12.
Springer DOI
0712
Qualitative topological analysis.
Klein bottle topology.
BibRef
Ishkhanov, T.[Tigran],
A topological method for shape comparison,
NORDIA08(1-4).
IEEE DOI
0806
BibRef
Perea, J.A.[Jose A.],
Carlsson, G.[Gunnar],
A Klein-Bottle-Based Dictionary for Texture Representation,
IJCV(107), No. 1, March 2014, pp. 75-97.
Springer DOI
1403
patch based, probability of patches.
See also On the Local Behavior of Spaces of Natural Images.
BibRef
Han, S.E.[Sang-Eon],
The k-Homotopic Thinning and a Torus-Like Digital Image in Z n,
JMIV(31), No. 1, May 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Han, S.E.[Sang-Eon],
Discrete Homotopy of a Closed k-Surface,
IWCIA06(214-225).
Springer DOI
0606
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.],
Advances in combinatorial image analysis,
PR(42), No. 8, August 2009, pp. 1623-1625.
Elsevier DOI
0904
BibRef
Brimkov, V.E.[Valentin E.],
Parallel Algorithms for Combinatorial Pattern Matching,
IWCIA14(8-16).
Springer DOI
1405
BibRef
Brimkov, V.E.[Valentin E.],
Complexity and Approximability Issues in Combinatorial Image Analysis,
IWCIA11(5-8).
Springer DOI
1105
BibRef
Barneva, R.P.[Reneta P.],
Brimkov, V.E.[Valentin E.],
Guest editorial: Contemporary challenges in combinatorial image
analysis,
IJIST(19), No. 2, June 2009, pp. 37-38.
DOI Link
0905
Special issue introduction.
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.],
Digital Stars and Visibility of Digital Objects,
CompIMAGE10(11-23).
Springer DOI
1006
See also Object Discretizations in Higher Dimensions.
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.],
Linear Time Constant-Working Space Algorithm for Computing the Genus of
a Digital Object,
ISVC08(I: 669-677).
Springer DOI
0812
BibRef
Brimkov, V.E.[Valentin E.],
Barneva, R.P.[Reneta P.],
Brimkov, B.[Boris],
de Vieilleville, F.[François],
Offset Approach to Defining 3D Digital Lines,
ISVC08(I: 678-687).
Springer DOI
0812
BibRef
Pulcini, G.[Gabriele],
Computing surfaces via pq-permutations,
IJIST(19), No. 2, June 2009, pp. 132-139.
DOI Link
0905
BibRef
Nempont, O.[Olivier],
Atif, J.[Jamal],
Angelini, E.[Elsa],
Bloch, I.[Isabelle],
A New Fuzzy Connectivity Measure for Fuzzy Sets:
And Associated Fuzzy Attribute Openings,
JMIV(34), No. 2, June 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Earlier:
A New Fuzzy Connectivity Class Application to Structural Recognition in
Images,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Bloch, I.[Isabelle],
Atif, J.[Jamal],
Hausdorff Distances Between Distributions Using Optimal Transport and
Mathematical Morphology,
ISMM15(522-534).
Springer DOI
1506
BibRef
Groisser, D.[David],
Tagare, H.D.[Hemant D.],
On the Topology and Geometry of Spaces of Affine Shapes,
JMIV(34), No. 2, June 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Bandeira, L.[Lourenço],
Pina, P.[Pedro],
Saraiva, J.[José],
A multi-layer approach for the analysis of neighbourhood relations of
polygons in remotely acquired images,
PRL(31), No. 10, 15 July 2010, pp. 1175-1183.
Elsevier DOI
1008
BibRef
Earlier:
A New Approach to Analyse Neighbourhood Relations in 2D Polygonal
Networks,
CIARP08(397-404).
Springer DOI
0809
Polygonal networks; Mathematical morphology; Topology; Mars
BibRef
Tøssebro, E.[Erlend],
Nygård, M.[Mads],
Representing topological relationships for spatiotemporal objects,
GeoInfo(15), No. 4, October 2011, pp. 633-661.
WWW Link.
1110
BibRef
Chun, J.[Jinhee],
Kaothanthong, N.[Natsuda],
Kasai, R.[Ryosei],
Korman, M.[Matias],
Nöllenburg, M.[Martin],
Tokuyama, T.[Takeshi],
Algorithms for computing the maximum weight region decomposable into
elementary shapes,
CVIU(116), No. 7, July 2012, pp. 803-814.
Elsevier DOI
1202
Combinatorial optimization; Image segmentation; Computational geometry
Decompose into Union of basic shapes.
BibRef
Gonzalez-Diaz, R.[Rocio],
Real Jurado, P.[Pedro],
Computational Topology in Image Context,
PRL(33), No. 11, 1 August 2012, pp. 1435.
Elsevier DOI
1206
BibRef
Bendich, P.[Paul],
Cabello, S.[Sergio],
Edelsbrunner, H.[Herbert],
A point calculus for interlevel set homology,
PRL(33), No. 11, 1 August 2012, pp. 1436-1444.
Elsevier DOI
1206
Continuous functions; Interlevel sets; Homology; Vector spaces;
Persistence diagrams; Exact sequences
BibRef
Mazo, L.[Loïc],
Passat, N.[Nicolas],
Couprie, M.[Michel],
Ronse, C.[Christian],
Topology on Digital Label Images,
JMIV(44), No. 3, November 2012, pp. 254-281.
WWW Link.
1209
BibRef
Mazo, L.[Loïc],
Passat, N.[Nicolas],
Couprie, M.[Michel],
Ronse, C.[Christian],
Digital Imaging: A Unified Topological Framework,
JMIV(44), No. 1, September 2012, pp. 19-37.
WWW Link.
1206
BibRef
Earlier:
A Unified Topological Framework for Digital Imaging,
DGCI11(163-174).
Springer DOI
1104
See also Topological Properties of Thinning in 2-D Pseudomanifolds.
BibRef
Mazo, L.[Loïc],
A Framework for Label Images,
CTIC12(1-10).
Springer DOI
1206
BibRef
Ngo, P.[Phuc],
Passat, N.[Nicolas],
Kenmochi, Y.[Yukiko],
Talbot, H.[Hugues],
Topology-Preserving Rigid Transformation of 2D Digital Images,
IP(23), No. 2, February 2014, pp. 885-897.
IEEE DOI
1402
image registration
BibRef
Ngo, P.[Phuc],
Passat, N.[Nicolas],
Kenmochi, Y.[Yukiko],
Debled-Rennesson, I.[Isabelle],
Geometric Preservation of 2D Digital Objects Under Rigid Motions,
JMIV(61), No. 2, February 2019, pp. 204-223.
Springer DOI
1902
BibRef
Earlier: A1, A3, A4, A2:
Convexity-Preserving Rigid Motions of 2D Digital Objects,
DGCI17(69-81).
Springer DOI
1711
BibRef
Ngo, P.[Phuc],
Kenmochi, Y.[Yukiko],
Passat, N.[Nicolas],
Talbot, H.[Hugues],
Topology-Preserving Conditions for 2D Digital Images Under Rigid
Transformations,
JMIV(49), No. 2, June 2014, pp. 418-433.
Springer DOI
1405
BibRef
Earlier:
Sufficient Conditions for Topological Invariance of 2D Images under
Rigid Transformations,
DGCI13(155-168).
Springer DOI
1304
BibRef
Kenmochi, Y.[Yukiko],
Ngo, P.[Phuc],
Talbot, H.[Hugues],
Passat, N.[Nicolas],
Efficient Neighbourhood Computing for Discrete Rigid Transformation
Graph Search,
DGCI14(99-110).
Springer DOI
1410
BibRef
Ngo, P.[Phuc],
Sugimoto, A.[Akihiro],
Kenmochi, Y.[Yukiko],
Passat, N.[Nicolas],
Talbot, H.[Hugues],
Discrete Rigid Transformation Graph Search for 2D Image Registration,
PSIVTWS13(228-239).
Springer DOI
1402
BibRef
Peters, J.F.[James F.],
Topology of Digital Images:
Visual Pattern Discovery in Proximity Spaces,
Birtea, P.[Petre],
Comanescu, D.[Dan],
Popa, C.A.[Calin-Adrian],
Averaging on Manifolds by Embedding Algorithm,
JMIV(49), No. 2, June 2014, pp. 454-466.
Springer DOI
1405
finding critical points of cost functions defined on a differential manifold
BibRef
Azuela, J.H.S.[J.H. Sossa],
Espino, E.R.,
Santiago, R.,
López, A.,
Ayala, A.P.,
Jimenez, E.V.C.,
Alternative formulations to compute the binary shape Euler number,
IET-CV(8), No. 3, June 2014, pp. 171-181.
DOI Link
1407
BibRef
Richardson, E.[Eitan],
Werman, M.[Michael],
Efficient classification using the Euler characteristic,
PRL(49), No. 1, 2014, pp. 99-106.
Elsevier DOI
1410
Euler
BibRef
Richardson, E.[Eitan],
Peleg, S.[Shmuel],
Werman, M.[Michael],
Scene geometry from moving objects,
AVSS14(13-18)
IEEE DOI
1411
Cameras
BibRef
Climent, J.[Juan],
Oliveira, L.S.[Luiz S.],
A new algorithm for number of holes attribute filtering of grey-level
images,
PRL(53), No. 1, 2015, pp. 24-30.
Elsevier DOI
1502
Attribute filtering
BibRef
Schrack, G.,
Stocco, L.,
Generation of Spatial Orders and Space-Filling Curves,
IP(24), No. 6, June 2015, pp. 1791-1800.
IEEE DOI
1504
Cryptography
BibRef
Haarmann, J.[Jason],
Murphy, M.P.[Meg P.],
Peters, C.S.[Casey S.],
Staecker, P.C.[P. Christopher],
Homotopy Equivalence in Finite Digital Images,
JMIV(53), No. 3, November 2015, pp. 288-302.
Springer DOI
1511
BibRef
Boxer, L.[Laurence],
Staecker, P.C.[P. Christopher],
Connectivity Preserving Multivalued Functions in Digital Topology,
JMIV(55), No. 3, July 2016, pp. 370-377.
WWW Link.
1604
BibRef
Zou, B.[Beiji],
Liu, Q.[Qing],
Chen, Z.L.[Zai-Liang],
Fu, H.P.[Hong-Pu],
Zhu, C.Z.[Cheng-Zhang],
Surroundedness based multiscale saliency detection,
JVCIR(33), No. 1, 2015, pp. 378-388.
Elsevier DOI
1512
Saliency detection
BibRef
Kuijpers, B.[Bart],
Moelans, B.[Bart],
Algebraic and Geometric Characterizations of Double-Cross Matrices of
Polylines,
IJGI(5), No. 9, 2016, pp. 152.
DOI Link
1610
BibRef
Díaz-del-Río, F.[Fernando],
Real, P.[Pedro],
Onchis, D.M.[Darian M.],
A parallel Homological Spanning Forest framework for 2D topological
image analysis,
PRL(83, Part 1), No. 1, 2016, pp. 49-58.
Elsevier DOI
1609
Computational algebraic topology
BibRef
Díaz del Río, F.[Fernando],
Molina-Abril, H.[Helena],
Real, P.[Pedro],
Computing the Component-Labeling and the Adjacency Tree of a Binary
Digital Image in Near Logarithmic-Time,
CTIC19(82-95).
Springer DOI
1901
BibRef
Díaz-del-Río, F.[Fernando],
Real, P.[Pedro],
Onchis, D.M.[Darian M.],
Labeling Color 2D Digital Images in Theoretical Near Logarithmic Time,
CAIP17(II: 391-402).
Springer DOI
1708
BibRef
Romero, A.[Ana],
Rubio, J.[Julio],
Sergeraert, F.[Francis],
Effective homology of filtered digital images,
PRL(83, Part 1), No. 1, 2016, pp. 23-31.
Elsevier DOI
1609
Effective homology
BibRef
Bermudez-Cameo, J.[Jesus],
New contributions on line-projections in omnidirectional vision,
ELCVIA(15), No. 2, 2016, pp. 24-26.
DOI Link
1611
Geometry of line projections in omnidirectional images.
BibRef
Zhou, Z.[Zhen],
Huang, Y.Z.[Yong-Zhen],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Exploring generalized shape analysis by topological representations,
PRL(87), No. 1, 2017, pp. 177-185.
Elsevier DOI
1703
Topology
BibRef
Shen, J.W.[Jing-Wei],
Zhou, T.G.[Ting-Gang],
Chen, M.[Min],
A 27-Intersection Model for Representing Detailed Topological
Relations between Spatial Objects in Two-Dimensional Space,
IJGI(6), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Kuijpers, B.[Bart],
Revesz, P.Z.[Peter Z.],
A Dynamic Data Structure to Efficiently Find the Points below a Line
and Estimate Their Number,
IJGI(6), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Hu, M.X.[Ming-Xiao],
Zhou, Y.[Yan],
Li, X.J.[Xu-Jie],
Robust and accurate computation of geometric distance for Lipschitz
continuous implicit curves,
VC(33), No. 6-8, June 2017, pp. 937-947.
Springer DOI
1706
Distance between point and curve.
BibRef
Xie, P.[Peng],
Liu, Y.L.[Yao-Lin],
He, Q.S.[Qing-Song],
Zhao, X.[Xiang],
Yang, J.[Jun],
An Efficient Vector-Raster Overlay Algorithm for High-Accuracy and
High-Efficiency Surface Area Calculations of Irregularly Shaped Land
Use Patches,
IJGI(6), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Zrira, N.[Nabila],
Bouyakhf, E.H.[El Houssine],
A novel incremental topological mapping using global visual features,
IJCVR(8), No. 1, 2018, pp. 18-31.
DOI Link
1804
BibRef
Assaf, R.[Rabih],
Goupil, A.[Alban],
Vrabie, V.[Valeriu],
Boudier, T.[Thomas],
Kacim, M.[Mohammad],
Persistent homology for object segmentation in multidimensional
grayscale images,
PRL(112), 2018, pp. 277-284.
Elsevier DOI
1809
Algebraic topology, Object segmentation, Persistent homology
BibRef
Assaf, R.[Rabih],
Goupil, A.[Alban],
Rammal, A.[Abbas],
Vrabie, V.[Valeriu],
Kacim, M.[Mohammad],
2D+t track detection via relative persistent homology,
IJIST(31), No. 2, 2021, pp. 753-762.
DOI Link
2105
algebraic topology, object detection, object tracking,
persistent homology, relative homology
BibRef
Algarni, M.[Marei],
Sundaramoorthi, G.[Ganesh],
SurfCut: Surfaces of Minimal Paths from Topological Structures,
PAMI(41), No. 3, March 2019, pp. 726-739.
IEEE DOI
1902
Topology, Image edge detection,
Frequency modulation, Data mining, Noise measurement, Manifolds,
Morse-Smale complex
BibRef
Jokanovic, S.[Simo],
Two-dimensional line segment-triangle intersection test:
revision and enhancement,
VC(35), No. 10, October 2018, pp. 1347-1359.
WWW Link.
1909
BibRef
Zhou, X.G.[Xiao-Guang],
He, H.Y.[Hong-Yuan],
Hou, D.Y.[Dong-Yang],
Li, R.[Rui],
Zheng, H.[Heng],
A Refined Lines/Regions and Lines/Lines Topological Relations Model
Based on Whole-Whole Objects Intersection Components,
IJGI(10), No. 1, 2021, pp. xx-yy.
DOI Link
2101
Database representation of topological constraints.
BibRef
Tabaghi, P.[Puoya],
Dokmanic, I.[Ivan],
On Procrustes Analysis in Hyperbolic Space,
SPLetters(28), 2021, pp. 1120-1124.
IEEE DOI
2106
Space vehicles, Phylogeny, Orbits, Noise measurement, Geometry,
Task analysis, Hyperbolic geometry, procrustes analysis
BibRef
Zhang, L.[Luming],
Pan, Z.G.[Zhi-Geng],
Shao, L.[Ling],
Semi-Supervised Perception Augmentation for Aerial Photo Topologies
Understanding,
IP(30), 2021, pp. 7803-7814.
IEEE DOI
2109
Topology, Semantics, Visualization, Network topology,
Computational modeling, Support vector machines, Kernel, semi-supervised
BibRef
Pan, H.H.[Hong-Hu],
Chen, Y.Y.[Yong-Yong],
He, Z.Y.[Zhen-Yu],
Meng, F.Y.[Fan-Yang],
Fan, N.[Nana],
TCDesc: Learning Topology Consistent Descriptors for Image Matching,
CirSysVideo(32), No. 5, May 2022, pp. 2845-2855.
IEEE DOI
2205
Topology, Feature extraction, Image matching, Euclidean distance,
Measurement, Training, Semantics, Learning descriptors, triplet loss
BibRef
Ni, J.H.[Jian-Hua],
Chen, J.[Jie],
Wu, Y.[Yanlan],
Chen, Z.[Zihao],
Liang, M.[Ming],
Method to Determine the Centroid of Non-Homogeneous Polygons Based on
Suspension Theory,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, Y.P.[Yu-Peng],
Wang, Z.G.[Zhi-Guo],
Shen, X.J.[Xiao-Jing],
An Unbiased Symmetric Matrix Estimator for Topology Inference Under
Partial Observability,
SPLetters(29), 2022, pp. 1257-1261.
IEEE DOI
2206
Network topology, Symmetric matrices, Inference algorithms,
Clustering algorithms, Observability, partial observation
BibRef
Zha, S.X.[Sheng-Xin],
Tian, D.Z.[Dai-Zong],
Pappas, T.N.[Thrasyvoulos N.],
Pattern-Based Reconstruction of K-Level Images From Cutsets,
IP(31), 2022, pp. 5529-5542.
IEEE DOI
2209
From cutsets, dense samples taken along a family of lines or curves in
two- or three-dimensional space.
Image reconstruction, Image segmentation, Topology, Image coding,
Sensors, Image sensors, Gray-scale, Image sampling, segmentation,
interpolation
BibRef
Comic, L.[Lidija],
On the Number of 0-Tandems in Simple nD Digital 0-Connected Curves,
IWCIA22(46-55).
Springer DOI
2301
BibRef
Palágyi, K.[Kálmán],
Karai, G.[Gábor],
Kardos, P.[Péter],
Sufficient Conditions for Topology-Preserving Parallel Reductions on
the BCC Grid,
IWCIA22(71-83).
Springer DOI
2301
BibRef
Chacra, D.A.[David Abou],
Zelek, J.[John],
The Topology and Language of Relationships in the Visual Genome
Dataset,
VDU22(4859-4867)
IEEE DOI
2210
Visualization, Genomics, Generators, Topology, Labeling
BibRef
Yao, B.[Bin],
Han, D.Z.[Dian-Zhi],
Kang, S.Y.[Shi-Ying],
Chao, Y.Y.[Yu-Yan],
He, L.F.[Li-Feng],
A Novel Method for Improving the Voxel-Pattern-Based Euler Number
Computing Algorithm of 3D Binary Images,
Binary22(84-94).
Springer DOI
2208
BibRef
Sanchez-Cuevas, P.[Pablo],
Real, P.[Pedro],
Díaz-del-Río, F.[Fernando],
Molina-Abril, H.[Helena],
Moron-Fernández, M.J.[María José],
On the Topological Disparity Characterization of Square-Pixel Binary
Image Data by a Labeled Bipartite Graph,
IbPRIA22(515-527).
Springer DOI
2205
BibRef
Hu, C.S.[Chuan-Shen],
Chung, Y.M.[Yu-Min],
A Sheaf and Topology Approach to Detecting Local Merging Relations in
Digital Images,
Diff-CVML21(4391-4400)
IEEE DOI
2109
Geometry, Data analysis, Shape, Digital images, Merging, Generators
BibRef
Bello, P.,
Rodríguez, M.,
de Ita, G.,
Extremal Topologies for the Merrifield-Simmons Index on Dynamic Trees,
MCPR21(68-77).
Springer DOI
2108
BibRef
Guo, S.[Siyu],
Hu, P.P.[Ping-Ping],
Ling, Z.G.[Zhi-Gang],
Wen, H.[He],
Liu, M.[Min],
Tang, L.[Lu],
Exact and Convergent Iterative Methods to Compute the Orthogonal
Point-to-Ellipse Distance,
ICPR21(5076-5082)
IEEE DOI
2105
Closed-form solutions, Fitting, Lead, Iterative algorithms,
Reliability, Newton method, ellipse fitting,
quartic equation
BibRef
Moroni, D.[Davide],
Pascali, M.A.[Maria Antonietta],
Learning Topology: Bridging Computational Topology and Machine Learning,
IMTA20(211-226).
Springer DOI
2103
BibRef
Boutry, N.[Nicolas],
Gonzalez-Diaz, R.[Rocio],
Jimenez, M.J.[Maria-Jose],
Paluzo-Hildago, E.[Eduardo],
Euler Well-composedness,
IWCIA20(3-19).
Springer DOI
2009
BibRef
Som, A.[Anirudh],
Choi, H.J.[Hong-Jun],
Ramamurthy, K.N.[Karthikeyan Natesan],
Buman, M.P.[Matthew P.],
Turaga, P.[Pavan],
PI-Net: A Deep Learning Approach to Extract Topological Persistence
Images,
Diff-CVML20(3639-3648)
IEEE DOI
2008
Machine learning, Computer architecture,
Task analysis, Topology, Feature extraction, Data models
BibRef
Jiang, Q.,
Kurtek, S.,
Needham, T.,
The Weighted Euler Curve Transform for Shape and Image Analysis,
Diff-CVML20(3685-3694)
IEEE DOI
2008
Shape, Tumors, Transforms, Image segmentation, Gray-scale, Face, Topology
BibRef
Jiang, Y.,
Ji, D.,
Han, Z.,
Zwicker, M.,
SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D
Shape Optimization,
CVPR20(1248-1258)
IEEE DOI
2008
Shape, Rendering (computer graphics),
Optimization, Topology, Surface reconstruction, Image reconstruction
BibRef
Real, P.[Pedro],
Molina-Abril, H.[Helena],
Díaz-del-Río, F.[Fernando],
Blanco-Trejo, S.[Sergio],
Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF
Model,
CAIP19(I:375-387).
Springer DOI
1909
BibRef
Comic, L.[Lidija],
Blesic, A.[Andrija],
On the Computation of the Euler Characteristic of Binary Images in the
Triangular Grid,
CAIP19(II:556-567).
Springer DOI
1909
BibRef
Kropatsch, W.G.[Walter G.],
Casablanca, R.M.[Rocio M.],
Batavia, D.[Darshan],
Gonzalez-Diaz, R.[Rocio],
On the Space Between Critical Points,
DGCI19(115-126).
Springer DOI
1905
BibRef
Sivignon, I.[Isabelle],
Average Curve of n Digital Curves,
DGCI19(481-493).
Springer DOI
1905
BibRef
Boutry, N.[Nicolas],
Géraud, T.[Thierry],
Najman, L.[Laurent],
A Tutorial on Well-Composedness,
JMIV(60), No. 3, March 2018, pp. 443-478.
Springer DOI
1804
BibRef
Earlier: A1, A3, A2:
Well-Composedness in Alexandrov Spaces Implies Digital
Well-Composedness in Zn,
DGCI17(225-237).
Springer DOI
1711
BibRef
Mukherjee, S.[Sabyasachi],
Bandyopadhyay, O.[Oishila],
Biswas, A.[Arindam],
Bhattacharya, B.B.[Bhargab B.],
Does Rotation Influence the Estimated Contour Length of a Digital
Object?,
PReMI17(179-186).
Springer DOI
1711
BibRef
Šlapal, J.[Josef],
A Relational Generalization of the Khalimsky Topology,
IWCIA17(132-141).
Springer DOI
1706
BibRef
Sossa, H.[Humberto],
Carreón, Á.[Ángel],
Santiago, R.[Raúl],
Training a Multilayered Perceptron to Compute the Euler Number of a 2-D
Binary Image,
MCPR16(44-53).
Springer DOI
1608
BibRef
Guihéneuf, P.A.[Pierre-Antoine],
Discretizations of Isometries,
DGCI16(71-92).
WWW Link.
1606
BibRef
Sossa, H.[Humberto],
On the number of holes of a 2-D binary object,
MVA15(299-302)
IEEE DOI
1507
Computers
BibRef
Gérard, Y.[Yan],
Vacavant, A.[Antoine],
About the Maximum Cardinality of the Digital Cover of a Curve with a
Given Length,
DGCI14(13-24).
Springer DOI
1410
pixels in digitized curve.
BibRef
Damiand, G.[Guillaume],
Roussillon, T.[Tristan],
Solnon, C.[Christine],
2D Topological Map Isomorphism for Multi-Label Simple Transformation
Definition,
DGCI14(39-50).
Springer DOI
1410
BibRef
Castiglione, G.[Giusi],
Massazza, P.[Paolo],
An Efficient Algorithm for the Generation of Z-Convex Polyominoes,
IWCIA14(51-61).
Springer DOI
1405
BibRef
Battaglino, D.[Daniela],
Frosini, A.[Andrea],
Guerrini, V.[Veronica],
Rinaldi, S.[Simone],
Socci, S.[Samanta],
Binary Pictures with Excluded Patterns,
DGCI14(25-38).
Springer DOI
1410
(polyomino).
BibRef
Frosini, A.[Andrea],
Picouleau, C.[Christophe],
Rinaldi, S.[Simone],
On the Degree Sequences of Uniform Hypergraphs,
DGCI13(300-310).
Springer DOI
1304
BibRef
Frosini, A.[Andrea],
Picouleau, C.[Christophe],
How to Decompose a Binary Matrix into Three hv-convex Polyominoes,
DGCI13(311-322).
Springer DOI
1304
BibRef
Cerri, A.[Andrea],
Landi, C.[Claudia],
The Persistence Space in Multidimensional Persistent Homology,
DGCI13(180-191).
Springer DOI
1304
BibRef
Cerri, A.[Andrea],
Ethier, M.[Marc],
Frosini, P.[Patrizio],
The Coherent Matching Distance in 2D Persistent Homology,
CTIC16(216-227).
Springer DOI
1608
See also Comparing shapes through multi-scale approximations of the matching distance.
BibRef
Cerri, A.[Andrea],
Ethier, M.[Marc],
Frosini, P.[Patrizio],
A Study of Monodromy in the Computation of Multidimensional Persistence,
DGCI13(192-202).
Springer DOI
1304
BibRef
Chassery, J.M.[Jean-Marc],
Sivignon, I.[Isabelle],
Optimal Covering of a Straight Line Applied to Discrete Convexity,
DGCI13(1-10).
Springer DOI
1304
BibRef
Lalitha, D.,
Rangarajan, K.,
Thomas, D.G.[Durairaj Gnanaraj],
Rectangular Arrays and Petri Nets,
IWCIA12(166-180).
Springer DOI
1211
BibRef
Heras, J.[Jónathan],
Dénès, M.[Maxime],
Mata, G.[Gadea],
Mörtberg, A.[Anders],
Poza, M.[María],
Siles, V.[Vincent],
Towards a Certified Computation of Homology Groups for Digital Images,
CTIC12(49-57).
Springer DOI
1206
BibRef
Brendel, P.[Piotr],
Dlotko, P.[Pawel],
Mrozek, M.[Marian],
Zelazna, N.[Natalia],
Homology Computations via Acyclic Subspace,
CTIC12(117-127).
Springer DOI
1206
BibRef
Sagols, F.[Feliú],
Marín, R.[Raúl],
The Inscribed Square Conjecture in the Digital Plane,
IWCIA09(411-424).
Springer DOI
0911
plane Jordan curve contains 4 points on a square.
BibRef
Šlapal, J.[Josef],
Structuring Digital Spaces by Path-Partition Induced Closure Operators
on Graphs,
CompIMAGE16(43-55).
Springer DOI
1704
BibRef
Earlier:
Adjacencies for Structuring the Digital Plane,
IWCIA12(115-127).
Springer DOI
1211
BibRef
And:
Convenient Closure Operators on Z2,
IWCIA09(425-436).
Springer DOI
0911
BibRef
Šlapal, J.[Josef],
A Jordan Curve Theorem in the Digital Plane,
IWCIA11(120-131).
Springer DOI
1105
BibRef
Earlier:
Jordan Curve Theorems with Respect to Certain Pretopologies on Z2,
DGCI09(252-262).
Springer DOI
0909
BibRef
Manocha, D.[Dinesh],
Digital Geometry Processing with Topological Guarantees,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Rodríguez, M.[Marc],
Largeteau-Skapin, G.[Gaëlle],
Andres, É.[Éric],
Local Non-planarity of Three Dimensional Surfaces for an Invertible
Reconstruction: k-Cuspal Cells,
ISVC08(I: 925-934).
Springer DOI
0812
BibRef
Richard, A.[Aurélie],
Wallet, G.[Guy],
Fuchs, L.[Laurent],
Andres, E.[Eric],
Largeteau-Skapin, G.[Gaëlle],
Arithmetization of a Circular Arc,
DGCI09(350-361).
Springer DOI
0909
BibRef
Fuchs, L.[Laurent],
Largeteau-Skapin, G.[Gaëlle],
Wallet, G.[Guy],
Andres, E.[Eric],
Chollet, A.[Agathe],
A First Look into a Formal and Constructive Approach for Discrete
Geometry Using Nonstandard Analysis,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Zhu, G.B.[Guo-Bin],
Liu, X.L.[Xiao-Li],
Jia, Z.G.[Zhi-Ge],
Li, Q.Q.[Qing-Quan],
A Multi-Level Image Description Model Based on Digital Topology,
PIA07(185).
PDF File.
0711
BibRef
Kropatsch, W.G.[Walter G.],
Haxhimusa, Y.[Yll],
Lienhardt, P.[Pascal],
Hierarchies Relating Topology and Geometry,
CogVis03(199-220).
Springer DOI
0310
BibRef
Klette, G.[Gisela],
Simple Points in 2D and 3D Binary Images,
CAIP03(57-64).
Springer DOI
0311
A point is simple if the change of its value does not
change the topology of the image.
BibRef
Wang, S.[Song],
Ji, J.X.[Jim Xiuquan],
Liang, Z.P.[Zhi-Pei],
Landmark-based shape deformation with topology-preserving constraints,
ICCV03(923-930).
IEEE DOI
0311
BibRef
Klette, R.,
Switches may solve adjacency problems,
ICPR02(III: 907-910).
IEEE DOI
0211
BibRef
Klette, R.,
Topologies on the planar orthogonal grid,
ICPR02(II: 354-357).
IEEE DOI
0211
BibRef
Imiya, A.[Atsushi],
Ootani, H.,
Tatara, K.[Ken],
Medial Set, Boundary, and Topology of Random Point Sets,
WTRCV02(303-318).
0204
BibRef
Köthe, U.[Ullrich],
What Can We Learn from Discrete Images about the Continuous World?,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Köthe, U.[Ullrich],
Deriving Topological Representations from Edge Images,
WTRCV02(21-42).
0204
BibRef
Comic, L.[Lidija],
Morse Chain Complex from Forman Gradient in 3D with Z2 Coefficients,
CTIC16(42-52).
Springer DOI
1608
BibRef
Comic, L.[Lidija],
de Floriani, L.[Leila],
Cancellation of Critical Points in 2D and 3D Morse and Morse-Smale
Complexes,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Danovaro, E.[Emanuele],
de Floriani, L.[Leila],
Mesmoudi, M.M.[Mohammed Mostefa],
Topological Analysis and Characterization of Discrete Scalar Fields,
WTRCV02(65-85).
0204
BibRef
Barth, E.[Erhardt],
Ferraro, M.[Mario],
Zetzsche, C.[Christoph],
Global Topological Properties of Images Derived from Local Curvature
Features,
VF01(285 ff.).
Springer DOI
0209
BibRef
Kofler, H.[Helmut],
A Topological Net Structure and a Topological Graph,
ICPR98(Vol II: 1449-1454).
IEEE DOI
9808
BibRef
Sukanya, P.,
Tanuma, H.,
Takamatsu, R.,
Sato, M.,
A New Operator for Describing Topographical Image Structure,
ICPR96(I: 50-54).
IEEE DOI
9608
(Tokyo Institute of Technology, J)
BibRef
Sukanya, P.,
Takamatsu, R.,
Sato, I.,
A new operator for image structure analysis,
ICIP96(III: 615-618).
IEEE DOI
9610
BibRef
Hall, R.W.,
Hu, C.Y.[Chih-Yuan],
Time-efficient computations for topological functions in 3D images,
ICIP95(II: 97-100).
IEEE DOI
9510
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Waveform and Contour Analysis .