Conners, R.W., and
Harlow, C.A.,
Equal Probability Quantizing and Texture Analysis of
Radiographic Images,
CGIP(8), 1978, pp. 447-463.
Segmentation, Texture.
BibRef
7800
Smith, R.C.,
Rosenfeld, A.,
Thresholding Using Relaxation,
PAMI(3), No. 5, September 1981, pp. 598-605.
See also Shape Segmentation Using Relaxation.
BibRef
8109
Richards, J.A.,
Landgrebe, D.A., and
Swain, P.H.,
Supervised Pixel Relaxation Labeling as a Means for Utilizing
Ancillary Information in the Classification of Remote Sensing Image Data,
RSE(12), 1982, pp. 463-477.
BibRef
8200
Richards, J.A.,
Landgrebe, D.A., and
Swain, P.H.,
Pixel Labeling by Supervised Probabilistic Relaxation,
PAMI(3), No. 2, March 1981, pp. 188-191.
BibRef
8103
Richards, J.A.,
Landgrebe, D.A., and
Swain, P.H.,
Overcoming Accuracy Deterioration in Pixel Relaxation Labeling,
ICPR80(61-65).
BibRef
8000
Pal, S.K.,
King, R.A., and
Hashim, A.A.,
Automatic Grey Level Thresholding Through Index of
Fuzziness and Entropy,
PRL(1), 1983, pp. 141-146.
BibRef
8300
Reddi, S.S.,
Rudin, S.F., and
Keshavan, H.R.,
An Optimal Multiple Threshold Scheme for Image Segmentation,
SMC(14), No. 4, July/August 1984, pp. 661-665.
Segmentation, Quantization.
Iterative technique to choose the optimal threshold values so
that the mapping of the
image values to the averages of the thresholds results in the
minimum error. It is a simple technique that seems to get all there
is in one histogram, there are references to other origins for the
basic idea.
BibRef
8407
Cohen, M.[Martin],
Explicit Derivation and Analysis of an
Optimal Multiple Threshold Scheme,
NTRC Report#85-12R, Northrop Research and Technology Center, 1985.
This explicitly derives a technique for the
See also Optimal Multiple Threshold Scheme for Image Segmentation, An. technique for multiple thresholds.
BibRef
8500
Sullivan, J.R.[James R.],
Image processing method including image segmentation,
US_Patent4,764,971, Aug 16, 1988
WWW Link. constant contrast or variance
BibRef
8808
Khotanzad, A.[Alireza],
Bouarfa, A.[Abdelmajid],
Image Segmentation by a Parallel, Non-Parametric
Histogram Based Clustering Algorithm,
PR(23), No. 9, 1990, pp. 961-973.
Elsevier DOI
Segmentation, Histogram.
Clustering. Use mode analysis of the multi-dimensional histogram, find the clusters.
BibRef
9000
Rodriguez, A.A.[Arturo A.],
Mitchell, O.R.[O. Robert],
Image Segmentation by Succesive Background Extraction,
PR(24), No. 5, 1991, pp. 409-420.
Elsevier DOI
BibRef
9100
Mitchell, O.R., and
Lutton, S.M.,
Segmentation and Classification of Targets in FLIR Imagery,
DARPAN78(59-65).
BibRef
7800
Lutton, S.M., and
Mitchell, O.R.,
Adaptive Segmentation of Unique Objects,
ICPR80(548-550).
BibRef
8000
Ackah-Miezan, A., and
Gagalowicz, A.,
Discrete Models for Energy-Minimizing Segmentation,
ICCV93(200-207).
IEEE DOI Segment the image and generate an approximation to it
(values for the regions).
BibRef
9300
Chou, P.B., and
Brown, C.M.,
The Theory and Practice of Bayesian Image Labeling,
IJCV(4), No. 3, 1990, pp. 185-210.
Springer DOI
Bayes Nets.
BibRef
9000
Earlier:
Multimodal Reconstruction and Segmentation with Markov Random
Fields and HCF Optimization,
DARPA88(214-221).
BibRef
And:
Probabilistic Information Fusion for Multi-Modal Image Segmentation,
IJCAI87(779-782).
Segmentation, Histogram.
BibRef
Chen, P.B.,
Brown, C.M.,
Multi-Modal Segmentation Using Markov Random Fields,
DARPA87(663-670).
BibRef
8700
Postaire, J.G.,
Ameziane, M.,
A Pattern Classification Approach to Multilevel Thresholding for
Image Segmentation,
CVIP92(307-328).
BibRef
9200
Papamarkos, N.,
Gatos, B.,
A New Approach For Multilevel Threshold Selection,
GMIP(56), No. 5, September 1994, pp. 357-370.
BibRef
9409
Papamarkos, N.,
Strouthopoulos, C.,
Andreadis, I.,
Multithresholding of color and gray-level images through a neural
network technique,
IVC(18), No. 3, February 2000, pp. 213-222.
Elsevier DOI
0001
See also On estimation of the number of image principal colors and color reduction through self-organized neural networks.
BibRef
Tseng, D.C.[Din-Chang],
Huang, M.Y.[Mao-Yu],
Tseng, D.C., and
Huang, M.Y.,
Automatic Thresholding Based on Human Visual-Perception,
IVC(11), No. 9, November 1993, pp. 539-548.
Elsevier DOI
BibRef
9311
Tseng, D.C.,
Chang, C.H.,
Color segmentation using perceptual attributes,
ICPR92(III:228-231).
IEEE DOI
9208
BibRef
Banerjee, S.[Saibal],
Rosenfeld, A.[Azriel],
MAP Estimation of Piecewise Constant Digital Signals,
CVGIP(57), No. 1, January 1993, pp. 63-80.
DOI Link
BibRef
9301
Keeler, K.,
MAP Representations and Coding-Based Priors for Segmentation,
CVPR91(420-425).
IEEE DOI Choose the parameters in the stocastic process that created the image.
BibRef
9100
Kundu, A.,
A Quantization Approach to Image Segmentation,
Draft1988.
This did the same as the earlier
See also Optimal Multiple Threshold Scheme for Image Segmentation, An. but did try to
do multiple thresholds all at once.
BibRef
8800
Mardia, K.V., and
Hainsworth, T.J.,
A Spatial Thresholding Method for Image Segmentation,
PAMI(10), No. 6, November 1988, pp. 919-927.
IEEE DOI
Segmentation, Binarization. A heavily statistical based analysis for the two class case.
Generate segmentations and apply a spatial (median) processing to correct the
errors.
BibRef
8811
Arnulfo, P.[Perez], and
Gonzalez, R.C.,
An Iterative Thresholding Algorithm for Image Segmentation,
PAMI(9), No. 6, November 1987, pp. 742-751.
Segmentation, Binarization.
Segmentation, Histogram. This method is designed for bimodal distributions
and works in a raster format so that local variations in overall lighting can
be handled. It computes an adaptive threshold by row scan or column scan and
then ORs the result.
BibRef
8711
Davis, L.S.,
Rosenfeld, A., and
Weszka, J.S.,
Region Extraction by Averaging and Thresholding,
SMC(5), May 1975, pp. 383-388.
Smoothing.
Local smoothing before thresholding to reduce the effects of texture.
See also Note on Thinning, A.
BibRef
7505
Narayanan, K.A.,
O'Leary, D.P.[Dianne P.], and
Rosenfeld, A.,
Image Smoothing and Segmentation by Cost Minimization,
SMC(12), 1982, pp. 91-96.
BibRef
8200
Narayanan, K.A.,
O'Leary, D.P.[Dianne P.], and
Rosenfeld, A.,
Multi-Resolution Relaxation,
PR(16), No. 2, 1983, pp. 223-230.
Elsevier DOI
Relaxation. First find the solution at a low resolution, then apply a few iterations at a
higher resolution, thus reducing the number of high resolution iterations.
BibRef
8300
White, J.M., and
Rohrer, G.D.,
Image Thresholding for Optical Character Recognition and Other
Applications Requiring Character Image Extraction,
IBMRD(27), No. 4, July 1983, pp. 400-411.
OCR.
Character Recognition. A dynamic thresholding technique.
BibRef
8307
Scott, K.C.[Kevin C.],
System and method for bidirectional adaptive thresholding,
US_Patent5,313,533, May 17, 1994.
HTML Version.
BibRef
9405
Venkateswarlu, N.B.,
Implementation of Some Image Thresholding Algorithms on a
Connection Machine-200,
PRL(16), No. 7, July 1995, pp. 759-768.
BibRef
9507
Hannah, I.[Ian],
Patel, D.[Devesh],
Davies, E.R.[E. Roy],
The Use of Variance and Entropic Thresholding Methods for
Image Segmentation,
PR(28), No. 8, August 1995, pp. 1135-1143.
Elsevier DOI
BibRef
9508
Earlier: A2, A1, A3:
Foreign object detection via texture analysis,
ICPR94(A:586-588).
IEEE DOI
9410
BibRef
Patel, D.,
Davies, E.R.,
Hannah, I.,
The Use of Convolution-Operators for Detecting Contaminants
in Food Images,
PR(29), No. 6, June 1996, pp. 1019-1029.
Elsevier DOI
9606
BibRef
Davies, E.R.,
Stable bi-level and multi-level thresholding of images using a new
global transformation,
IET-CV(2), No. 2, June 2008, pp. 60-74.
DOI Link
0905
BibRef
Huang, L.K.[Liang-Kai],
Wang, M.J.J.[Mao-Jiun J.],
Image thresholding by minimizing the measures of fuzziness,
PR(28), No. 1, January 1995, pp. 41-51.
Elsevier DOI
0401
BibRef
Beghdadi, A.,
Le Negrate, A.,
Viaris de Lesegno, P.[Patrick],
Entropic Thresholding Using a Block Source Model,
GMIP(57), No. 3, May 1995, pp. 197-205.
BibRef
9505
Messelodi, S.,
Modena, C.M.,
Context Driven Text Segmentation and Recognition,
PRL(17), No. 1, January 10 1996, pp. 47-56.
BibRef
9601
Phillips, T.Y.[Tsai-Yun],
Rosenfeld, A.[Azriel],
Sher, A.C.[Allen C.],
O(log n) Bimodality Analysis,
PR(22), No. 6, 1989, pp. 741-746.
Elsevier DOI
BibRef
8900
Bhattacharya, P.,
Yan, Y.K.,
Iterative Histogram-Modification of Gray Images,
SMC(25), No. 3, March 1995, pp. 521-523.
BibRef
9503
Venkatesh, S.,
Rosin, P.L.,
Dynamic Threshold Determination by Local and Global Edge Evaluation,
GMIP(57), No. 2, March 1995, pp. 146-160.
BibRef
9503
Earlier:
SPIE(1964), 1993, pp. 40-50.
Code, Segmentation. The code is available on the vision list archive:
WWW Link.
BibRef
Rosin, P.L.,
Edges: Saliency Measures and Automatic Thresholding,
MVA(9), No. 4, 1997, pp. 139-159.
Springer DOI
BibRef
9700
Earlier:
Techical note No. I.95.58
TRInstitute of Remote Sensing Applications, Ispra Italy., 1995.
Extensions of the GMIP paper above.
PDF File.
BibRef
Rosin, P.L.[Paul L.],
Unimodal Thresholding,
PR(34), No. 11, November 2001, pp. 2083-2096.
Elsevier DOI
0108
BibRef
Earlier:
SCIA99(633-642).
PDF File.
See also Thresholding for Change Detection.
BibRef
Yen, J.C.,
Chang, F.J., and
Chang, S.,
A New Criterion for Automatic Multilevel Thresholding,
IP(4), No. 3, March 1995, pp. 370-378.
IEEE DOI A variation on the entropy function to move the log to outside the loop.
BibRef
9503
Robinson, D.C.[David C.],
Apparatus and method for segmenting an input image in one
of a plurality of modes,
US_Patent5,339,172, August 16, 1994.
WWW Link.
BibRef
9408
Pan, H.P.[He-Ping],
Two-Level Global Optimization for Image Segmentation,
PandRS(49), No. 2, 1994, pp. 21-32.
Two levels. Pixel and Region. MDL principle.
BibRef
9400
Naveen, T.,
Woods, J.W.,
Subband Finite-State Scalar Quantization,
IP(5), No. 1, January 1996, pp. 150-155.
IEEE DOI
BibRef
9601
Ng, W.S.,
Lee, C.K.,
Comment on Using the Uniformity Measure for Performance-Measure in
Image Segmentation,
PAMI(18), No. 9, September 1996, pp. 933-934.
IEEE DOI
Thresholding.
The measure by Levine and Nazif (
See also Dynamic Measurement of Computer Generated Image Segmentations. )
is the same as that by Otsu (
See also Threshold Selection Method from Grey-Level Histograms, A. ).
BibRef
9609
Wiman, H.,
Array Algebra Polynomial Fitting for Image Segmentation,
JMIV(6), No. 1, January 1996, pp. 7-13.
9608
BibRef
Yan, H.[Hong],
Unified Formulation of a Class of Image Thresholding Techniques,
PR(29), No. 12, December 1996, pp. 2025-2032.
Elsevier DOI
9701
BibRef
Chang, J.S.[Jung-Shiong],
Liao, H.Y.M.[Hong-Yuan Mark],
Hor, M.K.[Maw-Kae],
Hsieh, J.W.[Jun-Wei],
Chern, M.Y.[Ming-Yang],
New Automatic Multilevel Thresholding Technique for
Segmentation of Thermal Images,
IVC(15), No. 1, January 1997, pp. 23-34.
Elsevier DOI
9702
BibRef
Karssemeijer, N.,
A Relaxation Method for Image Segmentation Using a
Spatially Dependent Stochastic Model,
PRL(11), 1990, pp. 13-23.
BibRef
9000
Pal, S.K.,
Rosenfeld, A.,
Image Enhancement and Thresholding by Optimization of Fuzzy Compactness,
PRL(7), 1988, pp. 77-86.
BibRef
8800
Pal, S.K.,
Pal, N.R.,
Segmentation Using Contrast and Homogeneity Measures,
PRL(5), 1987, pp. 293-304.
BibRef
8700
Pal, N.R.,
Pal, S.K.,
Image Model, Poisson Distribution and Object Extraction,
PRAI(5), 1991, pp. 459-483.
BibRef
9100
Pal, S.K.,
Pal, N.R.,
Object Extraction from Image Using Higher Order Entropy,
ICPR88(I: 348-350).
IEEE DOI
BibRef
8800
Lu, F.S.,
Wise, G.L.,
A Further Investigation of Max's Algorithm for Optimum Quantization,
Commun(33), 1985, pp. 746-750.
BibRef
8500
Swaszek, P.F.,
Uniform Spherical Coordinate Quantization of
Spherically Symmetric Sources,
Commun(33), 1985, pp. 518-521.
BibRef
8500
Vasquez, G.,
Comments on 'A Simple Approximation for Minimum Mean-Square Error
Symmetric Uniform Quantization',
Commun(34), 1986, pp. 298-300.
BibRef
8600
Swaszek, P.F.,
Thomas, J.B.,
Design of Quantizers from Histograms,
Commun(32), 1984, pp. 240-245.
BibRef
8400
Scheunders, P.,
A Genetic C-Means Clustering-Algorithm Applied to
Color Image Quantization,
PR(30), No. 6, June 1997, pp. 859-866.
Elsevier DOI
9706
See also Local mapping for multispectral image visualization.
BibRef
Scheunders, P.,
A Comparison of Clustering Algorithms Applied to
Color Image Quantization,
PRL(18), No. 11-13, November 1997, pp. 1379-1384.
9806
BibRef
Scheunders, P.[Paul],
A Genetic Lloyd-Max Image Quantization Algorithm,
PRL(17), No. 5, May 1 1996, pp. 547-556.
9606
BibRef
Earlier:
A Genetic Approach Towards Optimal Color Image Quantization,
ICIP96(III: 1031-1034).
IEEE DOI
See also Least Squares Quantization in PCM.
BibRef
Scheunders, P.,
van Hove, H.,
Livens, S.,
On the Local Optimality of Image Quantizers,
ICPR96(IV: 664-668).
IEEE DOI
9608
(RUCA, Univ. of Antwerp, B)
BibRef
Livens, S.[Stefan],
van Roost, C.[Chris],
Scheunders, P.[Paul], and
van Dyck, D.[Dirk],
Granulometric Segmentation Using a Gradient Convergence Map,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Scheunders, P.,
Joint Quantization and Error Diffusion of Color Images
Using Competitive Learning,
VISP(145), No. 2, April 1998, pp. 137-140.
9806
BibRef
Earlier:
Add A2:
de Backer, S.,
ICIP97(I: 811-814).
IEEE DOI
BibRef
Revankar, S.V.[Shriram V.],
Fan, Z.G.[Zhi-Gang],
Image segmentation system,
US_Patent5,767,978, Jun 16, 1998
WWW Link. to render similar regions similarily
BibRef
9806
Friel, N.[Nial],
Molchanov, I.S.[Ilya S.],
A new thresholding technique based on random sets,
PR(32), No. 9, September 1999, pp. 1507-1517.
Elsevier DOI
BibRef
9909
Saha, P.K.[Punam K.],
Udupa, J.K.[Jayaram K.],
Optimum Image Thresholding via Class Uncertainty and Region Homogeneity,
PAMI(23), No. 7, July 2001, pp. 689-706.
IEEE DOI
0108
Account for intensity information (histograms) and region homogeneity
with a scale-based formulation.
Compared with:
See also Maximum Segmented Image Information Thresholding.
See also Fuzzy connectedness and image segmentation.
BibRef
Comaniciu, D.[Dorin],
Meer, P.[Peter],
Mean Shift: A Robust Approach Toward Feature Space Analysis,
PAMI(24), No. 5, May 2002, pp. 603-619.
IEEE DOI
0205
BibRef
Earlier:
Mean Shift Analysis and Applications,
ICCV99(1197-1203).
IEEE DOI An estimator of the density gradient. Generate regions from values.
For the code:
See also Edison: Edge Detection and Image SegmentatiON system.
BibRef
Comaniciu, D.[Dorin],
Meer, P.[Peter],
Robust Analysis of Feature Spaces: Color Image Segmentation,
CVPR97(750-755).
IEEE DOI
9704
Code, Segmentation.
Code, Segmentation, C++. For the C++ code:
HTML Version. Color quantization for segmentation.
Map into another feature space.
BibRef
Georgescu, B.,
Shimshoni, I.,
Meer, P.,
Mean shift based clustering in high dimensions:
A Texture Classification Example,
ICCV03(456-463).
IEEE DOI
0311
BibRef
Stanford, D.C.[Derek C.],
Raftery, A.E.[Adrian E.],
Approximate Bayes Factors for Image Segmentation:
The Pseudolikelihood Information Criterion (PLIC),
PAMI(24), No. 11, November 2002, pp. 1517-1520.
IEEE Abstract.
0211
Segmentation by quantization.
BibRef
Jiang, X.Y.[Xiao-Yi],
Mojon, D.,
Adaptive local thresholding by verification-based multithreshold
probing with application to vessel detection in retinal images,
PAMI(25), No. 1, January 2003, pp. 131-138.
IEEE DOI
0301
Applied to retina images. Find the blood vessels.
BibRef
Sund, T.,
Eilertsen, K.,
An algorithm for fast adaptive image binarization with applications in
radiotherapy imaging,
MedImg(22), No. 1, January 2003, pp. 22-28.
IEEE Top Reference.
0304
BibRef
Lin, K.C.[Ku Chin],
Fast image thresholding by finding the zero(s) of the first derivative
of between-class variance,
MVA(13), No. 5-6, 2003, pp. 254-262.
WWW Link.
0304
BibRef
Murtagh, F.,
Starck, J.L.,
Quantization from Bayes factors with application to multilevel
thresholding,
PRL(24), No. 12, August 2003, pp. 2001-2007.
Elsevier DOI
0304
BibRef
Murtagh, F.,
Barreto, D.,
Marcello, J.,
Decision Boundaries Using Bayes Factors: The Case of Cloud Masks,
GeoRS(41), No. 12, December 2003, pp. 2952-2958.
IEEE Abstract.
0402
BibRef
Murtagh, F.[Fionn],
Raftery, A.E.[Adrian E.],
Starck, J.L.[Jean-Luc],
Bayesian inference for multiband image segmentation via model-based
cluster trees,
IVC(23), No. 6, 1 June 2005, pp. 587-596.
Elsevier DOI
0505
BibRef
Chung, K.L.[Kuo-Liang],
Chen, W.Y.[Wan-Yu],
Fast adaptive PNN-based thresholding algorithms,
PR(36), No. 12, December 2003, pp. 2793-2804.
Elsevier DOI
0310
BibRef
Meyer, F.[Fernand],
Levelings, Image Simplification Filters for Segmentation,
JMIV(20), No. 1-2, January-March 2004, pp. 59-72.
DOI Link
0403
BibRef
Hanbury, A.[Allan],
Marcotegui, B.[Beatriz],
Morphological segmentation on learned boundaries,
IVC(27), No. 4, 3 March 2009, pp. 480-488.
Elsevier DOI
0804
BibRef
Earlier:
Waterfall Segmentation of Complex Scenes,
ACCV06(I:888-897).
Springer DOI
0601
Image segmentation; Watershed; Waterfall; Normalised cuts;
Segmentation evaluation; Volume extinction values
BibRef
Zanoguera, M.F.[M. Francisca],
Marcotegui, B.[Beatriz],
Meyer, F.[Fernand],
A Toolbox for Interactive Segmentation Based on Nested Partitions,
ICIP99(I:21-25).
IEEE DOI
BibRef
9900
Demirkaya, O.[Omer],
Asyali, M.H.[Musa H.],
Determination of image bimodality thresholds for different intensity
distributions,
SP:IC(19), No. 6, July 2004, pp. 507-516.
Elsevier DOI
0409
BibRef
Benabdelkader, S.[Souad],
Boulemden, M.[Mohammed],
Recursive algorithm based on fuzzy 2-partition entropy for 2-level
image thresholding,
PR(38), No. 8, August 2005, pp. 1289-1294.
Elsevier DOI
0505
Entropy approach for threshold selection.
BibRef
Tong, C.S.[Chong Sze],
Zhang, Y.P.[Yong-Ping],
Zheng, N.N.[Nan-Ning],
Variational Image Binarization and its Multi-Scale Realizations,
JMIV(23), No. 2, September 2005, pp. 185-198.
Springer DOI
0505
BibRef
Yang, Y.[Yong],
Zheng, C.X.[Chong-Xun],
Lin, P.[Pan],
Spatially Weighted Fuzzy C-Means Clustering Algorithm
for Image Thresholding,
GVIP(05), No. V3, 2005, pp. xx-yy
HTML Version.
BibRef
0500
Tizhoosh, H.R.[Hamid R.],
Image thresholding using type II fuzzy sets,
PR(38), No. 12, December 2005, pp. 2363-2372.
Elsevier DOI
0510
For comment:
See also Comment on: Image thresholding using type II fuzzy sets. Importance of this method.
BibRef
Tizhoosh, H.R.[Hamid R.],
Adaptive lambda-enhancement: Type I versus type II fuzzy implementation,
CIIP09(1-7).
IEEE DOI
0903
BibRef
Tizhoosh, H.R.[Hamid R.],
Interval-valued versus intuitionistic fuzzy sets:
Isomorphism versus semantics,
PR(41), No. 5, May 2008, pp. 1829-1830.
Elsevier DOI
0711
BibRef
Shokri, M.,
Tizhoosh, H.R.,
Q-Lambda -based image thresholding,
CRV04(504-508).
IEEE DOI
0408
BibRef
Othman, A.A.[Ahmed A.],
Tizhoosh, H.R.[Hamid R.],
Neural Image Thresholding Using SIFT: A Comparative Study,
ACIVS10(I: 38-49).
Springer DOI
1012
BibRef
Vlachos, I.K.[Ioannis K.],
Sergiadis, G.D.[George D.],
Comment on: 'Image thresholding using type II fuzzy sets',
PR(41), No. 5, May 2008, pp. 1827-1828.
Elsevier DOI
0711
See also Image thresholding using type II fuzzy sets.
BibRef
Wang, S.T.[Shi-Tong],
Chung, F.L.,
Note on the equivalence relationship between Renyi-entropy based and
Tsallis-entropy based image thresholding,
PRL(26), No. 14, 15 October 2005, pp. 2309-2312.
Elsevier DOI
0510
BibRef
Blayvas, I.[Ilya],
Bruckstein, A.M.[Alfred M.],
Kimmel, R.[Ron],
Efficient Computation of Adaptive Threshold Surfaces for Image
Binarization,
PR(39), No. 1, January 2006, pp. 89-101.
Elsevier DOI
0512
BibRef
Earlier:
CVPR01(I:737-742).
IEEE DOI
0110
BibRef
Sifre-Maunier, L.[Laurence],
Taylor, R.G.[Richard G.],
Berge, P.[Philippe],
Culioli, J.[Joseph],
Bonny, J.M.[Jean-Marie],
A global unimodal thresholding based on probabilistic reference maps
for the segmentation of muscle images,
IVC(24), No. 10, 1 October 2006, pp. 1080-1089.
Elsevier DOI
0609
Unimodal thresholding; Segmentation; Muscle
BibRef
Bazi, Y.[Yakoub],
Bruzzone, L.[Lorenzo],
Melgani, F.[Farid],
Image thresholding based on the EM algorithm and the generalized
Gaussian distribution,
PR(40), No. 2, February 2007, pp. 619-634.
Elsevier DOI
0611
Image thresholding; Expectation-Maximization algorithm;
Generalized Gaussian distribution; Genetic algorithms
BibRef
Peng, T.G.[Tie-Gen],
Wang, Y.H.[Yin-Hua],
Wu, T.H.[Ti-Hua],
Mean shift algorithm equipped with the intersection of confidence
intervals rule for image segmentation,
PRL(28), No. 2, 15 January 2007, pp. 268-277.
Elsevier DOI
0611
Keywords: Intersection of confidence intervals (ICI); Mean shift; Image segmentation; Kernel function; Bandwidth selection
BibRef
Wang, S.T.[Shi-Tong],
Chung, F.L.[Fu-Lai],
Xiong, F.S.[Fu-Song],
A novel image thresholding method based on Parzen window estimate,
PR(41), No. 1, January 2008, pp. 117-129.
Elsevier DOI
0710
Parzen window; Thresholding; Image segmentation
BibRef
Cao, L.[Li],
Bao, P.[Paul],
Shi, Z.[Zhongke],
The strongest schema learning GA and its application to multilevel
thresholding,
IVC(26), No. 5, May 2008, pp. 716-724.
Elsevier DOI
0803
Multilevel thresholding; Otsu method; Kapur method; Genetic algorithms; Schema
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Chabrier, S.,
Rosenberger, C.[Christophe],
Emile, B.,
Laurent, H.[Helene],
Optimization-Based Image Segmentation by Genetic Algorithms,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0804
BibRef
Huang, D.Y.[Deng-Yuan],
Wang, C.H.[Chia-Hung],
Optimal multi-level thresholding using a two-stage Otsu optimization
approach,
PRL(30), No. 3, 1 February 2009, pp. 275-284.
Elsevier DOI
0804
Otsu's method; Image segmentation; Multi-level thresholding
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Chen, Y.B.[Yuan Been],
Chen, O.T.C.[Oscal T.C.],
Image Segmentation Method Using Thresholds Automatically Determined
from Picture Contents,
JIVP(2009), No. 2009, pp. xx-yy.
DOI Link
0904
BibRef
Kwon, S.H.[Soon Hak],
Jeong, H.C.[Hye Cheun],
Seo, S.T.[Suk Tae],
Lee, I.K.[In Keun],
Son, C.S.[Chang Sik],
Histogram Equalization-Based Thresholding,
IEICE(E91-D), No. 11, November 2008, pp. 2751-2753.
DOI Link
0804
BibRef
Seo, S.T.[Suk Tae],
Lee, I.K.[In Keun],
Jeong, H.C.[Hye Cheun],
Kwon, S.H.[Soon Hak],
Gaussian Kernel-Based Multi-Histogram Equalization,
IEICE(E93-D), No. 5, May 2010, pp. 1313-1316.
WWW Link.
1006
BibRef
Son, C.S.[Chang Sik],
Seo, S.T.[Suk Tae],
Lee, I.K.[In Keun],
Jeong, H.C.[Hye Cheun],
Kwon, S.H.[Soon Hak],
Threshold Selection Based on Interval-Valued Fuzzy Sets,
IEICE(E92-D), No. 9, September 2009, pp. 1807-1810.
WWW Link.
0910
BibRef
Seo, S.T.[Suk Tae],
Jeong, H.C.[Hye Cheun],
Lee, I.K.[In Keun],
Son, C.S.[Chang Sik],
Kwon, S.H.[Soon Hak],
Plausibility-Based Approach to Image Thresholding,
IEICE(E92-D), No. 10, October 2009, pp. 2167-2170.
WWW Link.
0910
BibRef
Seo, S.T.[Suk Tae],
Lee, I.K.[In Keun],
Son, S.H.[Seo Ho],
Lee, H.G.[Hyong Gun],
Kwon, S.H.[Soon Hak],
Co-occurrence Matrix-Based Image Segmentation,
IEICE(E93-D), No. 11, November 2010, pp. 3128-3131.
WWW Link.
1011
BibRef
Coudray, N.[Nicolas],
Buessler, J.L.[Jean-Luc],
Urban, J.P.[Jean-Philippe],
Robust threshold estimation for images with unimodal histograms,
PRL(31), No. 9, 1 July 2010, pp. 1010-1019.
Elsevier DOI
1004
Automatic thresholding; Image histogram; Unimodal distribution; Edge detection
BibRef
Bustince, H.,
Barrenechea, E.,
Pagola, M.,
Fernandez, J.,
Sanz, J.,
Comment on: 'Image thresholding using type II fuzzy sets'.
Importance of this method,
PR(43), No. 9, September 2010, pp. 3188-3192.
Elsevier DOI
1006
Type II fuzzy set; Interval-valued fuzzy set; Interval-valued fuzzy
entropy; Fuzzy entropy; Image thresholding
See also Image thresholding using type II fuzzy sets.
BibRef
Bhoyar, K.K.[Kishor Keshaorao],
Kakde, O.G.[Omprakash G.],
Color Image Segmentation using Fast Fuzzy C-Means Algorithm,
ELCVIA(9), No. No. 1, 2010, pp. xx-yy.
DOI Link
1011
BibRef
Li, Z.Y.[Zuo-Yong],
Yang, J.[Jian],
Liu, G.H.[Guang-Hai],
Cheng, Y.[Yong],
Liu, C.C.[Chuan-Cai],
Unsupervised range-constrained thresholding,
PRL(32), No. 2, 15 January 2011, pp. 392-402.
Elsevier DOI
1101
Thresholding; Image segmentation; Human visual perception; Standard
deviation; Unsupervised estimation
BibRef
Li, Z.Y.[Zuo-Yong],
Liu, C.C.[Chuan-Cai],
Zhao, C.R.[Cai-Rong],
Cheng, Y.[Yong],
An Image Thresholding Method Based on Human Visual Perception,
CISP09(1-4).
IEEE DOI
0910
BibRef
Beheshti, S.,
Hashemi, M.,
Sejdic, E.,
Chau, T.,
Mean Square Error Estimation in Thresholding,
SPLetters(18), No. 2, February 2011, pp. 103-106.
IEEE DOI
1101
BibRef
Atto, A.M.[Abdourrahmane M.],
Pastor, D.[Dominique],
Mercier, G.[Grégoire],
Wavelet shrinkage:
Unification of basic thresholding functions and thresholds,
SIViP(5), No. 1, March 2011, pp. 11-28.
WWW Link.
1103
BibRef
Xu, X.Y.[Xiang-Yang],
Xu, S.Z.[Sheng-Zhou],
Jin, L.H.[Liang-Hai],
Song, E.[Enmin],
Characteristic analysis of Otsu threshold and its applications,
PRL(32), No. 7, 1 May 2011, pp. 956-961.
Elsevier DOI
1101
Image segmentation; Threshold selection; Otsu criterion
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Cuevas, E.[Erik],
Zaldivar, D.[Daniel],
Pérez-Cisneros, M.[Marco],
Seeking multi-thresholds for image segmentation with Learning Automata,
MVA(22), No. 5, September 2011, pp. 805-818.
WWW Link.
1108
BibRef
Xue, J.H.[Jing-Hao],
Titterington, D.M.,
t-Tests, F-Tests and Otsu's Methods for Image Thresholding,
IP(20), No. 8, August 2011, pp. 2392-2396.
IEEE DOI
1108
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Liu, J.[Jun],
Ku, Y.B.[Yin-Bon],
Leung, S.Y.[Shing-Yu],
Expectation-maximization algorithm with total variation regularization
for vector-valued image segmentation,
JVCIR(23), No. 8, November 2012, pp. 1234-1244.
Elsevier DOI
1211
Gaussian mixture model; Expectation-maximization; Total variation;
Unified cost functional; Image segmentation; Vector-valued images; Fast
algorithm; Alternative minimization
BibRef
Yazid, H.[Haniza],
Arof, H.[Hamzah],
Gradient based adaptive thresholding,
JVCIR(24), No. 7, 2013, pp. 926-936.
Elsevier DOI
1309
Image segmentation
BibRef
Koosha, M.,
Hajsadeghi, K.,
Koosha, M.,
Fine logarithmic adaptive soft morphological algorithm for synthetic
aperture radar image segmentation,
IET-IPR(8), No. 2, February 2014, pp. 90-102.
DOI Link
1403
filtering theory
BibRef
Cai, H.M.[Hong-Min],
Yang, Z.[Zhong],
Cao, X.H.[Xin-Hua],
Xia, W.M.[Wei-Ming],
Xu, X.Y.[Xiao-Yin],
A New Iterative Triclass Thresholding Technique in Image Segmentation,
IP(23), No. 3, March 2014, pp. 1038-1046.
IEEE DOI
1403
image segmentation
BibRef
Sarkar, S.[Soham],
Das, S.[Swagatam],
Chaudhuri, S.S.[Sheli Sinha],
A multilevel color image thresholding scheme based on minimum cross
entropy and differential evolution,
PRL(54), No. 1, 2015, pp. 27-35.
Elsevier DOI
1502
Multi-Level image segmentation
BibRef
Sadek, S.[Samy],
Al-Hamadi, A.[Ayoub],
Entropic Image Segmentation: A Fuzzy Approach Based on Tsallis Entropy,
IJCVSP(5), No. 1, 2015, pp. xx-yy.
WWW Link.
1504
BibRef
Kurisu, K.[Kosei],
Suematsu, N.[Nobuo],
Iwata, K.[Kazunori],
Hayashi, A.[Akira],
A Spatially Correlated Mixture Model for Image Segmentation,
IEICE(E98-D), No. 4, April 2015, pp. 930-937.
WWW Link.
1505
BibRef
Earlier:
Image Segmentation Using a Spatially Correlated Mixture Model with
Gaussian Process Priors,
ACPR13(59-63)
IEEE DOI
1408
Gaussian processes
BibRef
Bhardwaj, N.[Neelam],
Agarwal, S.[Suneeta],
Bhardwaj, V.[Vikash],
An imaging approach for the automatic thresholding of photo defects,
PRL(60-61), No. 1, 2015, pp. 32-40.
Elsevier DOI
1506
Thresholding
BibRef
Zhou, J.X.[Jia-Xiang],
Li, Z.W.[Zhi-Wei],
Fan, C.[Chong],
Improved fast mean shift algorithm for remote sensing image
segmentation,
IET-IPR(9), No. 5, 2015, pp. 389-394.
DOI Link
1506
geophysical image processing
BibRef
Nguyen, T.V.,
Lu, C.Y.[Can-Yi],
Sepulveda, J.,
Yan, S.C.[Shui-Cheng],
Adaptive Nonparametric Image Parsing,
CirSysVideo(25), No. 10, October 2015, pp. 1565-1575.
IEEE DOI
1511
feature extraction
BibRef
Xu, C.Y.[Chun-Yan],
Lu, C.Y.[Can-Yi],
Gao, J.B.[Jun-Bin],
Zheng, W.[Wei],
Wang, T.J.[Tian-Jiang],
Yan, S.C.[Shui-Cheng],
Discriminative Analysis for Symmetric Positive Definite Matrices on
Lie Groups,
CirSysVideo(25), No. 10, October 2015, pp. 1576-1585.
IEEE DOI
1511
Lie groups
BibRef
Sang, Q.[Qian],
Lin, Z.L.[Zong-Li],
Acton, S.T.[Scott T.],
Learning automata for image segmentation,
PRL(74), No. 1, 2016, pp. 46-52.
Elsevier DOI
1604
Image analysis. Threshold selection.
BibRef
Sha, C.S.[Chun-Shi],
Hou, J.[Jian],
Cui, H.X.[Hong-Xia],
A robust 2D Otsu's thresholding method in image segmentation,
JVCIR(41), No. 1, 2016, pp. 339-351.
Elsevier DOI
1612
Otsu's method
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Gu, Y.[Ying],
Xiong, W.[Wei],
Wang, L.L.[Li-Lian],
Cheng, J.R.[Jie-Rong],
Generalizing Mumford-Shah Model for Multiphase Piecewise Smooth Image
Segmentation,
IP(26), No. 2, February 2017, pp. 942-952.
IEEE DOI
1702
Gaussian processes
BibRef
Gu, Y.[Ying],
Xiong, W.[Wei],
Wang, L.L.[Li-Lian],
Cheng, J.R.[Jie-Rong],
Huang, W.M.[Wei-Min],
Zhou, J.Y.[Jia-Yin],
A new approach for multiphase piecewise smooth image segmentation,
ICIP14(4417-4421)
IEEE DOI
1502
BibRef
Earlier: A1, A3, A2, A4, A5, A6:
Efficient and robust image segmentation with a new piecewise-smooth
decomposition model,
ICIP13(2718-2722)
IEEE DOI
1402
Active contours.
Image segmentation
BibRef
Singla, A.[Anshu],
Patra, S.[Swarnajyoti],
A fast automatic optimal threshold selection technique for image
segmentation,
SIViP(11), No. 2, February 2017, pp. 243-250.
WWW Link.
1702
BibRef
Zhang, C.,
Xie, Y.,
Liu, D.,
Wang, L.,
Fast Threshold Image Segmentation Based on 2D Fuzzy Fisher and Random
Local Optimized QPSO,
IP(26), No. 3, March 2017, pp. 1355-1362.
IEEE DOI
1703
fuzzy set theory
BibRef
Zosso, D.[Dominique],
Dragomiretskiy, K.[Konstantin],
Bertozzi, A.L.[Andrea L.],
Weiss, P.S.[Paul S.],
Two-Dimensional Compact Variational Mode Decomposition,
JMIV(58), No. 2, June 2017, pp. 294-320.
Springer DOI
1704
BibRef
Earlier: A2, A1, Only:
Two-Dimensional Variational Mode Decomposition,
EMMCVPR15(197-208).
Springer DOI
1504
BibRef
Pham, D.H.,
Meignen, S.,
An Adaptive Computation of Contour Representations for Mode
Decomposition,
SPLetters(24), No. 11, November 2017, pp. 1596-1600.
IEEE DOI
1710
signal detection, signal reconstruction, time-frequency analysis,
AM-FM mode reconstruction, Dirac impulses, adaptive computation,
BibRef
Cho, H.,
Kang, S.J.,
Kim, Y.H.,
Image Segmentation Using Linked Mean-Shift Vectors and Global/Local
Attributes,
CirSysVideo(27), No. 10, October 2017, pp. 2132-2140.
IEEE DOI
1710
Filtering, Histograms, Image color analysis, Image edge detection,
Kernel, Merging, image analysis,
mean-shift, algorithm
BibRef
Forsthoefel Fitzgerald, D.[Dana],
Wills, D.S.[D. Scott],
Wills, L.M.[Linda M.],
Real-time, parallel segmentation of high-resolution images on
multi-core platforms,
RealTimeIP(13), No. 4, December 2017, pp. 685-702.
Springer DOI
1712
BibRef
Forsthoefel, D.[Dana],
Wills, D.S.[D. Scott],
Wills, L.M.[Linda M.],
Leap segmentation for recovering image surface layout,
Southwest12(153-156).
IEEE DOI
1205
Replace with a map of similar regions, allows gaps
BibRef
Pare, S.,
Bhandari, A.K.,
Kumar, A.,
Bajaj, V.,
Backtracking search algorithm for color image multilevel thresholding,
SIViP(12), No. 2, February 2018, pp. 385-392.
Springer DOI
1802
BibRef
Craciun, S.[Stefan],
Kirchgessner, R.[Robert],
George, A.D.[Alan D.],
Lam, H.[Herman],
Principe, J.C.[Jose C.],
A real-time, power-efficient architecture for mean-shift image
segmentation,
RealTimeIP(14), No. 2, February 2018, pp. 379-394.
Springer DOI
1804
BibRef
Zhang, S.P.[Si-Peng],
Jiang, W.[Wei],
Satoh, S.[Shin'ichi],
Multilevel Thresholding Color Image Segmentation Using a Modified
Artificial Bee Colony Algorithm,
IEICE(E101-D), No. 8, August 2018, pp. 2064-2071.
WWW Link.
1808
BibRef
Chung, Y.M.[Yu-Min],
Day, S.[Sarah],
Topological Fidelity and Image Thresholding:
A Persistent Homology Approach,
JMIV(60), No. 7, September 2018, pp. 1167-1179.
WWW Link.
1808
BibRef
Wang, Z.,
Xiong, J.,
Yang, Y.,
Li, H.,
A Flexible and Robust Threshold Selection Method,
CirSysVideo(28), No. 9, September 2018, pp. 2220-2232.
IEEE DOI
1809
Histograms, Image segmentation, Entropy, Computational modeling,
Discrete Fourier transforms, Frequency-domain analysis,
slope difference distribution
BibRef
Song, J.,
Cho, H.,
Yoon, J.,
Yoon, S.M.,
Structure Adaptive Total Variation Minimization-Based Image
Decomposition,
CirSysVideo(28), No. 9, September 2018, pp. 2164-2176.
IEEE DOI
1809
TV, Image decomposition, Image edge detection, Minimization,
Smoothing methods, Robustness, Transforms, Image decomposition,
total variation minimization
BibRef
Jia, H.M.[He-Ming],
Peng, X.X.[Xiao-Xu],
Song, W.L.[Wen-Long],
Oliva, D.[Diego],
Lang, C.[Chunbo],
Li, Y.[Yao],
Masi Entropy for Satellite Color Image Segmentation Using
Tournament-Based Lévy Multiverse Optimization Algorithm,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Jia, H.M.[He-Ming],
Lang, C.[Chunbo],
Oliva, D.[Diego],
Song, W.L.[Wen-Long],
Peng, X.X.[Xiao-Xu],
Hybrid Grasshopper Optimization Algorithm and Differential Evolution
for Multilevel Satellite Image Segmentation,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Jia, H.M.[He-Ming],
Lang, C.B.[Chun-Bo],
Oliva, D.[Diego],
Song, W.L.[Wen-Long],
Peng, X.X.[Xiao-Xu],
Dynamic Harris Hawks Optimization with Mutation Mechanism for
Satellite Image Segmentation,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Stosic, D.[Dusan],
Stosic, D.[Darko],
Ludermir, T.B.[Teresa Bernarda],
Ren, T.I.[Tsang Ing],
Natural image segmentation with non-extensive mixture models,
JVCIR(63), 2019, pp. 102598.
Elsevier DOI
1909
Non-extensive statistics, Image segmentation, q-Gaussians,
Finite mixture models
BibRef
Kiefer, L.,
Storath, M.,
Weinmann, A.,
An Efficient Algorithm for the Piecewise Affine-Linear Mumford-Shah
Model Based on a Taylor Jet Splitting,
IP(29), No. 1, 2020, pp. 921-933.
IEEE DOI
1910
Computational modeling, Partitioning algorithms,
Approximation algorithms, Estimation, Image segmentation,
image edge detection
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Kim, B.,
Ye, J.C.,
Mumford-Shah Loss Functional for Image Segmentation With Deep
Learning,
IP(29), No. 1, 2020, pp. 1856-1866.
IEEE DOI
1912
Image segmentation, Semantics, Neural networks, Minimization,
Deep learning, Training data, Unsupervised learning,
Mumford-Shah functional
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Raj, A.[Aditya],
Gautam, G.[Gunjan],
Abdullah, S.N.H.S.[Siti Norul Huda Sheikh],
Zaini, A.S.[Abbas Salimi],
Mukhopadhyay, S.[Susanta],
Multi-level thresholding based on differential evolution and Tsallis
Fuzzy entropy,
IVC(91), 2019, pp. 103792.
Elsevier DOI
1912
Multilevel thresholding, Tsallis-Fuzzy entropy,
Differential evolution, Otsu entropy, Kapur entropy
BibRef
Luo, L.K.[Ling-Kun],
Wang, X.F.[Xiao-Fang],
Hu, S.Q.[Shi-Qiang],
Hu, X.[Xing],
Zhang, H.L.[Huan-Long],
Liu, Y.H.[Yao-Hua],
Zhang, J.[James],
A unified framework for interactive image segmentation via Fisher rules,
VC(35), No. 12, December 2018, pp. 1869-1882.
Springer DOI
1912
BibRef
Zhu, X.Y.[Xian-Yi],
Xiao, Y.[Yi],
Tan, G.H.[Guang-Hua],
Zhou, S.Z.[Shi-Zhe],
Leung, C.S.[Chi-Sing],
Zheng, Y.[Yan],
GPU-accelerated 2D OTSU and 2D entropy-based thresholding,
RealTimeIP(17), No. 4, August 2020, pp. 993-1005.
Springer DOI
2007
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Ameer, S.[Salah],
Eigenstructure involving the histogram for image thresholding,
IET-IPR(14), No. 13, November 2020, pp. 3084-3088.
DOI Link
2012
BibRef
Bhandari, A.K.,
Singh, A.,
Kumar, I.V.,
Spatial Context Energy Curve-Based Multilevel 3-D Otsu Algorithm for
Image Segmentation,
SMCS(51), No. 5, May 2021, pp. 2760-2773.
IEEE DOI
2104
Image segmentation, Histograms, Color, Thresholding (Imaging),
Time complexity, Indexes, Energy curve,
two-dimensional (2-D) Otsu
See also Threshold Selection Method from Grey-Level Histograms, A.
BibRef
Han, N.N.[Ning-Ning],
Li, S.D.[Shi-Dong],
Lu, J.[Jian],
Orthogonal Subspace Based Fast Iterative Thresholding Algorithms for
Joint Sparsity Recovery,
SPLetters(28), 2021, pp. 1320-1324.
IEEE DOI
2107
Signal processing algorithms, Matching pursuit algorithms,
Iterative algorithms, Null space, Convergence, Tuning,
orthogonal subspace
BibRef
Ehsaeyan, E.[Ehsan],
Zolghadrasli, A.[Alireza],
A Multilevel Image Thresholding Method Using the Darwinian Cuckoo
Search Algorithm,
IJIG(21), No. 4, October 2021 2021, pp. 2150052.
DOI Link
2110
BibRef
Ehsaeyan, E.[Ehsan],
Zolghadrasli, A.[Alireza],
A Study on Darwinian Crow Search Algorithm for Multilevel Thresholding,
IJIG(22), No. 1 2022, pp. 2250012.
DOI Link
2202
BibRef
Liu, C.[Chun],
Yang, J.[Jian],
Zheng, J.B.[Jiang-Bin],
Nie, X.[Xuan],
An Unsupervised Port Detection Method in Polarimetric SAR Images
Based on Three-Component Decomposition and Multi-Scale Thresholding
Segmentation,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wang, D.[Dong],
Wang, X.P.[Xiao-Ping],
The iterative convolution-thresholding method (ICTM) for image
segmentation,
PR(130), 2022, pp. 108794.
Elsevier DOI
2206
Convolution, Thresholding, Image segmentation, Heat kernel
BibRef
Yang, X.B.[Xiao-Bao],
Wu, J.S.[Jun-Sheng],
He, L.[Lang],
Ma, S.[Sugang],
Hou, Z.Q.[Zhi-Qiang],
Sun, W.[Wei],
CPSS-FAT: A consistent positive sample selection for object detection
with full adaptive threshold,
PR(141), 2023, pp. 109627.
Elsevier DOI
2306
Object detection, Label assignment,
Location quality estimation, Adaptive threshold
BibRef
Wang, C.[Cong],
Zhou, M.C.[Meng-Chu],
Pedrycz, W.[Witold],
Li, Z.W.[Zhi-Wu],
Comparative Study on Noise-Estimation-Based Fuzzy C-Means Clustering
for Image Segmentation,
Cyber(54), No. 1, January 2024, pp. 241-253.
IEEE DOI
2312
BibRef
Xiao, X.[Xu],
Wen, Y.[Youwei],
Chan, R.[Raymond],
Zeng, T.Y.[Tie-Yong],
Image Segmentation Using Bayesian Inference for Convex Variant
Mumford-Shah Variational Model,
SIIMS(17), No. 1, 2024, pp. 248-272.
DOI Link
2404
BibRef
Ge, B.[Bin],
Li, Y.Y.[Yu-Yang],
Liu, H.[Huanhuan],
Xia, C.X.[Chen-Xing],
Geng, S.[Shuaishuai],
IML-SSOD: Interconnected and multi-layer threshold learning for
semi-supervised detection,
JVCIR(103), 2024, pp. 104220.
Elsevier DOI
2409
Semi-supervised, Object detection, Pseudo label,
Interconnected learning, Multi-layer threshold
BibRef
Noyel, G.,
Speeding up the Kohler's method of contrast thresholding,
ICIP17(320-324)
IEEE DOI
1803
Acceleration, Complexity theory, Image segmentation,
Instruction sets, Morphology, Real-time systems,
pattern recognition
BibRef
Gall, J.[Juergen],
Sawatzky, J.,
Adaptive Binarization for Weakly Supervised Affordance Segmentation,
ACVR17(1383-1391)
IEEE DOI
1802
Image segmentation, Indexes, Semantics, Solid modeling,
Supervised learning, Training
BibRef
Li, Z.[Zefan],
Ni, B.B.[Bing-Bing],
Zhang, W.J.[Wen-Jun],
Yang, X.K.[Xiao-Kang],
Gao, W.[Wen],
Performance Guaranteed Network Acceleration via High-Order Residual
Quantization,
ICCV17(2603-2611)
IEEE DOI
1802
approximation theory, filtering theory, image recognition,
quantisation (signal), accurate approximation,
BibRef
Ouarda, A.,
Image thresholding using type-2 fuzzy c-partition entropy and
particle swarm optimization algorithm,
ICCVIA15(1-7)
IEEE DOI
1603
entropy
BibRef
Menotti, D.[David],
Najman, L.[Laurent],
de A. Araújo, A.[Arnaldo],
Efficient Polynomial Implementation of Several Multithresholding
Methods for Gray-Level Image Segmentation,
CIARP15(350-357).
Springer DOI
1511
BibRef
Prakash, R.M.[R. Meena],
Kumari, R.S.S.[R. Shantha Selva],
Nonsubsampled Contourlet Transform based expectation maximization
method for segmentation of images,
IMVIP12(137-140).
IEEE DOI
1302
BibRef
Tahri, L.[Layla],
Wakrim, M.[Mohamed],
Multiobjective Genetic Algorithm for Image Thresholding,
ICISP12(352-361).
Springer DOI
1208
BibRef
Wei, W.Y.[Wei-Yi],
Lin, X.H.[Xiang-Hong],
Zhang, G.C.[Gui-Cang],
Fast image segmentation based on two-dimensional minimum Tsallis-cross
entropy,
IASP10(332-335).
IEEE DOI
1004
BibRef
Sen, D.[Debashis],
Pal, S.K.[Sankar K.],
Feature space based image segmentation via density modification,
ICIP09(4017-4020).
IEEE DOI
0911
BibRef
Zuo, T.[Tian],
Zhu, Y.[Yu],
Jiang, L.J.[Lin-Jia],
Multi-Thresholding Segmentation and Contour Tracing of ACF Surface
Image,
CISP09(1-5).
IEEE DOI
0910
BibRef
Chen, L.[Liang],
Guo, L.[Lei],
Yang, N.[Ning],
Du, Y.Q.[Ya-Qin],
Multi-Level Image Thresholding Based on Histogram Voting,
CISP09(1-5).
IEEE DOI
0910
BibRef
She, L.H.[Li-Huang],
Wang, G.H.[Guo-Hua],
Zhang, S.[Shi],
Zhao, J.S.[Jin-Shuan],
An Adaptive Threshold Algorithm Combining Shifting Window Difference
and Forward-Backward Difference in Real-Time R-Wave Detection,
CISP09(1-4).
IEEE DOI
0910
BibRef
Rueda, L.[Luis],
An Efficient Algorithm for Optimal Multilevel Thresholding of
Irregularly Sampled Histograms,
SSPR08(602-611).
Springer DOI
0812
BibRef
Lu, Z.W.[Zhi-Wu],
Peng, Y.X.[Yu-Xin],
Xiao, J.G.[Jian-Guo],
Unsupervised learning of finite mixtures using entropy regularization
and its application to image segmentation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Paris, S.[Sylvain],
Durand, F.[Fredo],
A Topological Approach to Hierarchical Segmentation using Mean Shift,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Yang, L.[Lin],
Meer, P.[Peter],
Foran, D.J.[David J.],
Multiple Class Segmentation Using A Unified Framework over Mean-Shift
Patches,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Rodríguez, R.[Roberto],
Suarez, A.G.[Ana G.],
An Image Segmentation Algorithm Using Iteratively the Mean Shift,
CIARP06(326-335).
Springer DOI
0611
BibRef
Liu, J.D.[Jun-Dong],
Robust Image Segmentation using Local Median,
CRV06(31-31).
IEEE DOI
0607
BibRef
Khalvati, F.[Farzad],
Tizhoosh, H.R.[Hamid R.],
Hajian, A.R.[Arsen R.],
Increasing Computational Redundancy of Digital Images via
Multiresolutional Matching,
ICIAR09(146-157).
Springer DOI
0907
BibRef
Sahba, F.,
Tizhoosh, H.R.,
Salama, M.M.A.,
Increasing Object Recognition Rate using Reinforced Segmentation,
ICIP06(781-784).
IEEE DOI
0610
BibRef
Rahnamayan, S.,
Tizhoosh, H.R.,
Salama, M.M.A.,
Weighted Voting-Based Robust Image Thresholding,
ICIP06(1129-1132).
IEEE DOI
0610
BibRef
Olhede, S.C.,
Hyperanalytic Thresholding,
ICIP06(1421-1424).
IEEE DOI
0610
BibRef
Malisia, A.R.,
Tizhoosh, H.R.,
Applying Ant Colony Optimization to Binary Thresholding,
ICIP06(2409-2412).
IEEE DOI
0610
BibRef
Earlier:
Image Thresholding Using Ant Colony Optimization,
CRV06(26-26).
IEEE DOI
0607
BibRef
Singh, M.,
Ahuja, N.,
Regression Based Bandwidth Selection for Segmentation Using Parzen
Windows,
ICCV03(2-9).
IEEE DOI
0311
Represent the image as piecewise continuous.
Find modes.
BibRef
Wu, S.[Sue],
Amin, A.,
Automatic thresholding of gray-level using multi-stage approach,
ICDAR03(493-497).
IEEE DOI
0311
BibRef
Cho, W.H.,
Kim, S.H.,
Mean Field Annealing EM for Image Segmentation,
ICIP00(Vol III: 568-571).
IEEE DOI
0008
BibRef
Smolka, B.[Bogdan],
Wojciechowski, K.W.[Konrad W.],
A new method of texture binarization,
CAIP97(629-636).
Springer DOI
9709
BibRef
Kindratenko, V.V.[Volodymyr V.],
Treiger, B.A.[Boris A.],
van Espen, P.J.M.[Piet J. M.],
Binarization of inhomogeneously illuminated images,
CIAP95(483-487).
Springer DOI
9509
BibRef
Madarasmi, S.,
Kersten, D., and
Pong, T.C.,
Multi-Layer Surface Segmentation Using Energy Minimization,
CVPR93(774-775).
IEEE DOI
BibRef
9300
Pong, T.C.,
Madarasmi, S.,
Chu, Y.L.,
Texture Segmentation Using Topographic Labels,
CVIP92(537-554).
BibRef
9200
Tao, W.,
Burkhardt, H.,
An Effective Image Thresholding Method Using a
Fuzzy Compactness Measure,
ICPR94(A:47-51).
IEEE DOI
BibRef
9400
Kiryati, N.,
Bruckstein, A.M.,
On piecewise-planar representation of images,
ICPR92(III:451-454).
IEEE DOI
9208
BibRef
Jiang, T.,
Merickel, M.B.,
Parrish, Jr., E.A.,
Automated Threshold Detection Using A Pyramid Structure,
ICPR88(II: 689-692).
IEEE DOI
8811
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Classification Methods, Clustering for Region Segmentation .