Tropical Coral Reef Fish Detection, Tracking And Classification,
Fish4Knowledge project datasets.
Online2014
WWW Link.
Dataset, Fish.
See also University of Edinburgh.
See also Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data.
BibRef
1400
Strachan, N.J.C.,
Nesvadba, P.,
Allen, A.R.,
Fish species recognition by shape analysis of images,
PR(23), No. 5, 1990, pp. 539-544.
Elsevier DOI
0401
BibRef
Strachan, N.J.C.,
Recognition of fish species by colour and shape,
IVC(11), No. 1, January-February 1993, pp. 2-10.
Elsevier DOI
0401
BibRef
Pau, L.F., and
Olafsson, R.,
Fish Quality Control by Computer Vision,
New York:
Marcel Dekker1991.
BibRef
9100
Book
BibRef
Grigoryan, A.M.,
Hostetter, G.,
Kallioniemi, O.,
Dougherty, E.R.,
Simulation Toolbox for 3D-FISH Spot-Counting Algorithms,
RealTimeImg(8), No. 3, June 2002, pp. 203-212.
DOI Link
0208
BibRef
Guillaud, A.[Anne],
Troadec, H.[Herve],
Benzinou, A.[Abdesslam],
Le Bihan, J.[Jean],
Rodin, V.[Vincent],
A Multiagent System for Edge Detection and Continuity Perception on
Fish Otolith Images,
JASP(2002), No. 7, July 2002, pp. 746.
0208
BibRef
Benzinou, A.,
Troadec, H.,
Le Bihan, J.,
Rodin, V.,
de Pontual, H., and
Tisseau, J.,
The Locally Deformable B-Bubble Model:
An Application to Growth Ring Detection on Fish Otoliths,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Guillaud, A.,
Troadec, H.,
Benzinou, A.,
Rodin, V.,
Le Bihan, J.,
Continuity Perception Using a Multiagent System. an Application to
Growth Ring Detection on Fish Otoliths,
ICPR00(Vol II: 519-522).
IEEE DOI
0009
BibRef
Rodin, V.[Vincent],
Troadec, H.,
de Pontual, H.,
Benzinou, A.,
Tisseau, J.,
Le Bihan, J.,
Growth Ring Detection on Fish Otoliths by a Graph Construction,
ICIP96(II: 685-688).
IEEE DOI
BibRef
9600
Cao, F.[Frédéric],
Fablet, R.[Ronan],
Automatic morphological detection of otolith nucleus,
PRL(27), No. 6, 15 April 2006, pp. 658-666.
Elsevier DOI Mathematical morphology; A contrario detection; Otolith imaging
0604
BibRef
Earlier:
ICPR04(III: 606-609).
IEEE DOI
0409
BibRef
Fablet, R.,
Le Josse, N.,
Benzinou, A.,
Automatic fish age estimation from otolith images using statistical
learning,
ICPR04(IV: 503-506).
IEEE DOI
0409
BibRef
Fablet, R.,
Benzinou, A.,
Doncarli, C.,
Robust time-frequency model estimation in Otolith images for fish age
and growth analysis,
ICIP03(III: 593-596).
IEEE DOI
0312
BibRef
Bermejo, S.[Sergio],
Monegal, B.[Brais],
Fish age analysis and classification with kernel methods,
PRL(28), No. 10, 15 July 2007, pp. 1164-1171.
Elsevier DOI
0706
Automated fish age classification; Statistical learning;
Kernel principal component analysis; Support vector machines;
Scientific applications of pattern recognition
BibRef
Kawasue, K.[Kikuhito],
Nagatomo, S.[Satoshi], and
Oya, Y.[Yuichiro],
Three Dimensional Measurement of Aquatic Organisms Using
a Single Video Camera,
Sensors(Special: 9), December 2010, pp. 118-126.
HTML Version.
BibRef
1012
Enomoto, K.[Koichiro],
Toda, M.[Masashi],
Kuwahara, Y.[Yasuhiro],
Extraction Method of Scallop Area in Gravel Seabed Images for Fishery
Investigation,
IEICE(E93-D), No. 7, July 2010, pp. 1754-1760.
WWW Link.
1008
BibRef
Earlier:
Scallop Detection from Sand-Seabed Images for Fishery Investigation,
CISP09(1-5).
IEEE DOI
0910
BibRef
Enomoto, K.[Koichiro],
Toda, M.[Masashi],
Kuwahara, Y.[Yasuhiro],
Discussion on a method to extract scallop using line convergence
index filter from granule-sand seabed videos,
MVA15(35-40)
IEEE DOI
1507
Aquaculture
BibRef
Enomoto, K.[Koichiro],
Toda, M.[Masashi],
Kuwahara, Y.[Yasuhiro],
Extraction Method of Scallop Area from Sand Seabed Images,
IEICE(E97-D), No. 1, January 2013, pp. 130-138.
WWW Link.
1412
BibRef
Enomoto, K.[Koichiro],
Toda, M.[Masashi],
Kuwahara, Y.[Yasuhiro],
Wada, M.[Masaaki],
Hatanaka, K.[Katsumori],
Scallop Detection from Gravel-Seabed Images for Fishery Investigation,
MVA09(479-).
PDF File.
0905
BibRef
Hagisawa, T.[Takeshi],
Enomoto, K.[Koichiro],
Toda, M.[Masashi],
Tamura, M.[Masakatsu],
Takeda, S.[Sakae],
The amount of Alaria praelonga Kjellmans analysis method from laminaria
bed images for fishery investigation,
FCV11(1-6).
IEEE DOI
1102
BibRef
Lefort, R.,
Fablet, R.,
Boucher, J.M.,
Object recognition using proportion-based prior information:
Application to fisheries acoustics,
PRL(32), No. 2, 15 January 2011, pp. 153-158.
Elsevier DOI
1101
Weakly supervised learning; Generative classification model;
Discriminative classification model
BibRef
Fablet, R.,
Lefort, R.,
Scalarin, C.,
Masse, J.,
Cauchy, P.,
Boucher, J.M.,
Weakly supervised learning using proportion-based information:
An application to fisheries acoustics,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Luengo-Oroz, M.A.,
Rubio-Guivernau, J.L.,
Faure, E.,
Savy, T.,
Duloquin, L.,
Olivier, N.,
Pastor, D.,
Ledesma-Carbayo, M.,
Debarre, D.,
Bourgine, P.,
Beaurepaire, E.,
Peyrieras, N.,
Santos, A.,
Methodology for Reconstructing Early Zebrafish Development From In Vivo
Multiphoton Microscopy,
IP(21), No. 4, April 2012, pp. 2335-2340.
IEEE DOI
1204
BibRef
González-Rufino, E.,
Carrión, P.,
Cernadas, E.,
Fernández-Delgado, M.,
Domínguez-Petit, R.,
Exhaustive comparison of colour texture features and classification
methods to discriminate cells categories in histological images of fish
ovary,
PR(46), No. 9, September 2013, pp. 2391-2407.
Elsevier DOI
1305
Histological image; Fish ovary; Fecundity; Stereology; Classification;
Colour texture analysis; Pyramid decomposition; Multiresolution
analysis; Fractal analysis; Local Binary Patterns; Wavelets;
Co-ocurrence matrix; Sum and Difference Histogram; Support Vector
Machine; Statistical classifiers; Ensembles; Neural networks
BibRef
Cernadas, E.,
Fernández-Delgado, M.,
González-Rufino, E.,
Carrión, P.,
Influence of normalization and color space to color texture
classification,
PR(61), No. 1, 2017, pp. 120-138.
Elsevier DOI
1705
Color texture classification
BibRef
Ardekani, R.[Reza],
Greenwood, A.K.[Anna K.],
Peichel, C.L.[Catherine L.],
Tavaré, S.[Simon],
Automated quantification of the schooling behaviour of sticklebacks,
JIVP(2013), No. 1, 2013, pp. 61.
DOI Link
1312
BibRef
Spampinato, C.,
Palazzo, S.,
Kavasidis, I.,
A texton-based kernel density estimation approach for background
modeling under extreme conditions,
CVIU(122), No. 1, 2014, pp. 74-83.
Elsevier DOI
1404
BibRef
And: A2, A3, A1:
Covariance based modeling of underwater scenes for fish detection,
ICIP13(1481-1485)
IEEE DOI
1412
Background and foreground modeling
BibRef
Chuang, M.C.[Meng-Che],
Hwang, J.N.[Jenq-Neng],
Williams, K.,
Towler, R.,
Tracking Live Fish From Low-Contrast and Low-Frame-Rate Stereo Videos,
CirSysVideo(25), No. 1, January 2015, pp. 167-179.
IEEE DOI
1502
aquaculture
BibRef
Atoum, Y.,
Srivastava, S.,
Liu, X.M.[Xiao-Ming],
Automatic Feeding Control for Dense Aquaculture Fish Tanks,
SPLetters(22), No. 8, August 2015, pp. 1089-1093.
IEEE DOI
1502
aquaculture
BibRef
Huang, P.X.[Phoenix X.],
Boom, B.J.[Bastiaan J.],
Fisher, R.B.[Robert B.],
Hierarchical classification with reject option for live fish
recognition,
MVA(26), No. 1, January 2015, pp. 89-102.
WWW Link.
1503
BibRef
Earlier:
GMM improves the reject option in hierarchical classification for
fish recognition,
WACV14(371-376)
IEEE DOI
1406
BibRef
Earlier:
Underwater Live Fish Recognition Using a Balance-Guaranteed Optimized
Tree,
ACCV12(I:422-433).
Springer DOI
1304
Databases
BibRef
Weeks, S.J.[Scarla J.],
Magno-Canto, M.M.[Marites M.],
Jaine, F.R.A.[Fabrice R. A.],
Brodie, J.[Jon],
Richardson, A.J.[Anthony J.],
Unique Sequence of Events Triggers Manta Ray Feeding Frenzy in the
Southern Great Barrier Reef, Australia,
RS(7), No. 3, 2015, pp. 3138-3152.
DOI Link
1504
Not really detection, analysis of effects.
BibRef
Nieuwhof, S.[Sil],
Herman, P.M.J.[Peter M. J.],
Dankers, N.[Norbert],
Troost, K.[Karin],
van der Wal, D.[Daphne],
Remote Sensing of Epibenthic Shellfish Using Synthetic Aperture Radar
Satellite Imagery,
RS(7), No. 4, 2015, pp. 3710-3734.
DOI Link
1505
BibRef
Ye, L.N.[Lin-Ning],
Hou, Z.[Zujun],
Eng, H.L.[How-Lung],
Context aware image enhancement for online fish behaviour monitoring,
IET-IPR(10), No. 2, 2016, pp. 149-157.
DOI Link
1602
Poisson equation
BibRef
Chuang, M.C.[Meng-Che],
Hwang, J.N.[Jenq-Neng],
Williams, K.[Kresimir],
A Feature Learning and Object Recognition Framework for Underwater
Fish Images,
IP(25), No. 4, April 2016, pp. 1862-1872.
IEEE DOI
1604
BibRef
Earlier:
Supervised and Unsupervised Feature Extraction Methods for Underwater
Fish Species Recognition,
CVAUI14(33-40)
IEEE DOI
1412
Aquaculture.
BibRef
Fisher, R.B.,
Chen-Burger, Y.H.,
Giordano, D.,
Hardman, L.,
Lin, F.P., (Eds.)
Fish4Knowledge:
Collecting and Analyzing Massive Coral Reef Fish Video Data,
Springer2016.
ISBN 978-3-319-30206-5
WWW Link.
See also Tropical Coral Reef Fish Detection, Tracking And Classification.
BibRef
1600
Boudhane, M.[Mohcine],
Nsiri, B.[Benayad],
Underwater image processing method for fish localization and
detection in submarine environment,
JVCIR(39), No. 1, 2016, pp. 226-238.
Elsevier DOI
1608
Object detection
BibRef
Hughes, B.[Benjamin],
Burghardt, T.[Tilo],
Automated Visual Fin Identification of Individual Great White Sharks,
IJCV(122), No. 3, May 2017, pp. 542-557.
Springer DOI
1704
BibRef
Earlier:
Automated Identification of Individual Great White Sharks from
Unrestricted Fin Imagery,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Lan, K.W.[Kuo-Wei],
Shimada, T.[Teruhisa],
Lee, M.A.[Ming-An],
Su, N.J.[Nan-Jay],
Chang, Y.[Yi],
Using Remote-Sensing Environmental and Fishery Data to Map Potential
Yellowfin Tuna Habitats in the Tropical Pacific Ocean,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Chuang, M.C.,
Hwang, J.N.,
Ye, J.H.,
Huang, S.C.,
Williams, K.,
Underwater Fish Tracking for Moving Cameras Based on Deformable
Multiple Kernels,
SMCS(47), No. 9, September 2017, pp. 2467-2477.
IEEE DOI
1708
Cameras, Deformable models, Histograms, Kernel, Object tracking,
Target tracking, Deformable part model (DPM),
fisheries application, mean-shift (MS) algorithm, moving cameras,
object, tracking
BibRef
Yi, D.H.[Dong Hoon],
Gong, Z.[Zheng],
Jech, J.M.[J. Michael],
Ratilal, P.[Purnima],
Makris, N.C.[Nicholas C.],
Instantaneous 3D Continental-Shelf Scale Imaging of Oceanic Fish by
Multi-Spectral Resonance Sensing Reveals Group Behavior during
Spawning Migration,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Beyan, C.[Cigdem],
Katsageorgiou, V.M.[Vasiliki-Maria],
Fisher, R.B.[Robert B.],
Extracting statistically significant behaviour from fish tracking data
with and without large dataset cleaning,
IET-CV(12), No. 2, March 2018, pp. 162-170.
DOI Link
1804
BibRef
Mohamed, H.[Hassan],
Nadaoka, K.[Kazuo],
Nakamura, T.[Takashi],
Assessment of Machine Learning Algorithms for Automatic Benthic Cover
Monitoring and Mapping Using Towed Underwater Video Camera and
High-Resolution Satellite Images,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
habitat monitoring.
BibRef
Guo, Y.H.[Yuan-Hao],
Xiong, Z.[Zhan],
Verbeek, F.J.[Fons J.],
An efficient and robust hybrid method for segmentation of zebrafish
objects from bright-field microscope images,
MVA(29), No. 8, November 2018, pp. 1211-1225.
WWW Link.
1811
BibRef
Kalacska, M.[Margaret],
Lucanus, O.[Oliver],
Sousa, L.[Leandro],
Vieira, T.[Thiago],
Arroyo-Mora, J.P.[Juan Pablo],
Freshwater Fish Habitat Complexity Mapping Using Above and Underwater
Structure-From-Motion Photogrammetry,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, W.,
Gu, D.,
Xie, G.,
Autonomous Optimization of Swimming Gait in a Fish Robot With
Multiple Onboard Sensors,
SMCS(49), No. 5, May 2019, pp. 891-903.
IEEE DOI
1904
Robot sensing systems, Optimization, Biological system modeling,
Unmanned underwater vehicles, Aquatic robots,
underwater robots
BibRef
Huang, T.W.,
Hwang, J.N.,
Romain, S.,
Wallace, F.,
Fish Tracking and Segmentation From Stereo Videos on the Wild Sea
Surface for Electronic Monitoring of Rail Fishing,
CirSysVideo(29), No. 10, October 2019, pp. 3146-3158.
IEEE DOI
1910
BibRef
Earlier:
Live Tracking of Rail-Based Fish Catching on Wild Sea Surface,
CVAUI16(25-30)
IEEE DOI
1701
aquaculture, image filtering, image segmentation, Kalman filters,
object detection, stereo image processing,
stereo video.
Computer vision
BibRef
Wang, G.,
Hwang, J.N.,
Williams, K.,
Wallace, F.,
Rose, C.S.,
Shrinking Encoding with Two-Level Codebook Learning for Fine-Grained
Fish Recognition,
CVAUI16(31-36)
IEEE DOI
1701
Encoding
BibRef
Wang, G.,
Hwang, J.N.,
Williams, K.,
Cutter, G.,
Closed-Loop Tracking-by-Detection for ROV-Based Multiple Fish
Tracking,
CVAUI16(7-12)
IEEE DOI
1701
Cameras
BibRef
Collas, F.P.L.[Frank P.L.],
van Iersel, W.K.[Wimala K.],
Straatsma, M.W.[Menno W.],
Buijse, A.D.[Anthonie D.],
Leuven, R.S.E.W.[Rob S.E.W.],
Sub-Daily Temperature Heterogeneity in a Side Channel and the
Influence on Habitat Suitability of Freshwater Fish,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Paspalakis, S.[Stavros],
Moirogiorgou, K.[Konstantia],
Papandroulakis, N.[Nikos],
Giakos, G.[George],
Zervakis, M.[Michalis],
Automated fish cage net inspection using image processing techniques,
IET-IPR(14), No. 10, August 2020, pp. 2028-2034.
DOI Link
2008
BibRef
Oleksyn, S.[Semonn],
Tosetto, L.[Louise],
Raoult, V.[Vincent],
Williamson, J.E.[Jane E.],
Drone-Based Tracking of the Fine-Scale Movement of a Coastal Stingray
(Bathytoshia brevicaudata),
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zhao, Z.X.[Zhen-Xi],
Liu, Y.[Yang],
Sun, X.D.[Xu-Dong],
Liu, J.T.[Jin-Tao],
Yang, X.T.[Xin-Ting],
Zhou, C.[Chao],
Composited FishNet: Fish Detection and Species Recognition From
Low-Quality Underwater Videos,
IP(30), 2021, pp. 4719-4734.
IEEE DOI
2105
BibRef
Ding, W.X.[Wen-Xiang],
Zhang, C.Y.[Cai-Yun],
Hu, J.Y.[Jian-Yu],
Shang, S.P.[Shao-Ping],
Unusual Fish Assemblages Associated with Environmental Changes in the
East China Sea in February and March 2017,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Berg, H.[Hĺkan],
Mulokozi, D.[Deogratias],
Udikas, L.[Lars],
A GIS Assessment of the Suitability of Tilapia and Clarias Pond
Farming in Tanzania,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Li, X.[Xiaoen],
Xiao, Y.[Yang],
Su, F.Z.[Fen-Zhen],
Wu, W.Z.[Wen-Zhou],
Zhou, L.[Liang],
AIS and VBD Data Fusion for Marine Fishing Intensity Mapping and
Analysis in the Northern Part of the South China Sea,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Katija, K.[Kakani],
Roberts, P.L.D.[Paul L. D.],
Daniels, J.[Joost],
Lapides, A.[Alexandra],
Barnard, K.[Kevin],
Risi, M.[Mike],
Ranaan, B.Y.[Ben Y.],
Woodward, B.G.[Benjamin G.],
Takahashi, J.[Jonathan],
Visual tracking of deepwater animals using machine
learning-controlled robotic underwater vehicles,
WACV21(859-868)
IEEE DOI
2106
Visualization, Target tracking, Machine learning algorithms,
Animals, Oceans, Ecosystems
BibRef
Liu, J.[Jincun],
Wu, Z.X.[Zheng-Xing],
Yu, J.Z.[Jun-Zhi],
Xue, Z.B.[Zhi-Bin],
Cooperative Target Tracking in Aquatic Environment Using Dual Robotic
Dolphins,
SMCS(51), No. 8, August 2021, pp. 4782-4792.
IEEE DOI
2107
Dolphins, Robot kinematics, Path planning, Target tracking, Turning,
Task analysis, Behavior based, biomimetic robotic dolphin,
rapidly exploring random tree (RRT)
BibRef
Zang, X.Q.[Xiao-Qin],
Yin, T.Z.[Tian-Zhixi],
Hou, Z.S.[Zhang-Shuan],
Mueller, R.P.[Robert P.],
Deng, Z.Q.D.[Zhi-Qun Daniel],
Jacobson, P.T.[Paul T.],
Deep Learning for Automated Detection and Identification of Migrating
American Eel Anguilla rostrata from Imaging Sonar Data,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Zhang, M.[Miao],
Rock, S.[Stephen],
Augmenting Discriminative Correlation Filters with Stereo Blob
Tracking for Long-Term Tracking of Underwater Animals,
MVA21(1-5)
DOI Link
2109
Resistance, Target tracking, Correlation,
Memory management, Filtering algorithms, Information filters
BibRef
Zhuang, P.Q.[Pei-Qin],
Wang, Y.[Yali],
Qiao, Y.[Yu],
Wildfish++: A Comprehensive Fish Benchmark for Multimedia Research,
MultMed(23), 2021, pp. 3603-3617.
IEEE DOI
2110
Task analysis, Benchmark testing, Fish, Visualization,
Feature extraction, Morphology, WildFish++,
Automatic Fish Classification
BibRef
Duane, D.[Daniel],
Godř, O.R.[Olav Rune],
Makris, N.C.[Nicholas C.],
Quantification of Wide-Area Norwegian Spring-Spawning Herring
Population Density with Ocean Acoustic Waveguide Remote Sensing
(OAWRS),
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Duane, D.[Daniel],
Zhu, C.Y.[Chen-Yang],
Piavsky, F.[Felix],
Godř, O.R.[Olav Rune],
Makris, N.C.[Nicholas C.],
The Effect of Attenuation from Fish on Passive Detection of Sound
Sources in Ocean Waveguide Environments,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Berg, P.[Paul],
Maia, D.S.[Deise Santana],
Pham, M.T.[Minh-Tan],
Lefčvre, S.[Sébastien],
Weakly Supervised Detection of Marine Animals in High Resolution
Aerial Images,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, W.B.[Wen-Bo],
Wu, C.Y.[Chao-Yi],
Bao, Z.S.[Zhen-Shan],
DPANet: Dual Pooling-aggregated Attention Network for fish
segmentation,
IET-CV(16), No. 1, 2022, pp. 67-82.
DOI Link
2202
convolutional neural nets, image segmentation,
learning (artificial intelligence)
BibRef
Li, L.[Lin],
Dong, B.[Bo],
Rigall, E.[Eric],
Zhou, T.[Tao],
Dong, J.Y.[Jun-Yu],
Chen, G.[Geng],
Marine Animal Segmentation,
CirSysVideo(32), No. 4, April 2022, pp. 2303-2314.
IEEE DOI
2204
Marine animals, Annotations, Animals, Task analysis,
Image segmentation, Image enhancement, Feature extraction,
camouflaged marine animals
BibRef
Elise, S.[Simon],
Guilhaumon, F.[François],
Mou-Tham, G.[Gérard],
Urbina-Barreto, I.[Isabel],
Vigliola, L.[Laurent],
Kulbicki, M.[Michel],
Bruggemann, J.H.[J. Henrich],
Combining Passive Acoustics and Environmental Data for Scaling Up
Ecosystem Monitoring: A Test on Coral Reef Fishes,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Mammel, M.[Mubarak],
Naimullah, M.[Muhamad],
Vayghan, A.H.[Ali Haghi],
Hsu, J.[Jhen],
Lee, M.A.[Ming-An],
Wu, J.H.[Jun-Hong],
Wang, Y.C.[Yi-Chen],
Lan, K.W.[Kuo-Wei],
Variability in the Spatiotemporal Distribution Patterns of Greater
Amberjack in Response to Environmental Factors in the Taiwan Strait
Using Remote Sensing Data,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, T.[Tao],
He, S.Y.[Shuang-Yan],
Liu, H.Y.[Hao-Yang],
Gu, Y.Z.[Yan-Zhen],
Li, P.L.[Pei-Liang],
A Robust Underwater Multiclass Fish-School Tracking Algorithm,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Bigal, E.[Eyal],
Galili, O.[Ori],
van Rijn, I.[Itai],
Rosso, M.[Massimiliano],
Cleguer, C.[Christophe],
Hodgson, A.[Amanda],
Scheinin, A.[Aviad],
Tchernov, D.[Dan],
Reduction of Species Identification Errors in Surveys of Marine
Wildlife Abundance Utilising Unoccupied Aerial Vehicles (UAVs),
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chen, Z.[Ziwen],
Cao, L.J.[Li-Jie],
Wang, Q.H.[Qi-Hua],
Cai, Y.[Yu],
FishNet: Fish visual recognition with one stage multi-task learning,
IET-IPR(16), No. 12, 2022, pp. 3237-3246.
DOI Link
2209
BibRef
Zhang, S.[Shuang],
Qian, X.Y.[Xin-Yu],
Liu, Z.J.[Zhi-Jie],
Li, Q.[Qing],
Li, G.[Guang],
PDE Modeling and Tracking Control for the Flexible Tail of an
Autonomous Robotic Fish,
SMCS(52), No. 12, December 2022, pp. 7618-7627.
IEEE DOI
2212
FIsh, Robots, Mathematical models, Robot kinematics, Regulators,
Actuators, Propulsion, Tracking, Autonomous robotic fish,
tracking control
BibRef
Many, G.[Gaël],
Escoffier, N.[Nicolas],
Ferrari, M.[Michele],
Jacquet, P.[Philippe],
Odermatt, D.[Daniel],
Mariethoz, G.[Gregoire],
Perolo, P.[Pascal],
Perga, M.E.[Marie-Elodie],
Long-Term Spatiotemporal Variability of Whitings in Lake Geneva from
Multispectral Remote Sensing and Machine Learning,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yin, X.Q.[Xiao-Qing],
Yang, D.T.[Ding-Tian],
Zhao, L.H.[Lin-Hong],
Zhong, R.[Rong],
Du, R.R.[Ran-Ran],
Fishery Resource Evaluation with Hydroacoustic and Remote Sensing in
Yangjiang Coastal Waters in Summer,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Xu, Y.[Yuan],
Jin, Y.C.[Yi-Chao],
Zhang, Y.[Yang],
Zhu, Q.[Qunxiong],
He, Y.L.[Yan-Lin],
Sheng, H.[Hao],
3D zebrafish tracking with topology association,
IET-IPR(17), No. 4, 2023, pp. 1044-1059.
DOI Link
2303
Multi-object tracking, topology association, 3D tracking, Zebrafish
BibRef
McEver, R.A.[R. Austin],
Zhang, B.[Bowen],
Levenson, C.[Connor],
Iftekhar, A.S.M.,
Manjunath, B.S.,
Context-Driven Detection of Invertebrate Species in Deep-Sea Video,
IJCV(131), No. 6, June 2023, pp. 1367-1388.
Springer DOI
2305
I know they aren't fish, but same environment.
BibRef
Cai, L.[Levi],
McGuire, N.E.[Nathan E.],
Hanlon, R.[Roger],
Mooney, T.A.[T. Aran],
Girdhar, Y.[Yogesh],
Semi-supervised Visual Tracking of Marine Animals Using Autonomous
Underwater Vehicles,
IJCV(131), No. 6, June 2023, pp. 1406-1427.
Springer DOI
2305
BibRef
Zhao, M.[Meng],
Wu, J.F.[Jun-Feng],
Yu, H.[Hong],
Li, H.Q.[Hai-Qing],
Xu, J.W.[Jing-Wen],
Cheng, S.Q.[Si-Qi],
Gu, L.S.[Li-Shuai],
Meng, J.[Juan],
Fish Detecting Using YOLOv4 and CVAE in Aquaculture Ponds with a
Non-Uniform Strong Reflection Background,
IEICE(E106-D), No. 5, May 2023, pp. 715-725.
WWW Link.
2305
BibRef
Prado, E.[Elena],
Abad-Uribarren, A.[Alberto],
Ramo, R.[Rubén],
Sierra, S.[Sergio],
González-Pola, C.[César],
Cristobo, J.[Javier],
Ríos, P.[Pilar],
Grańa, R.[Rocío],
Aierbe, E.[Eneko],
Rodríguez, J.M.[Juan Manuel],
Rodríguez-Cabello, C.[Cristina],
Modica, L.[Larissa],
Rodríguez-Basalo, A.[Augusto],
Sánchez, F.[Francisco],
Describing Polyps Behavior of a Deep-Sea Gorgonian, Placogorgia sp.,
Using a Deep-Learning Approach,
RS(15), No. 11, 2023, pp. 2777.
DOI Link
2306
BibRef
Tsuda, M.E.[Masaki E.],
Miller, N.A.[Nathan A.],
Saito, R.[Rui],
Park, J.[Jaeyoon],
Oozeki, Y.[Yoshioki],
Automated VIIRS Boat Detection Based on Machine Learning and Its
Application to Monitoring Fisheries in the East China Sea,
RS(15), No. 11, 2023, pp. 2911.
DOI Link
2306
BibRef
Monteiro, F.[Filipe],
Bexiga, V.[Vasco],
Chaves, P.[Paulo],
Godinho, J.[Joaquim],
Henriques, D.[David],
Melo-Pinto, P.[Pedro],
Nunes, T.[Tiago],
Piedade, F.[Fernando],
Pimenta, N.[Nelson],
Sustelo, L.[Luis],
Fernandes, A.M.[Armando M.],
Classification of Fish Species Using Multispectral Data from a
Low-Cost Camera and Machine Learning,
RS(15), No. 16, 2023, pp. 3952.
DOI Link
2309
BibRef
Kelaher, B.P.[Brendan P.],
Monteforte, K.I.[Kim I.],
Morris, S.G.[Stephen G.],
Schlacher, T.A.[Thomas A.],
March, D.T.[Duane T.],
Tucker, J.P.[James P.],
Butcher, P.A.[Paul A.],
Drone-Based Assessment of Marine Megafauna off Wave-Exposed Sandy
Beaches,
RS(15), No. 16, 2023, pp. 4018.
DOI Link
2309
BibRef
Cheng, J.G.[Jin-Guang],
Wu, Z.W.[Zong-Wei],
Wang, S.[Shuo],
Demonceaux, C.[Cédric],
Jiang, Q.P.[Qiu-Ping],
Bidirectional Collaborative Mentoring Network for Marine Organism
Detection and Beyond,
CirSysVideo(33), No. 11, November 2023, pp. 6595-6608.
IEEE DOI Code:
WWW Link.
2311
BibRef
Yu, Y.Z.[Yao-Zhen],
Zhang, H.[Hao],
Yuan, F.[Fei],
Key point detection method for fish size measurement based on deep
learning,
IET-IPR(17), No. 14, 2023, pp. 4142-4158.
DOI Link
2312
image processing, length measurement, measurement systems
BibRef
Zhao, Z.X.[Zhen-Xi],
Yang, X.T.[Xin-Ting],
Liu, J.T.[Jin-Tao],
Zhou, C.[Chao],
Zhao, C.J.[Chun-Jiang],
GCVC: Graph Convolution Vector Distribution Calibration for Fish
Group Activity Recognition,
MultMed(26), 2024, pp. 1776-1789.
IEEE DOI
2402
Fish, Feature extraction, Activity recognition, Calibration,
Adhesives, Training, Convolution, fish activity dataset
BibRef
Zhang, P.P.[Ping-Ping],
Yan, T.Y.[Tian-Yu],
Liu, Y.[Yang],
Lu, H.C.[Hu-Chuan],
Fantastic Animals and Where to Find Them:
Segment Any Marine Animal with Dual SAM,
CVPR24(2578-2587)
IEEE DOI Code:
WWW Link.
2410
Representation learning, Location awareness, Image segmentation,
Codes, Feature extraction,
Marine Animal Segmentation
BibRef
Lu, Z.X.[Zhao-Xuan],
Zhu, X.L.[Xiao-Long],
Guo, H.T.[Hai-Tao],
Xie, X.G.[Xin-Gang],
Chen, X.Z.[Xiang-Zi],
Quan, X.Q.[Xiang-Qian],
FishFocusNet: An improved method based on YOLOv8 for underwater
tropical fish identification,
IET-IPR(18), No. 12, 2024, pp. 3634-3649.
DOI Link
2411
convolutional neural nets, object detection, object recognition
BibRef
Zhang, Z.K.[Zhen-Kai],
Li, W.[Wanghua],
Seet, B.C.[Boon-Chong],
A lightweight underwater fish image semantic segmentation model based
on U-Net,
IET-IPR(18), No. 12, 2024, pp. 3143-3155.
DOI Link
2411
computer vision, convolutional neural nets, image segmentation,
oceanographic techniques
BibRef
Xu, J.W.[Jia-Wei],
Chen, F.[Fen],
Huang, L.[Lian],
Liu, T.[Tingna],
Peng, Z.[Zongju],
Underwater organisms detection algorithm based on multi-scale
perception and representation enhancement,
IET-IPR(18), No. 13, 2024, pp. 4032-4046.
DOI Link
2411
image enhancement, object detection
BibRef
Dawkins, M.[Matthew],
Prior, J.[Jack],
Lewis, B.[Bryon],
Faillettaz, R.[Robin],
Banez, T.[Thompson],
Salvi, M.[Mary],
Rollo, A.[Audrey],
Simon, J.[Julien],
Campbell, M.[Matthew],
Lucero, M.[Matthew],
Chaudhary, A.[Aashish],
Richards, B.[Benjamin],
Hoogs, A.[Anthony],
FishTrack23: An Ensemble Underwater Dataset for Multi-Object Tracking,
WACV24(7152-7161)
IEEE DOI
2404
Target tracking, Annotations, Snow, Heuristic algorithms,
Organizations, Detectors, Applications, Animals / Insects,
Datasets and evaluations
BibRef
O'Keeffe, H.[Hamish],
Xue, B.[Bing],
Zhang, M.J.[Meng-Jie],
Hawes, N.[Nicola],
Lovell-Smith, C.[Cris],
Real-Time Instance Segmentation Techniques using Neural Networks for
the Assessment of Green-Lipped Mussels,
IVCNZ23(1-6)
IEEE DOI
2403
Instance segmentation, Performance evaluation,
Quantization (signal), Neural networks, Streaming media, CenterMask
BibRef
Khan, F.F.[Faizan Farooq],
Li, X.[Xiang],
Temple, A.J.[Andrew J.],
Elhoseiny, M.[Mohamed],
FishNet: A Large-scale Dataset and Benchmark for Fish Recognition,
Detection, and Functional Trait Prediction,
ICCV23(20439-20449)
IEEE DOI Code:
WWW Link.
2401
BibRef
Lin, Y.[Yuan],
Chu, Z.Q.[Zhao-Qi],
Korhonen, J.[Jari],
Xu, J.Y.[Jia-Yi],
Liu, X.R.[Xiang-Rong],
Liu, J.[Juan],
Fang, L.[Lvping],
Yang, W.[Weidi],
Ghose, D.[Debasish],
You, J.Y.[Jun-Yong],
Fast Accurate Fish Recognition with Deep Learning Based on a
Domain-Specific Large-Scale Fish Dataset,
MMMod23(I: 515-526).
Springer DOI
2304
BibRef
Kumar, N.[Navdeep],
di Biagio, C.[Claudia],
Dellacqua, Z.[Zachary],
Raman, R.[Ratish],
Martini, A.[Arianna],
Boglione, C.[Clara],
Muller, M.[Marc],
Geurts, P.[Pierre],
Marée, R.[Raphaël],
Empirical Evaluation of Deep Learning Approaches for Landmark Detection
in Fish Bioimages,
BioImage22(470-486).
Springer DOI
2304
BibRef
Slonimer, A.L.[Alex L.],
Cote, M.[Melissa],
Marques, T.P.[Tunai Porto],
Rezvanifar, A.[Alireza],
Dosso, S.E.[Stan E.],
Albu, A.B.[Alexandra Branzan],
Ersahin, K.[Kaan],
Mudge, T.[Todd],
Gauthier, S.[Stéphane],
Instance Segmentation of Herring and Salmon Schools in Acoustic
Echograms using a Hybrid U-Net,
CRV22(8-15)
IEEE DOI
2301
Satellites, Oceans, Semantics, Ecosystems, Distributed databases, Fish,
Encoding, Unet, instance-segmentation, fish, echogram
BibRef
Adolfo, G.[Gonçalo],
Bernardino, A.[Alexandre],
Baylina, N.[Núria],
Pinto, H.S.[H. Sofia],
Comparison of Methodologies for Detecting Feeding Activity in Aquatic
Environment,
ICPR22(706-712)
IEEE DOI
2212
Measurement, Training, Sea surface, Training data, Fish, Cameras,
Convolutional neural networks
BibRef
Kay, J.[Justin],
Kulits, P.[Peter],
Stathatos, S.[Suzanne],
Deng, S.Q.[Si-Qi],
Young, E.[Erik],
Beery, S.[Sara],
van Horn, G.[Grant],
Perona, P.[Pietro],
The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object
Tracking and Counting,
ECCV22(VIII:290-311).
Springer DOI
2211
Dataste, Fish.
BibRef
Mei, J.[Jie],
Romain, S.[Suzanne],
Rose, C.[Craig],
Magrane, K.[Kelsey],
Hwang, J.N.[Jenq-Neng],
HCIL: Hierarchical Class Incremental Learning for Longline Fishing
Visual Monitoring,
ICIP22(3662-3666)
IEEE DOI
2211
Visualization, Training data, Fish, Cameras, Monitoring, Strain,
Hierarchical Classification, Class Incremental Learning,
Longline Fishing
BibRef
Ospici, M.[Matthieu],
Sys, K.[Klaas],
Guegan-Marat, S.[Sophie],
Prediction of Fish Location by Combining Fisheries Data and Sea Bottom
Temperature Forecasting,
CIAP22(III:437-448).
Springer DOI
2205
BibRef
Moskvyak, O.[Olga],
Maire, F.[Frederic],
Dayoub, F.[Feras],
Armstrong, A.O.[Asia O.],
Baktashmotlagh, M.[Mahsa],
Robust Re-identification of Manta Rays from Natural Markings by
Learning Pose Invariant Embeddings,
DICTA21(1-8)
IEEE DOI
2201
Location awareness, Visualization, Databases, Wildlife, Whales,
Lighting, Morphology
BibRef
Yang, Y.H.[Yun-Han],
Xue, B.[Bing],
Jesson, L.[Linley],
Wylie, M.[Matthew],
Zhang, M.J.[Meng-Jie],
Wellenreuther, M.[Maren],
Deep Convolutional Neural Networks for Fish Weight Prediction from
Images,
IVCNZ21(1-6)
IEEE DOI
2201
BibRef
Pradana, H.[Hilmil],
Horio, K.[Keiichi],
Tuna Nutriment Tracking using Trajectory Mapping in Application to
Aquaculture Fish Tank,
DICTA20(1-8)
IEEE DOI
2201
Tracking, Production, Fish, Trajectory, Standards, Aquaculture, Videos,
Productivity, Fish Feeding, Nutriment, Tracking Algorithm,
Real Environment Datasets
BibRef
Shen, Z.[Zhou],
Nguyen, C.[Chuong],
Temporal 3D RetinaNet for fish detection,
DICTA20(1-5)
IEEE DOI
2201
Convolutional codes, Solid modeling, Fish, Feature extraction,
Sports, Fish detection, 3D convolution, Temporal feature,
3D-subnets RetinaNet
BibRef
Kumar, N.[Navdeep],
Carletti, A.[Alessio],
Gavaia, P.J.[Paulo J.],
Muller, M.[Marc],
Cancela, M.L.[M. Leonor],
Geurts, P.[Pierre],
Marée, R.[Raphaël],
Deep Learning Approaches for Head and Operculum Segmentation in
Zebrafish Microscopy Images,
CAIP21(I:154-164).
Springer DOI
2112
BibRef
Marques, T.P.[Tunai Porto],
Cote, M.[Melissa],
Rezvanifar, A.[Alireza],
Albu, A.B.[Alexandra Branzan],
Ersahin, K.[Kaan],
Mudge, T.[Todd],
Gauthier, S.[Stéphane],
Instance Segmentation-based Identification of Pelagic Species in
Acoustic Backscatter Data,
PBVS21(4373-4382)
IEEE DOI
2109
Training, Image segmentation, Semantics, Object detection,
Standardization, Biology
BibRef
Fontana, I.[Ignazio],
Giacalone, G.[Giovanni],
Rizzo, R.[Riccardo],
Barra, M.[Marco],
Mangoni, O.[Olga],
Bonanno, A.[Angelo],
Basilone, G.[Gualtiero],
Genovese, S.[Simona],
Mazzola, S.[Salvatore],
Lo Bosco, G.[Giosuč],
Aronica, S.[Salvatore],
Unsupervised Classification of Acoustic Echoes from Two Krill Species
in the Southern Ocean (Ross Sea),
MAES20(65-74).
Springer DOI
2103
BibRef
Marques, T.P.[Tunai Porto],
Rezvanifar, A.[Alireza],
Cote, M.[Melissa],
Albu, A.B.[Alexandra Branzan],
Ersahin, K.[Kaan],
Mudge, T.[Todd],
Gauthier, S.[Stéphane],
Detecting Marine Species in Echograms via Traditional, Hybrid, and
Deep Learning Frameworks,
ICPR21(5928-5935)
IEEE DOI
2105
Training, Deep learning, Visualization, Scalability,
Object detection, Manuals, Feature extraction
BibRef
Martija, M.A.M.[Mygel Andrei M.],
Naval, P.C.[Prospero C.],
SynDHN: Multi-Object Fish Tracker Trained on Synthetic Underwater
Videos,
ICPR21(8841-8848)
IEEE DOI
2105
Video tracking, Video sequences, Estimation, Detectors, Fish,
Prediction algorithms, Approximation algorithms
BibRef
Hsu, H.M.[Hung-Min],
Xie, Z.[Ziyi],
Hwang, J.N.[Jenq-Neng],
Berdahl, A.[Andrew],
Robust Fish Enumeration by Multiple Object Tracking in Overhead Videos,
CVAUI20(434-442).
Springer DOI
2103
BibRef
Mei, J.[Jie],
Hwang, J.N.[Jenq-Neng],
Romain, S.[Suzanne],
Rose, C.[Craig],
Moore, B.[Braden],
Magrane, K.[Kelsey],
Video-based Hierarchical Species Classification for Longline Fishing
Monitoring,
CVAUI20(422-433).
Springer DOI
2103
BibRef
Zhang, Z.,
Yu, L.,
Zhang, J.,
Wu, Q.,
A Vision Based Fish Processing System,
VCIP20(260-260)
IEEE DOI
2102
aquaculture, fishing industry,
food processing industry, food products, supply chain management,
Servers
BibRef
Lochhead, I.,
Hedley, N.,
3D Modelling in Temperate Waters: Building Rigs and Data Science to
Support Glass Sponge Monitoring Efforts In Coastal British Columbia,
ISPRS20(B2:969-976).
DOI Link
2012
BibRef
Pedersen, M.,
Haurum, J.B.,
Hein Bengtson, S.,
Moeslund, T.B.,
3D-ZeF: A 3D Zebrafish Tracking Benchmark Dataset,
CVPR20(2423-2433)
IEEE DOI
2008
Tracking,
Cameras, Visualization, Videos, Complexity theory
BibRef
Castelo, J.[José],
Pinto, H.S.[H. Sofia],
Bernardino, A.[Alexandre],
Baylina, N.[Núria],
Video Based Live Tracking of Fishes in Tanks,
ICIAR20(I:161-173).
Springer DOI
2007
BibRef
Haurum, J.B.,
Karpova, A.,
Pedersen, M.,
Bengtson, S.H.,
Moeslund, T.B.,
Re-Identification of Zebrafish using Metric Learning,
WACVWS20(1-11)
IEEE DOI
2006
Image color analysis, Measurement, Cameras, Task analysis, Head
BibRef
Liu, P.[Ping],
Yang, H.B.[Hong-Bo],
Fu, J.N.[Jing-Nan],
Marine Biometric Recognition Algorithm Based on YOLOV3-GAN Network,
MMMod20(I:581-592).
Springer DOI
2003
TRacking fish resources.
BibRef
Zamzuri, N.A.A.,
Hassan, M.I.,
Potential Fish Ground Breeding Area Based On Localized Criteria For
Sustainable Food Security,
GGT19(719-728).
DOI Link
1912
BibRef
Huang, T.,
Hwang, J.,
Romain, S.,
Wallace, F.,
Recognizing Fish Species Captured Live on Wild Sea Surface in Videos
by Deep Metric Learning with a Temporal Constraint,
ICIP19(3407-3411)
IEEE DOI
1910
Image sequence classification, deep metric learning,
fine-grained classification, fishery species
BibRef
Kokaki, Y.,
Tawara, N.,
Kobayashi, T.,
Hashimoto, K.,
Ogawa, T.,
Sequential Fish Catch Forecasting Using Bayesian State Space Models,
ICPR18(776-781)
IEEE DOI
1812
aquaculture, Bayes methods, fishing industry, Monte Carlo methods,
parameter estimation, state-space methods,
Industries
BibRef
Möller, T.[Torben],
Nilssen, I.[Ingunn],
Nattkemper, T.W.[Tim Wilhelm],
Tracking Sponge Size and Behaviour with Fixed Underwater Observatories,
CVAUI18(45-54).
Springer DOI
1901
BibRef
Shevchenko, V.,
Eerola, T.,
Kaarna, A.,
Fish Detection from Low Visibility Underwater Videos,
ICPR18(1971-1976)
IEEE DOI
1812
Videos, Task analysis, Fish, Lighting, Adaptation models,
Optical distortion, Adaptive optics
BibRef
Chou, Y.,
Chen, C.,
Liu, K.,
Chen, C.,
Changing Background to Foreground: An Augmentation Method Based on
Conditional Generative Network for Stingray Detection,
ICIP18(2740-2744)
IEEE DOI
1809
Training, Object detection, Sea surface, Generators,
Detectors, Task analysis, Object detection, aerial image,
generative latent optimization
BibRef
Liu, L.,
Lu, H.,
Cao, Z.,
Xiao, Y.,
Counting Fish in Sonar Images,
ICIP18(3189-3193)
IEEE DOI
1809
Sonar, Fish, Training, Visualization, Imaging, Task analysis, Estimation,
Fish counting, sonar images, sample imbalance, local regression,
convolutional neural networks
BibRef
Li, X.,
Wei, Z.,
Huang, L.,
Nie, J.,
Zhang, W.,
Wang, L.,
Real-Time Underwater Fish Tracking Based on Adaptive Multi-Appearance
Model,
ICIP18(2710-2714)
IEEE DOI
1809
Fish, Adaptation models, Target tracking, Correlation,
Real-time systems, Strain, visual tracking,
underwater vision
BibRef
Guo, Y.,
van Wijk, R.C.,
Krekels, E.H.J.,
Spaink, H.P.,
van der Graaf, P.H.,
Verbeek, F.J.,
Multi-modal 3d reconstruction and measurements of zebrafish larvae
and its organs using axial-view microscopy,
ICIP17(2194-2198)
IEEE DOI
1803
Cameras, Liver, Microscopy, Shape,
3D measurements, Multi-modal 3D reconstruction,
zebrafish and organ
BibRef
Nilssen, I.,
Möller, T.,
Nattkemper, T.W.,
Active Learning for the Classification of Species in Underwater
Images from a Fixed Observatory,
Wildlife17(2891-2897)
IEEE DOI
1802
Image color analysis, Learning systems, Monitoring, Observatories,
Support vector machines, Training, Wildlife
BibRef
Rasmussen, C.,
Zhao, J.,
Ferraro, D.,
Trembanis, A.,
Deep Census: AUV-Based Scallop Population Monitoring,
Wildlife17(2865-2873)
IEEE DOI
1802
Cameras, Image color analysis, Manuals, Object detection, Sociology, Statistics
BibRef
Li, T.[Teng],
Wang, X.F.[Xue-Feng],
Sun, M.Z.[Ming-Zhu],
Zhao, X.[Xin],
Design and Implementation of the Three-Dimensional Observation System
for Adult Zebrafish,
CVS17(553-563).
Springer DOI
1711
BibRef
Hsiao, Y.H.,
Chen, C.C.,
Over-atoms accumulation orthogonal matching pursuit reconstruction
algorithm for fish recognition and identification,
ICPR16(1071-1076)
IEEE DOI
1705
Databases, Feature extraction, Fish, Image reconstruction,
Matching pursuit algorithms, Reconstruction algorithms, Testing,
compressive sensing, orthogonal matching pursuit, pattern, recognition
BibRef
Hasija, S.,
Buragohain, M.J.,
Indu, S.,
Fish Species Classification Using Graph Embedding Discriminant
Analysis,
CMVIT17(81-86)
IEEE DOI
1704
aquaculture
BibRef
Zhou, Q.[Qian],
Miller, G.[Gregor],
Wu, K.[Kai],
Correa, D.,
Fels, S.[Sidney],
Automatic Calibration of a Multiple-Projector Spherical Fish Tank VR
Display,
WACV17(1072-1081)
IEEE DOI
1609
Calibration, Cameras, Distortion, Image reconstruction,
Image resolution, Shape, Three-dimensional, displays
BibRef
Zhou, Q.[Qian],
Miller, G.[Gregor],
Wu, K.[Kai],
Stavness, I.[Ian],
Fels, S.[Sidney],
Analysis and Practical Minimization of Registration Error in a
Spherical Fish Tank Virtual Reality System,
ACCV16(IV: 519-534).
Springer DOI
1704
BibRef
Seese, N.,
Myers, A.,
Smith, K.,
Smith, A.O.,
Adaptive Foreground Extraction for Deep Fish Classification,
CVAUI16(19-24)
IEEE DOI
1701
Computer vision
BibRef
Podila, S.[Sahithi],
Zhu, Y.[Ying],
Simulating a Predator Fish Attacking a School of Prey Fish in 3D
Graphics,
ISVC16(II: 586-594).
Springer DOI
1701
BibRef
Koreitem, K.[Karim],
Girdhar, Y.[Yogesh],
Cho, W.[Walter],
Singh, H.[Hanumant],
Pineda, J.[Jesus],
Dudek, G.[Gregory],
Subsea Fauna Enumeration Using Vision-Based Marine Robots,
CRV16(101-108)
IEEE DOI
1612
Marine Robotics; Visual Learning
BibRef
Sansone, C.[Carmine],
Pucher, D.[Daniel],
Artner, N.M.[Nicole M.],
Kropatsch, W.G.[Walter G.],
Saggese, A.[Alessia],
Vento, M.[Mario],
Shape Normalizing and Tracking Dancing Worms,
SSSPR16(390-400).
Springer DOI
1611
Marine worms.
BibRef
Villon, S.[Sébastien],
Chaumont, M.[Marc],
Subsol, G.[Gérard],
Villéger, S.[Sébastien],
Claverie, T.[Thomas],
Mouillot, D.[David],
Coral Reef Fish Detection and Recognition in Underwater Videos by
Supervised Machine Learning: Comparison Between Deep Learning and
HOG+SVM Methods,
ACIVS16(160-171).
Springer DOI
1611
BibRef
Hsiao, Y.H.,
Chen, C.C.,
A sparse sample collection and representation method using
re-weighting and dynamically updating OMP for fish tracking,
ICIP16(3494-3497)
IEEE DOI
1610
Computers
BibRef
Jovanovic, V.,
Risojevic, V.,
Babic, Z.,
Svendsen, E.,
Stahl, A.,
Splash detection in surveillance videos of offshore fish production
plants,
WSSIP16(1-4)
IEEE DOI
1608
aquaculture
BibRef
Silvério, F.J.[Francisco J.],
Certal, A.C.[Ana C.],
de Ferro, C.M.[Carlos Măo],
Monteiro, J.F.[Joana F.],
Cruz, J.A.[José Almeida],
Ribeiro, R.[Ricardo],
Silva, J.N.[Joăo Nuno],
Automatic System for Zebrafish Counting in Fish Facility Tanks,
ICIAR16(774-782).
Springer DOI
1608
BibRef
Zhang, D.,
Kopanas, G.,
Desai, C.,
Chai, S.,
Piacentino, M.,
Unsupervised underwater fish detection fusing flow and objectiveness,
AAVWS16(1-7)
IEEE DOI
1606
image fusion
BibRef
El Habouz, Y.[Youssef],
Es-Saady, Y.[Youssef],
El Yassa, M.[Mostafa],
Mammass, D.[Driss],
Fathallah, N.[Nouboud],
Chalifour, A.[Alain],
Manchih, K.[Khalid],
Otolith Recognition System Using a Normal Angles Contour,
ICISP16(30-39).
WWW Link.
1606
BibRef
French, G.[Geoffrey],
Fisher, M.[Mark],
Mackiewicz, M.[Michal],
Needle, C.[Coby],
Convolutional Neural Networks for Counting Fish in Fisheries
Surveillance Video,
MVAB15(xx-yy).
DOI Link
1601
BibRef
Hughes, B.[Benjamin],
Burghardt, T.[Tilo],
Affinity Matting for Pixel-accurate Fin Shape Recovery from Great White
Shark Imagery,
MVAB15(xx-yy).
DOI Link
1601
BibRef
Jäger, J.[Jonas],
Simon, M.[Marcel],
Denzler, J.[Joachim],
Wolff, V.[Viviane],
Fricke-Neuderth, K.[Klaus],
Kruschel, C.[Claudia],
Croatian Fish Dataset: Fine-grained classification of fish species in
their natural habitat,
MVAB15(xx-yy).
DOI Link
1601
BibRef
Puybareau, É.[Élodie],
Léonard, M.[Marc],
Talbot, H.[Hugues],
An Automated Assay for the Evaluation of Mortality in Fish Embryo,
ISMM15(110-121).
Springer DOI
1506
BibRef
Pintor, J.M.,
Carrión, P.,
González-Rufino, E.,
Formella, A.,
Fernández-Delgad, M.,
Cernadas, E.,
Domínguez-Petit, R.,
Rábade-Uberos, S.,
A Multi-platform Graphical Software for Determining Reproductive
Parameters in Fishes Using Histological Image Analysis,
IbPRIA15(743-750).
Springer DOI
1506
BibRef
Mendes, A.[Andre],
Hoeberechts, M.[Maia],
Albu, A.B.[Alexandra Branzan],
Evolutionary Computational Methods for Optimizing the Classification
of Sea Stars in Underwater Images,
AAVWS15(44-50)
IEEE DOI
1503
They aren't fish, but they are under water.
BibRef
Cutter, G.[George],
Stierhoff, K.[Kevin],
Zeng, J.[Jia_Ming],
Automated Detection of Rockfish in Unconstrained Underwater Videos
Using Haar Cascades,
AAVWS15(57-62)
IEEE DOI
1503
BibRef
Chuang, M.C.[Meng-Che],
Hwang, J.N.[Jenq-Neng],
Kuo, F.F.[Fang-Fei],
Shan, M.K.[Man-Kwan],
Williams, K.[Kresimir],
Recognizing live fish species by hierarchical partial classification
based on the exponential benefit,
ICIP14(5232-5236)
IEEE DOI
1502
Accuracy
BibRef
Westling, F.,
Sun, C.M.[Chang-Ming],
Wang, D.D.[Da-Dong],
A Modular Learning Approach for Fish Counting and Measurement Using
Stereo Baited Remote Underwater Video,
DICTA14(1-7)
IEEE DOI
1502
aquaculture
BibRef
Dong, B.[Bo],
Shao, L.[Ling],
Frangi, A.F.[Alejandro F.],
Bandmann, O.[Oliver],
da Costa, M.[Marc],
Three-Dimensional Deconvolution of Wide Field Microscopy with Sparse
Priors: Application to Zebrafish Imagery,
ICPR14(865-870)
IEEE DOI
1412
Deconvolution; Embryo; Microscopy; Noise; TV
BibRef
Mehrnejad, M.[Marzieh],
Albu, A.B.[Alexandra Branzan],
Capson, D.[David],
Hoeberechts, M.[Maia],
Towards Robust Identification of Slow Moving Animals in Deep-Sea
Imagery by Integrating Shape and Appearance Cues,
CVAUI14(25-32)
IEEE DOI
1412
Animals
BibRef
Dawkins, M.,
Stewart, C.,
Gallager, S.,
York, A.,
Automatic scallop detection in benthic environments,
WACV13(160-167).
IEEE DOI
1303
BibRef
Beyan, C.[Cigdem],
Fisher, R.B.[Robert B.],
Classifying imbalanced data sets using similarity based hierarchical
decomposition,
PR(48), No. 5, 2015, pp. 1653-1672.
Elsevier DOI
1502
BibRef
Earlier:
Detection of Abnormal Fish Trajectories Using a Clustering Based
Hierarchical Classifier,
BMVC13(xx-yy).
DOI Link
1412
BibRef
Earlier:
Detecting abnormal fish trajectories using clustered and labeled data,
ICIP13(1476-1480)
IEEE DOI
1412
BibRef
Earlier:
A filtering mechanism for normal fish trajectories,
ICPR12(2286-2289).
WWW Link.
1302
Class imbalance problem.
Abnormal Trajectory
BibRef
Amer, M.R.[Mohamed R.],
Bilgazyev, E.[Emil],
Todorovic, S.[Sinisa],
Shah, S.[Shishir],
Kakadiaris, I.[Ioannis],
Ciannelli, L.[Lorenzo],
Fine-grained categorization of fish motion patterns in underwater
videos,
VECTaR11(1488-1495).
IEEE DOI
1201
BibRef
Chuang, M.C.[Meng-Che],
Hwang, J.N.[Jenq-Neng],
Williams, K.[Kresimir],
Towler, R.[Richard],
Automatic fish segmentation via double local thresholding for
trawl-based underwater camera systems,
ICIP11(3145-3148).
IEEE DOI
1201
BibRef
Spampinato, C.[Concetto],
Giordano, D.[Daniela],
di Salvo, R.[Roberto],
Chen-Burger, Y.H.J.[Yun-Heh Jessica],
Fisher, R.B.[Robert B.],
Nadarajan, G.[Gayathri],
Automatic fish classification for underwater species behavior
understanding,
ARTEMIS10(45-50).
DOI Link
1111
BibRef
Lillywhite, K.[Kirt],
Lee, D.J.[Dah-Jye],
Automated Fish Taxonomy Using Evolution-COnstructed Features,
ISVC11(I: 541-550).
Springer DOI
1109
BibRef
González-Rufino, E.[Encarnación],
Carrión, P.[Pilar],
Formella, A.[Arno],
Fernández-Delgado, M.[Manuel],
Cernadas, E.[Eva],
Statistical and Wavelet Based Texture Features for Fish Oocytes
Classification,
IbPRIA11(403-410).
Springer DOI
1106
BibRef
Serra-Toro, C.[Carlos],
Montoliu, R.[Raul],
Traver, V.J.[V. Javier],
Hurtado-Melgar, I.M.[Isabel M.],
Nunez-Redo, M.[Manuela],
Cascales, P.[Pablo],
Assessing Water Quality by Video Monitoring Fish Swimming Behavior,
ICPR10(428-431).
IEEE DOI
1008
BibRef
Mery, D.,
Lillo, I.,
Loebel, H.,
Riffo, V.,
Soto, A.,
Cipriano, A.,
Aguilera, J.M.,
Automated Detection of Fish Bones in Salmon Fillets Using X-ray Testing,
PSIVT10(46-51).
IEEE DOI
1011
BibRef
Thida, M.[Myo],
Remagnino, P.[Paolo],
Eng, H.L.[How-Lung],
A particle swarm optimization approach for multi-objects tracking in
crowded scene,
VS09(1209-1215).
IEEE DOI
0910
BibRef
Thida, M.[Myo],
Eng, H.L.[How-Lung],
Chew, B.F.[Boon Fong],
Automatic Analysis of Fish Behaviors and Abnormality Detection,
MVA09(278-).
PDF File.
0905
BibRef
Chew, B.F.[Boon Fong],
Eng, H.L.[How-Lung],
Thida, M.[Myo],
Vision-Based Real-Time Monitoring on the Behavior of Fish School,
MVA09(90-).
PDF File.
0905
Not walking, clusters of fish.
BibRef
Zhao, H.F.[Hai-Feng],
Zhou, J.[Jun],
Robles-Kelly, A.[Antonio],
Lu, J.F.[Jian-Feng],
Yang, J.Y.[Jing-Yu],
Automatic Detection of Defective Zebrafish Embryos via Shape Analysis,
DICTA09(431-438).
IEEE DOI
0912
BibRef
Lefort, R.,
Fablet, R.,
Karoui, I.,
Boucher, J.M.,
Combining image-level and object-level inference for weakly supervised
object recognition. Application to fisheries acoustics,
ICIP09(293-296).
IEEE DOI
0911
See also Seabed Segmentation Using Optimized Statistics of Sonar Textures.
BibRef
Pinkiewicz, T.,
Williams, R.,
Purser, J.,
Application of the Particle Filter to Tracking of Fish in Aquaculture
Research,
DICTA08(457-464).
IEEE DOI
0812
BibRef
Clausen, S.[Sigmund],
Greiner, K.[Katharina],
Andersen, O.[Odd],
Lie, K.A.[Knut-Andreas],
Schulerud, H.[Helene],
Kavli, T.[Tom],
Automatic Segmentation of Overlapping Fish Using Shape Priors,
SCIA07(11-20).
Springer DOI
0706
BibRef
Zhou, J.[Jun],
Clark, C.M.,
Autonomous fish tracking by ROV using Monocular Camera,
CRV06(68-68).
IEEE DOI
0607
BibRef
Alén, S.,
Cernadas, E.,
Formella, A.,
Domínguez, R.,
Saborido-Rey, F.,
Comparison of Region and Edge Segmentation Approaches to Recognize Fish
Oocytes in Histological Images,
ICIAR06(II: 853-864).
Springer DOI
0610
BibRef
Stewman, J.[John],
Debure, K.[Kelly],
Hale, S.[Scott],
Russell, A.[Adam],
Iterative 3-D Pose Correction and Content-Based Image Retrieval for
Dorsal Fin Recognition,
ICIAR06(I: 648-660).
Springer DOI
0610
BibRef
Larsen, R.[Rasmus],
Olafsdottir, H.[Hildur],
Ersbřll, B.K.[Bjarne Kjćr],
Shape and Texture Based Classification of Fish Species,
SCIA09(745-749).
Springer DOI
0906
BibRef
Evans, F.H.,
Detecting fish in underwater video using the EM algorithm,
ICIP03(III: 1029-1032).
IEEE DOI
0312
BibRef
di Gesu, V.,
Isgro, F.,
Tegolo, D.,
Trucco, E.,
Finding essential features for tracking star fish in a video sequence,
CIAP03(504-509).
IEEE DOI
0310
BibRef
Lundgren, B.,
Nielsen, H.,
Nielsen, R.,
Faber, P.,
Estimation of 3D Position, Angle of Attitude and Orientation of
Free-swimming Fish in a Hydroacoustic Beam Field under Extreme Lighting
Conditions,
SCIA01(P-W4B).
0206
BibRef
Rife, J.,
Rock, S.,
Visual Tracking of Jellyfish in Situ,
ICIP01(I: 289-292).
IEEE DOI
0108
BibRef
Chan, D.,
Hockaday, S.,
Tillett, R.D.,
Ross, L.G.,
Factors Affecting the Training of a WISARD Classifier for Monitoring
Fish Underwater,
BMVC99(Posters/Exhibition/Demos).
PDF File.
BibRef
9900
Naiberg, A., and
Little, J.J.,
A Unified Recognition and Stereo Vision System for
Size Assessment of Fish,
WACV94(2-9).
IEEE Abstract.
BibRef
9400
Nagashima, Y.,
Ishimatsu, T.,
A Morphological Approach to Fish Discrimination,
MVA98(xx-yy).
BibRef
9800
Han, K.J.[Keesook J.],
Tewfik, A.H.[Ahmed H.],
Expert Computer Vision Based Crab Recognition System,
ICIP96(II: 649-652).
IEEE DOI
BibRef
9600
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Insects, Other Pests, Detection, Identification .