Sakamoto, T.,
Wardlow, B.D.,
Gitelson, A.A.,
Detecting Spatiotemporal Changes of Corn Developmental Stages in the
U.S. Corn Belt Using MODIS WDRVI Data,
GeoRS(49), No. 6, June 2011, pp. 1926-1936.
IEEE DOI
1106
BibRef
Shen, Y.,
Wu, L.,
Di, L.,
Yu, G.,
Tang, H.,
Yu, G.,
Shao, Y.,
Hidden Markov Models for Real-Time Estimation of Corn Progress Stages
Using MODIS and Meteorological Data,
RS(5), No. 4, April 2013, pp. 1734-1753.
DOI Link
1305
BibRef
Udelhoven, T.,
Delfosse, P.,
Bossung, C.,
Ronellenfitsch, F.,
Mayer, F.,
Schlerf, M.,
Machwitz, M.,
Hoffmann, L.,
Retrieving the Bioenergy Potential from Maize Crops Using Hyperspectral
Remote Sensing,
RS(5), No. 1, January 2013, pp. 254-273.
DOI Link
1302
BibRef
Guerriero, L.,
Pierdicca, N.,
Pulvirenti, L.,
Ferrazzoli, P.,
Use of Satellite Radar Bistatic Measurements for Crop Monitoring:
A Simulation Study on Corn Fields,
RS(5), No. 2, February 2013, pp. 864-890.
DOI Link
1303
BibRef
Cheng, Y.B.[Yen-Ben],
Middleton, E.M.[Elizabeth M.],
Zhang, Q.Y.[Qing-Yuan],
Huemmrich, K.F.[Karl F.],
Campbell, P.K.E.[Petya K. E.],
Corp, L.A.[Lawrence A.],
Cook, B.D.[Bruce D.],
Kustas, W.P.[William P.],
Daughtry, C.S.[Craig S.],
Integrating Solar Induced Fluorescence and the Photochemical
Reflectance Index for Estimating Gross Primary Production in
a Cornfield,
RS(5), No. 12, 2013, pp. 6857-6879.
DOI Link
1412
BibRef
Rossini, M.,
Fava, F.,
Cogliati, S.,
Meroni, M.,
Marchesi, A.,
Panigada, C.,
Giardino, C.,
Busetto, L.,
Migliavacca, M.,
Amaducci, S.,
Colombo, R.,
Assessing canopy PRI from airborne imagery to map water stress in
maize,
PandRS(86), No. 1, 2013, pp. 168-177.
Elsevier DOI
1312
Hyperspectral
BibRef
Zhang, J.H.[Jia-Hua],
Feng, L.L.[Li-Li],
Yao, F.M.[Feng-Mei],
Improved maize cultivated area estimation over a large scale
combining MODIS-EVI time series data and crop phenological
information,
PandRS(94), No. 1, 2014, pp. 102-113.
Elsevier DOI
1407
MODIS imagery
BibRef
Quemada, M.[Miguel],
Gabriel, J.L.[Jose Luis],
Zarco-Tejada, P.[Pablo],
Airborne Hyperspectral Images and Ground-Level Optical Sensors As
Assessment Tools for Maize Nitrogen Fertilization,
RS(6), No. 4, 2014, pp. 2940-2962.
DOI Link
1405
BibRef
Geipel, J.[Jakob],
Link, J.[Johanna],
Claupein, W.[Wilhelm],
Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial
Images and Crop Surface Models Acquired with an Unmanned Aircraft
System,
RS(6), No. 11, 2014, pp. 10335-10355.
DOI Link
1412
BibRef
Wang, Q.[Qi],
Chai, L.[Linna],
Zhao, S.J.[Shao-Jie],
Zhang, Z.J.[Zhong-Jun],
Gravimetric Vegetation Water Content Estimation for Corn Using L-Band
Bi-Angular, Dual-Polarized Brightness Temperatures and Leaf Area
Index,
RS(7), No. 8, 2015, pp. 10543.
DOI Link
1509
BibRef
van Emmerik, T.,
Steele-Dunne, S.C.,
Judge, J.,
van de Giesen, N.,
Impact of Diurnal Variation in Vegetation Water Content on Radar
Backscatter From Maize During Water Stress,
GeoRS(53), No. 7, July 2015, pp. 3855-3869.
IEEE DOI
1503
Backscatter
BibRef
Rossini, M.[Micol],
Panigada, C.[Cinzia],
Cilia, C.[Chiara],
Meroni, M.[Michele],
Busetto, L.[Lorenzo],
Cogliati, S.[Sergio],
Amaducci, S.[Stefano],
Colombo, R.[Roberto],
Discriminating Irrigated and Rainfed Maize with Diurnal Fluorescence
and Canopy Temperature Airborne Maps,
IJGI(4), No. 2, 2015, pp. 626-646.
DOI Link
1505
BibRef
Bériaux, E.[Emilie],
Waldner, F.[François],
Collienne, F.[François],
Bogaert, P.[Patrick],
Defourny, P.[Pierre],
Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time
Series Using the Water Cloud Model,
RS(7), No. 12, 2015, pp. 15818.
DOI Link
1601
BibRef
Bouchat, J.[Jean],
Tronquo, E.[Emma],
Orban, A.[Anne],
Neyt, X.[Xavier],
Verhoest, N.E.C.[Niko E. C.],
Defourny, P.[Pierre],
Green Area Index and Soil Moisture Retrieval in Maize Fields Using
Multi-Polarized C- and L-Band SAR Data and the Water Cloud Model,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Garrido, M.[Miguel],
Paraforos, D.S.[Dimitris S.],
Reiser, D.[David],
Arellano, M.V.[Manuel Vázquez],
Griepentrog, H.W.[Hans W.],
Valero, C.[Constantino],
3D Maize Plant Reconstruction Based on Georeferenced Overlapping
LiDAR Point Clouds,
RS(7), No. 12, 2015, pp. 15870.
DOI Link
1601
BibRef
Kelly, D.[Derek],
Vatsa, A.[Avimanyou],
Mayham, W.[Wade],
Kazic, T.[Toni],
Extracting complex lesion phenotypes in Zea mays,
MVA(27), No. 1, January 2016, pp. 145-156.
Springer DOI
1601
Diseases in maize crops.
BibRef
Crommelinck, S.[Sophie],
Höfle, B.[Bernhard],
Simulating an Autonomously Operating Low-Cost Static Terrestrial
LiDAR for Multitemporal Maize Crop Height Measurements,
RS(8), No. 3, 2016, pp. 205.
DOI Link
1604
BibRef
Durgun, Y.Ö.[Yetkin Özüm],
Gobin, A.[Anne],
Gilliams, S.[Sven],
Duveiller, G.[Grégory],
Tychon, B.[Bernard],
Testing the Contribution of Stress Factors to Improve Wheat and Maize
Yield Estimations Derived from Remotely-Sensed Dry Matter
Productivity,
RS(8), No. 3, 2016, pp. 170.
DOI Link
1604
BibRef
Wang, R.[Ruoyu],
Cherkauer, K.[Keith],
Bowling, L.[Laura],
Corn Response to Climate Stress Detected with Satellite-Based NDVI
Time Series,
RS(8), No. 4, 2016, pp. 269.
DOI Link
1604
BibRef
Cheng, Z.Q.[Zhi-Qiang],
Meng, J.[Jihua],
Wang, Y.M.[Yi-Ming],
Improving Spring Maize Yield Estimation at Field Scale by
Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a
New Method with Fast Algorithms,
RS(8), No. 4, 2016, pp. 303.
DOI Link
1604
BibRef
Peralta, N.R.[Nahuel R.],
Assefa, Y.[Yared],
Du, J.[Juan],
Barden, C.J.[Charles J.],
Ciampitti, I.A.[Ignacio A.],
Mid-Season High-Resolution Satellite Imagery for Forecasting
Site-Specific Corn Yield,
RS(8), No. 10, 2016, pp. 848.
DOI Link
1609
BibRef
Wang, C.[Cheng],
Nie, S.[Sheng],
Xi, X.H.[Xiao-Huan],
Luo, S.[Shezhou],
Sun, X.F.[Xiao-Feng],
Estimating the Biomass of Maize with Hyperspectral and LiDAR Data,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Xie, D.,
Qin, W.,
Wang, P.,
Shuai, Y.,
Zhou, Y.,
Zhu, Q.,
Influences of Leaf-Specular Reflection on Canopy BRF Characteristics:
A Case Study of Real Maize Canopies With a 3-D Scene BRDF Model,
GeoRS(55), No. 2, February 2017, pp. 619-631.
IEEE DOI
1702
crops
BibRef
Ban, H.Y.[Ho-Young],
Kim, K.S.[Kwang Soo],
Park, N.W.[No-Wook],
Lee, B.W.[Byun-Woo],
Using MODIS Data to Predict Regional Corn Yields,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Cerrudo, D.[Diego],
Pérez, L.G.[Lorena González],
Lugo, J.A.M.[José Alberto Mendoza],
Trachsel, S.[Samuel],
Stay-Green and Associated Vegetative Indices to Breed Maize Adapted
to Heat and Combined Heat-Drought Stresses,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Gnädinger, F.[Friederike],
Schmidhalter, U.[Urs],
Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs),
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Chou, S.[Shuren],
Chen, J.M.[Jing M.],
Yu, H.[Hua],
Chen, B.[Bin],
Zhang, X.[Xiuying],
Croft, H.[Holly],
Khalid, S.[Shoaib],
Li, M.[Meng],
Shi, Q.[Qin],
Canopy-Level Photochemical Reflectance Index from Hyperspectral
Remote Sensing and Leaf-Level Non-Photochemical Quenching as Early
Indicators of Water Stress in Maize,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Yu, B.[Bing],
Shang, S.H.[Song-Hao],
Multi-Year Mapping of Maize and Sunflower in Hetao Irrigation
District of China with High Spatial and Temporal Resolution
Vegetation Index Series,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Chu, T.X.[Tian-Xing],
Starek, M.J.[Michael J.],
Brewer, M.J.[Michael J.],
Murray, S.C.[Seth C.],
Pruter, L.S.[Luke S.],
Assessing Lodging Severity over an Experimental Maize (Zea mays L.)
Field Using UAS Images,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Zhao, J.[Jing],
Li, J.[Jing],
Liu, Q.H.[Qin-Huo],
Wang, H.Y.[Hong-Yan],
Chen, C.[Chen],
Xu, B.D.[Bao-Dong],
Wu, S.[Shanlong],
Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX
Sensor Data for Leaf Area Index Estimations for Maize,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Cui, T.X.[Tian-Xiang],
Sun, R.[Rui],
Qiao, C.[Chen],
Zhang, Q.A.[Qi-Ang],
Yu, T.[Tao],
Liu, G.[Gang],
Liu, Z.G.[Zhi-Gang],
Estimating Diurnal Courses of Gross Primary Production for Maize:
A Comparison of Sun-Induced Chlorophyll Fluorescence, Light-Use
Efficiency and Process-Based Models,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Martín, C.S.[Carolina San],
Milne, A.E.[Alice E.],
Webster, R.[Richard],
Storkey, J.[Jonathan],
Andújar, D.[Dionisio],
Fernández-Quintanilla, C.[Cesar],
Dorado, J.[José],
Spatial Analysis of Digital Imagery of Weeds in a Maize Crop,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Tang, K.[Ke],
Zhu, W.Q.[Wen-Quan],
Zhan, P.[Pei],
Ding, S.Y.[Si-Yang],
An Identification Method for Spring Maize in Northeast China Based on
Spectral and Phenological Features,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Makanza, R.[Richard],
Zaman-Allah, M.[Mainassara],
Cairns, J.E.[Jill E.],
Magorokosho, C.[Cosmos],
Tarekegne, A.[Amsal],
Olsen, M.[Mike],
Prasanna, B.M.[Boddupalli M.],
High-Throughput Phenotyping of Canopy Cover and Senescence in Maize
Field Trials Using Aerial Digital Canopy Imaging,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Gracia-Romero, A.[Adrian],
Vergara-Díaz, O.[Omar],
Thierfelder, C.[Christian],
Cairns, J.E.[Jill E.],
Kefauver, S.C.[Shawn C.],
Araus, J.L.[José L.],
Phenotyping Conservation Agriculture Management Effects on Ground and
Aerial Remote Sensing Assessments of Maize Hybrids Performance in
Zimbabwe,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Maresma, Á.[Ángel],
Ariza, M.[Mar],
Martínez, E.[Elías],
Lloveras, J.[Jaume],
Martínez-Casasnovas, J.A.[José A.],
Analysis of Vegetation Indices to
Determine Nitrogen Application and Yield Prediction in Maize (Zea
mays L.) from a Standard UAV Service,
RS(8), No. 12, 2016, pp. xx-yy.
WWW Link.
BibRef
1600
And:
Erratum:
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Varela, S.[Sebastian],
Dhodda, P.R.[Pruthvidhar Reddy],
Hsu, W.H.[William H.],
Prasad, P.V.V.[P. V. Vara],
Assefa, Y.[Yared],
Peralta, N.R.[Nahuel R.],
Griffin, T.[Terry],
Sharda, A.[Ajay],
Ferguson, A.[Allison],
Ciampitti, I.A.[Ignacio A.],
Early-Season Stand Count Determination in Corn via Integration of
Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning
Techniques,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Maresma, Á.[Ángel],
Lloveras, J.[Jaume],
Martínez-Casasnovas, J.A.[José A.],
Use of Multispectral Airborne Images to Improve In-Season Nitrogen
Management, Predict Grain Yield and Estimate Economic Return of Maize
in Irrigated High Yielding Environments,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Zhou, C.,
Yang, G.,
Liang, D.,
Yang, X.,
Xu, B.,
An Integrated Skeleton Extraction and Pruning Method for Spatial
Recognition of Maize Seedlings in MGV and UAV Remote Images,
GeoRS(56), No. 8, August 2018, pp. 4618-4632.
IEEE DOI
1808
autonomous aerial vehicles, crops, feature extraction,
geophysical image processing, image classification,
skeleton-burr removal
BibRef
Monsivais-Huertero, A.,
Liu, P.,
Judge, J.,
Phenology-Based Backscattering Model for Corn at L-Band,
GeoRS(56), No. 9, September 2018, pp. 4989-5005.
IEEE DOI
1809
Soil, Backscatter, Vegetation mapping, L-band, Scattering,
Rough surfaces, Surface roughness, Coherent scattering model,
phenology-based backscatter model
BibRef
Xu, S.[Shan],
Liu, Z.G.[Zhi-Gang],
Zhao, L.[Liang],
Zhao, H.R.[Hua-Rong],
Ren, S.X.[San-Xue],
Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress
in Maize Using a Near-Surface Remote Sensing Platform,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Han, L.[Liang],
Yang, G.J.[Gui-Jun],
Feng, H.K.[Hai-Kuan],
Zhou, C.Q.[Cheng-Quan],
Yang, H.[Hao],
Xu, B.[Bo],
Li, Z.H.[Zhen-Hai],
Yang, X.D.[Xiao-Dong],
Quantitative Identification of Maize Lodging-Causing Feature Factors
Using Unmanned Aerial Vehicle Images and a Nomogram Computation,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Michez, A.[Adrien],
Bauwens, S.[Sébastien],
Brostaux, Y.[Yves],
Hiel, M.P.[Marie-Pierre],
Garré, S.[Sarah],
Lejeune, P.[Philippe],
Dumont, B.[Benjamin],
How Far Can Consumer-Grade UAV RGB Imagery Describe Crop Production?
A 3D and Multitemporal Modeling Approach Applied to Zea mays,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Mananze, S.[Sosdito],
Pôças, I.[Isabel],
Cunha, M.[Mario],
Retrieval of Maize Leaf Area Index Using Hyperspectral and
Multispectral Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, Y.J.[Yong-Jian],
Wen, W.L.[Wei-Liang],
Wu, S.[Sheng],
Wang, C.Y.[Chuan-Yu],
Yu, Z.[Zetao],
Guo, X.Y.[Xin-Yu],
Zhao, C.J.[Chun-Jiang],
Maize Plant Phenotyping: Comparing 3D Laser Scanning, Multi-View
Stereo Reconstruction, and 3D Digitizing Estimates,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Jin, S.,
Su, Y.,
Wu, F.,
Pang, S.,
Gao, S.,
Hu, T.,
Liu, J.,
Guo, Q.,
Stem-Leaf Segmentation and Phenotypic Trait Extraction of Individual
Maize Using Terrestrial LiDAR Data,
GeoRS(57), No. 3, March 2019, pp. 1336-1346.
IEEE DOI
1903
agriculture, crops, feature extraction, image segmentation,
optical radar, vectors, individual levels,
skeleton
BibRef
Zhang, L.Y.[Li-Yuan],
Zhang, H.H.[Hui-Hui],
Niu, Y.X.[Ya-Xiao],
Han, W.T.[Wen-Ting],
Mapping Maize Water Stress Based on UAV Multispectral Remote Sensing,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Alehegn, E.[Enquhone],
Ethiopian maize diseases recognition and classification using support
vector machine,
IJCVR(9), No. 1, 2019, pp. 90-109.
DOI Link
1903
BibRef
Su, W.[Wei],
Huang, J.X.[Jian-Xi],
Liu, D.S.[De-Sheng],
Zhang, M.Z.[Ming-Zheng],
Retrieving Corn Canopy Leaf Area Index from Multitemporal Landsat
Imagery and Terrestrial LiDAR Data,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Tian, F.[Fuyou],
Wu, B.F.[Bing-Fang],
Zeng, H.W.[Hong-Wei],
Zhang, X.[Xin],
Xu, J.M.[Jia-Ming],
Efficient Identification of Corn Cultivation Area with Multitemporal
Synthetic Aperture Radar and Optical Images in the Google Earth
Engine Cloud Platform,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhang, M.Z.[Ming-Zheng],
Zhu, D.H.[De-Hai],
Su, W.[Wei],
Huang, J.X.[Jian-Xi],
Zhang, X.D.[Xiao-Dong],
Liu, Z.[Zhe],
Harmonizing Multi-Source Remote Sensing Images for Summer Corn Growth
Monitoring,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Niu, Y.X.[Ya-Xiao],
Zhang, L.Y.[Li-Yuan],
Zhang, H.H.[Hui-Hui],
Han, W.T.[Wen-Ting],
Peng, X.S.[Xing-Shuo],
Estimating Above-Ground Biomass of Maize Using Features Derived from
UAV-Based RGB Imagery,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Gilcher, M.[Mario],
Ruf, T.[Thorsten],
Emmerling, C.[Christoph],
Udelhoven, T.[Thomas],
Remote Sensing Based Binary Classification of Maize. Dealing with
Residual Autocorrelation in Sparse Sample Situations,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Baup, F.[Frédéric],
Ameline, M.[Maël],
Fieuzal, R.[Rémy],
Frappart, F.[Frédéric],
Corgne, S.[Samuel],
Berthoumieu, J.F.[Jean-François],
Temporal Evolution of Corn Mass Production Based on
Agro-Meteorological Modelling Controlled by Satellite Optical and SAR
Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Su, W.[Wei],
Zhang, M.Z.[Ming-Zheng],
Bian, D.H.[Da-Hong],
Liu, Z.[Zhe],
Huang, J.X.[Jian-Xi],
Wang, W.[Wei],
Wu, J.Y.[Jia-Yu],
Guo, H.[Hao],
Phenotyping of Corn Plants Using Unmanned Aerial Vehicle (UAV) Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Su, W.[Wei],
Sun, Z.P.[Zhong-Ping],
Chen, W.H.[Wen-Hua],
Zhang, X.D.[Xiao-Dong],
Yao, C.[Chan],
Wu, J.[Jiayu],
Huang, J.X.[Jian-Xi],
Zhu, D.[Dehai],
Joint Retrieval of Growing Season Corn Canopy LAI and Leaf
Chlorophyll Content by Fusing Sentinel-2 and MODIS Images,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Tang, J.D.[Jian-Dong],
Han, W.T.[Wen-Ting],
Zhang, L.Y.[Li-Yuan],
UAV Multispectral Imagery Combined with the FAO-56 Dual Approach for
Maize Evapotranspiration Mapping in the North China Plain,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Myers, E.[Emily],
Kerekes, J.[John],
Daughtry, C.[Craig],
Russ, A.[Andrew],
Assessing the Impact of Satellite Revisit Rate on Estimation of Corn
Phenological Transition Timing through Shape Model Fitting,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhu, W.X.[Wan-Xue],
Sun, Z.G.[Zhi-Gang],
Peng, J.B.[Jin-Bang],
Huang, Y.[Yaohuan],
Li, J.[Jing],
Zhang, J.Q.A.[Jun-Qi-Ang],
Yang, B.[Bin],
Liao, X.H.[Xiao-Han],
Estimating Maize Above-Ground Biomass Using 3D Point Clouds of
Multi-Source Unmanned Aerial Vehicle Data at Multi-Spatial Scales,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Kayad, A.[Ahmed],
Sozzi, M.[Marco],
Gatto, S.[Simone],
Marinello, F.[Francesco],
Pirotti, F.[Francesco],
Monitoring Within-Field Variability of Corn Yield using Sentinel-2
and Machine Learning Techniques,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhang, L.L.[Liang-Liang],
Zhang, Z.[Zhao],
Luo, Y.C.[Yu-Chuan],
Cao, J.[Juan],
Tao, F.[Fulu],
Combining Optical, Fluorescence, Thermal Satellite, and Environmental
Data to Predict County-Level Maize Yield in China Using Machine
Learning Approaches,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Wang, R.[Rui],
Zhang, J.Q.[Ji-Quan],
Wang, C.Y.[Chun-Yi],
Guo, E.L.[En-Liang],
Characteristic Analysis of Droughts and Waterlogging Events for Maize
Based on a New Comprehensive Index through Coupling of Multisource
Data in Midwestern Jilin Province, China,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Liu, Y.L.[Yun-Ling],
Cen, C.J.[Chao-Jun],
Che, Y.P.[Ying-Pu],
Ke, R.[Rui],
Ma, Y.[Yan],
Ma, Y.T.[Yun-Tao],
Detection of Maize Tassels from UAV RGB Imagery with Faster R-CNN,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Sakamoto, T.[Toshihiro],
Incorporating environmental variables into a MODIS-based crop yield
estimation method for United States corn and soybeans through the use
of a random forest regression algorithm,
PandRS(160), 2020, pp. 208-228.
Elsevier DOI
2001
MODIS, NLDAS-2, Phenology, Machine learning, WDRVI
BibRef
Zhang, L.[Lin],
Liu, Z.[Zhe],
Ren, T.W.[Tian-Wei],
Liu, D.[Diyou],
Ma, Z.[Zhe],
Tong, L.[Liang],
Zhang, C.[Chao],
Zhou, T.Y.[Tian-Ying],
Zhang, X.D.[Xiao-Dong],
Li, S.M.[Shao-Ming],
Identification of Seed Maize Fields With High Spatial Resolution and
Multiple Spectral Remote Sensing Using Random Forest Classifier,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Lewis-Beck, C.[Colin],
Walker, V.A.[Victoria A.],
Niemi, J.[Jarad],
Caragea, P.[Petruta],
Hornbuckle, B.K.[Brian K.],
Extracting Agronomic Information from SMOS Vegetation Optical Depth
in the US Corn Belt Using a Nonlinear Hierarchical Model,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
Soil Moisture and Ocean Salinity data. Analyze stage of growth.
BibRef
Jin, S.,
Su, Y.,
Gao, S.,
Wu, F.,
Ma, Q.,
Xu, K.,
Ma, Q.,
Hu, T.,
Liu, J.,
Pang, S.,
Guan, H.,
Zhang, J.,
Guo, Q.,
Separating the Structural Components of Maize for Field Phenotyping
Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks,
GeoRS(58), No. 4, April 2020, pp. 2644-2658.
IEEE DOI
2004
Classification, deep learning, LiDAR, phenotype,
segmentation, structural components
BibRef
Ren, T.W.[Tian-Wei],
Liu, Z.[Zhe],
Zhang, L.[Lin],
Liu, D.[Diyou],
Xi, X.J.[Xiao-Jie],
Kang, Y.H.[Yang-Hui],
Zhao, Y.Y.[Yuan-Yuan],
Zhang, C.[Chao],
Li, S.M.[Shao-Ming],
Zhang, X.D.[Xiao-Dong],
Early Identification of Seed Maize and Common Maize Production Fields
Using Sentinel-2 Images,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Liu, H.J.[Hao-Jie],
Sun, H.[Hong],
Li, M.Z.[Min-Zan],
Iida, M.[Michihisa],
Application of Color Featuring and Deep Learning in Maize Plant
Detection,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Sharma, A.,
Lang, R.H.,
Kurum, M.,
O'Neill, P.E.,
Cosh, M.H.,
L-Band Radar Experiment and Modeling of a Corn Canopy Over a Full
Growing Season,
GeoRS(58), No. 8, August 2020, pp. 5821-5835.
IEEE DOI
2007
Backscatter, Dielectric measurement, L-band, Radar measurements,
Spaceborne radar, Soil measurements, Coherent backscatter, L-band, radar
BibRef
Barzin, R.[Razieh],
Pathak, R.[Rohit],
Lotfi, H.[Hossein],
Varco, J.[Jac],
Bora, G.C.[Ganesh C.],
Use of UAS Multispectral Imagery at Different Physiological Stages
for Yield Prediction and Input Resource Optimization in Corn,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Qiao, L.[Lang],
Gao, D.H.[De-Hua],
Zhang, J.Y.[Jun-Yi],
Li, M.[Minzan],
Sun, H.[Hong],
Ma, J.Y.[Jun-Yong],
Dynamic Influence Elimination and Chlorophyll Content Diagnosis of
Maize Using UAV Spectral Imagery,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Chen, J.H.[Jing-Hua],
Zhang, Q.[Qian],
Chen, B.[Bin],
Zhang, Y.G.[Yong-Guang],
Ma, L.[Li],
Li, Z.H.[Zhao-Hui],
Zhang, X.K.[Xiao-Kang],
Wu, Y.F.[Yun-Fei],
Wang, S.Q.[Shao-Qiang],
Mickler, R.A.[Robert A.],
Evaluating Multi-Angle Photochemical Reflectance Index and
Solar-Induced Fluorescence for the Estimation of Gross Primary
Production in Maize,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Zan, X.L.[Xu-Li],
Zhang, X.[Xinlu],
Xing, Z.Y.[Zi-Yao],
Liu, W.[Wei],
Zhang, X.D.[Xiao-Dong],
Su, W.[Wei],
Liu, Z.[Zhe],
Zhao, Y.Y.[Yuan-Yuan],
Li, S.M.[Shao-Ming],
Automatic Detection of Maize Tassels from UAV Images by Combining
Random Forest Classifier and VGG16,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Meng, R.[Ran],
Lv, Z.G.[Zhen-Gang],
Yan, J.B.[Jian-Bing],
Chen, G.S.[Geng-Shen],
Zhao, F.[Feng],
Zeng, L.L.[Ling-Lin],
Xu, B.Y.[Bin-Yuan],
Development of Spectral Disease Indices for Southern Corn Rust
Detection and Severity Classification,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Guan, H.X.[Hai-Xiang],
Liu, H.J.[Huan-Jun],
Meng, X.T.[Xiang-Tian],
Luo, C.[Chong],
Bao, Y.L.[Yi-Lin],
Ma, Y.Y.[Yu-Yang],
Yu, Z.Y.[Zi-Yang],
Zhang, X.L.[Xin-Le],
A Quantitative Monitoring Method for Determining Maize Lodging in
Different Growth Stages,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Yu, L.H.[Li-Hong],
Shang, J.L.[Jia-Li],
Cheng, Z.Q.[Zhi-Qiang],
Gao, Z.B.[Ze-Bin],
Wang, Z.X.[Zi-Xin],
Tian, L.[Luo],
Wang, D.T.[Dan-Tong],
Che, T.[Tao],
Jin, R.[Rui],
Liu, J.G.[Jian-Gui],
Dong, T.F.[Tai-Feng],
Qu, Y.H.[Yong-Hua],
Assessment of Cornfield LAI Retrieved from Multi-Source Satellite
Data Using Continuous Field LAI Measurements Based on a Wireless
Sensor Network,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Bi, K.,
Xiao, S.,
Gao, S.,
Zhang, C.,
Huang, N.,
Niu, Z.,
Estimating Vertical Chlorophyll Concentrations in Maize in Different
Health States Using Hyperspectral LiDAR,
GeoRS(58), No. 11, November 2020, pp. 8125-8133.
IEEE DOI
2011
Laser radar, Vegetation mapping, Remote sensing,
Distance measurement, Monitoring, Indexes, Biomedical monitoring,
vertical distribution
BibRef
Liu, J.,
Ferrazzoli, P.,
Guerriero, L.,
Bai, J.,
Liu, Q.,
Zhang, Z.,
Modeling Microwave Emission of Corn Crop Considering Leaf Shape and
Orientation Under the Physical Optics Approximation,
GeoRS(58), No. 12, December 2020, pp. 8316-8331.
IEEE DOI
2012
Vegetation mapping, Microwave measurement, Shape,
Microwave theory and techniques, Scattering,
multiple scattering modeling
BibRef
Zhang, J.[Junyi],
Sun, H.[Hong],
Gao, D.H.[De-Hua],
Qiao, L.[Lang],
Liu, N.[Ning],
Li, M.[Minzan],
Zhang, Y.[Yao],
Detection of Canopy Chlorophyll Content of Corn Based on Continuous
Wavelet Transform Analysis,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Chen, X.X.[Xin-Xin],
Feng, L.[Lan],
Yao, R.[Rui],
Wu, X.J.[Xiao-Jun],
Sun, J.[Jia],
Gong, W.[Wei],
Prediction of Maize Yield at the City Level in China Using
Multi-Source Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Denis, A.[Antoine],
Desclee, B.[Baudouin],
Migdall, S.[Silke],
Hansen, H.[Herbert],
Bach, H.[Heike],
Ott, P.[Pierre],
Kouadio, A.L.[Amani Louis],
Tychon, B.[Bernard],
Multispectral Remote Sensing as a Tool to Support Organic Crop
Certification: Assessment of the Discrimination Level between Organic
and Conventional Maize,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zhu, B.X.[Bing-Xue],
Chen, S.[Shengbo],
Cao, Y.J.[Yi-Jing],
Xu, Z.Y.[Zheng-Yuan],
Yu, Y.[Yan],
Han, C.[Cheng],
A Regional Maize Yield Hierarchical Linear Model Combining Landsat 8
Vegetative Indices and Meteorological Data: Case Study in Jilin
Province,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Niu, Y.X.[Ya-Xiao],
Zhang, H.H.[Hui-Hui],
Han, W.T.[Wen-Ting],
Zhang, L.Y.[Li-Yuan],
Chen, H.P.[Hai-Peng],
A Fixed-Threshold Method for Estimating Fractional Vegetation Cover
of Maize under Different Levels of Water Stress,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wu, B.[Bin],
Ye, H.C.[Hui-Chun],
Huang, W.J.[Wen-Jiang],
Wang, H.Y.[Hong-Ye],
Luo, P.L.[Pei-Lei],
Ren, Y.[Yu],
Kong, W.P.[Wei-Ping],
Monitoring the Vertical Distribution of Maize Canopy Chlorophyll
Content Based on Multi-Angular Spectral Data,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Skakun, S.[Sergii],
Kalecinski, N.I.[Natacha I.],
Brown, M.G.L.[Meredith G. L.],
Johnson, D.M.[David M.],
Vermote, E.F.[Eric F.],
Roger, J.C.[Jean-Claude],
Franch, B.[Belen],
Assessing within-Field Corn and Soybean Yield Variability from
WorldView-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Peng, X.S.[Xing-Shuo],
Han, W.T.[Wen-Ting],
Ao, J.Y.[Jian-Yi],
Wang, Y.[Yi],
Assimilation of LAI Derived from UAV Multispectral Data into the SAFY
Model to Estimate Maize Yield,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yang, Y.J.[Yan-Jun],
Tao, B.[Bo],
Liang, L.[Liang],
Huang, Y.W.[Ya-Wen],
Matocha, C.[Chris],
Lee, C.D.[Chad D.],
Sama, M.[Michael],
El Masri, B.[Bassil],
Ren, W.[Wei],
Detecting Recent Crop Phenology Dynamics in Corn and Soybean Cropping
Systems of Kentucky,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, Z.X.[Zi-Xu],
Nie, C.W.[Chen-Wei],
Wang, H.W.[Hong-Wu],
Ao, Y.[Yong],
Jin, X.L.[Xiu-Liang],
Yu, X.[Xun],
Bai, Y.[Yi],
Liu, Y.D.[Ya-Dong],
Shao, M.C.[Ming-Chao],
Cheng, M.H.[Ming-Han],
Liu, S.B.[Shuai-Bing],
Wang, S.[Siyu],
Tuohuti, N.[Nuremanguli],
Detection and Analysis of Degree of Maize Lodging Using UAV-RGB Image
Multi-Feature Factors and Various Classification Methods,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Adak, A.[Alper],
Murray, S.C.[Seth C],
Božinovic, S.[Sofija],
Lindsey, R.[Regan],
Nakasagga, S.[Shakirah],
Chatterjee, S.[Sumantra],
Anderson, S.L.[Steven L.],
Wilde, S.[Scott],
Temporal Vegetation Indices and Plant Height from Remotely Sensed
Imagery Can Predict Grain Yield and Flowering Time Breeding Value in
Maize via Machine Learning Regression,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Hu, X.Q.[Xue-Qian],
Sun, L.[Lin],
Gu, X.H.[Xiao-He],
Sun, Q.[Qian],
Wei, Z.H.[Zhong-Hui],
Pan, Y.C.[Yu-Chun],
Chen, L.P.[Li-Ping],
Assessing the Self-Recovery Ability of Maize after Lodging Using
UAV-LiDAR Data,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Xie, Q.H.[Qing-Hua],
Wang, J.F.[Jin-Fei],
Lopez-Sanchez, J.M.[Juan M.],
Peng, X.[Xing],
Liao, C.H.[Chun-Hua],
Shang, J.L.[Jia-Li],
Zhu, J.J.[Jian-Jun],
Fu, H.[Haqiang],
Ballester-Berman, J.D.[J. David],
Crop Height Estimation of Corn from Multi-Year RADARSAT-2
Polarimetric Observables Using Machine Learning,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Geng, L.Y.[Li-Ying],
Che, T.[Tao],
Ma, M.G.[Ming-Guo],
Tan, J.L.[Jun-Lei],
Wang, H.B.[Hai-Bo],
Corn Biomass Estimation by Integrating Remote Sensing and Long-Term
Observation Data Based on Machine Learning Techniques,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chen, Y.[Yansi],
Hou, J.L.[Jin-Liang],
Huang, C.L.[Chun-Lin],
Zhang, Y.[Ying],
Li, X.H.[Xiang-Hua],
Mapping Maize Area in Heterogeneous Agricultural Landscape with
Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random
Forest,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Karami, A.[Azam],
Quijano, K.[Karoll],
Crawford, M.[Melba],
Advancing Tassel Detection and Counting: Annotation and Algorithms,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Feng, Z.Z.[Zhuang-Zhuang],
Zheng, X.M.[Xing-Ming],
Li, L.[Lei],
Li, B.Z.[Bing-Ze],
Chen, S.[Si],
Guo, T.H.[Tian-Hao],
Wang, X.G.[Xi-Gang],
Jiang, T.[Tao],
Li, X.J.[Xiao-Jie],
Li, X.F.[Xiao-Feng],
Dynamic Cosine Method for Normalizing Incidence Angle Effect on
C-band Radar Backscattering Coefficient for Maize Canopies Based on
NDVI,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Chai, L.[Linna],
Jiang, H.Y.[Hai-Ying],
Crow, W.T.[Wade T.],
Liu, S.M.[Shao-Min],
Zhao, S.J.[Shao-Jie],
Liu, J.[Jin],
Yang, S.Q.[Shi-Qi],
Estimating Corn Canopy Water Content From Normalized Difference Water
Index (NDWI): An Optimized NDWI-Based Scheme and Its Feasibility for
Retrieving Corn VWC,
GeoRS(59), No. 10, October 2021, pp. 8168-8181.
IEEE DOI
2109
Vegetation mapping, Indexes, Moisture, Biological system modeling,
Table lookup, Analytical models, Agriculture,
vegetation water content (VWC)
BibRef
Zhang, S.[Sha],
Bai, Y.[Yun],
Zhang, J.H.[Jia-Hua],
Remote Sensing-Based Quantification of the Summer Maize Yield Gap
Induced by Suboptimum Sowing Dates over North China Plain,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Ali, B.[Bitam],
Zhao, F.[Feng],
Li, Z.J.[Zhen-Jiang],
Zhao, Q.C.[Qi-Chao],
Gong, J.B.[Jia-Bei],
Wang, L.[Lin],
Tong, P.[Peng],
Jiang, Y.H.[Yan-Hong],
Su, W.[Wei],
Bao, Y.F.[Yun-Fei],
Li, J.[Juan],
Sensitivity Analysis of Canopy Structural and Radiative Transfer
Parameters to Reconstructed Maize Structures Based on Terrestrial
LiDAR Data,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Meng, L.H.[Ling-Hua],
Liu, H.J.[Huan-Jun],
Ustin, S.L.[Susan L.],
Zhang, X.L.[Xin-Le],
Predicting Maize Yield at the Plot Scale of Different Fertilizer
Systems by Multi-Source Data and Machine Learning Methods,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Danilevicz, M.F.[Monica F.],
Bayer, P.E.[Philipp E.],
Boussaid, F.[Farid],
Bennamoun, M.[Mohammed],
Edwards, D.[David],
Maize Yield Prediction at an Early Developmental Stage Using
Multispectral Images and Genotype Data for Preliminary Hybrid
Selection,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Sunoj, S.,
Cho, J.[Jason],
Guinness, J.[Joe],
van Aardt, J.[Jan],
Czymmek, K.J.[Karl J.],
Ketterings, Q.M.[Quirine M.],
Corn Grain Yield Prediction and Mapping from Unmanned Aerial System
(UAS) Multispectral Imagery,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Khun, K.[Kosal],
Tremblay, N.[Nicolas],
Panneton, B.[Bernard],
Vigneault, P.[Philippe],
Lord, E.[Etienne],
Cavayas, F.[François],
Codjia, C.[Claude],
Use of Oblique RGB Imagery and Apparent Surface Area of Plants for
Early Estimation of Above-Ground Corn Biomass,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Ndlovu, H.S.[Helen S.],
Odindi, J.[John],
Sibanda, M.[Mbulisi],
Mutanga, O.[Onisimo],
Clulow, A.[Alistair],
Chimonyo, V.G.P.[Vimbayi G. P.],
Mabhaudhi, T.[Tafadzwanashe],
A Comparative Estimation of Maize Leaf Water Content Using Machine
Learning Techniques and Unmanned Aerial Vehicle (UAV)-Based Proximal
and Remotely Sensed Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Barber, M.E.[Matías Ernesto],
Rava, D.S.[David Sebastián],
López-Martínez, C.[Carlos],
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Gu, S.[Shujie],
Liao, Q.[Qi],
Gao, S.Y.[Shao-Yu],
Kang, S.Z.[Shao-Zhong],
Du, T.S.[Tai-Sheng],
Ding, R.S.[Ri-Sheng],
Crop Water Stress Index as a Proxy of Phenotyping Maize Performance
under Combined Water and Salt Stress,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yu, H.[Huinan],
Yin, G.F.[Gao-Fei],
Liu, G.X.[Guo-Xiang],
Ye, Y.X.[Yuan-Xin],
Qu, Y.H.[Yong-Hua],
Xu, B.D.[Bao-Dong],
Verger, A.[Aleixandre],
Validation of Sentinel-2, MODIS, CGLS, SAF, GLASS and C3S Leaf Area
Index Products in Maize Crops,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Nazeri, B.[Behrokh],
Crawford, M.[Melba],
Detection of Outliers in LiDAR Data Acquired by Multiple Platforms
over Sorghum and Maize,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Bi, K.Y.[Kai-Yi],
Niu, Z.[Zheng],
Xiao, S.[Shunfu],
Bai, J.[Jie],
Sun, G.[Gang],
Wang, J.[Ji],
Han, Z.[Zeying],
Gao, S.[Shuai],
Estimation of Maize Photosynthesis Traits Using Hyperspectral Lidar
Backscattered Intensity,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zan, X.L.[Xu-Li],
Xing, Z.Y.[Zi-Yao],
Gao, X.[Xiang],
Liu, W.[Wei],
Zhang, X.D.[Xiao-Dong],
Liu, Z.[Zhe],
Li, S.M.[Shao-Ming],
Risk Assessment of Different Maize (Zea mays L.) Lodging Types in the
Northeast and the North China Plain Based on a Joint Probability
Distribution Model,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Bi, K.Y.[Kai-Yi],
Niu, Z.[Zheng],
Xiao, S.F.[Shun-Fu],
Bai, J.[Jie],
Sun, G.[Gang],
Wang, J.[Ji],
Han, Z.[Zeying],
Gao, S.[Shuai],
Non-Destructive Monitoring of Maize Nitrogen Concentration Using a
Hyperspectral LiDAR: An Evaluation from Leaf-Level to Plant-Level,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Barzin, R.[Razieh],
Lotfi, H.[Hossein],
Varco, J.J.[Jac J.],
Bora, G.C.[Ganesh C.],
Machine Learning in Evaluating Multispectral Active Canopy Sensor for
Prediction of Corn Leaf Nitrogen Concentration and Yield,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Nigon, T.[Tyler],
Paiao, G.D.[Gabriel Dias],
Mulla, D.J.[David J.],
Fernández, F.G.[Fabián G.],
Yang, C.[Ce],
The Influence of Aerial Hyperspectral Image Processing Workflow on
Nitrogen Uptake Prediction Accuracy in Maize,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Guo, Y.H.[Ya-Hui],
Chen, S.Z.[Shou-Zhi],
Fu, Y.S.H.[Yong-Shuo H.],
Xiao, Y.[Yi],
Wu, W.X.[Wen-Xiang],
Wang, H.X.[Han-Xi],
de Beurs, K.[Kirsten],
Comparison of Multi-Methods for Identifying Maize Phenology Using
PhenoCams,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, X.W.[Xue-Wei],
Zhang, K.F.[Ke-Fei],
Sun, Y.Q.[Ya-Qin],
Zhao, Y.[Yindi],
Zhuang, H.F.[Hui-Fu],
Ban, W.[Wei],
Chen, Y.[Yu],
Fu, E.J.[Er-Jiang],
Chen, S.[Shuo],
Liu, J.X.[Jin-Xiang],
Hao, Y.M.[Yu-Meng],
Combining Spectral and Texture Features of UAS-Based Multispectral
Images for Maize Leaf Area Index Estimation,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Qiao, B.[Baiyu],
He, X.K.[Xiong-Kui],
Liu, Y.[Yajia],
Zhang, H.[Hao],
Zhang, L.T.[Lan-Ting],
Liu, L.M.[Li-Min],
Reineke, A.J.[Alice-Jacqueline],
Liu, W.X.[Wen-Xin],
Müller, J.[Joachim],
Maize Characteristics Estimation and Classification by Spectral Data
under Two Soil Phosphorus Levels,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Li, M.[Minhui],
Shamshiri, R.R.[Redmond R.],
Schirrmann, M.[Michael],
Weltzien, C.[Cornelia],
Shafian, S.[Sanaz],
Laursen, M.S.[Morten Stigaard],
UAV Oblique Imagery with an Adaptive Micro-Terrain Model for
Estimation of Leaf Area Index and Height of Maize Canopy from 3D
Point Clouds,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhou, H.[Huailin],
Zhou, G.S.[Guang-Sheng],
Song, X.Y.[Xing-Yang],
He, Q.J.[Qi-Jin],
Dynamic Characteristics of Canopy and Vegetation Water Content during
an Entire Maize Growing Season in Relation to Spectral-Based Indices,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Shen, Q.X.[Qian-Xi],
Niu, J.[Jun],
Sivakumar, B.[Bellie],
Lu, N.[Na],
Effects of Mulching on Maize Yield and Evapotranspiration in the
Heihe River Basin, Northwest China,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Nieto, L.[Luciana],
Houborg, R.[Rasmus],
Zajdband, A.[Ariel],
Jumpasut, A.[Arin],
Prasad, P.V.V.[P. V. Vara],
Olson, B.J.S.C.[Brad J. S. C.],
Ciampitti, I.A.[Ignacio A.],
Impact of High-Cadence Earth Observation in Maize Crop Phenology
Classification,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Varela, S.[Sebastian],
Pederson, T.L.[Taylor L.],
Leakey, A.D.B.[Andrew D. B.],
Implementing Spatio-Temporal 3D-Convolution Neural Networks and UAV
Time Series Imagery to Better Predict Lodging Damage in Sorghum,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Fan, Z.Q.[Zheng-Qiang],
Sun, N.[Na],
Qiu, Q.[Quan],
Li, T.[Tao],
Feng, Q.C.[Qing-Chun],
Zhao, C.J.[Chun-Jiang],
In Situ Measuring Stem Diameters of Maize Crops with a
High-Throughput Phenotyping Robot,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Chakhvashvili, E.[Erekle],
Siegmann, B.[Bastian],
Muller, O.[Onno],
Verrelst, J.[Jochem],
Bendig, J.[Juliane],
Kraska, T.[Thorsten],
Rascher, U.[Uwe],
Retrieval of Crop Variables from Proximal Multispectral UAV Image
Data Using PROSAIL in Maize Canopy,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Koutsos, T.M.[Thomas M.],
Menexes, G.C.[Georgios C.],
Eleftherohorinos, I.G.[Ilias G.],
The Use of Spatial Interpolation to Improve the Quality of Corn
Silage Data in Case of Presence of Extreme or Missing Values,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Guo, Y.H.[Ya-Hui],
Chen, S.Z.[Shou-Zhi],
Li, X.X.[Xin-Xi],
Cunha, M.[Mario],
Jayavelu, S.[Senthilnath],
Cammarano, D.[Davide],
Fu, Y.S.[Yong-Shuo],
Machine Learning-Based Approaches for Predicting SPAD Values of Maize
Using Multi-Spectral Images,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Guo, Y.H.[Ya-Hui],
Zhang, X.[Xuan],
Chen, S.Z.[Shou-Zhi],
Wang, H.X.[Han-Xi],
Jayavelu, S.[Senthilnath],
Cammarano, D.[Davide],
Fu, Y.[Yongshuo],
Integrated UAV-Based Multi-Source Data for Predicting Maize Grain
Yield Using Machine Learning Approaches,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yang, B.[Bin],
Zhu, W.[Wanxue],
Rezaei, E.E.[Ehsan Eyshi],
Li, J.[Jing],
Sun, Z.G.[Zhi-Gang],
Zhang, J.Q.[Jun-Qiang],
The Optimal Phenological Phase of Maize for Yield Prediction with
High-Frequency UAV Remote Sensing,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Olson, M.B.[Monica B.],
Crawford, M.M.[Melba M.],
Vyn, T.J.[Tony J.],
Hyperspectral Indices for Predicting Nitrogen Use Efficiency in Maize
Hybrids,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Candiani, G.[Gabriele],
Tagliabue, G.[Giulia],
Panigada, C.[Cinzia],
Verrelst, J.[Jochem],
Picchi, V.[Valentina],
Caicedo, J.P.R.[Juan Pablo Rivera],
Boschetti, M.[Mirco],
Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen
Content of Maize Crops in the Framework of the Future CHIME Mission,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Yang, H.Y.[Hong-Ye],
Ming, B.[Bo],
Nie, C.W.[Chen-Wei],
Xue, B.B.[Bei-Bei],
Xin, J.F.[Jiang-Feng],
Lu, X.L.[Xing-Li],
Xue, J.[Jun],
Hou, P.[Peng],
Xie, R.Z.[Rui-Zhi],
Wang, K.[Keru],
Li, S.[Shaokun],
Maize Canopy and Leaf Chlorophyll Content Assessment from Leaf
Spectral Reflectance: Estimation and Uncertainty Analysis across
Growth Stages and Vertical Distribution,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Gao, M.[Min],
Yang, F.[Fengbao],
Wei, H.[Hong],
Liu, X.X.[Xiao-Xia],
Individual Maize Location and Height Estimation in Field from
UAV-Borne LiDAR and RGB Images,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Chen, S.[Shuo],
Liu, W.H.[Wei-Hang],
Feng, P.[Puyu],
Ye, T.[Tao],
Ma, Y.C.[Yu-Chi],
Zhang, Z.[Zhou],
Improving Spatial Disaggregation of Crop Yield by Incorporating
Machine Learning with Multisource Data:
A Case Study of Chinese Maize Yield,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ma, Y.[Yining],
Guga, S.[Suri],
Xu, J.[Jie],
Liu, X.[Xingpeng],
Tong, Z.J.[Zhi-Jun],
Zhang, J.[Jiquan],
Assessment of Maize Drought Risk in Midwestern Jilin Province: A
Comparative Analysis of TOPSIS and VIKOR Models,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Spišic, J.[Josip],
Šimic, D.[Domagoj],
Balen, J.[Josip],
Jambrovic, A.[Antun],
Galic, V.[Vlatko],
Machine Learning in the Analysis of Multispectral Reads in Maize
Canopies Responding to Increased Temperatures and Water Deficit,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhu, Y.[Yan],
Ludwig, E.M.[Elaina M.],
Cherkauer, K.A.[Keith A.],
Estimation of Corn Latent Heat Flux from High Resolution Thermal
Imagery,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Gao, J.M.[Jian-Meng],
Ding, M.L.[Ming-Liang],
Sun, Q.Y.[Qiu-Yu],
Dong, J.Y.[Jia-Yu],
Wang, H.[Huanyi],
Ma, Z.H.[Zhan-Hong],
Classification of Southern Corn Rust Severity Based on Leaf-Level
Hyperspectral Data Collected under Solar Illumination,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Wei, J.[Jian],
Ma, Q.[Qin],
Wang, W.T.[Wei-Tao],
Guo, H.[Hao],
Liu, Z.[Zhe],
Zhang, J.J.[Jia-Jing],
Abnormal area identification of corn ear based on semi-supervised
learning,
IET-IPR(16), No. 9, 2022, pp. 2351-2360.
DOI Link
2206
BibRef
Khan, S.N.[Shahid Nawaz],
Li, D.P.[Da-Peng],
Maimaitijiang, M.[Maitiniyazi],
A Geographically Weighted Random Forest Approach to Predict Corn
Yield in the US Corn Belt,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, B.Z.[Bing-Ze],
Ma, M.[Ming],
Chen, S.B.[Sheng-Bo],
Li, X.F.[Xiao-Feng],
Chen, S.[Si],
Zheng, X.M.[Xing-Ming],
Temporal Variation and Component Allocation Characteristics of
Geometric and Physical Parameters of Maize Canopy for the Entire
Growing Season,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Fan, J.H.[Jia-Hao],
Zhou, J.[Jing],
Wang, B.[Biwen],
de Leon, N.[Natalia],
Kaeppler, S.M.[Shawn M.],
Lima, D.C.[Dayane C.],
Zhang, Z.[Zhou],
Estimation of Maize Yield and Flowering Time Using Multi-Temporal
UAV-Based Hyperspectral Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wen, Y.[Yanan],
Li, X.C.[Xue-Cao],
Mu, H.W.[Hao-Wei],
Zhong, L.[Liheng],
Chen, H.[Han],
Zeng, Y.[Yelu],
Miao, S.X.[Shuang-Xi],
Su, W.[Wei],
Gong, P.[Peng],
Li, B.G.[Bao-Guo],
Huang, J.X.[Jian-Xi],
Mapping corn dynamics using limited but representative samples with
adaptive strategies,
PandRS(190), 2022, pp. 252-266.
Elsevier DOI
2208
Corn classification, Annual dynamics, Crop Data Layers,
Morphological processing, Landsat imagery
BibRef
Li, H.[He],
Wang, P.[Peng],
Huang, C.[Chong],
Comparison of Deep Learning Methods for Detecting and Counting
Sorghum Heads in UAV Imagery,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ma, Y.N.[Yi-Ning],
Guga, S.[Suri],
Xu, J.[Jie],
Liu, X.P.[Xing-Peng],
Tong, Z.J.[Zhi-Jun],
Zhang, J.[Jiquan],
Evaluation of Drought Vulnerability of Maize and Influencing Factors
in Songliao Plain Based on the SE-DEA-Tobit Model,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Rolle, M.[Matteo],
Tamea, S.[Stefania],
Claps, P.[Pierluigi],
Ayari, E.[Emna],
Baghdadi, N.[Nicolas],
Zribi, M.[Mehrez],
Analysis of Maize Sowing Periods and Cycle Phases Using Sentinel
1&2 Data Synergy,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Guo, R.[Rui],
Zhu, X.F.[Xiu-Fang],
Zhang, C.[Ce],
Cheng, C.X.[Chang-Xiu],
Analysis of Change in Maize Plantation Distribution and Its Driving
Factors in Heilongjiang Province, China,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Xu, C.[Chi],
Ding, Y.L.[Yan-Ling],
Zheng, X.M.[Xing-Ming],
Wang, Y.Q.[Ye-Qiao],
Zhang, R.[Rui],
Zhang, H.Y.[Hong-Yan],
Dai, Z.[Zewen],
Xie, Q.Y.[Qiao-Yun],
A Comprehensive Comparison of Machine Learning and Feature Selection
Methods for Maize Biomass Estimation Using Sentinel-1 SAR, Sentinel-2
Vegetation Indices, and Biophysical Variables,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yang, B.[Bing],
Wu, S.[Sensen],
Yan, Z.[Zhen],
Effects of Climate Change on Corn Yields: Spatiotemporal Evidence
from Geographically and Temporally Weighted Regression Model,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ahmad, A.[Aanis],
Aggarwal, V.[Varun],
Saraswat, D.[Dharmendra],
El Gamal, A.[Aly],
Johal, G.S.[Gurmukh S.],
GeoDLS: A Deep Learning-Based Corn Disease Tracking and Location
System Using RTK Geolocated UAS Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Mota-Delfin, C.[Canek],
López-Canteńs, G.D.[Gilberto De_Jesús],
López-Cruz, I.L.[Irineo Lorenzo],
Romantchik-Kriuchkova, E.[Eugenio],
Olguín-Rojas, J.C.[Juan Carlos],
Detection and Counting of Corn Plants in the Presence of Weeds with
Convolutional Neural Networks,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Siqueira, R.[Rafael],
Mandal, D.[Dipankar],
Longchamps, L.[Louis],
Khosla, R.[Raj],
Assessing Nitrogen Variability at Early Stages of Maize Using Mobile
Fluorescence Sensing,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Luo, P.L.[Pei-Lei],
Ye, H.C.[Hui-Chun],
Huang, W.J.[Wen-Jiang],
Liao, J.J.[Jing-Juan],
Jiao, Q.J.[Quan-Jun],
Guo, A.[Anting],
Qian, B.X.[Bin-Xiang],
Enabling Deep-Neural-Network-Integrated Optical and SAR Data to
Estimate the Maize Leaf Area Index and Biomass with Limited In Situ
Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Sudu, B.[Bilige],
Rong, G.Z.[Guang-Zhi],
Guga, S.[Suri],
Li, K.W.[Kai-Wei],
Zhi, F.[Feng],
Guo, Y.[Ying],
Zhang, J.[Jiquan],
Bao, Y.L.[Yu-Long],
Retrieving SPAD Values of Summer Maize Using UAV Hyperspectral Data
Based on Multiple Machine Learning Algorithm,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xu, X.M.[Xing-Mei],
Wang, L.[Lu],
Shu, M.Y.[Mei-Yan],
Liang, X.W.[Xue-Wen],
Ghafoor, A.Z.[Abu Zar],
Liu, Y.L.[Yun-Ling],
Ma, Y.T.[Yun-Tao],
Zhu, J.Y.[Jin-Yu],
Detection and Counting of Maize Leaves Based on Two-Stage Deep
Learning with UAV-Based RGB Image,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Olson, M.B.[Monica B.],
Crawford, M.M.[Melba M.],
Vyn, T.J.[Tony J.],
Predicting Nitrogen Efficiencies in Mature Maize with Parametric
Models Employing In-Season Hyperspectral Imaging,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Nandan, R.[Rohit],
Bandaru, V.[Varaprasad],
He, J.Y.[Jia-Ying],
Daughtry, C.[Craig],
Gowda, P.[Prasanna],
Suyker, A.E.[Andrew E.],
Evaluating Optical Remote Sensing Methods for Estimating Leaf Area
Index for Corn and Soybean,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yu, J.X.[Jing-Xin],
Wu, Y.[Yong],
Xu, L.L.[Lin-Lin],
Peng, J.H.[Jun-Huan],
Chen, G.F.[Guang-Feng],
Shen, X.[Xin],
Lan, R.P.[Ren-Ping],
Zhao, C.J.[Chun-Jiang],
Zhang-Zhong, L.[Lili],
Evaluating the Hydrus-1D Model Optimized by Remote Sensing Data for
Soil Moisture Simulations in the Maize Root Zone,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
de Oliveira, M.F.[Mailson Freire],
Ortiz, B.V.[Brenda Valeska],
Morata, G.T.[Guilherme Trimer],
Jiménez, A.F.[Andrés-F],
de Souza-Rolim, G.[Glauco],
Pereira da Silva, R.[Rouverson],
Training Machine Learning Algorithms Using Remote Sensing and
Topographic Indices for Corn Yield Prediction,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Baio, F.H.R.[Fábio Henrique Rojo],
Santana, D.C.[Dthenifer Cordeiro],
Teodoro, L.P.R.[Larissa Pereira Ribeiro],
de Oliveira, I.C.[Izabela Cristina],
Gava, R.[Ricardo],
de Oliveira, J.L.G.[Joăo Lucas Gouveia],
da Silva-Junior, C.A.[Carlos Antonio],
Teodoro, P.E.[Paulo Eduardo],
Shiratsuchi, L.S.[Luciano Shozo],
Maize Yield Prediction with Machine Learning, Spectral Variables and
Irrigation Management,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Croci, M.[Michele],
Impollonia, G.[Giorgio],
Meroni, M.[Michele],
Amaducci, S.[Stefano],
Dynamic Maize Yield Predictions Using Machine Learning on
Multi-Source Data,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
He, Y.H.[Yu-Hua],
Qiu, B.W.[Bing-Wen],
Cheng, F.F.[Fei-Fei],
Chen, C.C.[Chong-Cheng],
Sun, Y.[Yu],
Zhang, D.S.[Dong-Shui],
Lin, L.[Li],
Xu, A.[Aizhen],
National Scale Maize Yield Estimation by Integrating Multiple
Spectral Indexes and Temporal Aggregation,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wang, R.[Rui],
Rong, G.Z.[Guang-Zhi],
Liu, C.[Cong],
Du, W.[Walian],
Zhang, J.[Jiquan],
Tong, Z.J.[Zhi-Jun],
Liu, X.[Xingpeng],
Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea
mays L.) Drought and Waterlogging:
A Case Study in Songliao Plain of China,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, H.[Han],
Zhang, W.[Wangfei],
Yang, G.J.[Gui-Jun],
Lei, L.[Lei],
Han, S.Y.[Shao-Yu],
Xu, W.M.[Wei-Meng],
Chen, R.Q.[Ri-Qiang],
Zhang, C.J.[Cheng-Jian],
Yang, H.[Hao],
Maize Ear Height and Ear-Plant Height Ratio Estimation with LiDAR
Data and Vertical Leaf Area Profile,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Chang, H.F.[Hong-Fang],
Cai, J.[Jiabing],
Zhang, B.Z.[Bao-Zhong],
Wei, Z.[Zheng],
Xu, D.[Di],
Early Yield Forecasting of Maize by Combining Remote Sensing Images
and Field Data with Logistic Models,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Li, J.[Jian],
Yu, W.L.[Wei-Lin],
Du, J.[Jia],
Song, K.[Kaishan],
Xiang, X.Y.[Xiao-Yun],
Liu, H.[Hua],
Zhang, Y.W.[Yi-Wei],
Zhang, W.J.[Wei-Jian],
Zheng, Z.[Zhi],
Wang, Y.[Yan],
Sun, Y.[Yue],
Mapping Maize Tillage Practices over the Songnen Plain in Northeast
China Using GEE Cloud Platform,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Huang, X.D.[Xian-Da],
Xuan, F.[Fu],
Dong, Y.[Yi],
Su, W.[Wei],
Wang, X.S.[Xin-Sheng],
Huang, J.X.[Jian-Xi],
Li, X.C.[Xue-Cao],
Zeng, Y.[Yelu],
Miao, S.X.[Shuang-Xi],
Li, J.[Jiayu],
Identifying Corn Lodging in the Mature Period Using Chinese GF-1 PMS
Images,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Li, J.[Jie],
Hong, X.[Xuebao],
Wang, F.[Feng],
Yang, L.[Lei],
Yang, D.[Dongkai],
Simultaneous Retrieval of Corn Growth Status and Soil Water Content
Based on One GNSS Antenna,
RS(15), No. 7, 2023, pp. 1738.
DOI Link
2304
BibRef
Guo, A.[Anting],
Ye, H.[Huichun],
Li, G.Q.[Guo-Qing],
Zhang, B.[Bing],
Huang, W.J.[Wen-Jiang],
Jiao, Q.[Quanjun],
Qian, B.X.[Bin-Xiang],
Luo, P.L.[Pei-Lei],
Evaluation of Hybrid Models for Maize Chlorophyll Retrieval Using
Medium- and High-Spatial-Resolution Satellite Images,
RS(15), No. 7, 2023, pp. 1784.
DOI Link
2304
BibRef
Liu, M.[Minguo],
Su, W.H.[Wen-Hao],
Wang, X.Q.[Xi-Qing],
Quantitative Evaluation of Maize Emergence Using UAV Imagery and Deep
Learning,
RS(15), No. 8, 2023, pp. 1979.
DOI Link
2305
BibRef
Wang, B.B.[Bin-Bin],
Yang, G.J.[Gui-Jun],
Yang, H.[Hao],
Gu, J.[Jinan],
Xu, S.[Sizhe],
Zhao, D.[Dan],
Xu, B.[Bo],
Multiscale Maize Tassel Identification Based on Improved RetinaNet
Model and UAV Images,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Jiang, S.Y.[Shi-Yu],
Chang, Q.R.[Qing-Rui],
Wang, X.P.[Xiao-Ping],
Zheng, Z.K.[Zhi-Kang],
Zhang, Y.[Yu],
Wang, Q.[Qi],
Estimation of Anthocyanins in Whole-Fertility Maize Leaves Based on
Ground-Based Hyperspectral Measurements,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Zhu, B.X.[Bing-Xue],
Chen, S.[Shengbo],
Xu, Z.Y.[Zheng-Yuan],
Ye, Y.H.[Ying-Hui],
Han, C.[Cheng],
Lu, P.[Peng],
Song, K.[Kaishan],
The Estimation of Maize Grain Protein Content and Yield by
Assimilating LAI and LNA, Retrieved from Canopy Remote Sensing Data,
into the DSSAT Model,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Yang, L.[Lei],
Song, J.L.[Jin-Ling],
Hu, F.Z.[Fang-Ze],
Han, L.J.[Li-Juan],
Wang, J.[Jing],
Monitoring the Impact of Heat Damage on Summer Maize on the
Huanghuaihai Plain, China,
RS(15), No. 11, 2023, pp. 2773.
DOI Link
2306
BibRef
Abubakar, G.A.[Ghali Abdullahi],
Wang, K.[Ke],
Koko, A.F.[Auwalu Faisal],
Husseini, M.I.[Muhammad Ibrahim],
Shuka, K.A.M.[Kamal Abdelrahim Mohamed],
Deng, J.S.[Jin-Song],
Gan, M.[Muye],
Mapping Maize Cropland and Land Cover in Semi-Arid Region in Northern
Nigeria Using Machine Learning and Google Earth Engine,
RS(15), No. 11, 2023, pp. 2835.
DOI Link
2306
BibRef
Janoušek, J.[Jirí],
Marcon, P.[Petr],
Dohnal, P.[Premysl],
Jambor, V.[Václav],
Synková, H.[Hana],
Raichl, P.[Petr],
Predicting the Optimum Corn Harvest Time via the Quantity of Dry
Matter Determined with Vegetation Indices Obtained from Multispectral
Field Imaging,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Gallardo-Romero, D.J.[Diego José],
Apolo-Apolo, O.E.[Orly Enrique],
Martínez-Guanter, J.[Jorge],
Pérez-Ruiz, M.[Manuel],
Multilayer Data and Artificial Intelligence for the Delineation of
Homogeneous Management Zones in Maize Cultivation,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhang, J.[Jinnuo],
Ma, D.D.[Dong-Dong],
Wei, X.[Xing],
Jin, J.[Jian],
Visible and Near-Infrared Hyperspectral Diurnal Variation Calibration
for Corn Phenotyping Using Remote Sensing,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhai, W.G.[Wei-Guang],
Li, C.C.[Chang-Chun],
Cheng, Q.[Qian],
Ding, F.[Fan],
Chen, Z.[Zhen],
Exploring Multisource Feature Fusion and Stacking Ensemble Learning
for Accurate Estimation of Maize Chlorophyll Content Using Unmanned
Aerial Vehicle Remote Sensing,
RS(15), No. 13, 2023, pp. 3454.
DOI Link
2307
BibRef
Zhou, W.Q.[Wen-Qi],
Song, C.[Chao],
Liu, C.[Cunliang],
Fu, Q.[Qiang],
An, T.H.[Tian-Hao],
Wang, Y.J.[Yi-Jia],
Sun, X.B.[Xiao-Bo],
Wen, N.[Nuan],
Tang, H.[Han],
Wang, Q.[Qi],
A Prediction Model of Maize Field Yield Based on the Fusion of
Multitemporal and Multimodal UAV Data: A Case Study in Northeast
China,
RS(15), No. 14, 2023, pp. 3483.
DOI Link
2307
BibRef
Gao, M.[Min],
Yang, F.[Fengbao],
Wei, H.[Hong],
Liu, X.X.[Xiao-Xia],
Automatic Monitoring of Maize Seedling Growth Using Unmanned Aerial
Vehicle-Based RGB Imagery,
RS(15), No. 14, 2023, pp. 3671.
DOI Link
2307
BibRef
Akbari, E.[Elahe],
Boloorani, A.D.[Ali Darvishi],
Verrelst, J.[Jochem],
Pignatti, S.[Stefano],
Samany, N.N.[Najmeh Neysani],
Soufizadeh, S.[Saeid],
Hamzeh, S.[Saeid],
Biophysical Variable Retrieval of Silage Maize with Gaussian Process
Regression and Hyperparameter Optimization Algorithms,
RS(15), No. 14, 2023, pp. 3690.
DOI Link
2307
BibRef
Ye, J.[Junyan],
Bao, W.H.[Wen-Hao],
Liao, C.H.[Chun-Hua],
Chen, D.R.[Dai-Rong],
Hu, H.X.[Hao-Xuan],
Corn Phenology Detection Using the Derivative Dynamic Time Warping
Method and Sentinel-2 Time Series,
RS(15), No. 14, 2023, pp. 3456.
DOI Link
2307
BibRef
Sharma, V.[Vivek],
Tripathi, A.K.[Ashish Kumar],
Daga, P.[Purva],
Nidhi, M.,
Mittal, H.[Himanshu],
ClGanNet: A novel method for maize leaf disease identification using
ClGan and deep CNN,
SP:IC(120), 2024, pp. 117074.
Elsevier DOI
2312
Plant disease identification, Deep learning, Data augmentation,
Lesion differentiation, Deep CNN
BibRef
Sári-Barnácz, F.E.[Fruzsina Eniko],
Zalai, M.[Mihály],
Toepfer, S.[Stefan],
Milics, G.[Gábor],
Iványi, D.[Dóra],
Kun, M.T.[Mariann Tóthné],
Mészáros, J.[János],
Árvai, M.[Mátyás],
Kiss, J.[József],
Suitability of Satellite Imagery for Surveillance of Maize Ear Damage
by Cotton Bollworm (Helicoverpa armigera) Larvae,
RS(15), No. 23, 2023, pp. 5602.
DOI Link
2312
BibRef
Roth, S.[Samantha],
Lee, B.[Ben_Seiyon],
Nicholas, R.E.[Robert E.],
Keller, K.[Klaus],
Haran, M.[Murali],
Bayesian Spatial Models for Projecting Corn Yields,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Hu, C.[Cenhanyi],
Hu, S.[Shun],
Zeng, L.[Linglin],
Meng, K.Y.[Ke-Yu],
Liao, Z.L.[Zi-Long],
Wang, K.[Kuang],
Estimation of Daily Maize Gross Primary Productivity by Considering
Specific Leaf Nitrogen and Phenology via Machine Learning Methods,
RS(16), No. 2, 2024, pp. 341.
DOI Link
2402
BibRef
Zou, Y.F.[Yang-Feng],
Kattel, G.R.[Giri Raj],
Miao, L.J.[Li-Juan],
Enhancing Maize Yield Simulations in Regional China Using Machine
Learning and Multi-Data Resources,
RS(16), No. 4, 2024, pp. 701.
DOI Link
2402
BibRef
Miao, L.J.[Li-Juan],
Zou, Y.F.[Yang-Feng],
Cui, X.F.[Xue-Feng],
Kattel, G.R.[Giri Raj],
Shang, Y.[Yi],
Zhu, J.W.[Jing-Wen],
Predicting China's Maize Yield Using Multi-Source Datasets and
Machine Learning Algorithms,
RS(16), No. 13, 2024, pp. 2417.
DOI Link
2407
BibRef
Killeen, P.[Patrick],
Kiringa, I.[Iluju],
Yeap, T.[Tet],
Branco, P.[Paula],
Corn Grain Yield Prediction Using UAV-Based High Spatiotemporal
Resolution Imagery, Machine Learning, and Spatial Cross-Validation,
RS(16), No. 4, 2024, pp. 683.
DOI Link
2402
BibRef
Ma, Y.Y.[Yu-Yang],
Jiang, G.X.[Gong-Xin],
Huang, J.X.[Jian-Xi],
Shen, Y.L.[Yong-Lin],
Guan, H.X.[Hai-Xiang],
Dong, Y.[Yi],
Li, J.L.[Jia-Lin],
Hu, C.L.[Chu-Li],
Evaluating the Ability of the Sentinel-1 Cross-Polarization Ratio to
Detect Spring Maize Phenology Using Adaptive Dynamic Threshold,
RS(16), No. 5, 2024, pp. 826.
DOI Link
2403
BibRef
Hu, J.Y.[Jing-Yu],
Feng, H.[Hao],
Wang, Q.[Qilei],
Shen, J.N.[Jia-Ning],
Wang, J.[Jian],
Liu, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Yang, H.[Hao],
Guo, W.[Wei],
Qiao, H.B.[Hong-Bo],
Niu, Q.L.[Qing-Lin],
Yue, J.[Jibo],
Pretrained Deep Learning Networks and Multispectral Imagery Enhance
Maize LCC, FVC, and Maturity Estimation,
RS(16), No. 5, 2024, pp. 784.
DOI Link
2403
BibRef
Costa-Filho, E.[Edson],
Chávez, J.L.[José L.],
Zhang, H.H.[Hui-Hui],
A Novel Remote Sensing-Based Modeling Approach for Maize Light
Extinction Coefficient Determination,
RS(16), No. 6, 2024, pp. 1012.
DOI Link
2403
BibRef
Farbo, A.,
Sarvia, F.,
de Petris, S.,
Basile, V.,
Borgogno-Mondino, E.,
Forecasting corn NDVI through AI-based approaches using sentinel 2
image time series,
PandRS(211), 2024, pp. 244-261.
Elsevier DOI
2405
LSTM, NDVI forecasting, Corn, Generalization Capability, Decision Support System
BibRef
Yang, X.[Xin],
Miao, T.[Teng],
Tian, X.Y.[Xue-Ying],
Wang, D.[Dabao],
Zhao, J.X.[Jian-Xiang],
Lin, L.[Lili],
Zhu, C.[Chao],
Yang, T.[Tao],
Xu, T.Y.[Tong-Yu],
Maize stem-leaf segmentation framework based on deformable point
clouds,
PandRS(211), 2024, pp. 49-66.
Elsevier DOI Code:
WWW Link.
2405
Maize Point Cloud Dataset, Physically based deformation,
Point Cloud Data Augmentation, Stem-Leaf Segmentation
BibRef
Desloires, J.[Johann],
Ienco, D.[Dino],
Botrel, A.[Antoine],
Early Season Forecasting of Corn Yield at Field Level from
Multi-Source Satellite Time Series Data,
RS(16), No. 9, 2024, pp. 1573.
DOI Link
2405
BibRef
Guo, Y.M.[Yi-Ming],
Jiang, S.Y.[Shi-Yu],
Miao, H.L.[Hui-Ling],
Song, Z.H.[Zheng-Hua],
Yu, J.[Junru],
Guo, S.[Song],
Chang, Q.R.[Qing-Rui],
Ground-Based Hyperspectral Estimation of Maize Leaf Chlorophyll
Content Considering Phenological Characteristics,
RS(16), No. 12, 2024, pp. 2133.
DOI Link
2406
BibRef
Senaras, C.[Caglar],
Grady, M.[Maddie],
Rana, A.S.[Akhil Singh],
Nieto, L.[Luciana],
Ciampitti, I.[Ignacio],
Holden, P.[Piers],
Davis, T.[Timothy],
Wania, A.[Annett],
Detection of Maize Crop Phenology Using Planet Fusion,
RS(16), No. 15, 2024, pp. 2730.
DOI Link
2408
BibRef
Jiang, Y.[Youyi],
Cheng, Z.[Zhida],
Yang, G.J.[Gui-Jun],
Zhao, D.[Dan],
Zhang, C.J.[Cheng-Jian],
Xu, B.[Bo],
Feng, H.K.[Hai-Kuan],
Feng, Z.H.[Zi-Heng],
Ren, L.P.[Li-Ping],
Zhang, Y.[Yuan],
Yang, H.[Hao],
Fine-Scale Quantification of the Effect of Maize Tassel on Canopy
Reflectance with 3D Radiative Transfer Modeling,
RS(16), No. 15, 2024, pp. 2721.
DOI Link
2408
BibRef
Ni, X.D.[Xin-Dong],
Wang, F.[Faming],
Huang, H.[Hao],
Wang, L.[Ling],
Wen, C.[Changkai],
Chen, D.[Du],
A CNN- and Self-Attention-Based Maize Growth Stage Recognition Method
and Platform from UAV Orthophoto Images,
RS(16), No. 14, 2024, pp. 2672.
DOI Link
2408
BibRef
Dorbu, F.[Freda],
Hashemi-Beni, L.[Leila],
Detection of Individual Corn Crop and Canopy Delineation from
Unmanned Aerial Vehicle Imagery,
RS(16), No. 14, 2024, pp. 2679.
DOI Link
2408
BibRef
Coswosk, G.G.[Guilherme Gonçalves],
Gonçalves, V.M.L.[Vivane Mirian Lanhellas],
de Lima, V.J.[Valter Jário],
Rodrigues-de Souza, G.A.[Guilherme Augusto],
do Amaral-Junior, A.T.[Antônio Teixeira],
Pereira, M.G.[Messias Gonzaga],
de Oliveira, E.C.[Evandro Chaves],
Leite, J.T.[Jhean Torres],
Kamphorst, S.H.[Samuel Henrique],
de Oliveira, U.A.[Uéliton Alves],
Crevelari, J.A.[Jocarla Ambrosim],
dos Santos, K.D.[Késia Dias],
Marques, F.C.R.[Frederico César Ribeiro],
Campostrini, E.[Eliemar],
Utilizing Visible Band Vegetation Indices from Unmanned Aerial
Vehicle Images for Maize Phenotyping,
RS(16), No. 16, 2024, pp. 3015.
DOI Link
2408
BibRef
Zhao, D.[Dan],
Yang, H.[Hao],
Yang, G.J.[Gui-Jun],
Yu, F.H.[Feng-Hua],
Zhang, C.J.[Cheng-Jian],
Chen, R.Q.[Ri-Qiang],
Tang, A.[Aohua],
Zhang, W.J.[Wen-Jie],
Yang, C.[Chen],
Xu, T.Y.[Tong-Yu],
Estimation of Maize Biomass at Multi-Growing Stage Using Stem and
Leaf Separation Strategies with 3D Radiative Transfer Model and CNN
Transfer Learning,
RS(16), No. 16, 2024, pp. 3000.
DOI Link
2408
BibRef
Li, Y.F.[Ya-Feng],
Li, C.C.[Chang-Chun],
Cheng, Q.[Qian],
Duan, F.[Fuyi],
Zhai, W.G.[Wei-Guang],
Li, Z.P.[Zong-Peng],
Mao, B.[Bohan],
Ding, F.[Fan],
Kuang, X.H.[Xiao-Hui],
Chen, Z.[Zhen],
Estimating Maize Crop Height and Aboveground Biomass Using
Multi-Source Unmanned Aerial Vehicle Remote Sensing and
Optuna-Optimized Ensemble Learning Algorithms,
RS(16), No. 17, 2024, pp. 3176.
DOI Link
2409
BibRef
Sári-Barnácz, F.E.[Fruzsina Eniko],
Zalai, M.[Mihály],
Milics, G.[Gábor],
Kun, M.T.[Mariann Tóthné],
Mészáros, J.[János],
Árvai, M.[Mátyás],
Kiss, J.[József],
Monitoring Helicoverpa armigera Damage with PRISMA Hyperspectral
Imagery: First Experience in Maize and Comparison with Sentinel-2
Imagery,
RS(16), No. 17, 2024, pp. 3235.
DOI Link
2409
BibRef
Wu, X.[Xia],
Wang, P.[Peijuan],
Gong, Y.[Yanduo],
Zhang, Y.[Yuanda],
Wang, Q.[Qi],
Li, Y.[Yang],
Guo, J.P.[Jian-Ping],
Han, S.[Shuxin],
Construction and Application of Dynamic Threshold Model for
Agricultural Drought Grades Based on Near-Infrared and Short-Wave
Infrared Bands for Spring Maize,
RS(16), No. 17, 2024, pp. 3260.
DOI Link
2409
BibRef
Bevers, N.[Noah],
Ohlson, E.W.[Erik W.],
KC, K.[Kushal],
Jones, M.W.[Mark W.],
Khanal, S.[Sami],
Sugarcane Mosaic Virus Detection in Maize Using UAS Multispectral
Imagery,
RS(16), No. 17, 2024, pp. 3296.
DOI Link
2409
BibRef
Mondschein, Z.[Zachary],
Paliwal, A.[Ambica],
Sida, T.S.[Tesfaye Shiferaw],
Chamberlin, J.[Jordan],
Wang, R.Z.[Run-Zi],
Jain, M.[Meha],
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems
Using Sentinel-2 Imagery,
RS(16), No. 18, 2024, pp. 3451.
DOI Link
2410
BibRef
Ren, L.P.[Li-Ping],
Li, C.C.[Chang-Chun],
Yang, G.J.[Gui-Jun],
Zhao, D.[Dan],
Zhang, C.J.[Cheng-Jian],
Xu, B.[Bo],
Feng, H.K.[Hai-Kuan],
Chen, Z.[Zhida],
Lin, Z.Y.[Zhong-Yun],
Yang, H.[Hao],
The Detection of Maize Seedling Quality from UAV Images Based on Deep
Learning and Voronoi Diagram Algorithms,
RS(16), No. 19, 2024, pp. 3548.
DOI Link
2410
BibRef
Shamsuddin, D.[Danial],
Danilevicz, M.F.[Monica F.],
Al-Mamun, H.A.[Hawlader A.],
Bennamoun, M.[Mohammed],
Edwards, D.[David],
Multimodal Deep Learning Integration of Image, Weather, and
Phenotypic Data Under Temporal Effects for Early Prediction of Maize
Yield,
RS(16), No. 21, 2024, pp. 4043.
DOI Link
2411
BibRef
Liang, Z.W.[Zheng-Wei],
Du, J.[Jia],
Yu, W.L.[Wei-Lin],
Zhuo, K.[Kaizeng],
Shao, K.[Kewen],
Zhang, W.J.[Wei-Jian],
Zhang, C.[Cangming],
Qin, J.[Jie],
Han, Y.[Yu],
Sui, B.[Bingrun],
Song, K.[Kaishan],
Evaluating Maize Residue Cover Using Machine Learning and Remote
Sensing in the Meadow Soil Region of Northeast China,
RS(16), No. 21, 2024, pp. 3953.
DOI Link
2411
BibRef
Subhashree, S.N.[Srinivasagan N.],
Marcaida, M.[Manuel],
Sunoj, S.[Shajahan],
Kindred, D.R.[Daniel R.],
Thompson, L.J.[Laura J.],
Ketterings, Q.M.[Quirine M.],
Exploring the Use of High-Resolution Satellite Images to Estimate
Corn Silage Yield Within Field,
RS(16), No. 21, 2024, pp. 4081.
DOI Link
2411
BibRef
Cai, E.[Enyu],
Luo, Z.[Zhankun],
Baireddy, S.[Sriram],
Guo, J.Q.[Jia-Qi],
Yang, C.[Changye],
Delp, E.J.[Edward J.],
High-Resolution UAV Image Generation for Sorghum Panicle Detection,
AgriVision22(1675-1684)
IEEE DOI
2210
Training, Deep learning, Head, Image synthesis,
Training data, Autonomous aerial vehicles
BibRef
Stylianou, A.[Abby],
Pless, R.[Robert],
Shakoor, N.[Nadia],
Mockler, T.[Todd],
Classification and Visualization of Genotype-Phenotype Interactions
in Biomass Sorghum,
CVPPA21(1352-1361)
IEEE DOI
2112
Training, Visualization, Pipelines,
Genetics, Biomass
BibRef
Mudereri, B.T.,
Abdel-Rahman, E.M.,
Dube, T.,
Landmann, T.,
Niassy, S.,
Tonnang, H.E.Z.,
Khan, Z.R.,
Potential of Resampled Multispectral Data for Detecting
Desmodium-brachiaria Intercropped With Maize In A 'push-pull' System,
ISPRS20(B3:1017-1022).
DOI Link
2012
BibRef
Mufungizi, A.A.,
Musakwa, W.,
Gumbo, T.,
A Land Suitability Analysis of the Vhembe District, South Africa, The
Case of Maize and Sorghum,
ISPRS20(B3:1023-1030).
DOI Link
2012
BibRef
Stroppiana, D.,
Pepe, M.,
Boschetti, M.,
Crema, A.,
Candiani, G.,
Giordan, D.,
Baldo, M.,
Allasia, P.,
Monopoli, L.,
Estimating Crop Density From Multi-spectral UAV Imagery in Maize Crop,
UAV-g19(619-624).
DOI Link
1912
BibRef
Sibanda, M.,
Mutanga, O.,
Dube, T.,
Odindi, J.,
Mafongoya, P.L.,
Usability, Strength and Practicality of The Upcoming Hyspiri In
Detecting Maize Gray Leafy Spot in Relation to Sentinel-2 Msi, Venµs
And Landsat 8 Oli Spectral Band-settings,
SMPR19(1015-1022).
DOI Link
1912
BibRef
Campos, Y.[Yerania],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Sossa, H.[Humberto],
Pajares, G.[Gonzalo],
Vegetation Segmentation in Cornfield Images Using Bag of Words,
ACIVS16(193-204).
Springer DOI
1611
BibRef
Dahms, T.[Thorsten],
Seissiger, S.[Sylvia],
Conrad, C.[Christopher],
Borg, E.[Erik],
Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series,
ISPRS16(B2: 171-175).
DOI Link
1610
See also Important Variables of a RapidEye Time Series for Modelling Biophysical Parameters of Winter Wheat.
BibRef
Hütt, C.,
Tilly, N.,
Schiedung, H.,
Bareth, G.,
Potential Of Multitemporal Tandem-x Derived Crop Surface Models For
Maize Growth Monitoring,
ISPRS16(B7: 803-808).
DOI Link
1610
BibRef
Lu, H.,
Cao, Z.,
Xiao, Y.,
Fang, Z.,
Zhu, Y.,
Fine-grained maize cultivar identification using filter-specific
convolutional activations,
ICIP16(3718-3722)
IEEE DOI
1610
Agriculture
BibRef
Hütt, C.,
Schiedung, H.,
Tilly, N.,
Bareth, G.,
Fusion of high resolution remote sensing images and terrestrial laser
scanning for improved biomass estimation of maize,
Thematic14(101-108).
DOI Link
1404
BibRef
Tilly, N.,
Hoffmeister, D.,
Schiedung, H.,
Hütt, C.,
Brands, J.,
Bareth, G.,
Terrestrial laser scanning for plant height measurement and biomass
estimation of maize,
Thematic14(181-187).
DOI Link
1404
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Sugar Cane Crop Analysis, Production, Detection, Health, Change .