Haralick, R.M.[Robert M.],
Hlavka, C.A.,
Carlyle, S.M., and
Yokoyama, R.,
The Discrimination of Winter Wheat Using a Growth-State Signature,
RSE(9), 1980, pp. 277-294.
BibRef
8000
Hosoi, F.[Fumiki],
Omasa, K.[Kenji],
Estimating vertical plant area density profile and growth parameters of
a wheat canopy at different growth stages using three-dimensional
portable lidar imaging,
PandRS(64), No. 2, March 2009, pp. 151-158.
Elsevier DOI
0903
Carbon stock; Plant area density; Portable scanning lidar;
Three-dimensional imaging; Voxel-based canopy profiling
BibRef
Koppe, W.[Wolfgang],
Gnyp, M.L.[Martin L.],
Hennig, S.D.[Simon D.],
Li, F.[Fei],
Miao, Y.X.[Yu-Xin],
Chen, X.P.[Xin-Ping],
Jia, L.L.[Liang-Liang],
Bareth, G.[Georg],
Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating
Winter Wheat Biomass in the North China Plain,
PFG(2012), No. 3, 2012, pp. 281-298.
WWW Link.
1211
BibRef
Koppe, W.[Wolfgang],
Li, F.[Fei],
Gnyp, M.L.[Martin L.],
Miao, Y.X.[Yu-Xin],
Jia, L.L.[Liang-Liang],
Chen, X.P.[Xin-Ping],
Zhang, F.[Fusuo],
Bareth, G.[Georg],
Evaluating Multispectral and Hyperspectral Satellite Remote Sensing
Data for Estimating Winter Wheat Growth Parameters at Regional Scale in
the North China Plain,
PFG(2010), No. 3, 2010, pp. 167-178.
WWW Link.
1211
BibRef
Cammarano, D.[Davide],
Fitzgerald, G.J.[Glenn J.],
Casa, R.[Raffaele],
Basso, B.[Bruno],
Assessing the Robustness of Vegetation Indices to Estimate Wheat N in
Mediterranean Environments,
RS(6), No. 4, 2014, pp. 2827-2844.
DOI Link
1405
Nitrogen.
BibRef
Li, F.[Fei],
Mistele, B.[Bodo],
Hu, Y.C.[Yun-Cai],
Chen, X.P.[Xin-Ping],
Schmidhalter, U.[Urs],
Optimising three-band spectral indices to assess aerial N
concentration, N uptake and aboveground biomass of winter wheat
remotely in China and Germany,
PandRS(92), No. 1, 2014, pp. 112-123.
Elsevier DOI
1407
Band selection
BibRef
Vincini, M.,
Amaducci, S.,
Frazzi, E.,
Empirical Estimation of Leaf Chlorophyll Density in Winter Wheat
Canopies Using Sentinel-2 Spectral Resolution,
GeoRS(52), No. 6, June 2014, pp. 3220-3235.
IEEE DOI
1403
BibRef
And:
Corrections:
GeoRS(52), No. 6, June 2014, pp. 3753-3753.
IEEE DOI
1403
Equations Agriculture
BibRef
Burkart, A.[Andreas],
Aasen, H.[Helge],
Alonso, L.[Luis],
Menz, G.[Gunter],
Bareth, G.[Georg],
Rascher, U.[Uwe],
Angular Dependency of Hyperspectral Measurements over Wheat
Characterized by a Novel UAV Based Goniometer,
RS(7), No. 1, 2015, pp. 725-746.
DOI Link
1502
BibRef
Ali, M.[Muhammad],
Montzka, C.[Carsten],
Stadler, A.[Anja],
Menz, G.[Gunter],
Thonfeld, F.[Frank],
Vereecken, H.[Harry],
Estimation and Validation of RapidEye-Based Time-Series of Leaf Area
Index for Winter Wheat in the Rur Catchment (Germany),
RS(7), No. 3, 2015, pp. 2808-2831.
DOI Link
1504
BibRef
Tanaka, S.[Shinya],
Kawamura, K.[Kensuke],
Maki, M.[Masayasu],
Muramoto, Y.[Yasunori],
Yoshida, K.[Kazuaki],
Akiyama, T.[Tsuyoshi],
Spectral Index for Quantifying Leaf Area Index of Winter Wheat by
Field Hyperspectral Measurements: A Case Study in Gifu Prefecture,
Central Japan,
RS(7), No. 5, 2015, pp. 5329-5346.
DOI Link
1506
BibRef
Gonzalez-Dugo, V.[Victoria],
Hernandez, P.[Pilar],
Solis, I.[Ignacio],
Zarco-Tejada, P.J.[Pablo J.],
Using High-Resolution Hyperspectral and Thermal Airborne Imagery to
Assess Physiological Condition in the Context of Wheat Phenotyping,
RS(7), No. 10, 2015, pp. 13586.
DOI Link
1511
BibRef
Jin, X.L.[Xiu-Liang],
Yang, G.J.[Gui-Jun],
Xu, X.G.[Xin-Gang],
Yang, H.[Hao],
Feng, H.K.[Hai-Kuan],
Li, Z.H.[Zhen-Hai],
Shen, J.X.[Jia-Xiao],
Lan, Y.B.[Yu-Bin],
Zhao, C.J.[Chun-Jiang],
Combined Multi-Temporal Optical and Radar Parameters for Estimating
LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data,
RS(7), No. 10, 2015, pp. 13251.
DOI Link
1511
BibRef
Siegmann, B.[Bastian],
Jarmer, T.[Thomas],
Beyer, F.[Florian],
Ehlers, M.[Manfred],
The Potential of Pan-Sharpened EnMAP Data for the Assessment of Wheat
LAI,
RS(7), No. 10, 2015, pp. 12737.
DOI Link
1511
BibRef
Jin, N.[Ning],
Tao, B.[Bo],
Ren, W.[Wei],
Feng, M.C.[Mei-Chen],
Sun, R.[Rui],
He, L.[Liang],
Zhuang, W.[Wei],
Yu, Q.A.[Qi-Ang],
Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal
Satellite Data,
RS(8), No. 3, 2016, pp. 207.
DOI Link
1604
BibRef
Liu, L.,
Liu, X.,
Wang, Z.,
Zhang, B.,
Measurement and Analysis of Bidirectional SIF Emissions in Wheat
Canopies,
GeoRS(54), No. 5, May 2016, pp. 2640-2651.
IEEE DOI
1604
geophysical techniques
BibRef
Boyle, R.D.,
Corke, F.M.K.,
Doonan, J.H.,
Automated estimation of tiller number in wheat by ribbon detection,
MVA(27), No. 5, July 2016, pp. 637-646.
Springer DOI
1608
BibRef
Schirrmann, M.[Michael],
Giebel, A.[Antje],
Gleiniger, F.[Franziska],
Pflanz, M.[Michael],
Lentschke, J.[Jan],
Dammer, K.H.[Karl-Heinz],
Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost
UAV Imagery,
RS(8), No. 9, 2016, pp. 706.
DOI Link
1610
BibRef
Schirrmann, M.[Michael],
Hamdorf, A.[André],
Giebel, A.[Antje],
Gleiniger, F.[Franziska],
Pflanz, M.[Michael],
Dammer, K.H.[Karl-Heinz],
Regression Kriging for Improving Crop Height Models Fusing
Ultra-Sonic Sensing with UAV Imagery,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zhang, X.[Xin],
Zhang, M.[Miao],
Zheng, Y.[Yang],
Wu, B.F.[Bing-Fang],
Crop Mapping Using PROBA-V Time Series Data at the Yucheng and
Hongxing Farm in China,
RS(8), No. 11, 2016, pp. 915.
DOI Link
1612
BibRef
Song, X.[Xiao],
Feng, W.[Wei],
He, L.[Li],
Xu, D.Y.[Duan-Yang],
Zhang, H.Y.[Hai-Yan],
Li, X.[Xiao],
Wang, Z.J.[Zhi-Jie],
Coburn, C.A.[Craig A.],
Wang, C.Y.[Chen-Yang],
Guo, T.C.[Tian-Cai],
Examining view angle effects on leaf N estimation in wheat using
field reflectance spectroscopy,
PandRS(122), No. 1, 2016, pp. 57-67.
Elsevier DOI
1612
Wheat
BibRef
Holman, F.H.[Fenner H.],
Riche, A.B.[Andrew B.],
Michalski, A.[Adam],
Castle, M.[March],
Wooster, M.J.[Martin J.],
Hawkesford, M.J.[Malcolm J.],
High Throughput Field Phenotyping of Wheat Plant Height and Growth
Rate in Field Plot Trials Using UAV Based Remote Sensing,
RS(8), No. 12, 2016, pp. 1031.
DOI Link
1612
BibRef
Qiu, B.W.[Bing-Wen],
Luo, Y.H.[Yu-Han],
Tang, Z.H.[Zheng-Hong],
Chen, C.C.[Chong-Cheng],
Lu, D.F.[Di-Fei],
Huang, H.Y.[Hong-Yu],
Chen, Y.Z.[Yun-Zhi],
Chen, N.[Nan],
Xu, W.M.[Wei-Ming],
Winter wheat mapping combining variations before and after estimated
heading dates,
PandRS(123), No. 1, 2017, pp. 35-46.
Elsevier DOI
1612
Time series analysis
BibRef
Zhao, C.,
Li, H.,
Li, P.,
Yang, G.,
Gu, X.,
Lan, Y.,
Effect of Vertical Distribution of Crop Structure and Biochemical
Parameters of Winter Wheat on Canopy Reflectance Characteristics and
Spectral Indices,
GeoRS(55), No. 1, January 2017, pp. 236-247.
IEEE DOI
1701
vegetation
BibRef
Goulas, Y.[Yves],
Fournier, A.[Antoine],
Daumard, F.[Fabrice],
Champagne, S.[Sébastien],
Ounis, A.[Abderrahmane],
Marloie, O.[Olivier],
Moya, I.[Ismael],
Gross Primary Production of a Wheat Canopy Relates Stronger to Far
Red Than to Red Solar-Induced Chlorophyll Fluorescence,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Dahms, T.[Thorsten],
Seissiger, S.[Sylvia],
Borg, E.[Erik],
Vajen, H.[Hermann],
Fichtelmann, B.[Bernd],
Conrad, C.[Christopher],
Important Variables of a RapidEye Time Series for Modelling Biophysical
Parameters of Winter Wheat,
PFG(2016), No. 5-6, 2016, pp. 285-299.
DOI Link
1703
See also Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series.
BibRef
Liu, Z.J.[Zheng-Jia],
Wu, C.Y.[Chao-Yang],
Liu, Y.S.[Yan-Sui],
Wang, X.Y.[Xiao-Yue],
Fang, B.[Bin],
Yuan, W.P.[Wen-Ping],
Ge, Q.S.[Quan-Sheng],
Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter
wheat cropland in the North China Plain,
PandRS(130), No. 1, 2017, pp. 81-91.
Elsevier DOI
1708
Spring, phenology
BibRef
Yue, J.[Jibo],
Yang, G.J.[Gui-Jun],
Li, C.C.[Chang-Chun],
Li, Z.H.[Zhen-Hai],
Wang, Y.J.[Yan-Jie],
Feng, H.K.[Hai-Kuan],
Xu, B.[Bo],
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial
Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved
Models,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Yue, J.[Jibo],
Feng, H.K.[Hai-Kuan],
Yang, G.J.[Gui-Jun],
Li, Z.H.[Zhen-Hai],
A Comparison of Regression Techniques for Estimation of Above-Ground
Winter Wheat Biomass Using Near-Surface Spectroscopy,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Liu, T.[Tao],
Li, R.[Rui],
Jin, X.[Xiuliang],
Ding, J.F.[Jin-Feng],
Zhu, X.[Xinkai],
Sun, C.M.[Cheng-Ming],
Guo, W.[Wenshan],
Evaluation of Seed Emergence Uniformity of Mechanically Sown Wheat
with UAV RGB Imagery,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Yao, X.[Xia],
Wang, N.[Ni],
Liu, Y.[Yong],
Cheng, T.[Tao],
Tian, Y.C.[Yong-Chao],
Chen, Q.[Qi],
Zhu, Y.[Yan],
Estimation of Wheat LAI at Middle to High Levels Using Unmanned
Aerial Vehicle Narrowband Multispectral Imagery,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Zhou, C.Q.[Cheng-Quan],
Liang, D.[Dong],
Yang, X.D.[Xiao-Dong],
Xu, B.[Bo],
Yang, G.J.[Gui-Jun],
Recognition of Wheat Spike from Field Based Phenotype Platform Using
Multi-Sensor Fusion and Improved Maximum Entropy Segmentation
Algorithms,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Khan, A.[Ahmad],
Hansen, M.C.[Matthew C.],
Potapov, P.V.[Peter V.],
Adusei, B.[Bernard],
Pickens, A.[Amy],
Krylov, A.[Alexander],
Stehman, S.V.[Stephen V.],
Evaluating Landsat and RapidEye Data for Winter Wheat Mapping and
Area Estimation in Punjab, Pakistan,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Hassan, M.A.[Muhammad Adeel],
Yang, M.J.[Meng-Jiao],
Rasheed, A.[Awais],
Jin, X.L.[Xiu-Liang],
Xia, X.C.[Xian-Chun],
Xiao, Y.G.[Yong-Gui],
He, Z.H.[Zhong-Hu],
Time-Series Multispectral Indices from Unmanned Aerial Vehicle
Imagery Reveal Senescence Rate in Bread Wheat,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Sui, J.[Juan],
Qin, Q.M.[Qi-Ming],
Ren, H.Z.[Hua-Zhong],
Sun, Y.H.[Yuan-Heng],
Zhang, T.Y.[Tian-Yuan],
Wang, J.D.[Jian-Dong],
Gong, S.H.[Shi-Hong],
Winter Wheat Production Estimation Based on Environmental Stress
Factors from Satellite Observations,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Khan, Z.[Zohaib],
Chopin, J.[Joshua],
Cai, J.H.[Jin-Hai],
Eichi, V.R.[Vahid-Rahimi],
Haefele, S.[Stephan],
Miklavcic, S.J.[Stanley J.],
Quantitative Estimation of Wheat Phenotyping Traits Using Ground and
Aerial Imagery,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
And:
Erratum:
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Liu, J.H.[Jian-Hong],
Zhu, W.Q.[Wen-Quan],
Atzberger, C.[Clement],
Zhao, A.Z.[An-Zhou],
Pan, Y.Z.[Yao-Zhong],
Huang, X.[Xin],
A Phenology-Based Method to Map Cropping Patterns under a Wheat-Maize
Rotation Using Remotely Sensed Time-Series Data,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Meyer, T.[Thomas],
Weihermüller, L.[Lutz],
Vereecken, H.[Harry],
Jonard, F.[François],
Vegetation Optical Depth and Soil Moisture Retrieved from L-Band
Radiometry over the Growth Cycle of a Winter Wheat,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Chen, H.Y.[Han-Yue],
Huang, W.J.[Wen-Jiang],
Li, W.[Wang],
Niu, Z.[Zheng],
Zhang, L.M.[Li-Ming],
Xing, S.[Shihe],
Estimation of LAI in Winter Wheat from Multi-Angular Hyperspectral
VNIR Data: Effects of View Angles and Plant Architecture,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Kuester, T.[Theres],
Spengler, D.[Daniel],
Structural and Spectral Analysis of Cereal Canopy Reflectance and
Reflectance Anisotropy,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
El Hajj, M.[Mohammad],
Baghdadi, N.[Nicolas],
Bazzi, H.[Hassan],
Zribi, M.[Mehrez],
Penetration Analysis of SAR Signals in the C and L Bands for Wheat,
Maize, and Grasslands,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Liu, L.Y.[Lin-Yi],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Du, X.P.[Xiao-Ping],
Luo, J.[Juhua],
Shi, Y.[Yue],
Ma, H.Q.[Hui-Qin],
Enhanced Regional Monitoring of Wheat Powdery Mildew Based on an
Instance-Based Transfer Learning Method,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
He, L.,
Coburn, C.A.,
Wang, Z.,
Feng, W.,
Guo, T.,
Reduced Prediction Saturation and View Effects for Estimating the
Leaf Area Index of Winter Wheat,
GeoRS(57), No. 3, March 2019, pp. 1637-1652.
IEEE DOI
1903
crops, soil, vegetation mapping, reduced prediction saturation,
view effects, leaf area index, winter wheat, vegetation indices, LAI,
winter wheat
BibRef
Yue, J.[Jibo],
Yang, G.J.[Gui-Jun],
Tian, Q.J.[Qing-Jiu],
Feng, H.K.[Hai-Kuan],
Xu, K.J.[Kai-Jian],
Zhou, C.Q.[Cheng-Quan],
Estimate of winter-wheat above-ground biomass based on UAV
ultrahigh-ground-resolution image textures and vegetation indices,
PandRS(150), 2019, pp. 226-244.
Elsevier DOI
1903
Unmanned aerial vehicle, Vegetation indices,
Ultrahigh ground-resolution image, Image textures,
Reproductive growth stages
BibRef
Song, Y.[Yang],
Wang, J.[Jing],
Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using
Sentinel-1 Backscatter Time Series,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Upreti, D.[Deepak],
Huang, W.J.[Wen-Jiang],
Kong, W.P.[Wei-Ping],
Pascucci, S.[Simone],
Pignatti, S.[Stefano],
Zhou, X.F.[Xian-Feng],
Ye, H.[Huichun],
Casa, R.[Raffaele],
A Comparison of Hybrid Machine Learning Algorithms for the Retrieval
of Wheat Biophysical Variables from Sentinel-2,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
He, Y.H.[Yuan-Huizi],
Wang, C.L.[Chang-Lin],
Chen, F.[Fang],
Jia, H.C.[Hui-Cong],
Liang, D.[Dong],
Yang, A.[Aqiang],
Feature Comparison and Optimization for 30-M Winter Wheat Mapping
Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Zhang, C.M.[Cheng-Ming],
Han, Y.J.[Ying-Juan],
Li, F.[Feng],
Gao, S.[Shuai],
Song, D.[Dejuan],
Zhao, H.[Hui],
Fan, K.Q.[Ke-Qi],
Zhang, Y.[Ya'nan],
A New CNN-Bayesian Model for Extracting Improved Winter Wheat Spatial
Distribution from GF-2 imagery,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ma, H.Q.[Hui-Qin],
Huang, W.J.[Wen-Jiang],
Jing, Y.S.[Yuan-Shu],
Yang, C.H.[Cheng-Hai],
Han, L.X.[Liang-Xiu],
Dong, Y.Y.[Ying-Ying],
Ye, H.C.[Hui-Chun],
Shi, Y.[Yue],
Zheng, Q.[Qiong],
Liu, L.Y.[Lin-Yi],
Ruan, C.[Chao],
Integrating Growth and Environmental Parameters to Discriminate
Powdery Mildew and Aphid of Winter Wheat Using Bi-Temporal Landsat-8
Imagery,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Fernandez-Gallego, J.A.[Jose A.],
Buchaillot, M.L.[Ma. Luisa],
Gutiérrez, N.A.[Nieves Aparicio],
Nieto-Taladriz, M.T.[María Teresa],
Araus, J.L.[José Luis],
Kefauver, S.C.[Shawn C.],
Automatic Wheat Ear Counting Using Thermal Imagery,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Shah, S.H.[Syed Haleem],
Angel, Y.[Yoseline],
Houborg, R.[Rasmus],
Ali, S.[Shawkat],
McCabe, M.F.[Matthew F.],
A Random Forest Machine Learning Approach for the Retrieval of Leaf
Chlorophyll Content in Wheat,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Ren, S.[Shilong],
Qin, Q.M.[Qi-Ming],
Ren, H.Z.[Hua-Zhong],
Sui, J.[Juan],
Zhang, Y.[Yao],
Heat and Drought Stress Advanced Global Wheat Harvest Timing from
1981-2014,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cui, B.[Bei],
Zhao, Q.J.[Qian-Jun],
Huang, W.J.[Wen-Jiang],
Song, X.Y.[Xiao-Yu],
Ye, H.C.[Hui-Chun],
Zhou, X.F.[Xian-Feng],
A New Integrated Vegetation Index for the Estimation of Winter Wheat
Leaf Chlorophyll Content,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Aranguren, M.[Marta],
Castellón, A.[Ander],
Aizpurua, A.[Ana],
Crop Sensor-Based In-Season Nitrogen Management of Wheat with Manure
Application,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Xiong, B.[Biao],
Wang, B.[Bo],
Xiong, S.W.[Sheng-Wu],
Lin, C.D.[Cheng-De],
Yuan, X.H.[Xiao-Hui],
3D Morphological Processing for Wheat Spike Phenotypes Using Computed
Tomography Images,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Danner, M.[Martin],
Berger, K.[Katja],
Wocher, M.[Matthias],
Mauser, W.[Wolfram],
Hank, T.[Tobias],
Fitted PROSAIL Parameterization of Leaf Inclinations, Water Content
and Brown Pigment Content for Winter Wheat and Maize Canopies,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Yang, Y.J.[Yan-Jun],
Tao, B.[Bo],
Ren, W.[Wei],
Zourarakis, D.P.[Demetrio P.],
El Masri, B.[Bassil],
Sun, Z.G.[Zhi-Gang],
Tian, Q.J.[Qing-Jiu],
An Improved Approach Considering Intraclass Variability for Mapping
Winter Wheat Using Multitemporal MODIS EVI Images,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Song, Y.[Yang],
Wang, J.F.[Jin-Fei],
Winter Wheat Canopy Height Extraction from UAV-Based Point Cloud Data
with a Moving Cuboid Filter,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Gracia-Romero, A.[Adrian],
Kefauver, S.C.[Shawn C.],
Fernandez-Gallego, J.A.[Jose A.],
Vergara-Díaz, O.[Omar],
Nieto-Taladriz, M.T.[María Teresa],
Araus, J.L.[José L.],
UAV and Ground Image-Based Phenotyping:
A Proof of Concept with Durum Wheat,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Li, F.L.[Fen-Ling],
Wang, L.[Li],
Liu, J.[Jing],
Wang, Y.[Yuna],
Chang, Q.R.[Qing-Rui],
Evaluation of Leaf N Concentration in Winter Wheat Based on Discrete
Wavelet Transform Analysis,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Guo, L.H.[Ling-Hui],
Gao, J.B.[Jiang-Bo],
Hao, C.Y.[Cheng-Yuan],
Zhang, L.L.[Lin-Lin],
Wu, S.H.[Shao-Hong],
Xiao, X.M.[Xiang-Ming],
Winter Wheat Green-up Date Variation and its Diverse Response on the
Hydrothermal Conditions over the North China Plain, Using MODIS
Time-Series Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Zhang, C.[Chao],
Liu, J.[Jiangui],
Dong, T.[Taifeng],
Pattey, E.[Elizabeth],
Shang, J.L.[Jia-Li],
Tang, M.[Min],
Cai, H.J.[Huan-Jie],
Saddique, Q.[Qaisar],
Coupling Hyperspectral Remote Sensing Data with a Crop Model to Study
Winter Wheat Water Demand,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
He, T.[Tianle],
Xie, C.J.[Chuan-Jie],
Liu, Q.S.[Qing-Sheng],
Guan, S.Y.[Shi-Ying],
Liu, G.H.[Gao-Huan],
Evaluation and Comparison of Random Forest and A-LSTM Networks for
Large-scale Winter Wheat Identification,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Prudnikova, E.[Elena],
Savin, I.[Igor],
Vindeker, G.[Gretelerika],
Grubina, P.[Praskovia],
Shishkonakova, E.[Ekaterina],
Sharychev, D.[David],
Influence of Soil Background on Spectral Reflectance of Winter Wheat
Crop Canopy,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Revill, A.[Andrew],
Florence, A.[Anna],
MacArthur, A.[Alasdair],
Hoad, S.P.[Stephen P.],
Rees, R.M.[Robert M.],
Williams, M.[Mathew],
The Value of Sentinel-2 Spectral Bands for the Assessment of Winter
Wheat Growth and Development,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Nasrallah, A.[Ali],
Baghdadi, N.[Nicolas],
El Hajj, M.[Mohammad],
Darwish, T.[Talal],
Belhouchette, H.[Hatem],
Faour, G.[Ghaleb],
Darwich, S.[Salem],
Mhawej, M.[Mario],
Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Meyer, T.[Thomas],
Jagdhuber, T.[Thomas],
Piles, M.[María],
Fink, A.[Anita],
Grant, J.[Jennifer],
Vereecken, H.[Harry],
Jonard, F.[François],
Estimating Gravimetric Water Content of a Winter Wheat Field from
L-Band Vegetation Optical Depth,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhu, W.X.[Wan-Xue],
Sun, Z.G.[Zhi-Gang],
Huang, Y.H.[Yao-Huan],
Lai, J.B.[Jian-Bin],
Li, J.[Jing],
Zhang, J.Q.A.[Jun-Qi-Ang],
Yang, B.[Bin],
Li, B.B.[Bin-Bin],
Li, S.[Shiji],
Zhu, K.Y.[Kang-Ying],
Li, Y.[Yang],
Liao, X.H.[Xiao-Han],
Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing
Observations and Optimized VI-LUTs,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, D.Y.[Dong-Yan],
Fang, S.M.[Sheng-Mei],
She, B.[Bao],
Zhang, H.H.[Hui-Hui],
Jin, N.[Ning],
Xia, H.M.[Hao-Ming],
Yang, Y.Y.[Yu-Ying],
Ding, Y.[Yang],
Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous
Planting Conditions,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Jia, M.[Min],
Li, D.[Dong],
Colombo, R.[Roberto],
Wang, Y.[Ying],
Wang, X.[Xue],
Cheng, T.[Tao],
Zhu, Y.[Yan],
Yao, X.[Xia],
Xu, C.J.[Chang-Jun],
Ouer, G.[Geli],
Li, H.Y.[Hong-Ying],
Zhang, C.K.[Chao-Kun],
Quantifying Chlorophyll Fluorescence Parameters from Hyperspectral
Reflectance at the Leaf Scale under Various Nitrogen Treatment
Regimes in Winter Wheat,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Wu, X.F.[Xi-Fang],
Yang, W.[Wei],
Wang, C.Y.[Chun-Yang],
Shen, Y.J.[Yan-Jun],
Kondoh, A.[Akihiko],
Interactions among the Phenological Events of Winter Wheat in the
North China Plain-Based on Field Data and Improved MODIS Estimation,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Marino, S.[Stefano],
Alvino, A.[Arturo],
Agronomic Traits Analysis of Ten Winter Wheat Cultivars Clustered by
UAV-Derived Vegetation Indices,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Xing, N.C.[Nai-Chen],
Huang, W.J.[Wen-Jiang],
Xie, Q.Y.[Qiao-Yun],
Shi, Y.[Yue],
Ye, H.C.[Hui-Chun],
Dong, Y.Y.[Ying-Ying],
Wu, M.Q.[Ming-Quan],
Sun, G.[Gang],
Jiao, Q.J.[Quan-Jun],
A Transformed Triangular Vegetation Index for Estimating Winter Wheat
Leaf Area Index,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Xing, N.C.[Nai-Chen],
Huang, W.J.[Wen-Jiang],
Ye, H.C.[Hui-Chun],
Ren, Y.[Yu],
Xie, Q.Y.[Qiao-Yun],
Joint Retrieval of Winter Wheat Leaf Area Index and Canopy
Chlorophyll Density Using Hyperspectral Vegetation Indices,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, F.[Feng],
Zhang, C.M.[Cheng-Ming],
Zhang, W.W.[Wen-Wen],
Xu, Z.G.[Zhi-Gang],
Wang, S.Y.[Shou-Yi],
Sun, G.[Genyun],
Wang, Z.J.[Zhen-Jie],
Improved Winter Wheat Spatial Distribution Extraction from
High-Resolution Remote Sensing Imagery Using Semantic Features and
Statistical Analysis,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Hu, Y.C.[Yun-Cai],
Knapp, S.[Samuel],
Schmidhalter, U.[Urs],
Advancing High-Throughput Phenotyping of Wheat in Early Selection
Cycles,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Murphy, M.E.[Mary E.],
Boruff, B.[Bryan],
Callow, J.N.[J. Nikolaus],
Flower, K.C.[Ken C.],
Detecting Frost Stress in Wheat: A Controlled Environment
Hyperspectral Study on Wheat Plant Components and Implications for
Multispectral Field Sensing,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Song, Y.[Yang],
Wang, J.[Jing],
Yu, Q.A.[Qi-Ang],
Huang, J.X.[Jian-Xi],
Using MODIS LAI Data to Monitor Spatio-Temporal Changes of Winter
Wheat Phenology in Response to Climate Warming,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Wang, S.Y.[Shou-Yi],
Xu, Z.G.[Zhi-Gang],
Zhang, C.M.[Cheng-Ming],
Zhang, J.H.[Jing-Han],
Mu, Z.S.[Zhong-Shan],
Zhao, T.Y.[Tian-Yu],
Wang, Y.Y.[Yuan-Yuan],
Gao, S.[Shuai],
Yin, H.[Hao],
Zhang, Z.Y.[Zi-Yun],
Improved Winter Wheat Spatial Distribution Extraction Using A
Convolutional Neural Network and Partly Connected Conditional Random
Field,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
And:
Erratum:
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Tewes, A.[Andreas],
Hoffmann, H.[Holger],
Nolte, M.[Manuel],
Krauss, G.[Gunther],
Schäfer, F.[Fabian],
Kerkhoff, C.[Christian],
Gaiser, T.[Thomas],
How Do Methods Assimilating Sentinel-2-Derived LAI Combined with Two
Different Sources of Soil Input Data Affect the Crop Model-Based
Estimation of Wheat Biomass at Sub-Field Level?,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Dong, Q.[Qi],
Chen, X.H.[Xue-Hong],
Chen, J.[Jin],
Zhang, C.S.[Chi-Shan],
Liu, L.[Licong],
Cao, X.[Xin],
Zang, Y.Z.[Yun-Ze],
Zhu, X.F.[Xiu-Fang],
Cui, X.H.[Xi-Hong],
Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A
Method Based on Phenology-Time Weighted Dynamic Time Warping,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Xu, X.O.[Xia-Obin],
Teng, C.[Cong],
Zhao, Y.[Yu],
Du, Y.[Ying],
Zhao, C.Q.[Chun-Qi],
Yang, G.J.[Gui-Jun],
Jin, X.L.[Xiu-Liang],
Song, X.Y.[Xiao-Yu],
Gu, X.H.[Xiao-He],
Casa, R.[Raffaele],
Chen, L.P.[Li-Ping],
Li, Z.H.[Zhen-Hai],
Prediction of Wheat Grain Protein by Coupling Multisource Remote
Sensing Imagery and ECMWF Data,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Xu, W.,
Zhang, Z.,
Qin, Q.,
Hui, J.,
Long, Z.,
Soil Moisture Estimation With SVR and Data Augmentation Based on
Alpha Approximation Method,
GeoRS(58), No. 5, May 2020, pp. 3190-3201.
IEEE DOI
2005
Soil moisture, Soil measurements, Synthetic aperture radar,
Approximation methods, Agriculture, Estimation,
winter wheat
BibRef
El-Hendawy, S.[Salah],
Al-Suhaibani, N.[Nasser],
Al-Ashkar, I.[Ibrahim],
Alotaibi, M.[Majed],
Tahir, M.U.[Muhammad Usman],
Solieman, T.[Talaat],
Hassan, W.M.[Wael M.],
Combining Genetic Analysis and Multivariate Modeling to Evaluate
Spectral Reflectance Indices as Indirect Selection Tools in Wheat
Breeding under Water Deficit Stress Conditions,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Chen, S.[Shi],
Fan, L.L.[Ling-Ling],
Liang, S.F.[She-Fang],
Chen, H.[Hao],
Sun, X.[Xiao],
Hu, Y.[Yanan],
Liu, Z.H.[Zhen-Huan],
Sun, J.[Jing],
Yang, P.[Peng],
Spatiotemporal Dynamics of the Northern Limit of Winter Wheat in
China Using MODIS Time Series Images,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Vavlas, N.C.[Nikolaos-Christos],
Waine, T.W.[Toby W.],
Meersmans, J.[Jeroen],
Burgess, P.J.[Paul J.],
Fontanelli, G.[Giacomo],
Richter, G.M.[Goetz M.],
Deriving Wheat Crop Productivity Indicators Using Sentinel-1 Time
Series,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhou, X.F.[Xian-Feng],
Zhang, J.C.[Jing-Cheng],
Chen, D.M.[Dong-Mei],
Huang, Y.B.[Yan-Bo],
Kong, W.P.[Wei-Ping],
Yuan, L.[Lin],
Ye, H.C.[Hui-Chun],
Huang, W.J.[Wen-Jiang],
Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using
Landsat-8 Multispectral Remote Sensing Data,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Upreti, D.[Deepak],
Pignatti, S.[Stefano],
Pascucci, S.[Simone],
Tolomio, M.[Massimo],
Huang, W.J.[Wen-Jiang],
Casa, R.[Raffaele],
Bayesian Calibration of the Aquacrop-OS Model for Durum Wheat by
Assimilation of Canopy Cover Retrieved from VENµS Satellite Data,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Lang, T.T.[Ting-Ting],
Yang, Y.Z.[Yan-Zhao],
Jia, K.[Kun],
Zhang, C.[Chao],
You, Z.[Zhen],
Liang, Y.B.[Yu-Bin],
Estimation of Winter Wheat Production Potential Based on
Remotely-Sensed Imagery and Process-Based Model Simulations,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Zhu, K.Y.[Kang-Ying],
Sun, Z.G.[Zhi-Gang],
Zhao, F.H.[Feng-Hua],
Yang, T.[Ting],
Tian, Z.R.[Zhen-Rong],
Lai, J.B.[Jian-Bin],
Long, B.[Buju],
Li, S.[Shiji],
Remotely sensed canopy resistance model for analyzing the stomatal
behavior of environmentally-stressed winter wheat,
PandRS(168), 2020, pp. 197-207.
Elsevier DOI
2009
Remote sensing model, Canopy resistance, Stomatal behavior,
Dry-hot wind stress, Salt stress, Winter wheat
BibRef
Flynn, K.C.[K. Colton],
Frazier, A.E.[Amy E.],
Admas, S.[Sintayehu],
Nutrient Prediction for Tef (Eragrostis tef) Plant and Grain with
Hyperspectral Data and Partial Least Squares Regression: Replicating
Methods and Results across Environments,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Flynn, K.C.[K. Colton],
Lee, T.[Trey],
Endale, D.[Dinku],
Franzluebbers, A.[Alan],
Ma, S.F.[Sheng-Fang],
Zhou, Y.T.[Yu-Ting],
Assessing Remote Sensing Vegetation Index Sensitivities for Tall
Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte
and Fertilizer Types: A Case for Improving Poultry Manuresheds,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Sapkota, B.[Bishwa],
Singh, V.[Vijay],
Neely, C.[Clark],
Rajan, N.[Nithya],
Bagavathiannan, M.[Muthukumar],
Detection of Italian Ryegrass in Wheat and Prediction of Competitive
Interactions Using Remote-Sensing and Machine-Learning Techniques,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Weiß, T.[Thomas],
Ramsauer, T.[Thomas],
Löw, A.[Alexander],
Marzahn, P.[Philip],
Evaluation of Different Radiative Transfer Models for Microwave
Backscatter Estimation of Wheat Fields,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Chen, P.F.[Peng-Fei],
Estimation of Winter Wheat Grain Protein Content Based on Multisource
Data Assimilation,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Huang, X.[Xin],
Zhu, W.Q.[Wen-Quan],
Wang, X.Y.[Xiao-Ying],
Zhan, P.[Pei],
Liu, Q.F.[Qiu-Feng],
Li, X.Y.[Xue-Ying],
Sun, L.X.[Li-Xin],
A Method for Monitoring and Forecasting the Heading and Flowering
Dates of Winter Wheat Combining Satellite-Derived Green-up Dates and
Accumulated Temperature,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Tian, H.F.[Hai-Feng],
Pei, J.[Jie],
Huang, J.X.[Jian-Xi],
Li, X.C.[Xue-Cao],
Wang, J.[Jian],
Zhou, B.Y.[Bo-Yan],
Qin, Y.C.[Yao-Chen],
Wang, L.[Li],
Garlic and Winter Wheat Identification Based on Active and Passive
Satellite Imagery and the Google Earth Engine in Northern China,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Aharon, S.[Shlomi],
Peleg, Z.[Zvi],
Argaman, E.[Eli],
Ben-David, R.[Roi],
Lati, R.N.[Ran N.],
Image-Based High-Throughput Phenotyping of Cereals Early Vigor and
Weed-Competitiveness Traits,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Das, S.[Sumanta],
Christopher, J.[Jack],
Apan, A.[Armando],
Roy Choudhury, M.[Malini],
Chapman, S.[Scott],
Menzies, N.W.[Neal W.],
Dang, Y.P.[Yash P.],
UAV-Thermal imaging and agglomerative hierarchical clustering
techniques to evaluate and rank physiological performance of wheat
genotypes on sodic soil,
PandRS(173), 2021, pp. 221-237.
Elsevier DOI
2102
Canopy temperature, Plant water stress, Vegetation indices,
Agglomerative hierarchical clustering, Wheat genotypes, Sodic soil
BibRef
Bates, J.S.[Jordan Steven],
Montzka, C.[Carsten],
Schmidt, M.[Marius],
Jonard, F.[François],
Estimating Canopy Density Parameters Time-Series for Winter Wheat
Using UAS Mounted LiDAR,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Fu, Y.Y.[Yuan-Yuan],
Yang, G.J.[Gui-Jun],
Song, X.Y.[Xiao-Yu],
Li, Z.H.[Zhen-Hong],
Xu, X.G.[Xin-Gang],
Feng, H.K.[Hai-Kuan],
Zhao, C.J.[Chun-Jiang],
Improved Estimation of Winter Wheat Aboveground Biomass Using
Multiscale Textures Extracted from UAV-Based Digital Images and
Hyperspectral Feature Analysis,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Gorrab, A.[Azza],
Ameline, M.[Maël],
Albergel, C.[Clément],
Baup, F.[Frédéric],
Use of Sentinel-1 Multi-Configuration and Multi-Temporal Series for
Monitoring Parameters of Winter Wheat,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Sadeghi-Tehran, P.[Pouria],
Virlet, N.[Nicolas],
Hawkesford, M.J.[Malcolm J.],
A Neural Network Method for Classification of Sunlit and Shaded
Components of Wheat Canopies in the Field Using High-Resolution
Hyperspectral Imagery,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Bhandari, M.[Mahendra],
Baker, S.[Shannon],
Rudd, J.C.[Jackie C.],
Ibrahim, A.M.H.[Amir M. H.],
Chang, A.[Anjin],
Xue, Q.W.[Qing-Wu],
Jung, J.H.[Jin-Ha],
Landivar, J.[Juan],
Auvermann, B.[Brent],
Assessing the Effect of Drought on Winter Wheat Growth Using Unmanned
Aerial System (UAS)-Based Phenotyping,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Li, F.J.[Fang-Jie],
Ren, J.Q.[Jian-Qiang],
Wu, S.R.[Shang-Rong],
Zhao, H.W.[Hong-Wei],
Zhang, N.D.[Ning-Dan],
Comparison of Regional Winter Wheat Mapping Results from Different
Similarity Measurement Indicators of NDVI Time Series and Their
Optimized Thresholds,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Rufo, R.[Rubén],
Soriano, J.M.[Jose Miguel],
Villegas, D.[Dolors],
Royo, C.[Conxita],
Bellvert, J.[Joaquim],
Using Unmanned Aerial Vehicle and Ground-Based RGB Indices to Assess
Agronomic Performance of Wheat Landraces and Cultivars in a
Mediterranean-Type Environment,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhang, W.M.[Wen-Min],
Brandt, M.[Martin],
Prishchepov, A.V.[Alexander V.],
Li, Z.F.[Zhao-Fu],
Lyu, C.G.[Chun-Guang],
Fensholt, R.[Rasmus],
Mapping the Dynamics of Winter Wheat in the North China Plain from
Dense Landsat Time Series (1999 to 2019),
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Dandrifosse, S.[Sébastien],
Carlier, A.[Alexis],
Dumont, B.[Benjamin],
Mercatoris, B.[Benoît],
Registration and Fusion of Close-Range Multimodal Wheat Images in
Field Conditions,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ayari, E.[Emna],
Kassouk, Z.[Zeineb],
Lili-Chabaane, Z.[Zohra],
Baghdadi, N.[Nicolas],
Bousbih, S.[Safa],
Zribi, M.[Mehrez],
Cereal Crops Soil Parameters Retrieval Using L-Band ALOS-2 and C-Band
Sentinel-1 Sensors,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wu, B.[Bin],
Huang, W.J.[Wen-Jiang],
Ye, H.[Huichun],
Luo, P.L.[Pei-Lei],
Ren, Y.[Yu],
Kong, W.P.[Wei-Ping],
Using Multi-Angular Hyperspectral Data to Estimate the Vertical
Distribution of Leaf Chlorophyll Content in Wheat,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Pour, M.K.[Majid Khak],
Fotouhi, R.[Reza],
Hucl, P.[Pierre],
Zhang, Q.W.[Qian-Wei],
Development of a Mobile Platform for Field-Based High-Throughput
Wheat Phenotyping,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Qu, C.[Chang],
Li, P.J.[Pei-Jun],
Zhang, C.M.[Cheng-Ming],
A spectral index for winter wheat mapping using multi-temporal
Landsat NDVI data of key growth stages,
PandRS(175), 2021, pp. 431-447.
Elsevier DOI
2105
Winter wheat mapping, Multi-temporal Landsat NDVI,
Winter wheat index (WWI), Growth stages
BibRef
Li, S.L.[Shi-Lei],
Li, F.J.[Fang-Jie],
Gao, M.F.[Mao-Fang],
Li, Z.L.[Zhao-Liang],
Leng, P.[Pei],
Duan, S.[Sibo],
Ren, J.Q.[Jian-Qiang],
A New Method for Winter Wheat Mapping Based on Spectral
Reconstruction Technology,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Zhao, F.[Fa],
Yang, G.J.[Gui-Jun],
Yang, X.D.[Xiao-Dong],
Cen, H.Y.[Hai-Yan],
Zhu, Y.O.[Ya-Ohui],
Han, S.Y.[Shao-Yu],
Yang, H.[Hao],
He, Y.[Yong],
Zhao, C.J.[Chun-Jiang],
Determination of Key Phenological Phases of Winter Wheat Based on the
Time-Weighted Dynamic Time Warping Algorithm and MODIS Time-Series
Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wu, X.C.[Xiao-Cui],
Xiao, X.M.[Xiang-Ming],
Steiner, J.[Jean],
Yang, Z.W.[Zheng-Wei],
Qin, Y.W.[Yuan-Wei],
Wang, J.[Jie],
Spatiotemporal Changes of Winter Wheat Planted and Harvested Areas,
Photosynthesis and Grain Production in the Contiguous United States
from 2008-2018,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
de Camargo, T.[Tibor],
Schirrmann, M.[Michael],
Landwehr, N.[Niels],
Dammer, K.H.[Karl-Heinz],
Pflanz, M.[Michael],
Optimized Deep Learning Model as a Basis for Fast UAV Mapping of Weed
Species in Winter Wheat Crops,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Jenal, A.[Alexander],
Hüging, H.[Hubert],
Ahrends, H.E.[Hella Ellen],
Bolten, A.[Andreas],
Bongartz, J.[Jens],
Bareth, G.[Georg],
Investigating the Potential of a Newly Developed UAV-Mounted
VNIR/SWIR Imaging System for Monitoring Crop Traits: A Case Study for
Winter Wheat,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Weiß, T.[Thomas],
Ramsauer, T.[Thomas],
Jagdhuber, T.[Thomas],
Löw, A.[Alexander],
Marzahn, P.[Philip],
Sentinel-1 Backscatter Analysis and Radiative Transfer Modeling of
Dense Winter Wheat Time Series,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Ji, J.C.[Jing-Chun],
Liu, J.L.[Jian-Li],
Chen, J.J.[Jing-Jing],
Niu, Y.J.[Yu-Jie],
Xuan, K.F.[Ke-Fan],
Jiang, Y.F.[Yi-Fei],
Jia, R.[Renhao],
Wang, C.[Can],
Li, X.P.[Xiao-Peng],
Optimization of Topdressing for Winter Wheat by Accurate Growth
Monitoring and Improved Production Estimation,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhao, J.Q.[Jian-Qing],
Zhang, X.O.[Xia-Ohu],
Yan, J.W.[Jia-Wei],
Qiu, X.L.[Xiao-Lei],
Yao, X.[Xia],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhao, L.C.[Li-Cheng],
Guo, W.[Wei],
Wang, J.[Jian],
Wang, H.Z.[Hao-Zhou],
Duan, Y.L.[Yu-Lin],
Wang, C.[Cong],
Wu, W.B.[Wen-Bin],
Shi, Y.[Yun],
An Efficient Method for Estimating Wheat Heading Dates Using UAV
Images,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Peron-Danaher, R.[Raquel],
Russell, B.[Blake],
Cotrozzi, L.[Lorenzo],
Mohammadi, M.[Mohsen],
Couture, J.J.[John J.],
Incorporating Multi-Scale, Spectrally Detected Nitrogen
Concentrations into Assessing Nitrogen Use Efficiency for Winter
Wheat Breeding Populations,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Kong, W.P.[Wei-Ping],
Huang, W.J.[Wen-Jiang],
Ma, L.L.[Ling-Ling],
Tang, L.[Lingli],
Li, C.R.[Chuan-Rong],
Zhou, X.F.[Xian-Feng],
Casa, R.[Raffaele],
Estimating Vertical Distribution of Leaf Water Content within Wheat
Canopies after Head Emergence,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Traore, A.[Adama],
Ata-Ul-Karim, S.T.[Syed Tahir],
Duan, A.[Aiwang],
Soothar, M.K.[Mukesh Kumar],
Traore, S.[Seydou],
Zhao, B.[Ben],
Predicting Equivalent Water Thickness in Wheat Using UAV Mounted
Multispectral Sensor through Deep Learning Techniques,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhao, F.[Fa],
Yang, G.J.[Gui-Jun],
Yang, H.[Hao],
Zhu, Y.H.[Yao-Hui],
Meng, Y.[Yang],
Han, S.Y.[Shao-Yu],
Bu, X.L.[Xin-Lei],
Short and Medium-Term Prediction of Winter Wheat NDVI Based on the
DTW-LSTM Combination Method and MODIS Time Series Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, X.Y.[Xiao-Yuan],
Liu, K.[Kai],
Wang, S.D.[Shu-Dong],
Long, X.[Xin],
Li, X.[Xueke],
A Rapid Model (COV_PSDI) for Winter Wheat Mapping in Fallow Rotation
Area Using MODIS NDVI Time-Series Satellite Observations: The Case of
the Heilonggang Region,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, Y.S.[Yin-Shuai],
Chang, C.Y.[Chun-Yan],
Wang, Z.R.[Zhuo-Ran],
Qi, G.H.[Guang-Hui],
Dong, C.[Chao],
Zhao, G.X.[Geng-Xing],
Upscaling Remote Sensing Inversion Model of Wheat Field Cultivated
Land Quality in the Huang-Huai-Hai Agricultural Region, China,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Cao, X.F.[Xiao-Feng],
Liu, Y.L.[Yu-Lin],
Yu, R.[Rui],
Han, D.J.[De-Jun],
Su, B.F.[Bao-Feng],
A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for
Stay Green of Wheat Population,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, J.J.[Jian-Jun],
Zhou, Q.[Qi],
Shang, J.L.[Jia-Li],
Liu, C.[Chang],
Zhuang, T.X.[Ting-Xuan],
Ding, J.J.[Jun-Jie],
Xian, Y.Y.[Yun-Yu],
Zhao, L.T.[Ling-Tian],
Wang, W.L.[Wei-Ling],
Zhou, G.S.[Gui-Sheng],
Tan, C.W.[Chang-Wei],
Huo, Z.Y.[Zhong-Yang],
UAV- and Machine Learning-Based Retrieval of Wheat SPAD Values at the
Overwintering Stage for Variety Screening,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Bastos, L.M.[Leonardo M.],
Froes de Borja Reis, A.[Andre],
Sharda, A.[Ajay],
Wright, Y.[Yancy],
Ciampitti, I.A.[Ignacio A.],
Current Status and Future Opportunities for Grain Protein Prediction
Using On- and Off-Combine Sensors: A Synthesis-Analysis of the
Literature,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, Y.X.[Yu-Xi],
Walker, J.P.[Jeffrey P.],
Pauwels, V.R.N.[Valentijn R. N.],
Sadeh, Y.[Yuval],
Assimilation of Wheat and Soil States into the APSIM-Wheat Crop
Model: A Case Study,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Yang, F.F.[Fei-Fei],
Liu, S.P.[Sheng-Ping],
Wang, Q.Y.[Qi-Yuan],
Liu, T.[Tao],
Li, S.[Shijuan],
Assessing Waterlogging Stress Level of Winter Wheat from
Hyperspectral Imagery Based on Harmonic Analysis,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, C.C.[Chang-Chun],
Chen, W.N.[Wei-Nan],
Wang, Y.L.[Yi-Lin],
Wang, Y.[Yu],
Ma, C.Y.[Chun-Yan],
Li, Y.C.[Ya-Cong],
Li, J.B.[Jing-Bo],
Zhai, W.G.[Wei-Guang],
Mapping Winter Wheat with Optical and SAR Images Based on Google
Earth Engine in Henan Province, China,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Huang, F.[Fujue],
Xia, X.S.[Xing-Sheng],
Huang, Y.S.[Yong-Sheng],
Lv, S.H.[Sheng-Hui],
Chen, Q.[Qiong],
Pan, Y.Z.[Yao-Zhong],
Zhu, X.F.[Xiu-Fang],
Comparison of Winter Wheat Extraction Methods Based on Different Time
Series of Vegetation Indices in the Northeastern Margin of the
Qinghai-Tibet Plateau: A Case Study of Minhe, China,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Zhang, X.C.[Xiao-Chun],
Yuan, X.[Xu],
Liu, H.[Hairuo],
Gao, H.[Hongsi],
Wang, X.[Xiugui],
Soil Moisture Estimation for Winter-Wheat Waterlogging Monitoring by
Assimilating Remote Sensing Inversion Data into the Distributed
Hydrology Soil Vegetation Model,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Liu, S.W.[Sheng-Wei],
Peng, D.L.[Dai-Liang],
Zhang, B.[Bing],
Chen, Z.C.[Zheng-Chao],
Yu, L.[Le],
Chen, J.J.[Jun-Jie],
Pan, Y.H.[Yu-Hao],
Zheng, S.J.[Shi-Jun],
Hu, J.K.[Jin-Kang],
Lou, Z.H.[Zi-Hang],
Chen, Y.[Yue],
Yang, S.L.[Song-Lin],
The Accuracy of Winter Wheat Identification at Different Growth
Stages Using Remote Sensing,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wang, F.[Falv],
Yang, M.[Mao],
Ma, L.F.[Long-Fei],
Zhang, T.[Tong],
Qin, W.L.[Wei-Long],
Li, W.[Wei],
Zhang, Y.H.[Ying-Hua],
Sun, Z.C.[Zhen-Cai],
Wang, Z.M.[Zhi-Min],
Li, F.[Fei],
Yu, K.[Kang],
Estimation of Above-Ground Biomass of Winter Wheat Based on
Consumer-Grade Multi-Spectral UAV,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Mikhailenko, I.M.[Ilya Mikhayilovich],
Estimation of Parameters of Biomass State of Sowing Spring Wheat,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zhang, X.[Xin],
Han, L.X.[Liang-Xiu],
Sobeih, T.[Tam],
Lappin, L.[Lewis],
Lee, M.A.[Mark A.],
Howard, A.[Andew],
Kisdi, A.[Aron],
The Self-Supervised Spectral-Spatial Vision Transformer Network for
Accurate Prediction of Wheat Nitrogen Status from UAV Imagery,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Lin, J.Y.[Jing-Yu],
Shen, Q.[Qiu],
Wu, J.J.[Jian-Jun],
Zhao, W.H.[Wen-Hui],
Liu, L.Z.[Lei-Zhen],
Assessing the Potential of Downscaled Far Red Solar-Induced
Chlorophyll Fluorescence from the Canopy to Leaf Level for Drought
Monitoring in Winter Wheat,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Wu, F.[Fei],
Wang, J.C.[Jun-Chan],
Zhou, Y.Z.[Yu-Zhuang],
Song, X.X.[Xiao-Xin],
Ju, C.X.[Cheng-Xin],
Sun, C.M.[Cheng-Ming],
Liu, T.[Tao],
Estimation of Winter Wheat Tiller Number Based on Optimization of
Gradient Vegetation Characteristics,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Fan, L.L.[Ling-Ling],
Yang, J.[Jing],
Sun, X.[Xiao],
Zhao, F.[Fen],
Liang, S.F.[She-Fang],
Duan, D.D.[Ding-Ding],
Chen, H.[Hao],
Xia, L.[Lang],
Sun, J.[Jing],
Yang, P.[Peng],
The effects of Landsat image acquisition date on winter wheat
classification in the North China Plain,
PandRS(187), 2022, pp. 1-13.
Elsevier DOI
2205
Multi-temporal, Acquisition dates, Effects evaluation,
Winter wheat, Landsat
BibRef
Ren, J.Q.[Jian-Qiang],
Zhang, N.D.[Ning-Dan],
Liu, X.R.[Xing-Ren],
Wu, S.R.[Shang-Rong],
Li, D.D.[Dan-Dan],
Dynamic Harvest Index Estimation of Winter Wheat Based on UAV
Hyperspectral Remote Sensing Considering Crop Aboveground Biomass
Change and the Grain Filling Process,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, L.[Lin],
Xing, M.[Minfeng],
He, B.B.[Bin-Bin],
Wang, J.F.[Jin-Fei],
Xu, M.[Min],
Song, Y.[Yang],
Huang, X.D.[Xiao-Dong],
Estimating Soil Moisture over Winter Wheat Fields during Growing
Season Using RADARSAT-2 Data,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Jennewein, J.S.[Jyoti S.],
Lamb, B.T.[Brian T.],
Hively, W.D.[W. Dean],
Thieme, A.[Alison],
Thapa, R.[Resham],
Goldsmith, A.[Avi],
Mirsky, S.B.[Steven B.],
Integration of Satellite-Based Optical and Synthetic Aperture Radar
Imagery to Estimate Winter Cover Crop Performance in Cereal Grasses,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Huang, X.J.[Xiao-Juan],
Fu, Y.Y.[Yang-Yang],
Wang, J.J.[Jing-Jing],
Dong, J.[Jie],
Zheng, Y.[Yi],
Pan, B.[Baihong],
Skakun, S.[Sergii],
Yuan, W.P.[Wen-Ping],
High-Resolution Mapping of Winter Cereals in Europe by Time Series
Landsat and Sentinel Images for 2016-2020,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Mulero, G.[Gabriel],
Bacher, H.[Harel],
Kleiner, U.[Uri],
Peleg, Z.[Zvi],
Herrmann, I.[Ittai],
Spectral Estimation of In Vivo Wheat Chlorophyll a/b Ratio under
Contrasting Water Availabilities,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Goffart, D.[Dimitri],
Dvorakova, K.[Klara],
Crucil, G.[Giacomo],
Curnel, Y.[Yannick],
Limbourg, Q.[Quentin],
van Oost, K.[Kristof],
Castaldi, F.[Fabio],
Planchon, V.[Viviane],
Goffart, J.P.[Jean-Pierre],
van Wesemael, B.[Bas],
UAV Remote Sensing for Detecting within-Field Spatial Variation of
Winter Wheat Growth and Links to Soil Properties and Historical
Management Practices. A Case Study on Belgian Loamy Soil,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Uribeetxebarria, A.[Asier],
Castellón, A.[Ander],
Aizpurua, A.[Ana],
A First Approach to Determine If It Is Possible to Delineate
In-Season N Fertilization Maps for Wheat Using NDVI Derived from
Sentinel-2,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Isik, S.[Sahin],
Özkan, K.[Kemal],
Demirez, D.Z.[Duygu Zeynep],
Seke, E.[Erol],
Consensus rule for wheat cultivar classification on VL, VNIR and SWIR
imaging,
IET-IPR(16), No. 11, 2022, pp. 2834-2844.
DOI Link
2208
BibRef
Chen, J.[Jidai],
Liu, X.J.[Xin-Jie],
Yang, G.J.[Gui-Jun],
Han, S.Y.[Shao-Yu],
Ma, Y.[Yan],
Liu, L.Y.[Liang-Yun],
Different Responses of Solar-Induced Chlorophyll Fluorescence at the
Red and Far-Red Bands and Gross Primary Productivity to Air
Temperature for Winter Wheat,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Fan, K.[Kai],
Li, F.L.[Fen-Ling],
Chen, X.K.[Xiao-Kai],
Li, Z.F.[Zhen-Fa],
Mulla, D.J.[David J.],
Nitrogen Balance Index Prediction of Winter Wheat by Canopy
Hyperspectral Transformation and Machine Learning,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Han, Y.X.[Yi-Xiu],
Tang, R.[Rui],
Liao, Z.Q.[Zhen-Qi],
Zhai, B.[Bingnian],
Fan, J.L.[Jun-Liang],
A Novel Hybrid GOA-XGB Model for Estimating Wheat Aboveground Biomass
Using UAV-Based Multispectral Vegetation Indices,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Han, S.Y.[Shao-Yu],
Zhao, Y.[Yu],
Cheng, J.P.[Jin-Peng],
Zhao, F.[Fa],
Yang, H.[Hao],
Feng, H.K.[Hai-Kuan],
Li, Z.H.[Zhen-Hai],
Ma, X.M.[Xin-Ming],
Zhao, C.J.[Chun-Jiang],
Yang, G.J.[Gui-Jun],
Monitoring Key Wheat Growth Variables by Integrating Phenology and
UAV Multispectral Imagery Data into Random Forest Model,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Feng, H.K.[Hai-Kuan],
Tao, H.L.[Hui-Lin],
Li, Z.H.[Zhen-Hai],
Yang, G.J.[Gui-Jun],
Zhao, C.J.[Chun-Jiang],
Comparison of UAV RGB Imagery and Hyperspectral Remote-Sensing Data
for Monitoring Winter Wheat Growth,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lu, Z.[Zhuo],
Deng, L.[Lei],
Lu, H.[Han],
An Improved LAI Estimation Method Incorporating with Growth
Characteristics of Field-Grown Wheat,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, L.[Limei],
Jin, G.W.[Guo-Wang],
Xiong, X.[Xin],
Zhang, H.M.[Hong-Min],
Wu, K.[Ke],
Object-Based Automatic Mapping of Winter Wheat Based on Temporal
Phenology Patterns Derived from Multitemporal Sentinel-1 and
Sentinel-2 Imagery,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Khotimah, W.N.[Wijayanti Nurul],
Boussaid, F.[Farid],
Sohel, F.[Ferdous],
Xu, L.[Lian],
Edwards, D.[David],
Jin, X.[Xiu],
Bennamoun, M.[Mohammed],
SC-CAN: Spectral Convolution and Channel Attention Network for Wheat
Stress Classification,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhao, Y.J.[Yi-Jing],
Wang, X.L.[Xiao-Li],
Guo, Y.[Yu],
Hou, X.[Xiyong],
Dong, L.J.[Li-Jie],
Winter Wheat Phenology Variation and Its Response to Climate Change
in Shandong Province, China,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Cai, W.X.[Wen-Xin],
Tian, J.[Jinyan],
Li, X.J.[Xiao-Juan],
Zhu, L.[Lin],
Chen, B.B.[Bei-Bei],
A New Multiple Phenological Spectral Feature for Mapping Winter Wheat,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Caballero, G.[Gabriel],
Pezzola, A.[Alejandro],
Winschel, C.[Cristina],
Casella, A.[Alejandra],
Angonova, P.S.[Paolo Sanchez],
Rivera-Caicedo, J.P.[Juan Pablo],
Berger, K.[Katja],
Verrelst, J.[Jochem],
Delegido, J.[Jesus],
Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a
Hybrid Retrieval Workflow Using Sentinel-2 Imagery,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Shen, L.Z.[Lan-Zhi],
Gao, M.F.[Mao-Fang],
Yan, J.W.[Jing-Wen],
Wang, Q.Z.[Qi-Zhi],
Shen, H.[Hua],
Winter Wheat SPAD Value Inversion Based on Multiple Pretreatment
Methods,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Longmire, A.R.,
Poblete, T.,
Hunt, J.R.,
Chen, D.,
Zarco-Tejada, P.J.,
Assessment of crop traits retrieved from airborne hyperspectral and
thermal remote sensing imagery to predict wheat grain protein content,
PandRS(193), 2022, pp. 284-298.
Elsevier DOI
2210
Hyperspectral, Radiative transfer, Stress detection,
Grain protein content, Machine learning, Thermal
BibRef
Wang, S.[Shuai],
Chen, J.[Jin],
Shen, M.G.[Miao-Gen],
Shi, T.T.[Ting-Ting],
Liu, L.C.[Li-Cong],
Zhang, L.Y.[Lu-Yun],
Dong, Q.[Qi],
Wang, C.[Cong],
Characterizing Spatiotemporal Patterns of Winter Wheat Phenology from
1981 to 2016 in North China by Improving Phenology Estimation,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Sui, M.M.[Ming-Ming],
Chen, K.[Kun],
Shen, F.[Fei],
Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zhang, X.W.[Xue-Wei],
Zhang, K.[Kefei],
Wu, S.Q.[Su-Qin],
Shi, H.T.[Hong-Tao],
Sun, Y.Q.[Ya-Qin],
Zhao, Y.D.[Yin-Di],
Fu, E.[Erjiang],
Chen, S.[Shuo],
Bian, C.F.[Chao-Fa],
Ban, W.[Wei],
An Investigation of Winter Wheat Leaf Area Index Fitting Model Using
Spectral and Canopy Height Model Data from Unmanned Aerial Vehicle
Imagery,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhu, J.P.[Jiang-Peng],
Yang, G.F.[Guo-Feng],
Feng, X.P.[Xu-Ping],
Li, X.[Xiyao],
Fang, H.[Hui],
Zhang, J.N.[Jin-Nuo],
Bai, X.L.[Xiu-Lin],
Tao, M.Z.[Ming-Zhu],
He, Y.[Yong],
Detecting Wheat Heads from UAV Low-Altitude Remote Sensing Images
Using Deep Learning Based on Transformer,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Wang, D.[Dong],
Yue, D.X.[Dong-Xia],
Zhou, Y.Y.[Yan-Yan],
Huo, F.[Feibiao],
Bao, Q.[Qiong],
Li, K.[Kai],
Drought Resistance of Vegetation and Its Change Characteristics
before and after the Implementation of the Grain for Green Program on
the Loess Plateau, China,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Caballero, G.[Gabriel],
Pezzola, A.[Alejandro],
Winschel, C.[Cristina],
Casella, A.[Alejandra],
Angonova, P.S.[Paolo Sanchez],
Orden, L.[Luciano],
Berger, K.[Katja],
Verrelst, J.[Jochem],
Delegido, J.[Jesús],
Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple
Sentinel-1 Incidence Angles,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zheng, J.[Jie],
Song, X.Y.[Xiao-Yu],
Yang, G.J.[Gui-Jun],
Du, X.C.[Xiao-Chu],
Mei, X.[Xin],
Yang, X.D.[Xiao-Dong],
Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Qin, W.L.[Wei-Long],
Wang, J.[Jian],
Ma, L.F.[Long-Fei],
Wang, F.[Falv],
Hu, N.[Naiyue],
Yang, X.Y.[Xian-Yue],
Xiao, Y.Y.[Yi-Yang],
Zhang, Y.H.[Ying-Hua],
Sun, Z.C.[Zhen-Cai],
Wang, Z.M.[Zhi-Min],
Yu, K.[Kang],
UAV-Based Multi-Temporal Thermal Imaging to Evaluate Wheat Drought
Resistance in Different Deficit Irrigation Regimes,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zelazny, W.R.[Wiktor R.],
Kusnierek, K.[Krzysztof],
Geipel, J.[Jakob],
Gaussian Process Modeling of In-Season Physiological Parameters of
Spring Wheat Based on Airborne Imagery from Two Hyperspectral Cameras
and Apparent Soil Electrical Conductivity,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ma, X.[Xiao],
Chen, P.F.[Peng-Fei],
Jin, X.[Xiuliang],
Predicting Wheat Leaf Nitrogen Content by Combining Deep Multitask
Learning and a Mechanistic Model Using UAV Hyperspectral Images,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lv, S.H.[Sheng-Hui],
Xia, X.S.[Xing-Sheng],
Pan, Y.Z.[Yao-Zhong],
Optimization of Characteristic Phenological Periods for Winter Wheat
Extraction Using Remote Sensing in Plateau Valley Agricultural Areas
in Hualong, China,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Li, W.G.[Wei-Guo],
Zhang, H.[Hong],
Li, W.[Wei],
Ma, T.[Tinghuai],
Extraction of Winter Wheat Planting Area Based on Multi-Scale Fusion,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Roth, R.T.[Richard T.],
Chen, K.[Kanru],
Scott, J.R.[John R.],
Jung, J.H.[Jin-Ha],
Yang, Y.[Yang],
Camberato, J.J.[James J.],
Armstrong, S.D.[Shalamar D.],
Prediction of Cereal Rye Cover Crop Biomass and Nutrient Accumulation
Using Multi-Temporal Unmanned Aerial Vehicle Based Visible-Spectrum
Vegetation Indices,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Liao, C.H.[Chun-Hua],
Wang, J.F.[Jin-Fei],
Shan, B.[Bo],
Shang, J.L.[Jia-Li],
Dong, T.[Taifeng],
He, Y.J.[Yong-Jun],
Near real-time detection and forecasting of within-field phenology of
winter wheat and corn using Sentinel-2 time-series data,
PandRS(196), 2023, pp. 105-119.
Elsevier DOI
2302
Crop phenology, BBCH scale, Near real-time,
Sentinel-2 time-series, Winter wheat, Corn
BibRef
Chen, X.K.[Xiao-Kai],
Li, F.L.[Fen-Ling],
Chang, Q.R.[Qing-Rui],
Combination of Continuous Wavelet Transform and Successive Projection
Algorithm for the Estimation of Winter Wheat Plant Nitrogen
Concentration,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Chen, S.[Siru],
Zhao, W.H.[Wen-Hui],
Zhang, R.X.[Ren-Xiang],
Sun, X.[Xun],
Zhou, Y.Z.[Yang-Zhen],
Liu, L.Z.[Lei-Zhen],
Higher Sensitivity of NIRv,Rad in Detecting Net Primary Productivity
of C4 Than that of C3: Evidence from Ground Measurements of Wheat and
Maize,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
He, P.[Peng],
Bi, R.[Rutian],
Xu, L.[Lishuai],
Liu, Z.C.[Zheng-Chun],
Yang, F.[Fan],
Wang, W.B.[Wen-Biao],
Cui, Z.N.[Zheng-Nan],
Wang, J.S.[Jing-Shu],
Evapotranspiration of Winter Wheat in the Semi-Arid Southeastern
Loess Plateau Based on Multi-Source Satellite Data,
RS(15), No. 8, 2023, pp. 2095.
DOI Link
2305
BibRef
Li, Z.P.[Zong-Peng],
Zhou, X.G.[Xin-Guo],
Cheng, Q.[Qian],
Fei, S.P.[Shuai-Peng],
Chen, Z.[Zhen],
A Machine-Learning Model Based on the Fusion of Spectral and Textural
Features from UAV Multi-Sensors to Analyse the Total Nitrogen Content
in Winter Wheat,
RS(15), No. 8, 2023, pp. 2152.
DOI Link
2305
BibRef
Gée, C.[Christelle],
Denimal, E.[Emmanuel],
de Yparraguirre, M.[Maël],
Dujourdy, L.[Laurence],
Voisin, A.S.[Anne-Sophie],
Assessment of Nitrogen Nutrition Index of Winter Wheat Canopy from
Visible Images for a Dynamic Monitoring of N Requirements,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Chen, X.K.[Xiao-Kai],
Li, F.L.[Fen-Ling],
Shi, B.[Botai],
Chang, Q.R.[Qing-Rui],
Estimation of Winter Wheat Plant Nitrogen Concentration from UAV
Hyperspectral Remote Sensing Combined with Machine Learning Methods,
RS(15), No. 11, 2023, pp. 2831.
DOI Link
2306
BibRef
Zhu, Y.J.[Yong-Ji],
Liu, J.[Jikai],
Tao, X.Y.[Xin-Yu],
Su, X.X.[Xiang-Xiang],
Li, W.Y.[Wen-Yang],
Zha, H.[Hainie],
Wu, W.[Wenge],
Li, X.W.[Xin-Wei],
A Three-Dimensional Conceptual Model for Estimating the Above-Ground
Biomass of Winter Wheat Using Digital and Multispectral Unmanned
Aerial Vehicle Images at Various Growth Stages,
RS(15), No. 13, 2023, pp. 3332.
DOI Link
2307
BibRef
Yin, Q.[Quan],
Zhang, Y.T.[Yu-Ting],
Li, W.L.[Wei-Long],
Wang, J.J.[Jian-Jun],
Wang, W.L.[Wei-Ling],
Ahmad, I.[Irshad],
Zhou, G.S.[Gui-Sheng],
Huo, Z.Y.[Zhong-Yang],
Estimation of Winter Wheat SPAD Values Based on UAV Multispectral
Remote Sensing,
RS(15), No. 14, 2023, pp. 3595.
DOI Link
2307
BibRef
Zhai, W.G.[Wei-Guang],
Li, C.C.[Chang-Chun],
Cheng, Q.[Qian],
Mao, B.[Bohan],
Li, Z.P.[Zong-Peng],
Li, Y.F.[Ya-Feng],
Ding, F.[Fan],
Qin, S.[Siqing],
Fei, S.[Shuaipeng],
Chen, Z.[Zhen],
Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images
and Machine Learning: Multi-Feature Combinations, Flight Height, and
Algorithm Implications,
RS(15), No. 14, 2023, pp. 3653.
DOI Link
2307
BibRef
Yang, G.X.[Gao-Xiang],
Li, X.R.[Xing-Rong],
Liu, P.Z.[Peng-Zhi],
Yao, X.[Xia],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Cheng, T.[Tao],
Automated in-season mapping of winter wheat in China with training
data generation and model transfer,
PandRS(202), 2023, pp. 422-438.
Elsevier DOI
2308
Crop, Large-scale mapping, Optical and SAR data, Time series,
Phenology, Random forest
BibRef
Liu, J.H.[Jia-Hao],
Wang, H.[Hong],
Zhang, Y.[Yao],
Zhao, X.[Xili],
Qu, T.F.[Teng-Fei],
Tian, H.Z.[Hao-Zhe],
Lu, Y.T.[Yu-Ting],
Su, J.[Jingru],
Luo, D.S.[Ding-Sheng],
Yang, Y.[Yalei],
A Spatial Distribution Extraction Method for Winter Wheat Based on
Improved U-Net,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Meng, X.P.[Xiao-Peng],
Li, C.C.[Chang-Chun],
Li, J.B.[Jing-Bo],
Li, X.Y.[Xin-Yan],
Guo, F.[Fuchen],
Xiao, Z.[Zhen],
YOLOv7-MA: Improved YOLOv7-Based Wheat Head Detection and Counting,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Yin, Q.[Quan],
Zhang, Y.T.[Yu-Ting],
Li, W.L.[Wei-Long],
Wang, J.J.[Jian-Jun],
Wang, W.L.[Wei-Ling],
Ahmad, I.[Irshad],
Zhou, G.S.[Gui-Sheng],
Huo, Z.Y.[Zhong-Yang],
Better Inversion of Wheat Canopy SPAD Values before Heading Stage
Using Spectral and Texture Indices Based on UAV Multispectral Imagery,
RS(15), No. 20, 2023, pp. 4935.
DOI Link
2310
BibRef
Zhang, Q.X.[Qi-Xia],
Wang, G.[Guofu],
Wang, G.J.[Guo-Jie],
Song, W.C.[Wei-Cheng],
Wei, X.[Xikun],
Hu, Y.F.[Yi-Fan],
Identifying Winter Wheat Using Landsat Data Based on Deep Learning
Algorithms in the North China Plain,
RS(15), No. 21, 2023, pp. 5121.
DOI Link
2311
BibRef
Longmire, A.,
Poblete, T.,
Hornero, A.,
Chen, D.,
Zarco-Tejada, P.,
Estimation of grain protein content in commercial bread and durum
wheat fields via traits inverted by radiative transfer modelling from
Sentinel-2 timeseries,
PandRS(206), 2023, pp. 49-62.
Elsevier DOI
2312
Wheat, Grain protein content, Stress detection,
Sentinel-2 time series, Radiative transfer model inversion, Machine learning
BibRef
Sahoo, R.N.[Rabi N.],
Gakhar, S.[Shalini],
Rejith, R.G.[Rajan G.],
Verrelst, J.[Jochem],
Ranjan, R.[Rajeev],
Kondraju, T.[Tarun],
Meena, M.C.[Mahesh C.],
Mukherjee, J.[Joydeep],
Daas, A.[Anchal],
Kumar, S.[Sudhir],
Kumar, M.[Mahesh],
Dhandapani, R.[Raju],
Chinnusamy, V.[Viswanathan],
Optimizing the Retrieval of Wheat Crop Traits from UAV-Borne
Hyperspectral Image with Radiative Transfer Modelling Using Gaussian
Process Regression,
RS(15), No. 23, 2023, pp. 5496.
DOI Link
2312
BibRef
Wang, Z.X.[Zhen-Xing],
Liu, D.[Dong],
Wang, M.[Min],
Mapping Main Grain Crops and Change Analysis in the West Liaohe River
Basin with Limited Samples Based on Google Earth Engine,
RS(15), No. 23, 2023, pp. 5515.
DOI Link
2312
BibRef
Li, W.L.[Wei-Long],
Wang, J.J.[Jian-Jun],
Zhang, Y.T.[Yu-Ting],
Yin, Q.[Quan],
Wang, W.L.[Wei-Ling],
Zhou, G.S.[Gui-Sheng],
Huo, Z.Y.[Zhong-Yang],
Combining Texture, Color, and Vegetation Index from Unmanned Aerial
Vehicle Multispectral Images to Estimate Winter Wheat Leaf Area Index
during the Vegetative Growth Stage,
RS(15), No. 24, 2023, pp. 5715.
DOI Link
2401
BibRef
Roy, B.[Bishal],
Sagan, V.[Vasit],
Haireti, A.[Alifu],
Newcomb, M.[Maria],
Tuberosa, R.[Roberto],
LeBauer, D.[David],
Shakoor, N.[Nadia],
Early Detection of Drought Stress in Durum Wheat Using Hyperspectral
Imaging and Photosystem Sensing,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Sun, Z.[Zheng],
Sun, L.[Liang],
Liu, Y.[Yu],
Li, Y.W.[Yang-Wei],
Crusiol, L.G.T.[Luís Guilherme Teixeira],
Chen, R.Q.[Rui-Qing],
Wuyun, D.[Deji],
Estimating Fraction of Absorbed Photosynthetically Active Radiation
of Winter Wheat Based on Simulated Sentinel-2 Data under Different
Varieties and Water Stress,
RS(16), No. 2, 2024, pp. 362.
DOI Link
2402
BibRef
Zhang, R.[Ruinan],
Jin, S.C.[Shi-Chao],
Zhang, Y.H.[Yuan-Hao],
Zang, J.R.[Jing-Rong],
Wang, Y.[Yu],
Li, Q.[Qing],
Sun, Z.Z.[Zhuang-Zhuang],
Wang, X.[Xiao],
Zhou, Q.[Qin],
Cai, J.[Jian],
Xu, S.[Shan],
Su, Y.J.[Yan-Jun],
Wu, J.[Jin],
Jiang, D.[Dong],
PhenoNet: A two-stage lightweight deep learning framework for
real-time wheat phenophase classification,
PandRS(208), 2024, pp. 136-157.
Elsevier DOI Code:
WWW Link.
2402
Wheat phenology, Dataset, Image classification, Deep learning,
Transfer learning, Web application
BibRef
Zhang, C.S.[Chang-Sai],
Yi, Y.[Yuan],
Wang, L.J.[Li-Juan],
Zhang, X.W.[Xue-Wei],
Chen, S.[Shuo],
Su, Z.[Zaixing],
Zhang, S.[Shuxia],
Xue, Y.[Yong],
Estimation of the Bio-Parameters of Winter Wheat by Combining Feature
Selection with Machine Learning Using Multi-Temporal Unmanned Aerial
Vehicle Multispectral Images,
RS(16), No. 3, 2024, pp. 469.
DOI Link
2402
BibRef
Liu, H.J.[Hong-Jie],
Song, W.L.[Wen-Long],
Lv, J.[Juan],
Gui, R.J.[Rong-Jie],
Shi, Y.J.[Yang-Jun],
Lu, Y.Z.[Yi-Zhu],
Li, M.Y.[Meng-Yi],
Chen, L.[Long],
Chen, X.[Xiuhua],
Precise Drought Threshold Monitoring in Winter Wheat Using the
Unmanned Aerial Vehicle Thermal Method,
RS(16), No. 4, 2024, pp. 710.
DOI Link
2402
BibRef
Dellaly, V.[Vetiya],
Bellakanji, A.C.[Aicha Chahbi],
Chakroun, H.[Hedia],
Saadi, S.[Sameh],
Boulet, G.[Gilles],
Zribi, M.[Mehrez],
Chabaane, Z.L.[Zohra Lili],
Water Footprint of Cereals by Remote Sensing in Kairouan Plain
(Tunisia),
RS(16), No. 3, 2024, pp. 491.
DOI Link
2402
BibRef
Harada, S.[Sho],
Han, X.H.[Xian-Hua],
A Hybrid Wheat Head Detection model with Incorporated CNN and
Transformer,
MVA23(1-5)
DOI Link
2403
Head, Aggregates, Semantics, Production, Object detection,
Predictive models, Feature extraction
BibRef
Chen, W.H.[Wen-Hui],
Yao, R.[Rui],
Sun, P.[Peng],
Zhang, Q.[Qiang],
Singh, V.P.[Vijay P.],
Sun, S.[Shao],
AghaKouchak, A.[Amir],
Ge, C.H.[Chen-Hao],
Yang, H.L.[Hui-Lin],
Drought Risk Assessment of Winter Wheat at Different Growth Stages in
Huang-Huai-Hai Plain Based on Nonstationary Standardized
Precipitation Evapotranspiration Index and Crop Coefficient,
RS(16), No. 9, 2024, pp. 1625.
DOI Link
2405
BibRef
Wang, M.[Mo],
Wang, L.[Laigang],
Guo, Y.[Yan],
Cui, Y.P.[Yun-Peng],
Liu, J.[Juan],
Chen, L.[Li],
Wang, T.[Ting],
Li, H.[Huan],
A Comprehensive Evaluation of Dual-Polarimetric Sentinel-1 SAR Data
for Monitoring Key Phenological Stages of Winter Wheat,
RS(16), No. 10, 2024, pp. 1659.
DOI Link
2405
BibRef
Ganeva, D.[Dessislava],
Filchev, L.[Lachezar],
Roumenina, E.[Eugenia],
Dragov, R.[Rangel],
Nedyalkova, S.[Spasimira],
Bozhanova, V.[Violeta],
Winter Durum Wheat Disease Severity Detection with Field Spectroscopy
in Phenotyping Experiment at Leaf and Canopy Level,
RS(16), No. 10, 2024, pp. 1762.
DOI Link
2405
BibRef
Wang, N.[Nan],
Wu, Q.X.[Qing-Xi],
Gui, Y.Y.[Yuan-Yuan],
Hu, Q.[Qiao],
Li, W.[Wei],
Cross-Modal Segmentation Network for Winter Wheat Mapping in Complex
Terrain Using Remote-Sensing Multi-Temporal Images and DEM Data,
RS(16), No. 10, 2024, pp. 1775.
DOI Link
2405
BibRef
Fan, L.L.[Ling-Ling],
Xia, L.[Lang],
Yang, J.[Jing],
Sun, X.[Xiao],
Wu, S.R.[Shang-Rong],
Qiu, B.W.[Bing-Wen],
Chen, J.[Jin],
Wu, W.B.[Wen-Bin],
Yang, P.[Peng],
A temporal-spatial deep learning network for winter wheat mapping
using time-series Sentinel-2 imagery,
PandRS(214), 2024, pp. 48-64.
Elsevier DOI
2407
Wheat mapping, Deep learning, Temporal-spatial fusion,
Time series, Sentinel-2
BibRef
Miao, H.L.[Hui-Ling],
Chen, X.K.[Xiao-Kai],
Guo, Y.M.[Yi-Ming],
Wang, Q.[Qi],
Zhang, R.[Rui],
Chang, Q.R.[Qing-Rui],
Estimation of Anthocyanins in Winter Wheat Based on Band Screening
Method and Genetic Algorithm Optimization Models,
RS(16), No. 13, 2024, pp. 2324.
DOI Link
2407
BibRef
Zhang, J.H.[Jian-Hua],
You, S.[Shucheng],
Liu, A.[Aixia],
Xie, L.J.[Li-Jian],
Huang, C.H.[Chen-Hao],
Han, X.[Xu],
Li, P.[Penghan],
Wu, Y.X.[Yi-Xuan],
Deng, J.S.[Jin-Song],
Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model
for Training Sample Shortage,
RS(16), No. 14, 2024, pp. 2553.
DOI Link
2408
BibRef
Nabiollahi, K.[Kamal],
Kebonye, N.M.[Ndiye M.],
Molani, F.[Fereshteh],
Tahari-Mehrjardi, M.H.[Mohammad Hossein],
Taghizadeh-Mehrjardi, R.[Ruhollah],
Shokati, H.[Hadi],
Scholten, T.[Thomas],
Assessment of Land Suitability Potential Using Ensemble Approaches of
Advanced Multi-Criteria Decision Models and Machine Learning for
Wheat Cultivation,
RS(16), No. 14, 2024, pp. 2566.
DOI Link
2408
BibRef
Okyere, F.G.[Frank Gyan],
Cudjoe, D.K.[Daniel Kingsley],
Virlet, N.[Nicolas],
Castle, M.[March],
Riche, A.B.[Andrew Bernard],
Greche, L.[Latifa],
Mohareb, F.[Fady],
Simms, D.[Daniel],
Mhada, M.[Manal],
Hawkesford, M.J.[Malcolm John],
Hyperspectral Imaging for Phenotyping Plant Drought Stress and
Nitrogen Interactions Using Multivariate Modeling and Machine
Learning Techniques in Wheat,
RS(16), No. 18, 2024, pp. 3446.
DOI Link
2410
BibRef
Muzalevskiy, K.[Konstantin],
Fomin, S.[Sergey],
Karavayskiy, A.[Andrey],
Leskova, J.[Julia],
Lipshin, A.[Alexey],
Romanov, V.[Vasily],
Measuring Biophysical Parameters of Wheat Canopy with MHz- and
GHz-Frequency Range Impulses Employing Contactless GPR,
RS(16), No. 19, 2024, pp. 3547.
DOI Link
2410
BibRef
Zahra, S.[Sabahat],
Ruiz, H.[Henry],
Jung, J.H.[Jin-Ha],
Adams, T.[Tyler],
UAV-Based Phenotyping: A Non-Destructive Approach to Studying Wheat
Growth Patterns for Crop Improvement and Breeding Programs,
RS(16), No. 19, 2024, pp. 3710.
DOI Link
2410
BibRef
Chen, W.N.[Wei-Nan],
Yang, G.J.[Gui-Jun],
Meng, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Li, H.[Heli],
Tang, A.[Aohua],
Zhang, J.[Jing],
Xu, X.G.[Xin-Gang],
Yang, H.[Hao],
Li, C.C.[Chang-Chun],
Li, Z.H.[Zhen-Hong],
Estimation of Winter Wheat Stem Biomass by a Novel Two-Component and
Two-Parameter Stratified Model Using Proximal Remote Sensing and
Phenological Variables,
RS(16), No. 22, 2024, pp. 4300.
DOI Link
2412
BibRef
Treier, S.[Simon],
Herrera, J.M.[Juan M.],
Hund, A.[Andreas],
Kirchgessner, N.[Norbert],
Aasen, H.[Helge],
Walter, A.[Achim],
Roth, L.[Lukas],
Improving drone-based uncalibrated estimates of wheat canopy
temperature in plot experiments by accounting for confounding factors
in a multi-view analysis,
PandRS(218), 2024, pp. 721-741.
Elsevier DOI
2412
Plant phenotyping, Aerial thermography, Thermal drift,
Drift correction, High throughput field phenotyping, Viewing geometry
BibRef
Ishaq, R.A.F.[Rana Ahmad Faraz],
Zhou, G.H.[Guan-Hua],
Ali, A.[Aamir],
Shah, S.R.A.[Syed Roshaan Ali],
Jiang, C.[Cheng],
Ma, Z.Q.[Zhong-Qi],
Sun, K.[Kang],
Jiang, H.Z.[Hong-Zhi],
A Synergistic Framework for Coupling Crop Growth, Radiative Transfer,
and Machine Learning to Estimate Wheat Crop Traits in Pakistan,
RS(16), No. 23, 2024, pp. 4386.
DOI Link
2501
BibRef
Yang, R.Z.[Run-Zhi],
Li, S.S.[Shan-Shan],
Zhang, B.[Bing],
Jiao, Q.J.[Quan-Jun],
Peng, D.L.[Dai-Liang],
Yang, S.L.[Song-Lin],
Yu, R.[Ruyi],
A Multispectral Feature Selection Method Based on a Dual-Attention
Network for the Accurate Estimation of Fractional Vegetation Cover in
Winter Wheat,
RS(16), No. 23, 2024, pp. 4441.
DOI Link
2501
BibRef
Moletto-Lobos, I.[Italo],
Cyran, K.[Katarzyna],
Orden, L.[Luciano],
Sánchez-Méndez, S.[Silvia],
Franch, B.[Belen],
Kalecinski, N.[Natacha],
Andreu-Rodríguez, F.J.[Francisco J.],
Mira-Urios, M.Á.[Miguel Á.],
Saéz-Tovar, J.A.[José A.],
Guillevic, P.C.[Pierre C.],
Moral, R.[Raul],
Evaluating PlanetScope and UAV Multispectral Data for Monitoring
Winter Wheat and Sustainable Fertilization Practices in Mediterranean
Agroecosystems,
RS(16), No. 23, 2024, pp. 4474.
DOI Link
2501
BibRef
Wijesinghe, L.[Lilangi],
Western, A.W.[Andrew W.],
Aryal, J.[Jagannath],
Ryu, D.[Dongryeol],
Can Measurement and Input Uncertainty Explain Discrepancies Between
the Wheat Canopy Scattering Model and SMAPVEX12 Observations?,
RS(17), No. 1, 2025, pp. 164.
DOI Link
2501
BibRef
Engstrøm, O.C.G.[Ole-Christian Galbo],
Dreier, E.S.[Erik Schou],
Jespersen, B.M.[Birthe Møller],
Pedersen, K.S.[Kim Steenstrup],
Improving Deep Learning on Hyperspectral Images of Grain by
Incorporating Domain Knowledge from Chemometrics,
CVPPA23(485-494)
IEEE DOI
2401
BibRef
Harada, S.[Sho],
Han, X.H.[Xian-Hua],
Coarse-To-Fine Pyramid Feature Mining for Wheat Head Detection,
ICIP23(1350-1354)
IEEE DOI
2312
BibRef
Liu, R.R.[Rui-Rui],
Liu, J.[Jun],
Liu, C.[Chuang],
Determination of Protein Content of Wheat Using Partial Least Squares
Regression Based on Near-Infrared Spectroscopy Preprocessing,
ICRVC22(7-10)
IEEE DOI
2301
Proteins, Training, Instruments, Computational modeling,
Data preprocessing, Predictive models, KS-MC-PLSR algorithm
BibRef
Liu, C.X.[Cheng-Xin],
Wang, K.W.[Ke-Wei],
Lu, H.[Hao],
Cao, Z.G.[Zhi-Guo],
Dynamic Color Transform for Wheat Head Detection,
CVPPA21(1278-1283)
IEEE DOI
2112
Head, Uncertainty, Image color analysis, Lighting,
Transforms, Detectors
BibRef
Bhagat, S.[Sandesh],
Kokare, M.[Manesh],
Haswani, V.[Vineet],
Hambarde, P.[Praful],
Kamble, R.[Ravi],
WheatNet-Lite: A Novel Light Weight Network for Wheat Head Detection,
CVPPA21(1332-1341)
IEEE DOI
2112
Deep learning, Head, Convolution, Annotations, Image edge detection,
Crops, Feature extraction
BibRef
Najafian, K.[Keyhan],
Ghanbari, A.[Alireza],
Stavness, I.[Ian],
Jin, L.L.[Ling-Ling],
Shirdel, G.H.[Gholam Hassan],
Maleki, F.[Farhad],
A Semi-self-supervised Learning Approach for Wheat Head Detection
using Extremely Small Number of Labeled Samples,
CVPPA21(1342-1351)
IEEE DOI
2112
Training, Deep learning, Adaptation models, Head,
Computational modeling, Conferences
BibRef
Gansukh, B.,
Batsaikhan, B.,
Dorjsuren, A.,
Jamsran, C.,
Batsaikhan, N.,
Monitoring Wheat Crop Growth Parameters Using Time Series Sentinel-1
And Sentinel-2 Data for Agricultural Application In Mongolia,
ISPRS20(B3:989-994).
DOI Link
2012
BibRef
Chauhan, S.,
Darvishzadeh, R.,
Lu, Y.,
Stroppiana, D.,
Boschetti, M.,
Pepe, M.,
Nelson, A.,
Wheat Lodging Assessment Using Multispectral UAV Data,
UAV-g19(235-240).
DOI Link
1912
BibRef
Aich, S.,
Josuttes, A.,
Ovsyannikov, I.,
Strueby, K.,
Ahmed, I.,
Duddu, H.S.,
Pozniak, C.,
Shirtliffe, S.,
Stavness, I.,
DeepWheat: Estimating Phenotypic Traits from Crop Images with Deep
Learning,
WACV18(323-332)
IEEE DOI
1806
crops, deconvolution, feature extraction, image colour analysis,
learning (artificial intelligence), regression analysis,
Task analysis
BibRef
Nakanishi, T.,
Imai, Y.,
Morita, T.,
Akamatsu, Y.,
Odagawa, S.,
Takeda, T.,
Kashimura, O.,
Evaluation Of Wheat Growth Monitoring Methods Based On Hyperspectral
Data Of Later Grain Filling And Heading Stages In Western Australia,
ISPRS12(XXXIX-B8:295-300).
DOI Link
1209
BibRef
d'Andrimont, R.[Raphael],
Duveiller, G.[Gregory],
Defourny, P.[Pierre],
Exploring the capacity to grasp multi-annual seasonal variability of
winter wheat in Continental Climates with MODIS,
MultiTemp11(221-224).
IEEE DOI
1109
BibRef
Chacon, M.I.[Mario I.],
Manickavasagan, A.[Annamalai],
Flores-Tapia, D.[Daniel],
Thomas, G.[Gabriel],
Jayas, D.S.[Digvir S.],
Segmentation of Wheat Grains in Thermal Images Based on Pulse Coupled
Neural Networks,
ICIP07(II: 273-276).
IEEE DOI
0709
BibRef
Guzman-Arenas, A.,
Seco, R.M.[Rosa Ma], and
Sanchez, V.G.[Victor G.],
Computer Analysis of Images for Crop Identification in Mexico,
TRIIMAS, Vol. 7, no. 135, 1976, UNAM.
Crop id - wheat/cotton in NW Mexico; standard classification
techniques; spectral signature and set of heuristic functions that
the user defines.
BibRef
7600
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Wheat Yield Estimates, Prediction .