Ronse, C.[Christian],
A Bibliography on Digital and Computational Convexity (1961-1988),
PAMI(11), No. 2, February 1989, pp. 181-190.
IEEE DOI 300+ references with some annotation.
BibRef
8902
Jarvis, R.A.,
On the Identification of the Convex Hull of a Finite Set of
Points in the Plane,
IPL(2), 1973, pp. 18-21.
BibRef
7300
Jarvis, R.A.,
Computing the Shape Hull of Points in the Plane,
PRIP77(231-241).
BibRef
7700
Rutovitz, D.[Denis],
An Algorithm for In-Line Generation of a Convex Cover,
CGIP(4), No. 1, March 1975, pp. 74-78.
Elsevier DOI Simple form of Sklansky's algorithm for conves hull.
See also Recognition of Convex Blobs.
BibRef
7503
Eddy, W.F.,
A New convex Hull Algorithm for Planar Sets,
TMS(3), 1977, pp. 393-403.
BibRef
7700
Anderson, K.R.,
A Reevaluation of an Efficient Algorithm for Determining the Convex Hull
of a Finite Planar Set,
IPL(7), 1978, pp. 53-55.
BibRef
7800
Koplowitz, J.,
Jouppi, D.,
A More Efficient Convex Hull Algorithm,
IPL(7), 1978, pp. 56-57.
BibRef
7800
Akl, S.G.,
Toussaint, G.T.,
A Fast Convex Hull Algorithm,
IPL(7), 1978, pp. 219-222.
BibRef
7800
And:
Efficient Convex Hull Algorithms for Pattern Recognition Applications,
ICPR78(483-487).
BibRef
Devroye, L.,
Toussaint, G.T.,
A Note on Linear Expected Time Algorithms for Finding Convex Hulls,
Computing(26), 1981, pp. 361-366.
BibRef
8100
Toussaint, G.T.,
A Simple Proof of Pach's Extremal Theorem for Convex Polygons,
PRL(1), 1982, pp. 85-86.
See also Single Linear Algorithm for Intersecting Convex Polygons, A.
BibRef
8200
Bhattacharya, B.K.,
Toussaint, G.T.,
Time- and Storage-Efficient Implementations of an Optimal
Planar Convex Hull Algorithm,
IVC(1), No. 3, August 1983, pp. 140-144.
Elsevier DOI
BibRef
8308
Toussaint, G.T.,
A Historical Note on Convex Hull Finding Algorithms,
PRL(3), 1985, pp. 21-28.
BibRef
8500
McQueen, M.M.,
Toussaint, G.T.,
On the Ultimate Convex Hull Algorithm in Practice,
PRL(3), 1985, pp. 29-34.
BibRef
8500
Toussaint, G.T.,
On the Application of the Convex Hull to Histogram Analysis in
Threshold Selection,
PRL(2), 1983, pp. 75-77.
BibRef
8300
Toussaint, G.T.[Godfried T.],
Avis, D.[David],
On A Convex Hull Algorithm for Polygons and Its Application to
Triangulation Problems,
PR(15), No. 1, 1982, pp. 23-29.
Elsevier DOI Convex hull for some cases: weakly externally visible polygons.
BibRef
8200
Toussaint, G.T.[Godfried T.],
El Gindy, H.,
A Counterexample to an Algorithm for Computing Monotone Hulls
of Simple Polygons,
PRL(1), 1983, pp. 219-222.
BibRef
8300
Toussaint, G.T.[Godfried T.],
Complexity, Convexity, And Unimodality,
CIS(13), 1984, pp. 197-217.
BibRef
8400
Akl, S.G.,
A Constant-Time Parallel Algorithm for Computing Convex Hulls,
BIT(22), 1982, pp. 130-134.
BibRef
8200
Kim, C.E.[Chul E.],
Sklansky, J.[Jack],
Digital and Cellular Convexity,
PR(15), No. 5, 1982, pp. 359-367.
Elsevier DOI
BibRef
8200
Kim, C.E.[Chul E.],
On the Cellular Convexity of Complexes,
PAMI(3), No. 6, November 1981, pp. 617-625.
BibRef
8111
Kim, C.E.[Chul E.],
Rosenfeld, A.,
Digital Straight Lines and Convexity of Digital Regions,
PAMI(4), No. 2, March 1982, pp. 149-153.
BibRef
8203
Earlier:
On the Convexity of Digital Regions,
ICPR80(1010-1015).
See also Digital Straight Line Segments.
BibRef
Kim, C.E.[Chul E.],
Rosenfeld, A.,
Convex Digital Solids,
PAMI(4), No. 6, November 1982, pp. 612-618.
BibRef
8211
Kim, C.E.,
Digital Convexity, Straightness, and Convex Polygons,
PAMI(4), No. 6, November 1982, pp. 618-626.
BibRef
8211
Bykat, A.,
Convex Hull of a Finite Set of Points in Two Dimensions,
IPL(7), 1978, pp. 296-298.
BibRef
7800
Zucker, S.W.[Steven W.],
Hummel, R.A.[Robert A.],
Toward a Low-Level Description of Dot Clusters:
Labeling Edge, Interior, and Noise Points,
CGIP(9), No. 3, March 1979, pp. 213-233.
Elsevier DOI
BibRef
7903
Green, P.J.,
Constructing the Convex Hull of a Set of Points in the Plane,
Computer Journal(22), 1979, pp. 262-266.
BibRef
7900
Aki, S.G.,
Two Remarks on a Convex Hull Algorithm,
IPL(8), 1979, pp. 108-109.
BibRef
7900
Fournier, A.,
Comments on Convex Hull of a Finite Set of Points in Two Dimensions,
IPL(8), 1979, pp. 173.
BibRef
7900
Avis, D.,
Comments on a Lower Bound for Convex Hull Determination,
IPL(11), 1980, pp. 126.
See also On the O(n log n) Lower Bound for Convex Hull and Maximal Vector Determination.
BibRef
8000
Andrew, A.M.,
Another Efficient Algorithm for Convex Hulls in Two Dimensions,
IPL(9), 1979, pp. 216-219.
BibRef
7900
Boas, P.v.E.,
On the O(n log n) Lower Bound for Convex Hull and
Maximal Vector Determination,
IPL(10), 1980, pp. 132-136.
See also Comments on a Lower Bound for Convex Hull Determination.
BibRef
8000
Overmars, M.H.,
van Leeuwen, J.,
Further comments on Bykat's Convex Hull Algorithm,
IPL(10), 1980, pp. 209-212.
See also Convex Hull of a Finite Set of Points in Two Dimensions.
BibRef
8000
Devroye, L.,
A Note on Finding Convex Hulls via Maximal Vectors,
IPL(11), 1980, pp. 53-56.
BibRef
8000
Janos, L.[Ludvik],
Rosenfeld, A.[Azriel],
Some Results on Fuzzy (Digital) Convexity,
PR(15), No. 5, 1982, pp. 379-382.
Elsevier DOI
BibRef
8200
Gaafar, M.[Magdy],
Convexity Verification, Block-Chords, and Digital Straight Lines,
CGIP(6), No. 4, August 1977, pp. 361-370.
Elsevier DOI consider the effects of digitization.
BibRef
7708
Preparata, F.P.,
Hong, S.J.,
Convex Hulls of Finite Sets of Points in Two and Three Dimensions,
CACM(20), No. 1, January 1977, pp. 87-93.
BibRef
7701
Preparata, F.P.,
An Optimal Real-Time Algorithm for Planar Convex Hulls,
CACM(22), 1979, pp. 402-405.
BibRef
7900
Bentley, J.L.,
Faust, M.G.,
Preparata, F.P.,
Approximation Algorithms for Convex Hulls,
CACM(25), No. 1, January 1982, pp. 64-68.
BibRef
8201
Medek, V.[Václav],
On the Boundary of a Finite Set of Points in the Plane,
CGIP(15), No. 1, January 1981, pp. 93-99.
Elsevier DOI Properties for arbitrary set of points, no just grid.
BibRef
8101
Yao, A.C.C.,
A Lower Bound to Finding Convex Hulls,
JACM(28), 1981, pp. 780-787.
BibRef
8100
Vaishnavi, V.K.,
Computing Point Enclosures,
TC(31), No. 1, 1982, pp. 22-29.
BibRef
8200
Klette, R.[Reinhard],
On the Approximation of Convex Hulls of Finite Grid Point Sets,
PRL(2), No. 1, 1983, pp. 19-22.
BibRef
8300
Klette, R.[Reinhard],
The M-Dimensional Grid Point Space,
CVGIP(30), No. 1, April 1985, pp. 1-12.
Elsevier DOI
BibRef
8504
Chassery, J.M.[Jean-Marc],
Discrete convexity:
Definition, parametrization, and compatibility with continuous convexity,
CVGIP(21), No. 3, March 1983, pp. 326-344.
Elsevier DOI
0501
Continuous definition to discrete.
BibRef
Allison, D.C.,
Noga, M.T.,
Some Performance Tests of Convex Hull Algorithms,
BIT(24), 1984, pp. 2-13.
BibRef
8400
Soisalon-Soininen, E.,
On Computing Approximate Convex Hulls,
IPL(16), 1983, pp. 121-126.
BibRef
8300
Johansen, G.H.[Gunner Helweg],
Gram, C.,
A Simple Algorithm for Building the 3-D Convex Hull,
BIT(23), No. 2, 1983, pp. 146-160.
BibRef
8300
Jozwik, A.,
A Method for Solving the N-Dimensional Convex Hull Problem,
PRL(2), 1983, pp. 23-25.
BibRef
8300
Handley, C.C.,
Efficient Planar Convex Hull Algorithm,
IVC(3), No. 1, February 1985, pp. 29-35.
Elsevier DOI Efficient implementation.
BibRef
8502
Chazelle, B.,
On the Convex Layers of a Planar Set,
IT(31), 1985, pp. 509-517.
BibRef
8500
Ronse, C.[Christian],
A Strong Chord Property for 4-Connected Convex Digital Sets,
CVGIP(35), No. 2, August 1986, pp. 259-269.
Elsevier DOI An alternate Chord property.
BibRef
8608
Bailey, T.,
Cowles, J.,
A Convex Hull Inclusion Test,
PAMI(9), No. 2, March 1987, pp. 312-316.
BibRef
8703
Prince, J.L.,
Willsky, A.S.,
Reconstructing Convex Sets from Support Line Measurements,
PAMI(12), No. 4, April 1990, pp. 377-389.
IEEE DOI For computed tomography.
BibRef
9004
Shan, L.Y.[Liu-Yu],
Thonnat, M.[Monique],
Description Of Object Shapes By Apparent Boundary And Convex Hull,
PR(26), No. 1, January 1993, pp. 95-107.
Elsevier DOI
BibRef
9301
Earlier:
Using apparent boundary and convex hull for the shape characterization
of foraminifera images,
ICPR92(III:569-572).
IEEE DOI
9008
BibRef
Wu, X.L.[Xiao-Lin],
Ronke, J.,
On Properties of Discretized Convex Curves,
PAMI(11), No. 2, February 1989, pp. 217-223.
IEEE DOI
BibRef
8902
Ye, Q.Z.,
A Fast Algorithm for Convex-Hull Extraction in 2D Images,
PRL(16), No. 5, May 1995, pp. 531-537.
BibRef
9505
Wright, M.,
Fitzgibbon, A.W.,
Giblin, P.J.,
Fisher, R.B.,
Convex Hulls, Occluding Contours, Aspect Graphs and the Hough Transform,
IVC(14), No. 8, August 1996, pp. 627-634.
Elsevier DOI
9609
BibRef
Earlier: A1, A2, A4, Only
BMVC95(xx-yy).
PDF File.
9509
BibRef
Earlier: A1, A2, A3, A4:
Beyond the Hough Transform:
Further Properties of the R-Theta Mapping and Their Applications,
ORCV96(361)
9611
BibRef
Edinburgh
BibRef
Lindenbaum, M.,
Bruckstein, A.M.,
Reconstructing a Convex Polygon from Binary Perspective Projections,
PR(23), No. 12, 1990, pp. 1343-1350.
Elsevier DOI tactial measurements.
BibRef
9000
Lindenbaum, M.[Michael],
Bruckstein, A.M.[Alfred M.],
Blind Approximation of Planar Convex Sets,
RA(10), 1994, pp. 517-529.
BibRef
9400
And:
Blind Approximation of Planar Convex Shapes,
MDSG94(415-422)
BibRef
Barber, C.B.,
Dobkin, D.P.,
Huhdanpaa, H.,
The Quickhull Algorithm for Convex Hulls,
TMS(22), No. 4, December 1996, pp. 469-483.
9701
BibRef
Tzionas, P.,
Thanailakis, A.,
Tsalides, P.,
An Efficient Algorithm for the Largest Empty Figure Problem-Based
on a 2D Cellular-Automaton Architecture,
IVC(15), No. 1, January 1997, pp. 35-45.
Elsevier DOI
9702
BibRef
Gofman, Y.,
Outline of a Set of Points,
PRL(14), 1993, pp. 31-38.
BibRef
9300
Chaudhuri, B.B.,
Fuzzy Convex Hull Determination in 2-D Space,
PRL(12), 1991, pp. 591-594.
BibRef
9100
Hussein, Z.,
A Fast Approximation to a Convex Hull,
PRL(8), 1988, pp. 289-294.
BibRef
8800
Melter, R.A.,
Convexity Is Necessary: A Correction,
PRL(8), 1988, pp. 59.
BibRef
8800
Inselberg, A.,
Chomut, T.,
Reif, M.,
Convexity Algorithms in Parallel Coordinates,
JACM(34), 1987, pp. 765-801.
BibRef
8700
Latecki, L.J.[Longin J.],
Rosenfeld, A.[Azriel],
Silverman, R.[Ruth],
Generalized Convexity: C3 and Boundaries of Convex-Sets,
PR(28), No. 8, August 1995, pp. 1191-1199.
Elsevier DOI Closed curve is boundary of convex set.
BibRef
9508
Zimmer, Y.,
Tepper, R.,
Akselrod, S.,
An Improved Method to Compute the Convex-Hull of a
Shape in a Binary Image,
PR(30), No. 3, March 1997, pp. 397-402.
Elsevier DOI
9705
Efficiency issues.
BibRef
Mandal, D.P.[Deba Prasad],
Murthy, C.A.,
Selection of Alpha for Alpha Hull in R-2,
PR(30), No. 10, October 1997, pp. 1759-1767.
Elsevier DOI
9712
Expand on:
See also On the Shape of a Set of Points in the Plane.
BibRef
Lin, J.C.,
Lin, J.Y.,
A 1 Logn Parallel Algorithm for Detecting Convex Hulls on Image Boards,
IP(7), No. 6, June 1998, pp. 922-925.
IEEE DOI
9806
BibRef
Kudo, M.[Mineichi],
Torii, Y.[Yoichiro],
Mori, Y.[Yasukuni],
Shimbo, M.[Masaru],
Approximation of Class Regions by Quasi Convex Hulls,
PRL(19), No. 9, 31 July 1998, pp. 777-786.
BibRef
9807
Chaudhuri, B.B.,
Rosenfeld, A.,
On the computation of the digital convex hull and circular hull of a
digital region,
PR(31), No. 12, December 1998, pp. 2007-2016.
Elsevier DOI Digital Line convexity.
BibRef
9812
Hall, P.[Peter],
Turlach, B.A.[Berwin A.],
On the Estimation of a Convex Set with Corners,
PAMI(21), No. 3, March 1999, pp. 225-234.
IEEE DOI Not really a convex hull, but a boundary composed of curves
with corners.
BibRef
9903
Andrefouët, S.,
Roux, L.,
Chancerelle, Y.,
Bonneville, A.,
A Fuzzy-Possibilistic Scheme of Study for Objects with Indeterminate
Boundaries: Application to French Polynesian Reefscapes,
GeoRS(38), No. 1, January 2000, pp. 257-270.
IEEE Top Reference.
0002
BibRef
Cinque, L.,
di Maggio, C.,
A BSP realisation of Jarvis' algorithm,
PRL(22), No. 2, February 2001, pp. 147-155.
Elsevier DOI
0101
BibRef
Earlier:
A BSP realisation of Jarvis's algorithm,
CIAP99(247-252).
IEEE DOI
9909
See also On the Identification of the Convex Hull of a Finite Set of Points in the Plane.
BibRef
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
Svensson, S.[Stina],
Computing and analysing convex deficiencies to characterise 3D complex
objects,
IVC(23), No. 2, 1 February 2004, pp. 203-211.
Elsevier DOI
0412
BibRef
Earlier: A2, A3, A1:
Finding cavities and tunnels in 3D complex objects,
CIAP03(342-347).
IEEE DOI
0310
BibRef
Ostrouchov, G.,
Samatova, N.F.,
On FastMap and the Convex Hull of Multivariate Data:
Toward Fast and Robust Dimension Reduction,
PAMI(27), No. 8, August 2005, pp. 1340-1343.
IEEE Abstract.
0506
BibRef
Rahtu, E.[Esa],
Salo, M.[Mikko],
Heikkila, J.[Janne],
A New Convexity Measure Based on a Probabilistic Interpretation of
Images,
PAMI(28), No. 9, September 2006, pp. 1501-1512.
IEEE DOI
0608
Generate pairs of points and measure the probability that a point dividing the
line is in the set.
FFT implementation is possible.
See also Affine Invariant Pattern Recognition Using Multiscale Autoconvolution.
BibRef
Rosin, P.L.[Paul L.],
Mumford, C.L.[Christine L.],
A symmetric convexity measure,
CVIU(103), No. 2, August 2006, pp. 101-111.
Elsevier DOI
0608
BibRef
Earlier:
ICPR04(IV: 11-14).
IEEE DOI
0409
Shape measure; Polygon; Convexity; Convex hull; Convex skull
BibRef
Rosin, P.L.[Paul L.],
Classification of pathological shapes using convexity measures,
PRL(30), No. 5, 1 April 2009, pp. 570-578.
Elsevier DOI
0903
Shape measure; Polygon; Convexity; Convex hull; Convexification;
Medical classification
BibRef
Lu, K.[Kefei],
Pavlidis, T.[Theo],
Detecting textured objects using convex hull,
MVA(18), No. 2, April 2007, pp. 123-133.
Springer DOI
0704
BibRef
Stahl, J.S.[Joachim S.],
Wang, S.[Song],
Edge Grouping Combining Boundary and Region Information,
IP(16), No. 10, October 2007, pp. 2590-2606.
IEEE DOI
0711
BibRef
Earlier:
Convex Grouping Combining Boundary and Region Information,
ICCV05(II: 946-953).
IEEE DOI
0510
BibRef
Stahl, J.S.[Joachim S.],
Wang, S.[Song],
Globally Optimal Grouping for Symmetric Closed Boundaries by Combining
Boundary and Region Information,
PAMI(30), No. 3, March 2008, pp. 395-411.
IEEE DOI
0801
Symmetry, 2-D.
BibRef
Earlier:
Globally Optimal Grouping for Symmetric Boundaries,
CVPR06(I: 1030-1037).
IEEE DOI
0606
Bilateral symmetry of natural and artificial objects.
Use symmetry to detect closed boundaries.
BibRef
Stahl, J.S.[Joachim S.],
Oliver, K.[Kenton],
Wang, S.[Song],
Open boundary capable edge grouping with feature maps,
Tensor08(1-8).
IEEE DOI
0806
BibRef
Duckham, M.[Matt],
Kulik, L.[Lars],
Worboys, M.[Mike],
Galton, A.[Antony],
Efficient generation of simple polygons for characterizing the shape of
a set of points in the plane,
PR(41), No. 10, October 2008, pp. 3224-3236.
Elsevier DOI
0808
Convex hull; Alpha shape; Shape analysis; Cartography; GIS
BibRef
Rosin, P.L.,
Zunic, J.,
Probabilistic convexity measure,
IET-IPR(1), No. 2, June 2007, pp. 182-188.
DOI Link
0905
BibRef
Brlek, S.[Srecko],
Lachaud, J.O.[Jacques-Olivier],
Provençal, X.,
Reutenauer, C.,
Lyndon + Christoffel = digitally convex,
PR(42), No. 10, October 2009, pp. 2239-2246.
Elsevier DOI
0906
BibRef
Earlier: A1, A2, A3, Only:
Combinatorial View of Digital Convexity,
DGCI08(xx-yy).
Springer DOI
0804
Digital convexity; Lyndon words; Christoffel words; Convex hull
BibRef
Serra, J.[Jean],
Digital Steiner sets and Matheron semi-groups,
IVC(28), No. 10, October 2010, pp. 1452-1459.
Elsevier DOI
1007
Matheron semi-group; Granulometry; Digital; Convexity; Steiner;
Reveilles plane; Connectivity
BibRef
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Generalized Convexity in Multiple View Geometry,
JMIV(38), No. 1, September 2010, pp. 35-51.
WWW Link.
1011
BibRef
Ahn, H.K.[Hee-Kap],
Okamoto, Y.[Yoshio],
Adaptive Algorithms for Planar Convex Hull Problems,
IEICE(E94-D), No. 2, February 2011, pp. 182-189.
WWW Link.
1102
BibRef
Kim, S.[Sujung],
Kim, H.D.[Hee-Dong],
Kim, W.J.[Wook-Joong],
Kim, S.D.[Seong-Dae],
Fast Computation of a Visual Hull,
ACCV10(IV: 1-10).
Springer DOI
1011
BibRef
Bhowmick, P.[Partha],
Biswas, A.[Arindam],
Bhattacharya, B.B.[Bhargab B.],
On the representation of a digital contour with an unordered point set
for visual perception,
JVCIR(22), No. 7, October 2011, pp. 590-605.
Elsevier DOI
1109
Order-free point set; Shape visualization; Geometric graphs; Nearest
neighbor; Delaunay triangulation; Digital geometry; Visual perception;
Digital object
BibRef
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object,
SCIA05(930-939).
Springer DOI
0506
BibRef
Dutt, M.[Mousumi],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
ACCORD: With Approximate Covering of Convex Orthogonal Decomposition,
DGCI11(489-500).
Springer DOI
1104
BibRef
Karmakar, N.[Nilanjana],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Fast Slicing of Orthogonal Covers Using DCEL,
IWCIA12(16-30).
Springer DOI
1211
BibRef
Dutt, M.[Mousumi],
Biswas, A.[Arindam],
Boundary and Shape Complexity of a Digital Object,
CompIMAGE16(105-117).
Springer DOI
1704
BibRef
Paul, R.[Raina],
Sarkar, A.[Apurba],
Biswas, A.[Arindam],
Finding the Maximum Empty Axis-parallel Rectangular Annulus,
IWCIA20(139-146).
Springer DOI
2009
BibRef
Sarkar, A.[Apurba],
Biswas, A.[Arindam],
Dutt, M.[Mousumi],
Bhattacharya, A.[Arnab],
Finding Largest Rectangle Inside a Digital Object,
CTIC16(157-169).
Springer DOI
1608
BibRef
Sarkar, A.[Apurba],
Biswas, A.[Arindam],
Mondal, S.[Shouvick],
Dutt, M.[Mousumi],
Finding Shortest Triangular Path in a Digital Object,
DGCI16(206-218).
WWW Link.
1606
BibRef
Kundu, D.[Debapriya],
Biswas, A.[Arindam],
Finding Shortest Isothetic Path Inside a 3D Digital Object,
CompIMAGE16(65-78).
Springer DOI
1704
BibRef
Dutt, M.[Mousumi],
Biswas, A.[Arindam],
Bhattacharya, B.B.[Bhargab B.],
Enumeration of Shortest Isothetic Paths Inside a Digital Object,
PReMI15(105-115).
Springer DOI
1511
BibRef
Dutt, M.[Mousumi],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
On Finding Shortest Isothetic Path inside a Digital Object,
IWCIA12(1-15).
Springer DOI
1211
BibRef
Sarkar, A.[Apurba],
Biswas, A.[Arindam],
Dutt, M.[Mousumi],
Bhattacharya, A.[Arnab],
Generation of Random Triangular Digital Curves Using Combinatorial
Techniques,
PReMI15(136-145).
Springer DOI
1511
BibRef
Das, B.[Barnali],
Dutt, M.[Mousumi],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
A Combinatorial Technique for Construction of Triangular Covers of
Digital Objects,
IWCIA14(76-90).
Springer DOI
1405
BibRef
Karmakar, N.[Nilanjana],
Biswas, A.[Arindam],
Construction of an Approximate 3D Orthogonal Convex Skull,
CTIC16(180-192).
Springer DOI
1608
BibRef
Earlier:
Construction of 3D Orthogonal Convex Hull of a Digital Object,
IWCIA15(125-142).
Springer DOI
1601
BibRef
Biswas, R.[Ranita],
Bhowmick, P.[Partha],
Construction of Persistent Voronoi Diagram on 3D Digital Plane,
IWCIA17(93-104).
Springer DOI
1706
BibRef
Karmakar, N.[Nilanjana],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
Construction of 3D Orthogonal Cover of a Digital Object,
IWCIA11(70-83).
Springer DOI
1105
BibRef
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Sarkar, M.[Moumita],
Bhattacharya, B.B.[Bhargab B.],
Finding the Orthogonal Hull of a Digital Object:
A Combinatorial Approach,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Takahashi, T.[Tetsuji],
Kudo, M.[Mineichi],
Nakamura, A.[Atsuyoshi],
Construction of convex hull classifiers in high dimensions,
PRL(32), No. 16, 1 December 2011, pp. 2224-2230.
Elsevier DOI
1112
Pattern recognition; Convex hull; Classifier selection
BibRef
Klette, G.[Gisela],
Recursive computation of minimum-length polygons,
CVIU(117), No. 4, April 2013, pp. 386-392.
Elsevier DOI
1303
Relative convex hull; Minimum-perimeter polygon; Minimum-length
polygon; Shortest path; Path planning; Cavity tree; Shape analysis;
Active contours
BibRef
Heylen, R.,
Scheunders, P.,
Multidimensional Pixel Purity Index for Convex Hull Estimation
and Endmember Extraction,
GeoRS(51), No. 7, 2013, pp. 4059-4069.
IEEE DOI Algorithm design and analysis;Indexes;Signal processing algorithms;Solids;
1307
BibRef
Yang, C.[Chuan],
Zhang, L.[Lihe],
Lu, H.C.[Hu-Chuan],
Graph-Regularized Saliency Detection With
Convex-Hull-Based Center Prior,
SPLetters(20), No. 7, 2013, pp. 637-640.
IEEE DOI
1307
continuous pairwise saliency energy function;
convex-hull-based center prior;
object level saliency detection
BibRef
Ouchi, K.[Koji],
Nakamura, A.[Atsuyoshi],
Kudo, M.[Mineichi],
An efficient construction and application usefulness of rectangle
greedy covers,
PR(47), No. 3, 2014, pp. 1459-1468.
Elsevier DOI
1312
Greedy cover
BibRef
Duarte, P.[Pedro],
Torres, M.J.[Maria Joana],
Smoothness of Boundaries of Regular Sets,
JMIV(48), No. 1, January 2014, pp. 106-113.
Springer DOI
1402
BibRef
Duarte, P.[Pedro],
Torres, M.J.[Maria Joana],
r-Regularity,
JMIV(51), No. 3, March 2015, pp. 451-464.
WWW Link.
1504
BibRef
Jung, S.H.[Sung-Hoon],
Kim, M.W.[Minh-Wan],
Estimation of a 3D Bounding Box for a Segmented Object Region in a
Single Image,
IEICE(E97-D), No. 11, November 2014, pp. 2919-2934.
WWW Link.
1412
BibRef
Li, R.[Rui],
Liu, L.[Lei],
Sheng, Y.[Yun],
Zhang, G.X.[Gui-Xu],
A heuristic convexity measure for 3D meshes,
VC(33), No. 6-8, June 2017, pp. 903-912.
Springer DOI
1706
BibRef
Huska, M.[Martin],
Lazzaro, D.[Damiana],
Morigi, S.[Serena],
Shape Partitioning via Lp Compressed Modes,
JMIV(60), No. 7, September 2018, pp. 1111-1131.
WWW Link.
1808
BibRef
Huska, M.[Martin],
Lanza, A.[Alessandro],
Morigi, S.[Serena],
Sgallari, F.[Fiorella],
Convex Non-Convex Segmentation over Surfaces,
SSVM17(348-360).
Springer DOI
1706
BibRef
Balázs, P.[Péter],
Brunetti, S.[Sara],
A Q-Convexity Vector Descriptor for Image Analysis,
JMIV(61), No. 2, February 2019, pp. 193-203.
Springer DOI
1902
BibRef
Earlier:
A Measure of Q-Convexity,
DGCI16(219-230).
WWW Link.
1606
BibRef
unic, J.[Jovia],
Rosin, P.L.[Paul L.],
Measuring Shapes with Desired Convex Polygons,
PAMI(42), No. 6, June 2020, pp. 1394-1407.
IEEE DOI
2005
BibRef
Earlier: A2, A1:
Measuring Convexity via Convex Polygons,
GPID15(38-47).
Springer DOI
1603
Shape, Shape measurement, Extraterrestrial measurements, Linearity,
Area measurement, Tuning, Rotation measurement, Shape,
pattern recognition
BibRef
Li, Z.Y.[Zhi-Yang],
Hu, J.[Jia],
Stojmenovic, M.[Milos],
Liu, Z.B.[Zhao-Bin],
Liu, W.J.[Wei-Jiang],
Revisiting spectral clustering for near-convex decomposition of 2D
shape,
PR(105), 2020, pp. 107371.
Elsevier DOI
2006
Convex decomposition, Visibility, Shape signature, Spectral graph cut
BibRef
Li, Z.Y.[Zhi-Yang],
Qu, W.Y.[Wen-Yu],
Qi, H.[Heng],
Stojmenovic, M.[Milos],
Near-convex decomposition of 2D shape using visibility range,
CVIU(210), 2021, pp. 103243.
Elsevier DOI
2109
Convex decomposition, Visibility range, Shape signature, Graph cut
BibRef
Fernández García, N.L.[Nicolás Luis],
Martínez, L.D.M.[Luis Del-Moral],
Poyato, Á.C.[Ángel Carmona],
Madrid Cuevas, F.J.[Francisco José],
Carnicer, R.M.[Rafael Medina],
Unsupervised generation of polygonal approximations based on the
convex hull,
PRL(135), 2020, pp. 138-145.
Elsevier DOI
2006
Digital planar curves, Contour analysis, Polygonal analysis,
Convex hull, Corner detection, Thresholding algorithm
BibRef
Crombez, L.[Loďc],
da Fonseca, G.D.[Guilherme D.],
Gerard, Y.[Yan],
Efficiently Testing Digital Convexity and Recognizing Digital Convex
Polygons,
JMIV(62), No. 5, June 2020, pp. 693-703.
Springer DOI
2007
BibRef
Balázs, P.[Péter],
Brunetti, S.[Sara],
A Measure of Q-convexity for Shape Analysis,
JMIV(62), No. 8, October 2020, pp. xx-yy.
WWW Link.
2009
BibRef
Giorginis, T.[Thomas],
Ougiaroglou, S.[Stefanos],
Evangelidis, G.[Georgios],
Dervos, D.A.[Dimitris A.],
Fast data reduction by space partitioning via convex hull and MBR
computation,
PR(126), 2022, pp. 108553.
Elsevier DOI
2204
Reduction by space partitioning, RSP3, Classification,
Prototype generation, Big training data, Convex hull,
Minimum bounding rectangle (MBR)
BibRef
Nemirko, A.[Anatoly],
Image Recognition Algorithms Based on the Representation of Classes by
Convex Hulls,
IMTA20(44-50).
Springer DOI
2103
BibRef
Szucs, J.[Judit],
Balázs, P.[Péter],
Local Q-convexity Histograms for Shape Analysis,
IWCIA20(245-257).
Springer DOI
2009
BibRef
Bayardo-Spadafora, J.,
Gómez-Fernandez, F.,
Taubin, G.,
Fast Non-Convex Hull Computation,
3DV19(747-755)
IEEE DOI
1911
Surface reconstruction, Shape,
Transforms, Approximation algorithms, Complexity theory, Shrinking Ball
BibRef
Li, L.F.[Ling-Feng],
Luo, S.[Shousheng],
Tai, X.C.[Xue-Cheng],
Yang, J.[Jiang],
A Variational Convex Hull Algorithm,
SSVM19(224-235).
Springer DOI
1909
BibRef
Welk, M.[Martin],
Breuß, M.[Michael],
The Convex-Hull-Stripping Median Approximates Affine Curvature Motion,
SSVM19(199-210).
Springer DOI
1909
BibRef
Brunetti, S.[Sara],
Balázs, P.[Péter],
Bodnár, P.[Péter],
Szucs, J.[Judit],
A Spatial Convexity Descriptor for Object Enlacement,
DGCI19(330-342).
Springer DOI
1905
BibRef
Crombez, L.[Loďc],
da Fonseca, G.D.[Guilherme D.],
Gérard, Y.[Yan],
Efficient Algorithms to Test Digital Convexity,
DGCI19(409-419).
Springer DOI
1905
BibRef
Gérard, Y.[Yan],
Convex Aggregation Problems in Z2,
DGCI19(432-443).
Springer DOI
1905
BibRef
Ritter, G.X.[Gerhard X.],
Urcid, G.[Gonzalo],
Extreme Points of Convex Polytopes Derived from Lattice Autoassociative
Memories,
MCPR18(116-125).
Springer DOI
1807
BibRef
Beltrán-Herrera, A.[Alberto],
Mendoza, S.[Sonia],
Fast Convex Hull by a Geometric Approach,
MCPR18(51-61).
Springer DOI
1807
BibRef
Barcucci, E.[Elena],
Dulio, P.[Paolo],
Frosini, A.[Andrea],
Rinaldi, S.[Simone],
Ambiguity Results in the Characterization of hv-convex Polyominoes from
Projections,
DGCI17(147-158).
Springer DOI
1711
BibRef
Bodnár, P.[Péter],
Balázs, P.[Péter],
Nyúl, L.G.[László G.],
A Convexity Measure for Gray-Scale Images Based on hv-Convexity,
CIAP17(I:586-594).
Springer DOI
1711
BibRef
Brunetti, S.[Sara],
Balázs, P.[Péter],
Bodnár, P.[Péter],
Extension of a One-Dimensional Convexity Measure to Two Dimensions,
IWCIA17(105-116).
Springer DOI
1706
BibRef
And: A2, A1, Only:
A New Shape Descriptor Based on a Q-convexity Measure,
DGCI17(267-278).
Springer DOI
1711
BibRef
Sirakov, N.M.[Nikolay M.],
Sirakova, N.N.[Nona Nikolaeva],
Inscribing Convex Polygons in Star-Shaped Objects,
IWCIA17(198-211).
Springer DOI
1706
BibRef
Jarray, F.[Fethi],
Tlig, G.[Ghassen],
Reconstruction of Nearly Convex Colored Images,
IWCIA17(334-346).
Springer DOI
1706
BibRef
Bodnár, P.[Péter],
Balázs, P.[Péter],
An Improved Directional Convexity Measure for Binary Images,
ICIAR17(278-285).
Springer DOI
1706
BibRef
Zafari, S.[Sahar],
Eerola, T.[Tuomas],
Sampo, J.[Jouni],
Kälviäinen, H.[Heikki],
Haario, H.[Heikki],
Comparison of Concave Point Detection Methods for Overlapping Convex
Objects Segmentation,
SCIA17(II: 245-256).
Springer DOI
1706
BibRef
Wiederhold, P.[Petra],
Reyes, H.[Hugo],
Relative Convex Hull Determination from Convex Hulls in the Plane,
IWCIA15(46-60).
Springer DOI
1601
BibRef
Rajagopal, S.[Sricharana],
Siddiqi, K.[Kaleem],
Shrink Wrapping Small Objects,
CRV15(285-289)
IEEE DOI
1507
Computational modeling
BibRef
Stein, S.C.[Simon Christoph],
Schoeler, M.[Markus],
Papon, J.[Jeremie],
Worgotter, F.[Florentin],
Object Partitioning Using Local Convexity,
CVPR14(304-311)
IEEE DOI
1409
3D object segmentation
BibRef
Tasi, T.S.[Tamás Sámuel],
Nyúl, L.G.[László G.],
Balázs, P.[Péter],
Directional Convexity Measure for Binary Tomography,
CIARP13(II:9-16).
Springer DOI
1311
BibRef
Bodini, O.,
Duchon, P.,
Jacquot, A.,
Mutafchiev, L.,
Asymptotic Analysis and Random Sampling of Digitally Convex Polyominoes,
DGCI13(95-106).
Springer DOI
1304
See also Lyndon + Christoffel = digitally convex.
BibRef
Song, J.G.[Jian-Guo],
Lu, X.Q.[Xiao-Qing],
Ling, H.B.[Hai-Bin],
Wang, X.[Xiao],
Tang, Z.[Zhi],
Envelope extraction for composite shapes for shape retrieval,
ICPR12(1932-1935).
WWW Link.
1302
BibRef
Fu, Z.,
Lu, Y.,
An Efficient Algorithm For The Convex Hull Of Planar Scattered Point
Set,
ISPRS12(XXXIX-B2:63-66).
DOI Link
1209
BibRef
Abdmouleh, F.[Fatma],
Tajine, M.[Mohamed],
Reconstruction of Quantitative Properties from X-Rays,
DGCI13(277-287).
Springer DOI
1304
BibRef
Abdmouleh, F.[Fatma],
Daurat, A.[Alain],
Tajine, M.[Mohamed],
Discrete Q-Convex Sets Reconstruction from Discrete Point X-Rays,
IWCIA11(321-334).
Springer DOI
1105
BibRef
Baudrier, É.[Étienne],
Tajine, M.[Mohamed],
Daurat, A.[Alain],
Convex-Set Perimeter Estimation from Its Two Projections,
IWCIA11(284-297).
Springer DOI
1105
BibRef
Corcoran, P.[Padraig],
Mooney, P.[Peter],
Winstanley, A.[Adam],
A Convexity Measure for Open and Closed Contours,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Corcoran, P.[Padraig],
Mooney, P.[Peter],
Tilton, J.[James],
Convexity Grouping of Salient Contours,
GbRPR11(235-244).
Springer DOI
1105
BibRef
Klette, G.[Gisela],
Recursive Calculation of Relative Convex Hulls,
DGCI11(260-271).
Springer DOI
1104
BibRef
Earlier:
A recursive algorithm for calculating the relative convex hull,
IVCNZ10(1-7).
IEEE DOI
1203
BibRef
Roussillon, T.[Tristan],
An Arithmetical Characterization of the Convex Hull of Digital Straight
Segments,
DGCI14(150-161).
Springer DOI
1410
BibRef
Roussillon, T.[Tristan],
Tougne, L.[Laure],
Sivignon, I.[Isabelle],
What Does Digital Straightness Tell about Digital Convexity?,
IWCIA09(43-55).
Springer DOI
0911
See also Algorithms for Fast Digital Straight Segments Union.
BibRef
Sirakov, N.M.[Nikolay Metodiev],
Ushkala, K.[Karthik],
An Integral Active Contour Model for Convex Hull and Boundary
Extraction,
ISVC09(II: 1031-1040).
Springer DOI
0911
BibRef
Brimkov, V.E.[Valentin E.],
On the Convex Hull of the Integer Points in a Bi-circular Region,
IWCIA09(16-29).
Springer DOI
0911
BibRef
Wan, H.F.[Hai-Feng],
Zhang, Z.Z.[Zhi-Zhuo],
Liu, R.J.[Rui-Jie],
A Parallel Dynamic Convex Hull Algorithm Based on the Macro to Micro
Model,
CISP09(1-5).
IEEE DOI
0910
BibRef
Jarray, F.[Fethi],
Tlig, G.[Ghassen],
Approximating Bicolored Images from Discrete Projections,
IWCIA11(311-320).
Springer DOI
1105
BibRef
Frosini, A.[Andrea],
Picouleau, C.[Christophe],
On the Degree Sequence of 3-Uniform Hypergraph:
A New Sufficient Condition,
DGCI19(195-205).
Springer DOI
1905
BibRef
Jarray, F.[Fethi],
Costa, M.C.[Marie-Christine],
Picouleau, C.[Christophe],
Approximating hv-Convex Binary Matrices and Images from Discrete
Projections,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Schulz, H.[Henrik],
Polyhedral Surface Approximation of Non-convex Voxel Sets through the
Modification of Convex Hulls,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Borgefors, G.[Gunilla],
Strand, R.[Robin],
An Approximation of the Maximal Inscribed Convex Set of a Digital
Object,
CIAP05(438-445).
Springer DOI
0509
BibRef
Röttger, S.[Stefan],
Guthe, S.[Stefan],
Schieber, A.[Andreas],
Ertl, T.[Thomas],
Convexification of Unstructured Grids,
VMV04(283-292).
0411
BibRef
Miller, G.[Gregor],
Hilton, A.[Adrian],
Exact View-Dependent Visual Hulls,
ICPR06(I: 107-111).
IEEE DOI
0609
BibRef
Mavroforakis, M.E.[Michael E.],
Sdralis, M.[Margaritis],
Theodoridis, S.[Sergios],
A novel SVM Geometric Algorithm based on Reduced Convex Hulls,
ICPR06(II: 564-568).
IEEE DOI
0609
BibRef
Kiselman, C.O.[Christer O.],
Convex Functions on Discrete Sets,
IWCIA04(443-457).
Springer DOI
0505
BibRef
Kovalevsky, V.A.[Vladimir A.],
Schulz, H.[Henrik],
Convex Hulls in a 3-Dimensional Space,
IWCIA04(176-196).
Springer DOI
0505
BibRef
Erol, A.[Ali],
Bebis, G.N.[George N.],
Boyle, R.D.[Richard D.],
Nicolescu, M.[Mircea],
Visual Hull Construction Using Adaptive Sampling,
WACV05(I: 234-241).
IEEE DOI
0502
BibRef
Guan, L.[Li],
Sinha, S.[Sudipta],
Franco, J.S.[Jean-Sebastien],
Pollefeys, M.[Marc],
Visual Hull Construction in the Presence of Partial Occlusion,
3DPVT06(413-420).
IEEE DOI
0606
BibRef
Franco, J.S.,
Boyer, E.,
Exact polyhedral visual hulls,
BMVC03(xx-yy).
HTML Version.
0409
Code, Convex Hull.
WWW Link.
BibRef
Boyer, E.,
Franco, J.S.,
A hybrid approach for computing visual hulls of complex objects,
CVPR03(I: 695-701).
IEEE DOI
0307
Space discretization, which does not rely on a regular grid where most
cells are ineffective, but rather on an irregular grid where sample
points lie on the surface of the visual hull.
BibRef
Brand, M.,
Kang, K.[Kongbin],
Cooper, D.B.,
Algebraic solution for the visual hull,
CVPR04(I: 30-35).
IEEE DOI
0408
BibRef
Rosenfeld, A.[Azriel],
Klette, R.[Reinhard],
Digital Straightness,
UMD-- TR4279, August 2001
WWW Link.
WWW Link.
BibRef
0108
Yu, L.J.[Lin-Jiang],
Klette, R.,
An approximative calculation of relative convex hulls for surface area
estimation of 3d digital objects,
ICPR02(I: 131-134).
IEEE DOI
0211
BibRef
Lee, T.,
Atkins, M.,
Li, Z.N.[Ze-Nian],
Indentation and protrusion detection and its applications,
ScaleSpace01(xx-yy).
0106
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Convex Layers: A New Tool for Recognition of Projectively Deformed
Point Sets,
CAIP99(454-461).
Springer DOI
9909
BibRef
Earlier:
The features for recognition of projectively deformed point sets,
ICIP95(III: 348-351).
IEEE DOI
9510
BibRef
Marzetta, T.L.,
Reflection coefficient representation for convex planar sets,
ICIP98(I: 607-609).
IEEE DOI
9810
BibRef
Nikolova, M.,
Estimation of binary images by minimizing convex criteria,
ICIP98(II: 108-112).
IEEE DOI
9810
BibRef
Albanesi, M.G.,
Ferretti, M.,
Zangrandi, L.,
A pyramidal approach to convex hull and filling algorithms,
CIAP95(139-144).
Springer DOI
9509
BibRef
Meier, R.,
Ackermann, F.,
Herrmann, G.,
Posch, S.,
Sagerer, G.,
Segmentation of molecular surfaces based on their convex hull,
ICIP95(III: 552-555).
IEEE DOI
9510
BibRef
Korneenko, N.[Nickolay],
Minimum-space time-optimal convex hull algorithms (preliminary report),
CAIP93(231-236).
Springer DOI
9309
BibRef
Miller, R.,
Stout, Q.F.,
Convexity Algorithms for Parallel Machines,
CVPR88(918-924).
IEEE DOI
See also Geometric Algorithms for Digitized Pictures on a Mesh-Connected Computer.
BibRef
8800
Kobatake, H.,
Murakami, M.,
Adaptive Filter to Detect Rounded Convex Regions: Iris Filter,
ICPR96(II: 340-344).
IEEE DOI
9608
(Tokyo Univ. of Agriculture and Technology, J)
BibRef
Rangarajan, A.,
Chellappa, R.,
Generalized graduated nonconvexity algorithm for maximum a posteriori
image estimation,
ICPR90(II: 127-133).
IEEE DOI
9008
BibRef
Murakami, K.,
Koshimizu, H.,
Hasegawa, K.,
An algorithm to extract convex hull on thetas Hough transform space,
ICPR88(I: 500-503).
IEEE DOI
8811
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Convex Hull of Polygons .