7.2.2 Convex Hull Algorithms and Convexity Analysis

Chapter Contents (Back)
Convexity. Convex Hull.

Ronse, C.[Christian],
A Bibliography on Digital and Computational Convexity (1961-1988),
PAMI(11), No. 2, February 1989, pp. 181-190.
IEEE DOI 300+ references with some annotation. BibRef 8902

Jarvis, R.A.,
On the Identification of the Convex Hull of a Finite Set of Points in the Plane,
IPL(2), 1973, pp. 18-21. BibRef 7300

Jarvis, R.A.,
Computing the Shape Hull of Points in the Plane,
PRIP77(231-241). BibRef 7700

Rutovitz, D.[Denis],
An Algorithm for In-Line Generation of a Convex Cover,
CGIP(4), No. 1, March 1975, pp. 74-78.
Elsevier DOI Simple form of Sklansky's algorithm for conves hull.
See also Recognition of Convex Blobs. BibRef 7503

Eddy, W.F.,
A New convex Hull Algorithm for Planar Sets,
TMS(3), 1977, pp. 393-403. BibRef 7700

Anderson, K.R.,
A Reevaluation of an Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set,
IPL(7), 1978, pp. 53-55. BibRef 7800

Koplowitz, J., Jouppi, D.,
A More Efficient Convex Hull Algorithm,
IPL(7), 1978, pp. 56-57. BibRef 7800

Akl, S.G., Toussaint, G.T.,
A Fast Convex Hull Algorithm,
IPL(7), 1978, pp. 219-222. BibRef 7800
And:
Efficient Convex Hull Algorithms for Pattern Recognition Applications,
ICPR78(483-487). BibRef

Devroye, L., Toussaint, G.T.,
A Note on Linear Expected Time Algorithms for Finding Convex Hulls,
Computing(26), 1981, pp. 361-366. BibRef 8100

Toussaint, G.T.,
A Simple Proof of Pach's Extremal Theorem for Convex Polygons,
PRL(1), 1982, pp. 85-86.
See also Single Linear Algorithm for Intersecting Convex Polygons, A. BibRef 8200

Bhattacharya, B.K., Toussaint, G.T.,
Time- and Storage-Efficient Implementations of an Optimal Planar Convex Hull Algorithm,
IVC(1), No. 3, August 1983, pp. 140-144.
Elsevier DOI BibRef 8308

Toussaint, G.T.,
A Historical Note on Convex Hull Finding Algorithms,
PRL(3), 1985, pp. 21-28. BibRef 8500

McQueen, M.M., Toussaint, G.T.,
On the Ultimate Convex Hull Algorithm in Practice,
PRL(3), 1985, pp. 29-34. BibRef 8500

Toussaint, G.T.,
On the Application of the Convex Hull to Histogram Analysis in Threshold Selection,
PRL(2), 1983, pp. 75-77. BibRef 8300

Toussaint, G.T.[Godfried T.], Avis, D.[David],
On A Convex Hull Algorithm for Polygons and Its Application to Triangulation Problems,
PR(15), No. 1, 1982, pp. 23-29.
Elsevier DOI Convex hull for some cases: weakly externally visible polygons. BibRef 8200

Toussaint, G.T.[Godfried T.], El Gindy, H.,
A Counterexample to an Algorithm for Computing Monotone Hulls of Simple Polygons,
PRL(1), 1983, pp. 219-222. BibRef 8300

Toussaint, G.T.[Godfried T.],
Complexity, Convexity, And Unimodality,
CIS(13), 1984, pp. 197-217. BibRef 8400

Akl, S.G.,
A Constant-Time Parallel Algorithm for Computing Convex Hulls,
BIT(22), 1982, pp. 130-134. BibRef 8200

Kim, C.E.[Chul E.], Sklansky, J.[Jack],
Digital and Cellular Convexity,
PR(15), No. 5, 1982, pp. 359-367.
Elsevier DOI BibRef 8200

Kim, C.E.[Chul E.],
On the Cellular Convexity of Complexes,
PAMI(3), No. 6, November 1981, pp. 617-625. BibRef 8111

Kim, C.E.[Chul E.], Rosenfeld, A.,
Digital Straight Lines and Convexity of Digital Regions,
PAMI(4), No. 2, March 1982, pp. 149-153. BibRef 8203
Earlier:
On the Convexity of Digital Regions,
ICPR80(1010-1015).
See also Digital Straight Line Segments. BibRef

Kim, C.E.[Chul E.], Rosenfeld, A.,
Convex Digital Solids,
PAMI(4), No. 6, November 1982, pp. 612-618. BibRef 8211

Kim, C.E.,
Digital Convexity, Straightness, and Convex Polygons,
PAMI(4), No. 6, November 1982, pp. 618-626. BibRef 8211

Bykat, A.,
Convex Hull of a Finite Set of Points in Two Dimensions,
IPL(7), 1978, pp. 296-298. BibRef 7800

Zucker, S.W.[Steven W.], Hummel, R.A.[Robert A.],
Toward a Low-Level Description of Dot Clusters: Labeling Edge, Interior, and Noise Points,
CGIP(9), No. 3, March 1979, pp. 213-233.
Elsevier DOI BibRef 7903

Green, P.J.,
Constructing the Convex Hull of a Set of Points in the Plane,
Computer Journal(22), 1979, pp. 262-266. BibRef 7900

Aki, S.G.,
Two Remarks on a Convex Hull Algorithm,
IPL(8), 1979, pp. 108-109. BibRef 7900

Fournier, A.,
Comments on Convex Hull of a Finite Set of Points in Two Dimensions,
IPL(8), 1979, pp. 173. BibRef 7900

Avis, D.,
Comments on a Lower Bound for Convex Hull Determination,
IPL(11), 1980, pp. 126.
See also On the O(n log n) Lower Bound for Convex Hull and Maximal Vector Determination. BibRef 8000

Andrew, A.M.,
Another Efficient Algorithm for Convex Hulls in Two Dimensions,
IPL(9), 1979, pp. 216-219. BibRef 7900

Boas, P.v.E.,
On the O(n log n) Lower Bound for Convex Hull and Maximal Vector Determination,
IPL(10), 1980, pp. 132-136.
See also Comments on a Lower Bound for Convex Hull Determination. BibRef 8000

Overmars, M.H., van Leeuwen, J.,
Further comments on Bykat's Convex Hull Algorithm,
IPL(10), 1980, pp. 209-212.
See also Convex Hull of a Finite Set of Points in Two Dimensions. BibRef 8000

Devroye, L.,
A Note on Finding Convex Hulls via Maximal Vectors,
IPL(11), 1980, pp. 53-56. BibRef 8000

Janos, L.[Ludvik], Rosenfeld, A.[Azriel],
Some Results on Fuzzy (Digital) Convexity,
PR(15), No. 5, 1982, pp. 379-382.
Elsevier DOI BibRef 8200

Gaafar, M.[Magdy],
Convexity Verification, Block-Chords, and Digital Straight Lines,
CGIP(6), No. 4, August 1977, pp. 361-370.
Elsevier DOI consider the effects of digitization. BibRef 7708

Preparata, F.P., Hong, S.J.,
Convex Hulls of Finite Sets of Points in Two and Three Dimensions,
CACM(20), No. 1, January 1977, pp. 87-93. BibRef 7701

Preparata, F.P.,
An Optimal Real-Time Algorithm for Planar Convex Hulls,
CACM(22), 1979, pp. 402-405. BibRef 7900

Bentley, J.L., Faust, M.G., Preparata, F.P.,
Approximation Algorithms for Convex Hulls,
CACM(25), No. 1, January 1982, pp. 64-68. BibRef 8201

Medek, V.[Václav],
On the Boundary of a Finite Set of Points in the Plane,
CGIP(15), No. 1, January 1981, pp. 93-99.
Elsevier DOI Properties for arbitrary set of points, no just grid. BibRef 8101

Yao, A.C.C.,
A Lower Bound to Finding Convex Hulls,
JACM(28), 1981, pp. 780-787. BibRef 8100

Vaishnavi, V.K.,
Computing Point Enclosures,
TC(31), No. 1, 1982, pp. 22-29. BibRef 8200

Klette, R.[Reinhard],
On the Approximation of Convex Hulls of Finite Grid Point Sets,
PRL(2), No. 1, 1983, pp. 19-22. BibRef 8300

Klette, R.[Reinhard],
The M-Dimensional Grid Point Space,
CVGIP(30), No. 1, April 1985, pp. 1-12.
Elsevier DOI BibRef 8504

Chassery, J.M.[Jean-Marc],
Discrete convexity: Definition, parametrization, and compatibility with continuous convexity,
CVGIP(21), No. 3, March 1983, pp. 326-344.
Elsevier DOI 0501
Continuous definition to discrete. BibRef

Allison, D.C., Noga, M.T.,
Some Performance Tests of Convex Hull Algorithms,
BIT(24), 1984, pp. 2-13. BibRef 8400

Soisalon-Soininen, E.,
On Computing Approximate Convex Hulls,
IPL(16), 1983, pp. 121-126. BibRef 8300

Johansen, G.H.[Gunner Helweg], Gram, C.,
A Simple Algorithm for Building the 3-D Convex Hull,
BIT(23), No. 2, 1983, pp. 146-160. BibRef 8300

Jozwik, A.,
A Method for Solving the N-Dimensional Convex Hull Problem,
PRL(2), 1983, pp. 23-25. BibRef 8300

Handley, C.C.,
Efficient Planar Convex Hull Algorithm,
IVC(3), No. 1, February 1985, pp. 29-35.
Elsevier DOI Efficient implementation. BibRef 8502

Chazelle, B.,
On the Convex Layers of a Planar Set,
IT(31), 1985, pp. 509-517. BibRef 8500

Ronse, C.[Christian],
A Strong Chord Property for 4-Connected Convex Digital Sets,
CVGIP(35), No. 2, August 1986, pp. 259-269.
Elsevier DOI An alternate Chord property. BibRef 8608

Bailey, T., Cowles, J.,
A Convex Hull Inclusion Test,
PAMI(9), No. 2, March 1987, pp. 312-316. BibRef 8703

Prince, J.L., Willsky, A.S.,
Reconstructing Convex Sets from Support Line Measurements,
PAMI(12), No. 4, April 1990, pp. 377-389.
IEEE DOI For computed tomography. BibRef 9004

Shan, L.Y.[Liu-Yu], Thonnat, M.[Monique],
Description Of Object Shapes By Apparent Boundary And Convex Hull,
PR(26), No. 1, January 1993, pp. 95-107.
Elsevier DOI BibRef 9301
Earlier:
Using apparent boundary and convex hull for the shape characterization of foraminifera images,
ICPR92(III:569-572).
IEEE DOI 9008
BibRef

Wu, X.L.[Xiao-Lin], Ronke, J.,
On Properties of Discretized Convex Curves,
PAMI(11), No. 2, February 1989, pp. 217-223.
IEEE DOI BibRef 8902

Ye, Q.Z.,
A Fast Algorithm for Convex-Hull Extraction in 2D Images,
PRL(16), No. 5, May 1995, pp. 531-537. BibRef 9505

Wright, M., Fitzgibbon, A.W., Giblin, P.J., Fisher, R.B.,
Convex Hulls, Occluding Contours, Aspect Graphs and the Hough Transform,
IVC(14), No. 8, August 1996, pp. 627-634.
Elsevier DOI 9609
BibRef
Earlier: A1, A2, A4, Only BMVC95(xx-yy).
PDF File. 9509
BibRef
Earlier: A1, A2, A3, A4:
Beyond the Hough Transform: Further Properties of the R-Theta Mapping and Their Applications,
ORCV96(361) 9611
BibRef Edinburgh BibRef

Lindenbaum, M., Bruckstein, A.M.,
Reconstructing a Convex Polygon from Binary Perspective Projections,
PR(23), No. 12, 1990, pp. 1343-1350.
Elsevier DOI tactial measurements. BibRef 9000

Lindenbaum, M.[Michael], Bruckstein, A.M.[Alfred M.],
Blind Approximation of Planar Convex Sets,
RA(10), 1994, pp. 517-529. BibRef 9400
And:
Blind Approximation of Planar Convex Shapes,
MDSG94(415-422) BibRef

Barber, C.B., Dobkin, D.P., Huhdanpaa, H.,
The Quickhull Algorithm for Convex Hulls,
TMS(22), No. 4, December 1996, pp. 469-483. 9701
BibRef

Tzionas, P., Thanailakis, A., Tsalides, P.,
An Efficient Algorithm for the Largest Empty Figure Problem-Based on a 2D Cellular-Automaton Architecture,
IVC(15), No. 1, January 1997, pp. 35-45.
Elsevier DOI 9702
BibRef

Gofman, Y.,
Outline of a Set of Points,
PRL(14), 1993, pp. 31-38. BibRef 9300

Chaudhuri, B.B.,
Fuzzy Convex Hull Determination in 2-D Space,
PRL(12), 1991, pp. 591-594. BibRef 9100

Hussein, Z.,
A Fast Approximation to a Convex Hull,
PRL(8), 1988, pp. 289-294. BibRef 8800

Melter, R.A.,
Convexity Is Necessary: A Correction,
PRL(8), 1988, pp. 59. BibRef 8800

Inselberg, A., Chomut, T., Reif, M.,
Convexity Algorithms in Parallel Coordinates,
JACM(34), 1987, pp. 765-801. BibRef 8700

Latecki, L.J.[Longin J.], Rosenfeld, A.[Azriel], Silverman, R.[Ruth],
Generalized Convexity: C3 and Boundaries of Convex-Sets,
PR(28), No. 8, August 1995, pp. 1191-1199.
Elsevier DOI Closed curve is boundary of convex set. BibRef 9508

Zimmer, Y., Tepper, R., Akselrod, S.,
An Improved Method to Compute the Convex-Hull of a Shape in a Binary Image,
PR(30), No. 3, March 1997, pp. 397-402.
Elsevier DOI 9705
Efficiency issues. BibRef

Mandal, D.P.[Deba Prasad], Murthy, C.A.,
Selection of Alpha for Alpha Hull in R-2,
PR(30), No. 10, October 1997, pp. 1759-1767.
Elsevier DOI 9712
Expand on:
See also On the Shape of a Set of Points in the Plane. BibRef

Lin, J.C., Lin, J.Y.,
A 1 Logn Parallel Algorithm for Detecting Convex Hulls on Image Boards,
IP(7), No. 6, June 1998, pp. 922-925.
IEEE DOI 9806
BibRef

Kudo, M.[Mineichi], Torii, Y.[Yoichiro], Mori, Y.[Yasukuni], Shimbo, M.[Masaru],
Approximation of Class Regions by Quasi Convex Hulls,
PRL(19), No. 9, 31 July 1998, pp. 777-786. BibRef 9807

Chaudhuri, B.B., Rosenfeld, A.,
On the computation of the digital convex hull and circular hull of a digital region,
PR(31), No. 12, December 1998, pp. 2007-2016.
Elsevier DOI Digital Line convexity. BibRef 9812

Hall, P.[Peter], Turlach, B.A.[Berwin A.],
On the Estimation of a Convex Set with Corners,
PAMI(21), No. 3, March 1999, pp. 225-234.
IEEE DOI Not really a convex hull, but a boundary composed of curves with corners. BibRef 9903

Andrefouët, S., Roux, L., Chancerelle, Y., Bonneville, A.,
A Fuzzy-Possibilistic Scheme of Study for Objects with Indeterminate Boundaries: Application to French Polynesian Reefscapes,
GeoRS(38), No. 1, January 2000, pp. 257-270.
IEEE Top Reference. 0002
BibRef

Cinque, L., di Maggio, C.,
A BSP realisation of Jarvis' algorithm,
PRL(22), No. 2, February 2001, pp. 147-155.
Elsevier DOI 0101
BibRef
Earlier:
A BSP realisation of Jarvis's algorithm,
CIAP99(247-252).
IEEE DOI 9909

See also On the Identification of the Convex Hull of a Finite Set of Points in the Plane. BibRef

Arcelli, C.[Carlo], Sanniti di Baja, G.[Gabriella], Svensson, S.[Stina],
Computing and analysing convex deficiencies to characterise 3D complex objects,
IVC(23), No. 2, 1 February 2004, pp. 203-211.
Elsevier DOI 0412
BibRef
Earlier: A2, A3, A1:
Finding cavities and tunnels in 3D complex objects,
CIAP03(342-347).
IEEE DOI 0310
BibRef

Ostrouchov, G., Samatova, N.F.,
On FastMap and the Convex Hull of Multivariate Data: Toward Fast and Robust Dimension Reduction,
PAMI(27), No. 8, August 2005, pp. 1340-1343.
IEEE Abstract. 0506
BibRef

Rahtu, E.[Esa], Salo, M.[Mikko], Heikkila, J.[Janne],
A New Convexity Measure Based on a Probabilistic Interpretation of Images,
PAMI(28), No. 9, September 2006, pp. 1501-1512.
IEEE DOI 0608
Generate pairs of points and measure the probability that a point dividing the line is in the set. FFT implementation is possible.
See also Affine Invariant Pattern Recognition Using Multiscale Autoconvolution. BibRef

Rosin, P.L.[Paul L.], Mumford, C.L.[Christine L.],
A symmetric convexity measure,
CVIU(103), No. 2, August 2006, pp. 101-111.
Elsevier DOI 0608
BibRef
Earlier: ICPR04(IV: 11-14).
IEEE DOI 0409
Shape measure; Polygon; Convexity; Convex hull; Convex skull BibRef

Rosin, P.L.[Paul L.],
Classification of pathological shapes using convexity measures,
PRL(30), No. 5, 1 April 2009, pp. 570-578.
Elsevier DOI 0903
Shape measure; Polygon; Convexity; Convex hull; Convexification; Medical classification BibRef

Lu, K.[Kefei], Pavlidis, T.[Theo],
Detecting textured objects using convex hull,
MVA(18), No. 2, April 2007, pp. 123-133.
Springer DOI 0704
BibRef

Stahl, J.S.[Joachim S.], Wang, S.[Song],
Edge Grouping Combining Boundary and Region Information,
IP(16), No. 10, October 2007, pp. 2590-2606.
IEEE DOI 0711
BibRef
Earlier:
Convex Grouping Combining Boundary and Region Information,
ICCV05(II: 946-953).
IEEE DOI 0510
BibRef

Stahl, J.S.[Joachim S.], Wang, S.[Song],
Globally Optimal Grouping for Symmetric Closed Boundaries by Combining Boundary and Region Information,
PAMI(30), No. 3, March 2008, pp. 395-411.
IEEE DOI 0801
Symmetry, 2-D. BibRef
Earlier:
Globally Optimal Grouping for Symmetric Boundaries,
CVPR06(I: 1030-1037).
IEEE DOI 0606
Bilateral symmetry of natural and artificial objects. Use symmetry to detect closed boundaries. BibRef

Stahl, J.S.[Joachim S.], Oliver, K.[Kenton], Wang, S.[Song],
Open boundary capable edge grouping with feature maps,
Tensor08(1-8).
IEEE DOI 0806
BibRef

Duckham, M.[Matt], Kulik, L.[Lars], Worboys, M.[Mike], Galton, A.[Antony],
Efficient generation of simple polygons for characterizing the shape of a set of points in the plane,
PR(41), No. 10, October 2008, pp. 3224-3236.
Elsevier DOI 0808
Convex hull; Alpha shape; Shape analysis; Cartography; GIS BibRef

Rosin, P.L., Zunic, J.,
Probabilistic convexity measure,
IET-IPR(1), No. 2, June 2007, pp. 182-188.
DOI Link 0905
BibRef

Brlek, S.[Srecko], Lachaud, J.O.[Jacques-Olivier], Provençal, X., Reutenauer, C.,
Lyndon + Christoffel = digitally convex,
PR(42), No. 10, October 2009, pp. 2239-2246.
Elsevier DOI 0906
BibRef
Earlier: A1, A2, A3, Only:
Combinatorial View of Digital Convexity,
DGCI08(xx-yy).
Springer DOI 0804
Digital convexity; Lyndon words; Christoffel words; Convex hull BibRef

Serra, J.[Jean],
Digital Steiner sets and Matheron semi-groups,
IVC(28), No. 10, October 2010, pp. 1452-1459.
Elsevier DOI 1007
Matheron semi-group; Granulometry; Digital; Convexity; Steiner; Reveilles plane; Connectivity BibRef

Olsson, C.[Carl], Kahl, F.[Fredrik],
Generalized Convexity in Multiple View Geometry,
JMIV(38), No. 1, September 2010, pp. 35-51.
WWW Link. 1011
BibRef

Ahn, H.K.[Hee-Kap], Okamoto, Y.[Yoshio],
Adaptive Algorithms for Planar Convex Hull Problems,
IEICE(E94-D), No. 2, February 2011, pp. 182-189.
WWW Link. 1102
BibRef

Kim, S.[Sujung], Kim, H.D.[Hee-Dong], Kim, W.J.[Wook-Joong], Kim, S.D.[Seong-Dae],
Fast Computation of a Visual Hull,
ACCV10(IV: 1-10).
Springer DOI 1011
BibRef

Bhowmick, P.[Partha], Biswas, A.[Arindam], Bhattacharya, B.B.[Bhargab B.],
On the representation of a digital contour with an unordered point set for visual perception,
JVCIR(22), No. 7, October 2011, pp. 590-605.
Elsevier DOI 1109
Order-free point set; Shape visualization; Geometric graphs; Nearest neighbor; Delaunay triangulation; Digital geometry; Visual perception; Digital object BibRef

Biswas, A.[Arindam], Bhowmick, P.[Partha], Bhattacharya, B.B.[Bhargab B.],
TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object,
SCIA05(930-939).
Springer DOI 0506
BibRef

Dutt, M.[Mousumi], Biswas, A.[Arindam], Bhowmick, P.[Partha],
ACCORD: With Approximate Covering of Convex Orthogonal Decomposition,
DGCI11(489-500).
Springer DOI 1104
BibRef

Karmakar, N.[Nilanjana], Biswas, A.[Arindam], Bhowmick, P.[Partha],
Fast Slicing of Orthogonal Covers Using DCEL,
IWCIA12(16-30).
Springer DOI 1211
BibRef

Dutt, M.[Mousumi], Biswas, A.[Arindam],
Boundary and Shape Complexity of a Digital Object,
CompIMAGE16(105-117).
Springer DOI 1704
BibRef

Paul, R.[Raina], Sarkar, A.[Apurba], Biswas, A.[Arindam],
Finding the Maximum Empty Axis-parallel Rectangular Annulus,
IWCIA20(139-146).
Springer DOI 2009
BibRef

Sarkar, A.[Apurba], Biswas, A.[Arindam], Dutt, M.[Mousumi], Bhattacharya, A.[Arnab],
Finding Largest Rectangle Inside a Digital Object,
CTIC16(157-169).
Springer DOI 1608
BibRef

Sarkar, A.[Apurba], Biswas, A.[Arindam], Mondal, S.[Shouvick], Dutt, M.[Mousumi],
Finding Shortest Triangular Path in a Digital Object,
DGCI16(206-218).
WWW Link. 1606
BibRef

Kundu, D.[Debapriya], Biswas, A.[Arindam],
Finding Shortest Isothetic Path Inside a 3D Digital Object,
CompIMAGE16(65-78).
Springer DOI 1704
BibRef

Dutt, M.[Mousumi], Biswas, A.[Arindam], Bhattacharya, B.B.[Bhargab B.],
Enumeration of Shortest Isothetic Paths Inside a Digital Object,
PReMI15(105-115).
Springer DOI 1511
BibRef

Dutt, M.[Mousumi], Biswas, A.[Arindam], Bhowmick, P.[Partha], Bhattacharya, B.B.[Bhargab B.],
On Finding Shortest Isothetic Path inside a Digital Object,
IWCIA12(1-15).
Springer DOI 1211
BibRef

Sarkar, A.[Apurba], Biswas, A.[Arindam], Dutt, M.[Mousumi], Bhattacharya, A.[Arnab],
Generation of Random Triangular Digital Curves Using Combinatorial Techniques,
PReMI15(136-145).
Springer DOI 1511
BibRef

Das, B.[Barnali], Dutt, M.[Mousumi], Biswas, A.[Arindam], Bhowmick, P.[Partha], Bhattacharya, B.B.[Bhargab B.],
A Combinatorial Technique for Construction of Triangular Covers of Digital Objects,
IWCIA14(76-90).
Springer DOI 1405
BibRef

Karmakar, N.[Nilanjana], Biswas, A.[Arindam],
Construction of an Approximate 3D Orthogonal Convex Skull,
CTIC16(180-192).
Springer DOI 1608
BibRef
Earlier:
Construction of 3D Orthogonal Convex Hull of a Digital Object,
IWCIA15(125-142).
Springer DOI 1601
BibRef

Biswas, R.[Ranita], Bhowmick, P.[Partha],
Construction of Persistent Voronoi Diagram on 3D Digital Plane,
IWCIA17(93-104).
Springer DOI 1706
BibRef

Karmakar, N.[Nilanjana], Biswas, A.[Arindam], Bhowmick, P.[Partha], Bhattacharya, B.B.[Bhargab B.],
Construction of 3D Orthogonal Cover of a Digital Object,
IWCIA11(70-83).
Springer DOI 1105
BibRef

Biswas, A.[Arindam], Bhowmick, P.[Partha], Sarkar, M.[Moumita], Bhattacharya, B.B.[Bhargab B.],
Finding the Orthogonal Hull of a Digital Object: A Combinatorial Approach,
IWCIA08(xx-yy).
Springer DOI 0804
BibRef

Takahashi, T.[Tetsuji], Kudo, M.[Mineichi], Nakamura, A.[Atsuyoshi],
Construction of convex hull classifiers in high dimensions,
PRL(32), No. 16, 1 December 2011, pp. 2224-2230.
Elsevier DOI 1112
Pattern recognition; Convex hull; Classifier selection BibRef

Klette, G.[Gisela],
Recursive computation of minimum-length polygons,
CVIU(117), No. 4, April 2013, pp. 386-392.
Elsevier DOI 1303
Relative convex hull; Minimum-perimeter polygon; Minimum-length polygon; Shortest path; Path planning; Cavity tree; Shape analysis; Active contours BibRef

Heylen, R., Scheunders, P.,
Multidimensional Pixel Purity Index for Convex Hull Estimation and Endmember Extraction,
GeoRS(51), No. 7, 2013, pp. 4059-4069.
IEEE DOI Algorithm design and analysis;Indexes;Signal processing algorithms;Solids; 1307
BibRef

Yang, C.[Chuan], Zhang, L.[Lihe], Lu, H.C.[Hu-Chuan],
Graph-Regularized Saliency Detection With Convex-Hull-Based Center Prior,
SPLetters(20), No. 7, 2013, pp. 637-640.
IEEE DOI 1307
continuous pairwise saliency energy function; convex-hull-based center prior; object level saliency detection BibRef

Ouchi, K.[Koji], Nakamura, A.[Atsuyoshi], Kudo, M.[Mineichi],
An efficient construction and application usefulness of rectangle greedy covers,
PR(47), No. 3, 2014, pp. 1459-1468.
Elsevier DOI 1312
Greedy cover BibRef

Duarte, P.[Pedro], Torres, M.J.[Maria Joana],
Smoothness of Boundaries of Regular Sets,
JMIV(48), No. 1, January 2014, pp. 106-113.
Springer DOI 1402
BibRef

Duarte, P.[Pedro], Torres, M.J.[Maria Joana],
r-Regularity,
JMIV(51), No. 3, March 2015, pp. 451-464.
WWW Link. 1504
BibRef

Jung, S.H.[Sung-Hoon], Kim, M.W.[Minh-Wan],
Estimation of a 3D Bounding Box for a Segmented Object Region in a Single Image,
IEICE(E97-D), No. 11, November 2014, pp. 2919-2934.
WWW Link. 1412
BibRef

Li, R.[Rui], Liu, L.[Lei], Sheng, Y.[Yun], Zhang, G.X.[Gui-Xu],
A heuristic convexity measure for 3D meshes,
VC(33), No. 6-8, June 2017, pp. 903-912.
Springer DOI 1706
BibRef

Huska, M.[Martin], Lazzaro, D.[Damiana], Morigi, S.[Serena],
Shape Partitioning via Lp Compressed Modes,
JMIV(60), No. 7, September 2018, pp. 1111-1131.
WWW Link. 1808
BibRef

Huska, M.[Martin], Lanza, A.[Alessandro], Morigi, S.[Serena], Sgallari, F.[Fiorella],
Convex Non-Convex Segmentation over Surfaces,
SSVM17(348-360).
Springer DOI 1706
BibRef

Balázs, P.[Péter], Brunetti, S.[Sara],
A Q-Convexity Vector Descriptor for Image Analysis,
JMIV(61), No. 2, February 2019, pp. 193-203.
Springer DOI 1902
BibRef
Earlier:
A Measure of Q-Convexity,
DGCI16(219-230).
WWW Link. 1606
BibRef

Žunic, J.[Joviša], Rosin, P.L.[Paul L.],
Measuring Shapes with Desired Convex Polygons,
PAMI(42), No. 6, June 2020, pp. 1394-1407.
IEEE DOI 2005
BibRef
Earlier: A2, A1:
Measuring Convexity via Convex Polygons,
GPID15(38-47).
Springer DOI 1603
Shape, Shape measurement, Extraterrestrial measurements, Linearity, Area measurement, Tuning, Rotation measurement, Shape, pattern recognition BibRef

Li, Z.Y.[Zhi-Yang], Hu, J.[Jia], Stojmenovic, M.[Milos], Liu, Z.B.[Zhao-Bin], Liu, W.J.[Wei-Jiang],
Revisiting spectral clustering for near-convex decomposition of 2D shape,
PR(105), 2020, pp. 107371.
Elsevier DOI 2006
Convex decomposition, Visibility, Shape signature, Spectral graph cut BibRef

Li, Z.Y.[Zhi-Yang], Qu, W.Y.[Wen-Yu], Qi, H.[Heng], Stojmenovic, M.[Milos],
Near-convex decomposition of 2D shape using visibility range,
CVIU(210), 2021, pp. 103243.
Elsevier DOI 2109
Convex decomposition, Visibility range, Shape signature, Graph cut BibRef

Fernández García, N.L.[Nicolás Luis], Martínez, L.D.M.[Luis Del-Moral], Poyato, Á.C.[Ángel Carmona], Madrid Cuevas, F.J.[Francisco José], Carnicer, R.M.[Rafael Medina],
Unsupervised generation of polygonal approximations based on the convex hull,
PRL(135), 2020, pp. 138-145.
Elsevier DOI 2006
Digital planar curves, Contour analysis, Polygonal analysis, Convex hull, Corner detection, Thresholding algorithm BibRef

Crombez, L.[Loďc], da Fonseca, G.D.[Guilherme D.], Gerard, Y.[Yan],
Efficiently Testing Digital Convexity and Recognizing Digital Convex Polygons,
JMIV(62), No. 5, June 2020, pp. 693-703.
Springer DOI 2007
BibRef

Balázs, P.[Péter], Brunetti, S.[Sara],
A Measure of Q-convexity for Shape Analysis,
JMIV(62), No. 8, October 2020, pp. xx-yy.
WWW Link. 2009
BibRef

Giorginis, T.[Thomas], Ougiaroglou, S.[Stefanos], Evangelidis, G.[Georgios], Dervos, D.A.[Dimitris A.],
Fast data reduction by space partitioning via convex hull and MBR computation,
PR(126), 2022, pp. 108553.
Elsevier DOI 2204
Reduction by space partitioning, RSP3, Classification, Prototype generation, Big training data, Convex hull, Minimum bounding rectangle (MBR) BibRef


Masnadi, S.[Sina], LaViola, Jr., J.J.[Joseph J.],
Concurrenthull: A Fast Parallel Computing Approach to the Convex Hull Problem,
ISVC20(I:593-605).
Springer DOI 2103
BibRef

Nemirko, A.[Anatoly],
Image Recognition Algorithms Based on the Representation of Classes by Convex Hulls,
IMTA20(44-50).
Springer DOI 2103
BibRef

Szucs, J.[Judit], Balázs, P.[Péter],
Local Q-convexity Histograms for Shape Analysis,
IWCIA20(245-257).
Springer DOI 2009
BibRef

Bayardo-Spadafora, J., Gómez-Fernandez, F., Taubin, G.,
Fast Non-Convex Hull Computation,
3DV19(747-755)
IEEE DOI 1911
Surface reconstruction, Shape, Transforms, Approximation algorithms, Complexity theory, Shrinking Ball BibRef

Li, L.F.[Ling-Feng], Luo, S.[Shousheng], Tai, X.C.[Xue-Cheng], Yang, J.[Jiang],
A Variational Convex Hull Algorithm,
SSVM19(224-235).
Springer DOI 1909
BibRef

Welk, M.[Martin], Breuß, M.[Michael],
The Convex-Hull-Stripping Median Approximates Affine Curvature Motion,
SSVM19(199-210).
Springer DOI 1909
BibRef

Brunetti, S.[Sara], Balázs, P.[Péter], Bodnár, P.[Péter], Szucs, J.[Judit],
A Spatial Convexity Descriptor for Object Enlacement,
DGCI19(330-342).
Springer DOI 1905
BibRef

Crombez, L.[Loďc], da Fonseca, G.D.[Guilherme D.], Gérard, Y.[Yan],
Efficient Algorithms to Test Digital Convexity,
DGCI19(409-419).
Springer DOI 1905
BibRef

Gérard, Y.[Yan],
Convex Aggregation Problems in Z2,
DGCI19(432-443).
Springer DOI 1905
BibRef

Ritter, G.X.[Gerhard X.], Urcid, G.[Gonzalo],
Extreme Points of Convex Polytopes Derived from Lattice Autoassociative Memories,
MCPR18(116-125).
Springer DOI 1807
BibRef

Beltrán-Herrera, A.[Alberto], Mendoza, S.[Sonia],
Fast Convex Hull by a Geometric Approach,
MCPR18(51-61).
Springer DOI 1807
BibRef

Barcucci, E.[Elena], Dulio, P.[Paolo], Frosini, A.[Andrea], Rinaldi, S.[Simone],
Ambiguity Results in the Characterization of hv-convex Polyominoes from Projections,
DGCI17(147-158).
Springer DOI 1711
BibRef

Bodnár, P.[Péter], Balázs, P.[Péter], Nyúl, L.G.[László G.],
A Convexity Measure for Gray-Scale Images Based on hv-Convexity,
CIAP17(I:586-594).
Springer DOI 1711
BibRef

Brunetti, S.[Sara], Balázs, P.[Péter], Bodnár, P.[Péter],
Extension of a One-Dimensional Convexity Measure to Two Dimensions,
IWCIA17(105-116).
Springer DOI 1706
BibRef
And: A2, A1, Only:
A New Shape Descriptor Based on a Q-convexity Measure,
DGCI17(267-278).
Springer DOI 1711
BibRef

Sirakov, N.M.[Nikolay M.], Sirakova, N.N.[Nona Nikolaeva],
Inscribing Convex Polygons in Star-Shaped Objects,
IWCIA17(198-211).
Springer DOI 1706
BibRef

Jarray, F.[Fethi], Tlig, G.[Ghassen],
Reconstruction of Nearly Convex Colored Images,
IWCIA17(334-346).
Springer DOI 1706
BibRef

Bodnár, P.[Péter], Balázs, P.[Péter],
An Improved Directional Convexity Measure for Binary Images,
ICIAR17(278-285).
Springer DOI 1706
BibRef

Zafari, S.[Sahar], Eerola, T.[Tuomas], Sampo, J.[Jouni], Kälviäinen, H.[Heikki], Haario, H.[Heikki],
Comparison of Concave Point Detection Methods for Overlapping Convex Objects Segmentation,
SCIA17(II: 245-256).
Springer DOI 1706
BibRef

Wiederhold, P.[Petra], Reyes, H.[Hugo],
Relative Convex Hull Determination from Convex Hulls in the Plane,
IWCIA15(46-60).
Springer DOI 1601
BibRef

Rajagopal, S.[Sricharana], Siddiqi, K.[Kaleem],
Shrink Wrapping Small Objects,
CRV15(285-289)
IEEE DOI 1507
Computational modeling BibRef

Stein, S.C.[Simon Christoph], Schoeler, M.[Markus], Papon, J.[Jeremie], Worgotter, F.[Florentin],
Object Partitioning Using Local Convexity,
CVPR14(304-311)
IEEE DOI 1409
3D object segmentation BibRef

Tasi, T.S.[Tamás Sámuel], Nyúl, L.G.[László G.], Balázs, P.[Péter],
Directional Convexity Measure for Binary Tomography,
CIARP13(II:9-16).
Springer DOI 1311
BibRef

Bodini, O., Duchon, P., Jacquot, A., Mutafchiev, L.,
Asymptotic Analysis and Random Sampling of Digitally Convex Polyominoes,
DGCI13(95-106).
Springer DOI 1304

See also Lyndon + Christoffel = digitally convex. BibRef

Song, J.G.[Jian-Guo], Lu, X.Q.[Xiao-Qing], Ling, H.B.[Hai-Bin], Wang, X.[Xiao], Tang, Z.[Zhi],
Envelope extraction for composite shapes for shape retrieval,
ICPR12(1932-1935).
WWW Link. 1302
BibRef

Fu, Z., Lu, Y.,
An Efficient Algorithm For The Convex Hull Of Planar Scattered Point Set,
ISPRS12(XXXIX-B2:63-66).
DOI Link 1209
BibRef

Abdmouleh, F.[Fatma], Tajine, M.[Mohamed],
Reconstruction of Quantitative Properties from X-Rays,
DGCI13(277-287).
Springer DOI 1304
BibRef

Abdmouleh, F.[Fatma], Daurat, A.[Alain], Tajine, M.[Mohamed],
Discrete Q-Convex Sets Reconstruction from Discrete Point X-Rays,
IWCIA11(321-334).
Springer DOI 1105
BibRef

Baudrier, É.[Étienne], Tajine, M.[Mohamed], Daurat, A.[Alain],
Convex-Set Perimeter Estimation from Its Two Projections,
IWCIA11(284-297).
Springer DOI 1105
BibRef

Corcoran, P.[Padraig], Mooney, P.[Peter], Winstanley, A.[Adam],
A Convexity Measure for Open and Closed Contours,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Corcoran, P.[Padraig], Mooney, P.[Peter], Tilton, J.[James],
Convexity Grouping of Salient Contours,
GbRPR11(235-244).
Springer DOI 1105
BibRef

Klette, G.[Gisela],
Recursive Calculation of Relative Convex Hulls,
DGCI11(260-271).
Springer DOI 1104
BibRef
Earlier:
A recursive algorithm for calculating the relative convex hull,
IVCNZ10(1-7).
IEEE DOI 1203
BibRef

Roussillon, T.[Tristan],
An Arithmetical Characterization of the Convex Hull of Digital Straight Segments,
DGCI14(150-161).
Springer DOI 1410
BibRef

Roussillon, T.[Tristan], Tougne, L.[Laure], Sivignon, I.[Isabelle],
What Does Digital Straightness Tell about Digital Convexity?,
IWCIA09(43-55).
Springer DOI 0911

See also Algorithms for Fast Digital Straight Segments Union. BibRef

Sirakov, N.M.[Nikolay Metodiev], Ushkala, K.[Karthik],
An Integral Active Contour Model for Convex Hull and Boundary Extraction,
ISVC09(II: 1031-1040).
Springer DOI 0911
BibRef

Brimkov, V.E.[Valentin E.],
On the Convex Hull of the Integer Points in a Bi-circular Region,
IWCIA09(16-29).
Springer DOI 0911
BibRef

Wan, H.F.[Hai-Feng], Zhang, Z.Z.[Zhi-Zhuo], Liu, R.J.[Rui-Jie],
A Parallel Dynamic Convex Hull Algorithm Based on the Macro to Micro Model,
CISP09(1-5).
IEEE DOI 0910
BibRef

Jarray, F.[Fethi], Tlig, G.[Ghassen],
Approximating Bicolored Images from Discrete Projections,
IWCIA11(311-320).
Springer DOI 1105
BibRef

Frosini, A.[Andrea], Picouleau, C.[Christophe],
On the Degree Sequence of 3-Uniform Hypergraph: A New Sufficient Condition,
DGCI19(195-205).
Springer DOI 1905
BibRef

Jarray, F.[Fethi], Costa, M.C.[Marie-Christine], Picouleau, C.[Christophe],
Approximating hv-Convex Binary Matrices and Images from Discrete Projections,
DGCI08(xx-yy).
Springer DOI 0804
BibRef

Schulz, H.[Henrik],
Polyhedral Surface Approximation of Non-convex Voxel Sets through the Modification of Convex Hulls,
IWCIA08(xx-yy).
Springer DOI 0804
BibRef

Borgefors, G.[Gunilla], Strand, R.[Robin],
An Approximation of the Maximal Inscribed Convex Set of a Digital Object,
CIAP05(438-445).
Springer DOI 0509
BibRef

Röttger, S.[Stefan], Guthe, S.[Stefan], Schieber, A.[Andreas], Ertl, T.[Thomas],
Convexification of Unstructured Grids,
VMV04(283-292). 0411
BibRef

Miller, G.[Gregor], Hilton, A.[Adrian],
Exact View-Dependent Visual Hulls,
ICPR06(I: 107-111).
IEEE DOI 0609
BibRef

Mavroforakis, M.E.[Michael E.], Sdralis, M.[Margaritis], Theodoridis, S.[Sergios],
A novel SVM Geometric Algorithm based on Reduced Convex Hulls,
ICPR06(II: 564-568).
IEEE DOI 0609
BibRef

Kiselman, C.O.[Christer O.],
Convex Functions on Discrete Sets,
IWCIA04(443-457).
Springer DOI 0505
BibRef

Kovalevsky, V.A.[Vladimir A.], Schulz, H.[Henrik],
Convex Hulls in a 3-Dimensional Space,
IWCIA04(176-196).
Springer DOI 0505
BibRef

Erol, A.[Ali], Bebis, G.N.[George N.], Boyle, R.D.[Richard D.], Nicolescu, M.[Mircea],
Visual Hull Construction Using Adaptive Sampling,
WACV05(I: 234-241).
IEEE DOI 0502
BibRef

Guan, L.[Li], Sinha, S.[Sudipta], Franco, J.S.[Jean-Sebastien], Pollefeys, M.[Marc],
Visual Hull Construction in the Presence of Partial Occlusion,
3DPVT06(413-420).
IEEE DOI 0606
BibRef

Franco, J.S., Boyer, E.,
Exact polyhedral visual hulls,
BMVC03(xx-yy).
HTML Version. 0409
Code, Convex Hull.
WWW Link. BibRef

Boyer, E., Franco, J.S.,
A hybrid approach for computing visual hulls of complex objects,
CVPR03(I: 695-701).
IEEE DOI 0307
Space discretization, which does not rely on a regular grid where most cells are ineffective, but rather on an irregular grid where sample points lie on the surface of the visual hull. BibRef

Brand, M., Kang, K.[Kongbin], Cooper, D.B.,
Algebraic solution for the visual hull,
CVPR04(I: 30-35).
IEEE DOI 0408
BibRef

Rosenfeld, A.[Azriel], Klette, R.[Reinhard],
Digital Straightness,
UMD-- TR4279, August 2001
WWW Link.
WWW Link. BibRef 0108

Yu, L.J.[Lin-Jiang], Klette, R.,
An approximative calculation of relative convex hulls for surface area estimation of 3d digital objects,
ICPR02(I: 131-134).
IEEE DOI 0211
BibRef

Lee, T., Atkins, M., Li, Z.N.[Ze-Nian],
Indentation and protrusion detection and its applications,
ScaleSpace01(xx-yy). 0106
BibRef

Suk, T.[Tomás], Flusser, J.[Jan],
Convex Layers: A New Tool for Recognition of Projectively Deformed Point Sets,
CAIP99(454-461).
Springer DOI 9909
BibRef
Earlier:
The features for recognition of projectively deformed point sets,
ICIP95(III: 348-351).
IEEE DOI 9510
BibRef

Marzetta, T.L.,
Reflection coefficient representation for convex planar sets,
ICIP98(I: 607-609).
IEEE DOI 9810
BibRef

Nikolova, M.,
Estimation of binary images by minimizing convex criteria,
ICIP98(II: 108-112).
IEEE DOI 9810
BibRef

Albanesi, M.G., Ferretti, M., Zangrandi, L.,
A pyramidal approach to convex hull and filling algorithms,
CIAP95(139-144).
Springer DOI 9509
BibRef

Meier, R., Ackermann, F., Herrmann, G., Posch, S., Sagerer, G.,
Segmentation of molecular surfaces based on their convex hull,
ICIP95(III: 552-555).
IEEE DOI 9510
BibRef

Korneenko, N.[Nickolay],
Minimum-space time-optimal convex hull algorithms (preliminary report),
CAIP93(231-236).
Springer DOI 9309
BibRef

Miller, R., Stout, Q.F.,
Convexity Algorithms for Parallel Machines,
CVPR88(918-924).
IEEE DOI
See also Geometric Algorithms for Digitized Pictures on a Mesh-Connected Computer. BibRef 8800

Kobatake, H., Murakami, M.,
Adaptive Filter to Detect Rounded Convex Regions: Iris Filter,
ICPR96(II: 340-344).
IEEE DOI 9608
(Tokyo Univ. of Agriculture and Technology, J) BibRef

Rangarajan, A., Chellappa, R.,
Generalized graduated nonconvexity algorithm for maximum a posteriori image estimation,
ICPR90(II: 127-133).
IEEE DOI 9008
BibRef

Murakami, K., Koshimizu, H., Hasegawa, K.,
An algorithm to extract convex hull on thetas Hough transform space,
ICPR88(I: 500-503).
IEEE DOI 8811
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Convex Hull of Polygons .


Last update:Aug 28, 2024 at 16:02:19