McKernel: A Library for Approximate Kernel Expansions in Log-linear Time,
2020.
WWW Link.
PDF File.
Code, Neural Networks.
Code, Kernel Expansion.
2009
Rahimi, A.[Ali],
Recht, B.[Benjamin],
Random Features for Large-Scale Kernel Machines,
NIPS07(xx-yy).
PDF File.
2009
BibRef
Rahimi, A.[Ali],
Recht, B.[Benjamin],
Weighted Sums of Random Kitchen Sinks: Replacing minimization
(xx-yy).
PDF File.
2009
BibRef
Kim, I.J.[In-Jung],
Choi, C.[Changbeom],
Lee, S.H.[Sang-Heon],
Improving discrimination ability of convolutional neural networks by
hybrid learning,
IJDAR(19), No. 1, March 2016, pp. 1-9.
WWW Link.
1602
BibRef
Nogueira, K.[Keiller],
Penatti, O.A.B.[Otávio A.B.],
dos Santos, J.A.[Jefersson A.],
Towards better exploiting convolutional neural networks for remote
sensing scene classification,
PR(61), No. 1, 2017, pp. 539-556.
Elsevier DOI
1705
BibRef
Earlier: A2, A1, A3:
Do deep features generalize from everyday objects to remote sensing
and aerial scenes domains?,
EarthObserv15(44-51)
IEEE DOI
1510
Accuracy. Evaluation of convolutional networks.
BibRef
Kuo, C.C.J.[C.C. Jay],
Understanding convolutional neural networks with a mathematical model,
JVCIR(41), No. 1, 2016, pp. 406-413.
Elsevier DOI
1612
Award, JVCI. Convolutional neural network (CNN)
BibRef
Chellappa, R.[Rama],
The changing fortunes of pattern recognition and computer vision,
IVC(55, Part 1), No. 1, 2016, pp. 3-5.
Elsevier DOI
1612
Convolutional Neural Networks
BibRef
Xu, C.,
Lu, C.,
Liang, X.,
Gao, J.,
Zheng, W.,
Wang, T.,
Yan, S.,
Multi-loss Regularized Deep Neural Network,
CirSysVideo(26), No. 12, December 2016, pp. 2273-2283.
IEEE DOI
1612
Computer architecture
BibRef
Du, B.[Bo],
Xiong, W.[Wei],
Wu, J.[Jia],
Zhang, L.F.[Le-Fei],
Zhang, L.P.[Liang-Pei],
Tao, D.C.[Da-Cheng],
Stacked Convolutional Denoising Auto-Encoders for Feature
Representation,
Cyber(47), No. 4, April 2017, pp. 1017-1027.
IEEE DOI
1704
Convolution
BibRef
Malik, J.[Jitendra],
Technical Perspective: What Led Computer Vision to Deep Learning?,
CACM(60), No. 6, June 2017, pp. 82-83.
DOI Link
1706
Discusses next paper
BibRef
Krizhevsky, A.[Alex],
Sutskever, I.[Ilya],
Hinton, G.E.[Geoffrey E.],
ImageNet Classification with Deep Convolutional Neural Networks,
CACM(60), No. 6, June 2017, pp. 84-90.
DOI Link
1706
Survey, Convolutional Networks.
BibRef
Pan, X.Q.[Xia-Qing],
Chen, Y.[Yueru],
Kuo, C.C.J.[C.C. Jay],
Design, analysis and application of a volumetric convolutional neural
network,
JVCIR(46), No. 1, 2017, pp. 128-138.
Elsevier DOI
1706
Convolutional, neural, network
BibRef
Mishkin, D.[Dmytro],
Sergievskiy, N.[Nikolay],
Matas, J.G.[Jiri G.],
Systematic evaluation of convolution neural network advances on the
Imagenet,
CVIU(161), No. 1, 2017, pp. 11-19.
Elsevier DOI
1708
CNN
BibRef
Chen, Z.L.[Zhang-Ling],
Wang, J.[Jun],
Li, W.J.[Wen-Juan],
Li, N.[Nan],
Wu, H.M.[Hua-Ming],
Wang, D.W.[Da-Wei],
Convolutional neural network with nonlinear competitive units,
SP:IC(60), No. 1, 2018, pp. 193-198.
Elsevier DOI
1712
Nonlinear competitive unit
BibRef
Cui, Z.,
Niu, Z.,
Liu, L.,
Yan, S.,
Layerwise Class-Aware Convolutional Neural Network,
CirSysVideo(27), No. 12, December 2017, pp. 2601-2612.
IEEE DOI
1712
Biological neural networks, Computational modeling,
Convolutional codes, Mutual information,
object classification
BibRef
Akilan, T.[Thangarajah],
Wu, Q.M.J.[Qing-Ming Jonathan],
Zhang, H.[Hui],
Effect of fusing features from multiple DCNN architectures in image
classification,
IET-IPR(12), No. 7, July 2018, pp. 1102-1110.
DOI Link
1806
BibRef
Ye, J.,
Han, Y.,
Cha, E.,
Deep Convolutional Framelets:
A General Deep Learning Framework for Inverse Problems,
SIIMS(11), No. 2, 2018, pp. 991-1048.
DOI Link
1807
BibRef
Fu, R.G.[Rui-Gang],
Li, B.[Biao],
Gao, Y.H.[Ying-Hui],
Wang, P.[Ping],
CNN with coarse-to-fine layer for hierarchical classification,
IET-CV(12), No. 6, September 2018, pp. 892-899.
DOI Link
1808
BibRef
Mohammadnia-Qaraei, M.R.[Mohammad Reza],
Monsefi, R.[Reza],
Ghiasi-Shirazi, K.[Kamaledin],
Convolutional kernel networks based on a convex combination of cosine
kernels,
PRL(116), 2018, pp. 127-134.
Elsevier DOI
1812
Convolutional kernel networks (CKN),
Convolutional neural networks (CNN), Kernel approximation,
Sum of squared errors
BibRef
Yao, J.C.[Jiang-Chao],
Wang, J.J.[Jia-Jie],
Tsang, I.W.[Ivor W.],
Zhang, Y.[Ya],
Sun, J.[Jun],
Zhang, C.Q.[Cheng-Qi],
Zhang, R.[Rui],
Deep Learning from Noisy Image Labels with Quality Embedding,
IP(28), No. 4, April 2019, pp. 1909-1922.
IEEE DOI
1901
Big Data, gradient methods, image denoising, image recognition,
learning (artificial intelligence), optimisation, probability,
quality embedding
BibRef
Gong, Z.Q.[Zhi-Qiang],
Zhong, P.[Ping],
Hu, W.D.[Wei-Dong],
Hua, Y.M.[Yu-Ming],
Joint Learning of the Center Points and Deep Metrics for Land-Use
Classification in Remote Sensing,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Matiz, S.[Sergio],
Barner, K.E.[Kenneth E.],
Inductive conformal predictor for convolutional neural networks:
Applications to active learning for image classification,
PR(90), 2019, pp. 172-182.
Elsevier DOI
1903
Conformal prediction, Convolutional neural networks,
Active learning, Distance metric learning, Image classification
BibRef
Guo, C.S.[Chun-Sheng],
Li, R.Z.[Rui-Zhe],
Yang, M.[Meng],
Tang, X.G.[Xian-Ghong],
Deep neural network with FGL for small dataset classification,
IET-IPR(13), No. 3, February 2019, pp. 491-497.
DOI Link
1903
FGL: feature generalisation layer.
BibRef
Xie, G.T.[Guo-Tian],
Yang, K.Y.[Kui-Yuan],
Lai, J.H.[Jian-Huang],
Filter-in-Filter: Low Cost CNN Improvement by Sub-filter Parameter
Sharing,
PR(91), 2019, pp. 391-403.
Elsevier DOI
1904
Sub-pattern, Sub-filter, Expressibility of filter,
Visualization, Filter-in-filter
BibRef
Takahashi, R.,
Matsubara, T.,
Uehara, K.,
A Novel Weight-Shared Multi-Stage CNN for Scale Robustness,
CirSysVideo(29), No. 4, April 2019, pp. 1090-1101.
IEEE DOI
1904
Convolution, Robustness, Task analysis, Feature extraction,
Network architecture, Degradation, Neural networks,
shared weights
BibRef
Ghosh, S.[Swarnendu],
Das, N.[Nibaran],
Nasipuri, M.[Mita],
Reshaping inputs for convolutional neural network:
Some common and uncommon methods,
PR(93), 2019, pp. 79-94.
Elsevier DOI
1906
Deep learning, Convolutional neural network, Reshaping,
Resizing, Input size
BibRef
Wang, Y.H.[Yun-He],
Xu, C.[Chang],
Xu, C.[Chao],
Tao, D.C.[Da-Cheng],
Packing Convolutional Neural Networks in the Frequency Domain,
PAMI(41), No. 10, October 2019, pp. 2495-2510.
IEEE DOI
1909
Convolution, Frequency-domain analysis,
Discrete cosine transforms, Image coding, Redundancy,
DCT bases
BibRef
Wang, J.[Jiakai],
Yin, Z.X.[Zi-Xin],
Hu, P.F.[Peng-Fei],
Liu, A.[Aishan],
Tao, R.S.[Ren-Shuai],
Qin, H.T.[Hao-Tong],
Liu, X.L.[Xiang-Long],
Tao, D.C.[Da-Cheng],
Defensive Patches for Robust Recognition in the Physical World,
CVPR22(2446-2455)
IEEE DOI
2210
Code, Deep Learning.
WWW Link. Deep learning, Visualization, Snow, Machine vision, Urban areas,
Robustness, Vision applications and systems,
Computer vision for social good
BibRef
Chen, H.[Hong],
Wen, Y.X.[Yu-Xuan],
Ding, Y.[Yifu],
Yang, Z.[Zhen],
Guo, Y.F.[Yu-Fei],
Qin, H.T.[Hao-Tong],
An Empirical study of Data-Free Quantization's Tuning Robustness,
ArtOfRobust22(171-177)
IEEE DOI
2210
Data privacy, Quantization (signal), Fluctuations,
Neural networks, Robustness, Pattern recognition
BibRef
Chen, H.T.[Han-Ting],
Wang, Y.H.[Yun-He],
Shu, H.[Han],
Tang, Y.H.[Ye-Hui],
Xu, C.J.[Chun-Jing],
Shi, B.X.[Bo-Xin],
Xu, C.[Chao],
Tian, Q.[Qi],
Xu, C.[Chang],
Frequency Domain Compact 3D Convolutional Neural Networks,
CVPR20(1638-1647)
IEEE DOI
2008
Convolution,
Frequency-domain analysis, Convolutional neural networks,
Task analysis
BibRef
Chen, Z.[Zhi],
Ho, P.H.[Pin-Han],
Global-connected network with generalized ReLU activation,
PR(96), 2019, pp. 106961.
Elsevier DOI
1909
CNN, Deep learning, Activation
BibRef
Zhao, Q.[Qi],
Liu, J.H.[Jia-Hui],
Zhang, B.X.[Bo-Xue],
Lyu, S.C.[Shu-Chang],
Raoof, N.[Nauman],
Feng, W.Q.[Wen-Quan],
Interpretable Relative Squeezing bottleneck design for compact
convolutional neural networks model,
IVC(89), 2019, pp. 276-288.
Elsevier DOI
1909
Image recognition, Compact CNN, Relative-Squeezing bottleneck,
Learned group convolutions
BibRef
Wang, J.Q.[Jun-Qian],
Zhang, H.Y.[Han-Yu],
Han, P.Y.[Pei-Yi],
Liu, C.Y.[Chuan-Yi],
Xu, Y.[Yong],
Pixel re-representations for better classification of images,
PRL(140), 2020, pp. 310-317.
Elsevier DOI
2012
Image classification, Image re-representation,
Sparse representation, Collaborative representation, Pattern recognition
BibRef
You, H.F.[Hong-Feng],
Tian, S.W.[Sheng-Wei],
Yu, L.[Long],
Lv, Y.L.[Ya-Long],
Pixel-Level Remote Sensing Image Recognition Based on Bidirectional
Word Vectors,
GeoRS(58), No. 2, February 2020, pp. 1281-1293.
IEEE DOI
2001
To get relationships in addition to pixel features.
Feature extraction, Remote sensing, Recurrent neural networks,
Image recognition, Semantics, Deep learning, Image color analysis,
sliced recurrent neural network (SRNN)
BibRef
Liu, J.Q.[Jia-Qi],
Li, Z.H.[Zheng-Hao],
Tang, Y.L.[Yong-Liang],
Hu, W.[Wei],
Wu, J.[Jun],
3D Convolutional Neural Network based on memristor for video
recognition,
PRL(130), 2020, pp. 116-124.
Elsevier DOI
2002
3D Convolution, Basic memristor array, Behavior recognition,
Memristors, Neuromorphic network
BibRef
Lauriola, I.[Ivano],
Gallicchio, C.[Claudio],
Aiolli, F.[Fabio],
Enhancing deep neural networks via multiple kernel learning,
PR(101), 2020, pp. 107194.
Elsevier DOI
2003
Deep neural networks, Deep learning, Multiple kernel learning, Ensemble learning
BibRef
Veit, A.[Andreas],
Belongie, S.[Serge],
Convolutional Networks with Adaptive Inference Graphs,
IJCV(128), No. 3, March 2020, pp. 730-741.
Springer DOI
2003
BibRef
Earlier:
ECCV18(I: 3-18).
Springer DOI
1810
BibRef
Wu, Y.X.[Yu-Xin],
He, K.M.[Kai-Ming],
Group Normalization,
IJCV(128), No. 3, March 2020, pp. 742-755.
Springer DOI
2003
BibRef
Earlier:
ECCV18(XIII: 3-19).
Springer DOI
1810
Award, ECCV, HM.
BibRef
For deep learning.
Uses:
See also COCO: Common Objects in Context.
Santra, B.[Bikash],
Paul, A.[Angshuman],
Mukherjee, D.P.[Dipti Prasad],
Deterministic dropout for deep neural networks using composite random
forest,
PRL(131), 2020, pp. 205-212.
Elsevier DOI
2004
Deterministic dropout, Composite random forest,
Deep neural network, Regularizer
BibRef
Moya-Sánchez, E.U.[E. Ulises],
Xambó-Descamps, S.[Sebastiá],
Sánchez Pérez, A.[Abraham],
Salazar-Colores, S.[Sebastián],
Martínez-Ortega, J.[Jorge],
Cortés, U.[Ulises],
A bio-inspired quaternion local phase CNN layer with contrast
invariance and linear sensitivity to rotation angles,
PRL(131), 2020, pp. 56-62.
Elsevier DOI
2004
BibRef
Gao, H.Y.[Hong-Yang],
Yuan, H.[Hao],
Wang, Z.Y.[Zheng-Yang],
Ji, S.W.[Shui-Wang],
Pixel Transposed Convolutional Networks,
PAMI(42), No. 5, May 2020, pp. 1218-1227.
IEEE DOI
2004
Convolution, Semantics, Image segmentation, Kernel, Task analysis,
Image generation, Analytical models, Deep learning,
pixel transposed convolution
BibRef
Hackel, T.[Timo],
Usvyatsov, M.[Mikhail],
Galliani, S.[Silvano],
Wegner, J.D.[Jan D.],
Schindler, K.[Konrad],
Inference, Learning and Attention Mechanisms that Exploit and Preserve
Sparsity in CNNs,
IJCV(128), No. 4, April 2020, pp. 1047-1059.
Springer DOI
2004
BibRef
Earlier:
GCPR18(597-611).
Springer DOI
1905
BibRef
Park, J.[Jongchan],
Woo, S.[Sanghyun],
Lee, J.Y.[Joon-Young],
Kweon, I.S.[In So],
A Simple and Light-Weight Attention Module for Convolutional Neural
Networks,
IJCV(128), No. 4, April 2020, pp. 783-798.
Springer DOI
2004
BibRef
Earlier: A2, A1, A3, A4:
CBAM: Convolutional Block Attention Module,
ECCV18(VII: 3-19).
Springer DOI
1810
BibRef
Innamorati, C.[Carlo],
Ritschel, T.[Tobias],
Weyrich, T.[Tim],
Mitra, N.J.[Niloy J.],
Learning on the Edge: Investigating Boundary Filters in CNNs,
IJCV(128), No. 4, April 2020, pp. 773-782.
Springer DOI
2004
Dealing with edge effects in CNN filters.
BibRef
Zhang, Y.Q.[Yong-Qiang],
Bai, Y.C.[Yan-Cheng],
Ding, M.L.[Ming-Li],
Ghanem, B.[Bernard],
Multi-task Generative Adversarial Network for Detecting Small Objects
in the Wild,
IJCV(128), No. 6, June 2020, pp. 1810-1828.
Springer DOI
2006
BibRef
Earlier: A2, A1, A3, A4:
SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial
Network,
ECCV18(XIII: 210-226).
Springer DOI
1810
BibRef
Singh, P.[Pravendra],
Verma, V.K.[Vinay Kumar],
Rai, P.[Piyush],
Namboodiri, V.P.[Vinay P.],
HetConv: Beyond Homogeneous Convolution Kernels for Deep CNNs,
IJCV(128), No. 8-9, September 2020, pp. 2068-2088.
Springer DOI
2008
BibRef
Singh, P.[Pravendra],
Mazumder, P.[Pratik],
Namboodiri, V.P.[Vinay P.],
Context extraction module for deep convolutional neural networks,
PR(122), 2022, pp. 108284.
Elsevier DOI
2112
Contextual pointwise convolution,
Convolutional neural network (CNN), Image classification, Deep learning
BibRef
Cococcioni, M.,
Rossi, F.,
Ruffaldi, E.,
Saponara, S.,
Dupont de Dinechin, B.,
Novel Arithmetics in Deep Neural Networks Signal Processing for
Autonomous Driving: Challenges and Opportunities,
SPMag(38), No. 1, January 2021, pp. 97-110.
IEEE DOI
2012
Neurons, Real-time systems, Radar signal processing, Security,
Task analysis, Autonomous vehicles, Biological neural networks
BibRef
Liu, C.L.[Chun-Lei],
Ding, W.R.[Wen-Rui],
Hu, Y.[Yuan],
Zhang, B.C.[Bao-Chang],
Liu, J.Z.[Jian-Zhuang],
Guo, G.D.[Guo-Dong],
Doermann, D.[David],
Rectified Binary Convolutional Networks with Generative Adversarial
Learning,
IJCV(129), No. 4, April 2021, pp. 998-1012.
Springer DOI
2104
BibRef
Liu, C.L.[Chun-Lei],
Ding, W.R.[Wen-Rui],
Xia, X.[Xin],
Zhang, B.C.[Bao-Chang],
Gu, J.X.[Jia-Xin],
Liu, J.Z.[Jian-Zhuang],
Ji, R.R.[Rong-Rong],
Doermann, D.[David],
Circulant Binary Convolutional Networks: Enhancing the Performance of
1-Bit DCNNs With Circulant Back Propagation,
CVPR19(2686-2694).
IEEE DOI
2002
BibRef
Luo, W.J.[Wen-Jie],
Zhang, H.[Han],
Ni, P.[Peng],
Tian, X.D.[Xue-Dong],
Balanced principal component for 3D shape recognition using
convolutional neural networks,
IET-IPR(14), No. 17, 24 December 2020, pp. 4468-4476.
DOI Link
2104
Evaluation of using PCA in CNN analysis.
BibRef
Zhao, F.Q.[Fen-Qiang],
Wu, Z.W.[Zheng-Wang],
Wang, L.[Li],
Lin, W.L.[Wei-Li],
Gilmore, J.H.[John H.],
Xia, S.R.[Shun-Ren],
Shen, D.G.[Ding-Gang],
Li, G.[Gang],
Spherical Deformable U-Net: Application to Cortical Surface
Parcellation and Development Prediction,
MedImg(40), No. 4, April 2021, pp. 1217-1228.
IEEE DOI
2104
CNN on spherical representations.
Convolution, Task analysis, Shape, Distortion,
Biomedical imaging, Surface treatment, triangular mesh
BibRef
Li, X.X.[Xiao-Xu],
Yu, L.Y.[Li-Yun],
Yang, X.C.[Xiao-Chen],
Ma, Z.Y.[Zhan-Yu],
Xue, J.H.[Jing-Hao],
Cao, J.[Jie],
Guo, J.[Jun],
ReMarNet: Conjoint Relation and Margin Learning for Small-Sample
Image Classification,
CirSysVideo(31), No. 4, April 2021, pp. 1569-1579.
IEEE DOI
2104
Train 2 networks, one for relations, on for margin learning.
Training, Prototypes, Neural networks, Feature extraction,
Task analysis, Deep learning, Adaptation models,
discriminative feature learning
BibRef
Zhong, Z.[Zhao],
Yang, Z.C.[Zi-Chen],
Deng, B.Y.[Bo-Yang],
Yan, J.J.[Jun-Jie],
Wu, W.[Wei],
Shao, J.[Jing],
Liu, C.L.[Cheng-Lin],
BlockQNN: Efficient Block-Wise Neural Network Architecture Generation,
PAMI(43), No. 7, July 2021, pp. 2314-2328.
IEEE DOI
2106
BibRef
Earlier: A1, A4, A5, A6, A7, Only:
Practical Block-Wise Neural Network Architecture Generation,
CVPR18(2423-2432)
IEEE DOI
1812
Task analysis, Neural networks,
Network architecture, Graphics processing units, Acceleration,
Q-learning.
Indexes, Convolutional codes, Convolutional neural networks
BibRef
Zeng, Y.Y.[Yu-Yuan],
Dai, T.[Tao],
Chen, B.[Bin],
Xia, S.T.[Shu-Tao],
Lu, J.[Jian],
Correlation-based structural dropout for convolutional neural
networks,
PR(120), 2021, pp. 108117.
Elsevier DOI
2109
Over-fitting, Regularization, Dropout, Convolutional neural networks
BibRef
Wang, Z.W.[Zi-Wei],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Learning Channel-Wise Interactions for Binary Convolutional Neural
Networks,
PAMI(43), No. 10, October 2021, pp. 3432-3445.
IEEE DOI
2109
BibRef
And: A1, A2, A3:
Add A3:
Tao, C.X.[Chen-Xin], A5:
Tian, Q.[Qi],
CVPR19(568-577).
IEEE DOI
2002
Convolutional neural networks, Quantization (signal),
Learning (artificial intelligence), Noise reduction,
feature denoising
BibRef
Zhao, W.Y.[Wen-Yi],
Yang, H.H.[Hui-Hua],
Pan, X.P.[Xi-Peng],
Li, L.Q.[Ling-Qiao],
S2-aware network for visual recognition,
SP:IC(99), 2021, pp. 116458.
Elsevier DOI
2111
Convolution neural network, Size aware, Shape aware, Light weight
BibRef
Osawa, K.[Kazuki],
Tsuji, Y.[Yohei],
Ueno, Y.[Yuichiro],
Naruse, A.[Akira],
Foo, C.S.[Chuan-Sheng],
Yokota, R.[Rio],
Scalable and Practical Natural Gradient for Large-Scale Deep Learning,
PAMI(44), No. 1, January 2022, pp. 404-415.
IEEE DOI
2112
Training, Computational modeling, Deep learning, Neural networks,
Data models, Stochastic processes, Servers,
image classification
BibRef
Osawa, K.[Kazuki],
Tsuji, Y.[Yohei],
Ueno, Y.[Yuichiro],
Naruse, A.[Akira],
Yokota, R.[Rio],
Matsuoka, S.[Satoshi],
Large-Scale Distributed Second-Order Optimization Using
Kronecker-Factored Approximate Curvature for Deep Convolutional Neural
Networks,
CVPR19(12351-12359).
IEEE DOI
2002
BibRef
Xu, C.J.[Cheng-Jun],
Zhu, G.B.[Guo-Bin],
Shu, J.Q.[Jing-Qian],
A Lightweight and Robust Lie Group-Convolutional Neural Networks
Joint Representation for Remote Sensing Scene Classification,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Feature extraction, Remote sensing, Image decomposition,
Deep learning, Manifolds, Covariance matrices, Visualization,
remote sensing scene classification
BibRef
Lee, Y.[Yeonkun],
Jeong, J.[Jaeseok],
Yun, J.[Jongseob],
Cho, W.[Wonjune],
Yoon, K.J.[Kuk-Jin],
SpherePHD: Applying CNNs on 360° Images With Non-Euclidean Spherical
PolyHeDron Representation,
PAMI(44), No. 2, February 2022, pp. 834-847.
IEEE DOI
2201
BibRef
Earlier:
SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of
360deg Images,
CVPR19(9173-9181).
IEEE DOI
2002
Distortion, Kernel, Cameras, Convolution,
Task analysis, Image representation, Omni-directional cameras,
non-euclidean deep learning
BibRef
Banerjee, M.[Monami],
Chakraborty, R.[Rudrasis],
Bouza, J.[Jose],
Vemuri, B.C.[Baba C.],
VolterraNet: A Higher Order Convolutional Network With Group
Equivariance for Homogeneous Manifolds,
PAMI(44), No. 2, February 2022, pp. 823-833.
IEEE DOI
2201
Convolution, Manifolds, Correlation, Kernel,
Extraterrestrial measurements, Large scale integration,
equivariance
BibRef
Kim, H.W.J.[Hyun-Woo J.],
Adluru, N.[Nagesh],
Banerjee, M.[Monami],
Vemuri, B.C.[Baba C.],
Singh, V.[Vikas],
Interpolation on the Manifold of K Component GMMs,
ICCV15(2884-2892)
IEEE DOI
1602
Gaussian mixture model (GMM) representation of the PDF
BibRef
Pinckaers, H.[Hans],
van Ginneken, B.[Bram],
Litjens, G.[Geert],
Streaming Convolutional Neural Networks for End-to-End Learning With
Multi-Megapixel Images,
PAMI(44), No. 3, March 2022, pp. 1581-1590.
IEEE DOI
2202
Memory management, Convolution, Convolutional neural networks,
Backpropagation, Streaming media, Task analysis, Training,
high-resolution images
BibRef
Gai, S.[Shan],
Huang, X.[Xiang],
Reduced Biquaternion Convolutional Neural Network for Color Image
Processing,
CirSysVideo(32), No. 3, March 2022, pp. 1061-1075.
IEEE DOI
2203
WWW Link.
Code, CNN. Algebra, Color, Quaternions, Convolutional neural networks,
Neural networks, Feature extraction, Convolution,
color image classification
BibRef
Nie, B.[Bofan],
Gai, S.[Shan],
Xiong, G.[Gonghe],
Color Image Denoising Using Reduced Biquaternion U-Network,
SPLetters(31), 2024, pp. 1119-1123.
IEEE DOI
2405
Deconvolution, Noise reduction, Feature extraction, Convolution,
Image color analysis, Task analysis, Color, Color image denoising,
dual attention mechanism
BibRef
Zhao, M.X.[Ming-Xin],
Peng, J.[Junbo],
Yu, S.M.[Shuang-Ming],
Liu, L.Y.[Li-Yuan],
Wu, N.J.[Nan-Jian],
Exploring Structural Sparsity in CNN via Selective Penalty,
CirSysVideo(32), No. 3, March 2022, pp. 1658-1666.
IEEE DOI
2203
Training, Task analysis, Convolution, Neural networks, Tuning,
Optimization, Mathematical model, Convolutional neural network,
network pruning
BibRef
Lu, S.F.[Shu-Fang],
Li, Y.[Yan],
Wang, M.Q.[Min-Qian],
Gao, F.[Fei],
Mirror Invariant Convolutional Neural Networks for Image
Classification,
IET-IPR(16), No. 6, 2022, pp. 1626-1635.
DOI Link
2204
BibRef
Fang, Y.C.[Yu-Chun],
Xiao, S.W.[Shi-Wei],
Zhou, M.L.[Meng-Lu],
Cai, S.[Sirui],
Zhang, Z.X.[Zhao-Xiang],
Enhanced task attention with adversarial learning for dynamic
multi-task CNN,
PR(128), 2022, pp. 108672.
Elsevier DOI
2205
Deep learning, Adversarial learning, Multi-task learning
BibRef
Ulicny, M.[Matej],
Krylov, V.A.[Vladimir A.],
Dahyot, R.[Rozenn],
Harmonic convolutional networks based on discrete cosine transform,
PR(129), 2022, pp. 108707.
Elsevier DOI
2206
Harmonic network, Convolutional neural network,
Discrete cosine transform, Image classification, Semantic segmentation
BibRef
Wang, J.F.[Jian-Feng],
Hu, X.L.[Xiao-Lin],
Convolutional Neural Networks With Gated Recurrent Connections,
PAMI(44), No. 7, July 2022, pp. 3421-3435.
IEEE DOI
2206
Radio frequency, Neurons, Logic gates, Convolution, Task analysis,
Computational modeling, Optical character recognition software,
scene text recognition
BibRef
Wu, H.B.[Hai-Bin],
Zhou, H.M.[Hua-Ming],
Wang, A.[Aili],
Iwahori, Y.[Yuji],
Precise Crop Classification of Hyperspectral Images Using
Multi-Branch Feature Fusion and Dilation-Based MLP,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Liu, C.[Chao],
Sun, H.M.[He-Ming],
Katto, J.[Jiro],
Zeng, X.Y.[Xiao-Yang],
Fan, Y.B.[Yi-Bo],
An Efficient Low-Complexity Convolutional Neural Network Filter,
MultMedMag(29), No. 2, April 2022, pp. 83-93.
IEEE DOI
2208
Convolutional neural networks, Complexity theory,
Mathematical models, Convolutional neural networks,
Neural networks
BibRef
Wang, J.H.[Jing-Hua],
Jiang, J.M.[Jian-Min],
Learning Across Tasks for Zero-Shot Domain Adaptation From a Single
Source Domain,
PAMI(44), No. 10, October 2022, pp. 6264-6279.
IEEE DOI
2209
Task analysis, Correlation, Training,
Generative adversarial networks, Animals, Semantics,
domain generalization
BibRef
Wang, J.H.[Jing-Hua],
Jiang, J.M.[Jian-Min],
An Unsupervised Deep Learning Framework via Integrated Optimization of
Representation Learning and GMM-Based Modeling,
ACCV18(I:249-265).
Springer DOI
1906
unsupervised deep learning framework.
BibRef
Yamada, T.[Takaki],
Massot-Campos, M.[Miquel],
Prügel-Bennett, A.[Adam],
Pizarro, O.[Oscar],
Williams, S.B.[Stefan B.],
Thornton, B.[Blair],
Guiding Labelling Effort for Efficient Learning With Georeferenced
Images,
PAMI(45), No. 1, January 2023, pp. 593-607.
IEEE DOI
2212
Annotations, Training, Environmental monitoring, Deep learning,
Satellites, Labeling, Unsupervised learning, pseudo-labelling
BibRef
Zou, X.Y.[Xue-Yan],
Xiao, F.Y.[Fan-Yi],
Yu, Z.D.[Zhi-Ding],
Li, Y.H.[Yu-Heng],
Lee, Y.J.[Yong Jae],
Delving Deeper into Anti-Aliasing in ConvNets,
IJCV(131), No. 1, January 2023, pp. 67-81.
Springer DOI
2301
High frequency features.
Rather than just blur before learning.
WWW Link.
BibRef
Bi, Q.[Qi],
You, S.[Shaodi],
Ji, W.[Wei],
Gevers, T.[Theo],
Learning rotation equivalent scene representation from instance-level
semantics: A novel top-down perspective,
CVIU(229), 2023, pp. 103635.
Elsevier DOI
2303
Rotation invariance, can apply to any CNN implementation.
Scene recognition, Rotation equivalent representation,
Multiple instance learning, Key instance selection, Top-down Perspective
BibRef
Cao, Y.[Yue],
Xu, J.R.[Jia-Rui],
Lin, S.[Stephen],
Wei, F.Y.[Fang-Yun],
Hu, H.[Han],
Global Context Networks,
PAMI(45), No. 6, June 2023, pp. 6881-6895.
IEEE DOI
WWW Link.
2305
Long-range dependencies within an image.
Convolution, Task analysis, Context modeling, Visualization,
Computational modeling, Feature extraction, deep network,
object detection
BibRef
Sheng, K.[Kuang],
Chen, P.[Pinghua],
An efficient mixed attention module,
IET-CV(17), No. 4, 2023, pp. 496-507.
DOI Link
2306
To introduce spatial information in CNN.
convolutional neural nets, image classification,
image segmentation, object detection
BibRef
Bao, Z.Q.[Zhi-Qiang],
Yang, S.Z.[Shun-Zhi],
Huang, Z.H.[Zhen-Hua],
Zhou, M.C.[Meng-Chu],
Chen, Y.[Yunwen],
A Lightweight Block With Information Flow Enhancement for
Convolutional Neural Networks,
CirSysVideo(33), No. 8, August 2023, pp. 3570-3584.
IEEE DOI
2308
Convolution, Task analysis, Object detection, Neurons,
Convolutional neural networks, Neural networks,
affine transformation
BibRef
Liao, D.F.[Deng-Feng],
Liu, G.Z.[Guang-Zhong],
Lie Group Equivariant Convolutional Neural Network Based on Laplace
Distribution,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Yang, Y.J.[Yi-Jing],
Fu, H.Y.[Hong-Yu],
Kuo, C.-.C.J.[C.-C. Jay],
Design of supervision-scalable learning systems:
Methodology and performance benchmarking,
JVCIR(96), 2023, pp. 103925.
Elsevier DOI
2310
Subspace learning, Weak supervision, Scalable learning systems,
Image classification
BibRef
Mo, H.L.[Han-Lin],
Zhao, G.Y.[Guo-Ying],
RIC-CNN: Rotation-Invariant Coordinate Convolutional Neural Network,
PR(146), 2024, pp. 109994.
Elsevier DOI Code:
WWW Link.
2311
Convolutional neural network, Image rotation,
Rotational invariance, Data augmentation, Patch verification
BibRef
Mo, H.L.[Han-Lin],
Zhao, G.Y.[Guo-Ying],
Sorting Convolution Operation for Achieving Rotational Invariance,
SPLetters(31), 2024, pp. 1199-1203.
IEEE DOI
2405
Sorting, Convolution, Convolutional neural networks, Training,
Data augmentation, Task analysis, Kernel, Image rotation,
interpolation
BibRef
Wu, S.L.[Shuang-Lin],
Xiao, C.[Chao],
Ying, X.Y.[Xin-Yi],
Wang, L.G.[Long-Guang],
Yang, J.G.[Jun-Gang],
An, W.[Wei],
Learning scalable dynamic filter in convolutional networks,
PRL(176), 2023, pp. 83-88.
Elsevier DOI
2312
Dynamic network, Efficient inference, Image classification, Object detection
BibRef
Luo, G.[Gen],
Zhou, Y.[Yiyi],
Sun, X.S.[Xiao-Shuai],
Wu, Y.J.[Yong-Jian],
Gao, Y.[Yue],
Ji, R.R.[Rong-Rong],
Towards Language-Guided Visual Recognition via Dynamic Convolutions,
IJCV(132), No. 1, January 2024, pp. 1-19.
Springer DOI
2402
SimREC project:
WWW Link.
BibRef
Garcia-Gasulla, D.[Dario],
Gimenez-Abalos, V.[Victor],
Martin-Torres, P.[Pablo],
Padding Aware Neurons,
VIPriors23(99-108)
IEEE DOI
2401
BibRef
Edixhoven, T.[Tom],
Lengyel, A.[Attila],
van Gemert, J.C.[Jan C.],
Using and Abusing Equivariance,
VIPriors23(119-128)
IEEE DOI
2401
BibRef
Kirchmeyer, A.[Alexandre],
Deng, J.[Jia],
Convolutional Networks with Oriented 1D Kernels,
ICCV23(6199-6209)
IEEE DOI Code:
WWW Link.
2401
BibRef
Mukai, K.[Kensuke],
Yamanaka, T.[Takao],
Improving Translation Invariance in Convolutional Neural Networks
with Peripheral Prediction Padding,
ICIP23(945-949)
IEEE DOI
2312
BibRef
Su, Y.L.[Yu-Lin],
Shi, L.L.[Liang-Liang],
Feng, Z.M.[Zi-Ming],
Chu, P.Z.[Peng-Zhi],
Yan, J.C.[Jun-Chi],
Adaptive Semi-Supervised Mixup with Implicit Label Learning and
Sample Ratio Balancing,
ICIP23(430-434)
IEEE DOI
2312
Deal with over-fitting of deep networks.
BibRef
Michaeli, H.[Hagay],
Michaeli, T.[Tomer],
Soudry, D.[Daniel],
Alias-Free Convnets: Fractional Shift Invariance via Polynomial
Activations,
CVPR23(16333-16342)
IEEE DOI
2309
BibRef
Chung, H.[Hyunhee],
Park, K.H.[Kyung Ho],
Shape Prior is Not All You Need:
Discovering Balance Between Texture and Shape Bias in CNN,
ACCV22(II:491-506).
Springer DOI
2307
Network training is biased to texture, not shape.
BibRef
Bellaard, G.[Gijs],
Pai, G.[Gautam],
Bescos, J.O.[Javier Olivan],
Duits, R.[Remco],
Geometric Adaptations of PDE-G-CNNs,
SSVM23(538-550).
Springer DOI
2307
BibRef
Csaba, B.[Botos],
Bibi, A.[Adel],
Li, Y.W.[Yan-Wei],
Torr, P.H.S.[Philip H.S.],
Lim, S.N.[Ser-Nam],
Diversified Dynamic Routing for Vision Tasks,
VIPriors22(756-772).
Springer DOI
2304
BibRef
Benamira, A.[Adrien],
Peyrin, T.[Thomas],
Kuen-Yew, B.H.[Bryan Hooi],
Truth-table Net: A New Convolutional Architecture Encodable by Design
into Sat Formulas,
AdvRob22(483-500).
Springer DOI
2304
BibRef
Kishida, I.[Ikki],
Nakayama, H.[Hideki],
Pixel to Binary Embedding Towards Robustness for CNNs,
ICPR22(2279-2285)
IEEE DOI
2212
Training, Visualization, Thermometers, Perturbation methods,
Robustness, Encoding
BibRef
Brun, L.[Luc],
Gaüzčre, B.[Benoit],
Renton, G.[Guillaume],
Bougleux, S.[Sébastien],
Yger, F.[Florian],
A differentiable approximation for the Linear Sum Assignment Problem
with Edition,
ICPR22(3822-3828)
IEEE DOI
2212
Backpropagation, Costs, Learning (artificial intelligence),
Artificial neural networks, Approximation algorithms, Encoding
BibRef
Hart, D.[David],
Whitney, M.[Michael],
Morse, B.[Bryan],
Interpolated SelectionConv for Spherical Images and Surfaces,
WACV23(321-330)
IEEE DOI
2302
BibRef
Earlier:
SelectionConv:
Convolutional Neural Networks for Non-rectilinear Image Data,
ECCV22(VII:317-333).
Springer DOI
2211
Image segmentation, Convolutional neural networks, Task analysis,
Algorithms: Computational photography
BibRef
Aiello, G.[Giuseppe],
Bussolino, B.[Beatrice],
Valpreda, E.[Emanuele],
Roch, M.R.[Massimo Ruo],
Masera, G.[Guido],
Martina, M.[Maurizio],
Marsi, S.[Stefano],
NLCMAP: A Framework for the Efficient Mapping of Non-Linear
Convolutional Neural Networks on FPGA Accelerators,
ICIP22(926-930)
IEEE DOI
2211
Measurement, Convolution, Neural networks, System-on-chip,
Space exploration, Non-linear signal processing, HW Mapping
BibRef
Penaud-Polge, V.[Valentin],
Velasco-Forero, S.[Santiago],
Angulo, J.[Jesus],
Genharris-Resnet: A Rotation Invariant Neural Network Based on
Elementary Symmetric Polynomials,
SSVM23(149-161).
Springer DOI
2307
BibRef
Penaud-Polge, V.[Valentin],
Velasco-Forero, S.[Santiago],
Angulo, J.[Jesus],
Fully Trainable Gaussian Derivative Convolutional Layer,
ICIP22(2421-2425)
IEEE DOI
2211
Image segmentation, Shape, Diversity reception, Deep architecture,
Behavioral sciences, Convolutional neural networks, Kernel, Local N-Jet
BibRef
Zhang, H.[Haokui],
Hu, W.Z.[Wen-Ze],
Wang, X.Y.[Xiao-Yu],
ParC-Net: Position Aware Circular Convolution with Merits from ConvNets
and Transformer,
ECCV22(XXVI:613-630).
Springer DOI
2211
ConvNet is better for resource constrained devices vs. transformers.
BibRef
Ma, Y.T.[Ya-Ting],
Lian, Z.C.[Zhi-Chao],
An Effective Fusion Method to Enhance the Robustness of CNN,
ICIP22(3361-3365)
IEEE DOI
2211
Perturbation methods, Noise reduction, Robustness,
Convolutional neural networks, Image classification, fusion method
BibRef
Zhao, R.Z.[Rong-Zhen],
Li, J.[Jian],
Wu, Z.Z.[Zhen-Zhi],
Convolution of Convolution: Let Kernels Spatially Collaborate,
CVPR22(641-650)
IEEE DOI
2210
Code, CNN.
WWW Link. Training, Visualization, Convolution, Neurons, Performance gain,
Retina, Pattern recognition, grouping and shape analysis
BibRef
Mitchel, T.W.[Thomas W.],
Kim, V.G.[Vladimir G.],
Kazhdan, M.[Michael],
Field Convolutions for Surface CNNs,
ICCV21(9981-9991)
IEEE DOI
2203
Geometry, Matched filters, Convolution, Shape, Pipelines, Scattering,
Task analysis, Representation learning,
Vision + other modalities
BibRef
Sun, S.Y.[Shu-Yang],
Yue, X.Y.[Xiao-Yu],
Qi, X.J.[Xiao-Juan],
Ouyang, W.L.[Wan-Li],
Prisacariu, V.[Victor],
Torr, P.H.S.[Philip H.S.],
Aggregation with Feature Detection,
ICCV21(507-516)
IEEE DOI
2203
Aggregating features from different depths of a network.
Image segmentation, Visualization, Convolution, Feature detection,
Semantics, Object detection,
Representation learning
BibRef
Chen, G.Y.[Guang-Yao],
Peng, P.X.[Pei-Xi],
Ma, L.[Li],
Li, J.[Jia],
Du, L.[Lin],
Tian, Y.H.[Yong-Hong],
Amplitude-Phase Recombination: Rethinking Robustness of Convolutional
Neural Networks in Frequency Domain,
ICCV21(448-457)
IEEE DOI
2203
WWW Link. Training, Codes, Perturbation methods, Machine vision,
Frequency-domain analysis, Force, Recognition and classification,
BibRef
Li, Y.S.[Yun-Sheng],
Chen, Y.P.[Yin-Peng],
Dai, X.[Xiyang],
Chen, D.D.[Dong-Dong],
Liu, M.C.[Meng-Chen],
Yuan, L.[Lu],
Liu, Z.C.[Zi-Cheng],
Zhang, L.[Lei],
Vasconcelos, N.M.[Nuno M.],
MicroNet: Improving Image Recognition with Extremely Low FLOPs,
ICCV21(458-467)
IEEE DOI
2203
WWW Link. Image recognition, Convolution, Pose estimation, Object detection,
Performance gain, Solids, Computational efficiency,
Representation learning
BibRef
Baek, I.[Iljoo],
Chen, W.[Wei],
Zhu, Z.H.[Zhi-Hao],
Samii, S.[Soheil],
Rajkumar, R.R.[Ragunathan Raj],
FT-DeepNets: Fault-Tolerant Convolutional Neural Networks with
Kernel-based Duplication,
WACV22(1878-1887)
IEEE DOI
2202
Deep learning, Neurons, Neural networks, Fault tolerant systems,
Redundancy, Graphics processing units, Robustness,
Vision Systems and Applications Vision for
Aerial/Drone/Underwater/Ground Vehicles
BibRef
Blekos, K.[Kostas],
Kosmopoulos, D.I.[Dimitrios I.],
A Quantum 3D Convolutional Neural Network with Application in Video
Classification,
ISVC21(I:601-612).
Springer DOI
2112
A Quantum counterpart to a 3D CNN.
BibRef
Duta, I.C.[Ionut Cosmin],
Georgescu, M.I.[Mariana Iuliana],
Ionescu, R.T.[Radu Tudor],
Contextual Convolutional Neural Networks,
NeruArch21(403-412)
IEEE DOI
2112
Visualization, Neuroscience, Image recognition, Convolution, Neurons,
Object detection, Computer architecture
BibRef
Hosseini, M.S.[Mahdi S.],
Zhang, J.S.[Jia Shu],
Liu, Z.[Zhe],
Fu, A.[Andre],
Su, J.X.[Jing-Xuan],
Tuli, M.[Mathieu],
Plataniotis, K.N.[Konstantinos N.],
CONet: Channel Optimization for Convolutional Neural Networks,
NeruArch21(326-335)
IEEE DOI
2112
Training, Weight measurement, Tensors, Heuristic algorithms,
Size measurement, Convolutional neural networks
BibRef
Yao, Z.L.[Zhu-Liang],
Cao, Y.[Yue],
Zheng, S.[Shuxin],
Huang, G.[Gao],
Lin, S.[Stephen],
Cross-Iteration Batch Normalization,
CVPR21(12326-12335)
IEEE DOI
2111
WWW Link. Training, Upper bound, Codes, Estimation,
Object detection, Pattern recognition
BibRef
Cheng, K.L.[Ka Leong],
Xie, Y.Q.[Yue-Qi],
Chen, Q.F.[Qi-Feng],
IICNet: A Generic Framework for Reversible Image Conversion,
ICCV21(1971-1980)
IEEE DOI
2203
WWW Link. Visualization, Codes, Neural networks, Image restoration,
Task analysis, Videos, Computational photography,
Vision applications and systems
BibRef
Li, D.[Duo],
Hu, J.[Jie],
Wang, C.H.[Chang-Hu],
Li, X.T.[Xiang-Tai],
She, Q.[Qi],
Zhu, L.[Lei],
Zhang, T.[Tong],
Chen, Q.F.[Qi-Feng],
Involution: Inverting the Inherence of Convolution for Visual
Recognition,
CVPR21(12316-12325)
IEEE DOI
2111
WWW Link. Deep learning, Visualization, Image segmentation, Convolution,
Computational modeling, Neural networks, Benchmark testing
BibRef
Zhang, S.D.[Sheng-Dong],
Nezhadarya, E.[Ehsan],
Fashandi, H.[Homa],
Liu, J.Y.[Jia-Yi],
Graham, D.[Darin],
Shah, M.[Mohak],
Stochastic Whitening Batch Normalization,
CVPR21(10973-10982)
IEEE DOI
2111
Training, Deep learning, Stochastic processes,
Pattern recognition, Iterative methods, Convolutional neural networks
BibRef
Ding, X.H.[Xiao-Han],
Zhang, X.Y.[Xiang-Yu],
Han, J.G.[Jun-Gong],
Ding, G.G.[Gui-Guang],
Diverse Branch Block:
Building a Convolution as an Inception-like Unit,
CVPR21(10881-10890)
IEEE DOI
2111
Training, Image segmentation, Costs, Convolution, Semantics,
Object detection
BibRef
Böhle, M.[Moritz],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Convolutional Dynamic Alignment Networks for Interpretable
Classifications,
CVPR21(10024-10033)
IEEE DOI
2111
New variation on neural networks.
Measurement, Visualization,
Computational modeling, Neural networks, Transforms, Predictive models
BibRef
Zhen, X.J.[Xing-Jian],
Chakraborty, R.[Rudrasis],
Singh, V.[Vikas],
Simpler Certified Radius Maximization by Propagating Covariances,
CVPR21(7288-7297)
IEEE DOI
2111
Neighborhood around a given training sample for which the models
prediction remains unchanged.
Training, Smoothing methods, Runtime, Neural networks, Transforms,
Predictive models, Robustness
BibRef
Fayyaz, M.[Mohsen],
Bahrami, E.[Emad],
Diba, A.[Ali],
Noroozi, M.[Mehdi],
Adeli, E.[Ehsan],
Van Gool, L.J.[Luc J.],
Gall, J.[Juergen],
3D CNNs with Adaptive Temporal Feature Resolutions,
CVPR21(4729-4738)
IEEE DOI
2111
Costs, Adaptive systems,
Pattern recognition
BibRef
Zhong, Y.Y.[Yuan-Yi],
Wang, J.F.[Jian-Feng],
Wang, L.J.[Li-Juan],
Peng, J.[Jian],
Wang, Y.X.[Yu-Xiong],
Zhang, L.[Lei],
DAP: Detection-Aware Pre-training with Weak Supervision,
CVPR21(4535-4544)
IEEE DOI
2111
Training, Location awareness, Transforms,
Object detection, Detectors, Predictive models
BibRef
Chaman, A.[Anadi],
Dokmanic, I.[Ivan],
Truly shift-invariant convolutional neural networks,
CVPR21(3772-3782)
IEEE DOI
2111
Training, Adaptive systems, Convolution,
Pattern recognition, Convolutional neural networks
BibRef
Takahashi, N.[Naoya],
Mitsufuji, Y.[Yuki],
Densely connected multidilated convolutional networks for dense
prediction tasks,
CVPR21(993-1002)
IEEE DOI
2111
Image segmentation, Image resolution, Source separation,
Convolution, Semantics, Topology
BibRef
Dollár, P.[Piotr],
Singh, M.[Mannat],
Girshick, R.[Ross],
Fast and Accurate Model Scaling,
CVPR21(924-932)
IEEE DOI
2111
Runtime, Computational modeling, Hardware,
Pattern recognition, Compounds, Convolutional neural networks
BibRef
Han, D.Y.[Dong-Yoon],
Yun, S.[Sangdoo],
Heo, B.[Byeongho],
Yoo, Y.J.[Young-Joon],
Rethinking Channel Dimensions for Efficient Model Design,
CVPR21(732-741)
IEEE DOI
2111
WWW Link. Image segmentation, Computational modeling, Search methods,
Transfer learning, Object detection, Network architecture,
Computational efficiency
BibRef
Girish, S.[Sharath],
Maiya, S.R.[Shishira R],
Gupta, K.[Kamal],
Chen, H.[Hao],
Davis, L.[Larry],
Shrivastava, A.[Abhinav],
The Lottery Ticket Hypothesis for Object Recognition,
CVPR21(762-771)
IEEE DOI
2111
States that deep neural networks trained on large datasets contain
smaller subnetworks that achieve on par performance as the dense
networks.
Training, Performance evaluation, Computational modeling,
Pipelines, Estimation, Object detection, Software
BibRef
Lin, J.M.[Jamie Menjay],
Noorzad, P.[Parham],
Yang, Y.[Yang],
Kwak, N.[Nojun],
Porikli, F.M.[Fatih M.],
Phase Selective Convolution,
EVW21(3193-3202)
IEEE DOI
2109
Measurement, Tensors, Convolution, Estimation, Network architecture,
Search problems, Pattern recognition
BibRef
Misra, D.[Diganta],
Nalamada, T.[Trikay],
Arasanipalai, A.U.[Ajay Uppili],
Hou, Q.B.[Qi-Bin],
Rotate to Attend: Convolutional Triplet Attention Module,
WACV21(3138-3147)
IEEE DOI
2106
For an input tensor, triplet attention builds inter-dimensional
dependencies by the rotation operation followed by residual
transformations and encodes inter-channel and spatial information with
negligible computational overhead.
Convolutional codes, Tensors, Object detection.
BibRef
Huang, G.X.[Guo-Xi],
Bors, A.G.[Adrian G.],
Busy-Quiet Video Disentangling for Video Classification,
WACV22(756-765)
IEEE DOI
2202
BibRef
Earlier:
Region-based Non-local Operation for Video Classification,
ICPR21(10010-10017)
IEEE DOI
2105
Code, Classification.
WWW Link. Band-pass filters, Representation learning, Codes,
Frequency-domain analysis, Computational modeling, Redundancy,
Object Detection/Recognition/Categorization.
Integrate into existing CNN framework.
Training, Convolution, Stacking, Benchmark testing,
Convolutional neural networks, Optimization
BibRef
Mantini, P.[Pranav],
Shah, S.K.[Shishr K.],
CQNN: Convolutional Quadratic Neural Networks,
ICPR21(9819-9826)
IEEE DOI
2105
Training, Computational modeling, Atomic layer deposition, Neurons,
Feature extraction
BibRef
Yang, X.Y.[Xing-Yu],
Meng, M.Y.[Ming-Yuan],
Xiao, S.L.[Shan-Lin],
Yu, Z.Y.[Zhi-Yi],
SPA: Stochastic Probability Adjustment for System Balance of
Unsupervised SNNs,
ICPR21(6417-6424)
IEEE DOI
2105
Training, Transmitters, Computational modeling,
Biological system modeling, Neurons, Stochastic processes,
Brownian process
BibRef
Lin, X.D.[Xu-Dong],
Ma, L.[Lin],
Liu, W.[Wei],
Chang, S.F.[Shih-Fu],
Context-gated Convolution,
ECCV20(XVIII:701-718).
Springer DOI
2012
BibRef
Ma, N.N.[Ning-Ning],
Zhang, X.Y.[Xiang-Yu],
Huang, J.W.[Jia-Wei],
Sun, J.[Jian],
WeightNet: Revisiting the Design Space of Weight Networks,
ECCV20(XV:776-792).
Springer DOI
2011
Code, Neural Nets.
WWW Link. Unifies two current distinct and extremely effective SENet and CondConv.
BibRef
Wu, L.H.[Lin-Huang],
Yang, X.J.[Xiu-Jun],
Fan, Z.J.[Zhen-Jia],
Wang, C.J.[Chun-Jun],
Chen, Z.F.[Zhi-Feng],
Channel-Spatial fusion aware net for accurate and fast object
Detection,
ICIP20(758-762)
IEEE DOI
2011
Detectors, Convolution, Object detection, Complexity theory,
Feature extraction, Real-time systems,
fusion awareness
BibRef
Habi, H.V.[Hai Victor],
Jennings, R.H.[Roy H.],
Netzer, A.[Arnon],
HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs,
ECCV20(XXVI:448-463).
Springer DOI
2011
BibRef
Li, D.[Duo],
Yao, A.B.[An-Bang],
Chen, Q.F.[Qi-Feng],
PSConv: Squeezing Feature Pyramid into One Compact Poly-Scale
Convolutional Layer,
ECCV20(XXI:615-632).
Springer DOI
2011
Code, CNN.
WWW Link.
BibRef
Shen, W.[Wen],
Zhang, B.B.[Bin-Bin],
Huang, S.K.[Shi-Kun],
Wei, Z.H.[Zhi-Hua],
Zhang, Q.S.[Quan-Shi],
3D-Rotation-Equivariant Quaternion Neural Networks,
ECCV20(XX:531-547).
Springer DOI
2011
BibRef
Huang, Y.[Yi],
Wang, F.[Fan],
Kong, A.W.K.[Adams Wai-Kin],
Lam, K.Y.[Kwok-Yan],
New Threats Against Object Detector with Non-local Block,
ECCV20(XX:481-497).
Springer DOI
2011
Introduce of non-local blocks to the traditional CNN architecture.
BibRef
Teney, D.[Damien],
Abbasnedjad, E.[Ehsan],
van den Hengel, A.[Anton],
Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision,
ECCV20(X:580-599).
Springer DOI
2011
Dealing with the issue of spurious learning.
BibRef
Li, L.[Lida],
Wang, K.[Kun],
Li, S.[Shuai],
Feng, X.C.[Xiang-Chu],
Zhang, L.[Lei],
Lst-net: Learning a Convolutional Neural Network with a Learnable
Sparse Transform,
ECCV20(X:562-579).
Springer DOI
2011
BibRef
Rumezhak, T.[Taras],
Eiras, F.G.[Francisco Girbal],
Torr, P.H.S.[Philip H. S.],
Bibi, A.[Adel],
RANCER: Non-Axis Aligned Anisotropic Certification with Randomized
Smoothing,
WACV23(4661-4669)
IEEE DOI
2302
Deep learning, Smoothing methods, Neural networks, Certification,
Optimization,
Algorithms: Adversarial learning, adversarial attack and defense methods
BibRef
Pérez, J.C.[Juan C.],
Alfarra, M.[Motasem],
Jeanneret, G.[Guillaume],
Bibi, A.[Adel],
Thabet, A.[Ali],
Ghanem, B.[Bernard],
Arbeláez, P.[Pablo],
Gabor Layers Enhance Network Robustness,
ECCV20(IX:450-466).
Springer DOI
2011
BibRef
Kim, S.[Seungryong],
Süsstrunk, S.[Sabine],
Salzmann, M.[Mathieu],
Volumetric Transformer Networks,
ECCV20(XXVIII:561-578).
Springer DOI
2011
different features, have different transformation, CNN imposes the same on
all.
BibRef
Du, X.Z.[Xian-Zhi],
Lin, T.Y.[Tsung-Yi],
Jin, P.C.[Peng-Chong],
Cui, Y.[Yin],
Tan, M.X.[Ming-Xing],
Le, Q.[Quoc],
Song, X.D.[Xiao-Dan],
Efficient Scale-Permuted Backbone with Learned Resource Distribution,
ECCV20(XXIII:572-586).
Springer DOI
2011
SpineNet.
BibRef
Huh, M.Y.[Min-Young],
Zhang, R.[Richard],
Zhu, J.Y.[Jun-Yan],
Paris, S.[Sylvain],
Hertzmann, A.[Aaron],
Transforming and Projecting Images into Class-conditional Generative
Networks,
ECCV20(II:17-34).
Springer DOI
2011
Code, GAN.
WWW Link.
BibRef
Patel, Y.[Yash],
Hodan, T.[Tomá],
Matas, J.G.[Jirí G.],
Learning Surrogates via Deep Embedding,
ECCV20(XXX: 205-221).
Springer DOI
2010
BibRef
Quader, N.[Niamul],
Bhuiyan, M.M.I.[Md Mafijul Islam],
Lu, J.W.[Ju-Wei],
Dai, P.[Peng],
Li, W.[Wei],
Weight Excitation: Built-in Attention Mechanisms in Convolutional
Neural Networks,
ECCV20(XXX: 87-103).
Springer DOI
2010
BibRef
Bose, L.[Laurie],
Dudek, P.[Piotr],
Chen, J.N.[Jia-Ning],
Carey, S.J.[Stephen J.],
Mayol-Cuevas, W.W.[Walterio W.],
Fully Embedding Fast Convolutional Networks on Pixel Processor Arrays,
ECCV20(XXIX: 488-503).
Springer DOI
2010
BibRef
Li, D.[Duo],
Yao, A.B.[An-Bang],
Chen, Q.F.[Qi-Feng],
Learning to Learn Parameterized Classification Networks for Scalable
Input Images,
ECCV20(XXIX: 19-35).
Springer DOI
2010
Code, CNN.
WWW Link. CNNs don't do well with resolution changes.
BibRef
Li, Q.S.[Qin-Song],
Liu, S.J.[Sheng-Jun],
Hu, L.[Ling],
Liu, X.R.[Xin-Ru],
Shape correspondence using anisotropic Chebyshev spectral CNNs,
CVPR20(14646-14655)
IEEE DOI
2008
Shape, Manifolds, Convolution, Kernel, Machine learning,
Eigenvalues and eigenfunctions, Chebyshev approximation
BibRef
Choy, C.[Christopher],
Lee, J.H.[Jun-Ha],
Ranftl, R.[René],
Park, J.[Jaesik],
Koltun, V.[Vladlen],
High-Dimensional Convolutional Networks for Geometric Pattern
Recognition,
CVPR20(11224-11233)
IEEE DOI
2008
4-D to 32-D.
Kernel, Pattern recognition, Estimation, Robustness, Noise measurement
BibRef
Li, S.H.[Shao-Hua],
Xue, K.P.[Kai-Ping],
Zhu, B.[Bin],
Ding, C.K.[Chen-Kai],
Gao, X.D.[Xin-Di],
Wei, D.[David],
Wan, T.[Tao],
FALCON: A Fourier Transform Based Approach for Fast and Secure
Convolutional Neural Network Predictions,
CVPR20(8702-8711)
IEEE DOI
2008
To classify private images with a public service.
Servers, Encryption, Protocols, Predictive models, Data models,
Computational modeling
BibRef
Chodosh, N.,
Lucey, S.,
When to Use Convolutional Neural Networks for Inverse Problems,
CVPR20(8223-8232)
IEEE DOI
2008
Inverse problems, Convolutional codes, Convolution, Encoding,
Mathematical model, Task analysis, Dictionaries
BibRef
Cai, Z.,
Vasconcelos, N.,
Rethinking Differentiable Search for Mixed-Precision Neural Networks,
CVPR20(2346-2355)
IEEE DOI
2008
Complexity theory, Neural networks,
Bit rate, Sensitivity, Task analysis, Optimization
BibRef
Yang, L.,
Han, Y.,
Chen, X.,
Song, S.,
Dai, J.,
Huang, G.,
Resolution Adaptive Networks for Efficient Inference,
CVPR20(2366-2375)
IEEE DOI
2008
Redundancy, Adaptive systems, Spatial resolution,
Adaptation models, Feature extraction, Task analysis, Computer architecture
BibRef
Wang, C.,
Liao, H.M.[H. Mark],
Wu, Y.,
Chen, P.,
Hsieh, J.,
Yeh, I.,
CSPNet: A New Backbone that can Enhance Learning Capability of CNN,
LPCV20(1571-1580)
IEEE DOI
2008
Object detection, Detectors,
Mathematical model, Computational modeling, Computer science
BibRef
Wang, M.,
Liu, B.,
Foroosh, H.,
Wide Hidden Expansion Layer for Deep Convolutional Neural Networks,
WACV20(923-931)
IEEE DOI
2006
Memory management, Tensile stress, Neurons, Kernel,
Complexity theory, Convolutional neural networks
BibRef
Li, S.C.[Sui-Chan],
Chen, D.P.[Da-Peng],
Liu, B.[Bin],
Yu, N.H.[Neng-Hai],
Zhao, R.[Rui],
Memory-Based Neighbourhood Embedding for Visual Recognition,
ICCV19(6101-6110)
IEEE DOI
2004
Enhance a CNN.
convolutional neural nets, feature extraction, image retrieval,
learning (artificial intelligence), object recognition, Image recognition
BibRef
Zhang, Z.Y.[Zhao-Yang],
Li, J.Y.[Jing-Yu],
Shao, W.Q.[Wen-Qi],
Peng, Z.L.[Zhang-Lin],
Zhang, R.M.[Rui-Mao],
Wang, X.G.[Xiao-Gang],
Luo, P.[Ping],
Differentiable Learning-to-Group Channels via Groupable Convolutional
Neural Networks,
ICCV19(3541-3550)
IEEE DOI
2004
computational complexity, convolutional neural nets,
learning (artificial intelligence), group convolution,
Convolutional neural networks
BibRef
Li, D.,
Zhou, A.,
Yao, A.,
HBONet: Harmonious Bottleneck on Two Orthogonal Dimensions,
ICCV19(3315-3324)
IEEE DOI
2004
Code, Convolutional Neural Nets.
WWW Link. convolutional neural nets, feature extraction,
image classification, image representation, object detection,
Tensile stress
BibRef
Radosavovic, I.[Ilija],
Johnson, J.[Justin],
Xie, S.N.[Sai-Ning],
Lo, W.Y.[Wan-Yen],
Dollar, P.[Piotr],
On Network Design Spaces for Visual Recognition,
ICCV19(1882-1890)
IEEE DOI
2004
neural net architecture, statistical analysis,
standard model families, visual recognition,
Standards
BibRef
Ding, X.,
Guo, Y.,
Ding, G.,
Han, J.,
ACNet: Strengthening the Kernel Skeletons for Powerful CNN via
Asymmetric Convolution Blocks,
ICCV19(1911-1920)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
ACNet, kernel skeletons, convolutional neural network,
Computational modeling
BibRef
Liu, Y.[Yu],
Liu, J.H.[Ji-Hao],
Wang, X.G.[Xiao-Gang],
Zeng, A.L.[Ai-Ling],
Differentiable Kernel Evolution,
ICCV19(1834-1843)
IEEE DOI
2004
convolutional neural nets, evolutionary computation,
face recognition, gradient methods, greedy algorithms,
Interpolation
BibRef
Kim, Y.D.[Young-Dong],
Yim, J.[Junho],
Yun, J.[Juseung],
Kim, J.[Junmo],
NLNL: Negative Learning for Noisy Labels,
ICCV19(101-110)
IEEE DOI
2004
convolutional neural nets, image classification, image denoising,
image filtering, learning (artificial intelligence),
convergence
BibRef
Abduraimjonov, A.,
Choi, H.,
Ko, J.,
Extending Input Channel Using Global Feature Image for Convolutional
Neural Networks,
IVCNZ19(1-4)
IEEE DOI
2004
convolutional neural nets, feature extraction,
learning (artificial intelligence), convolutional networks
BibRef
Yang, T.Y.[Tsun-Yi],
Nguyen, D.K.[Duy Kien],
Heijnen, H.[Huub],
Balntas, V.[Vassileios],
DAME WEB: DynAmic MEan with Whitening Ensemble Binarization for
Landmark Retrieval without Human Annotation,
CEFRL19(2913-2922)
IEEE DOI
2004
feature extraction, image classification, image matching,
image retrieval, learning (artificial intelligence), neural nets,
whitening
BibRef
Kortylewski, A.[Adam],
Liu, Q.[Qing],
Wang, H.Y.[Hui-Yu],
Zhang, Z.S.[Zhi-Shuai],
Yuille, A.L.[Alan L.],
Combining Compositional Models and Deep Networks For Robust Object
Classification under Occlusion,
WACV20(1322-1330)
IEEE DOI
2006
BibRef
And:
Localizing Occluders with Compositional Convolutional Networks,
NeruArch19(2029-2032)
IEEE DOI
2004
Robustness, Dictionaries, Data models,
Mathematical model, Feature extraction, Solid modeling.
convolutional neural nets,
image classification, learning (artificial intelligence), Compositional Models
BibRef
Huang, Y.,
Ou, P.,
Wu, R.,
Feng, Z.,
Sequentially Aggregated Convolutional Networks,
NeruArch19(1900-1909)
IEEE DOI
2004
Code Convolutional Networks.
WWW Link. convolutional neural nets, image classification,
learning (artificial intelligence), optimisation,
Image classification
BibRef
Gamba, M.,
Azizpour, H.,
Carlsson, S.,
Björkman, M.,
On the Geometry of Rectifier Convolutional Neural Networks,
SDL-CV19(793-797)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
gradient descent, natural data, preactivation space,
understanding
BibRef
Elad, A.,
Haviv, D.,
Blau, Y.,
Michaeli, T.,
Direct Validation of the Information Bottleneck Principle for Deep
Nets,
SDL-CV19(758-762)
IEEE DOI
2004
entropy, learning (artificial intelligence), neural nets,
direct validation, information bottleneck principle, deep nets,
Information Bottleneck
BibRef
Kumar, D.[Dinesh],
Sharma, D.[Dharmendra],
Goecke, R.[Roland],
Feature Map Augmentation to Improve Rotation Invariance in
Convolutional Neural Networks,
ACIVS20(348-359).
Springer DOI
2003
BibRef
Xue, C.[Chao],
Yan, J.C.[Jun-Chi],
Yan, R.[Rong],
Chu, S.M.[Stephen M.],
Hu, Y.G.[Yong-Gang],
Lin, Y.H.[Yong-Hua],
Transferable AutoML by Model Sharing Over Grouped Datasets,
CVPR19(8994-9003).
IEEE DOI
2002
Automated Machine Learning.
BibRef
Li, X.[Xilai],
Song, X.[Xi],
Wu, T.F.[Tian-Fu],
AOGNets: Compositional Grammatical Architectures for Deep Learning,
CVPR19(6213-6223).
IEEE DOI
2002
grammar models and DNNs.
BibRef
Liu, C.[Chang],
Wan, F.[Fang],
Ke, W.[Wei],
Xiao, Z.W.[Zhuo-Wei],
Yao, Y.[Yuan],
Zhang, X.S.[Xiao-Song],
Ye, Q.X.[Qi-Xiang],
Orthogonal Decomposition Network for Pixel-Wise Binary Classification,
CVPR19(6057-6066).
IEEE DOI
2002
CNN uses convolution so single pixel classification is not done.
BibRef
Li, X.[Xiang],
Chen, S.[Shuo],
Hu, X.L.[Xiao-Lin],
Yang, J.[Jian],
Understanding the Disharmony Between Dropout and Batch Normalization by
Variance Shift,
CVPR19(2677-2685).
IEEE DOI
2002
BibRef
Engilberge, M.[Martin],
Chevallier, L.[Louis],
Perez, P.[Patrick],
Cord, M.[Matthieu],
SoDeep: A Sorting Deep Net to Learn Ranking Loss Surrogates,
CVPR19(10784-10793).
IEEE DOI
2002
BibRef
Su, Y.C.[Yu-Chuan],
Grauman, K.[Kristen],
Kernel Transformer Networks for Compact Spherical Convolution,
CVPR19(9434-9443).
IEEE DOI
2002
BibRef
Xu, D.J.[De-Jiang],
Lee, M.L.[Mong Li],
Hsu, W.[Wynne],
Propagation Mechanism for Deep and Wide Neural Networks,
CVPR19(9212-9220).
IEEE DOI
2002
BibRef
Chen, Q.Y.[Qiu-Yu],
Zhang, W.[Wei],
Yu, J.[Jun],
Fan, J.P.[Jian-Ping],
Embedding Complementary Deep Networks for Image Classification,
CVPR19(9230-9239).
IEEE DOI
2002
BibRef
Duan, Y.Q.[Yue-Qi],
Chen, L.[Lei],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Deep Embedding Learning With Discriminative Sampling Policy,
CVPR19(4959-4968).
IEEE DOI
2002
BibRef
Singh, P.[Pravendra],
Verma, V.K.[Vinay Kumar],
Rai, P.[Piyush],
Namboodiri, V.P.[Vinay P.],
Leveraging Filter Correlations for Deep Model Compression,
WACV20(824-833)
IEEE DOI
2006
BibRef
And:
HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs,
CVPR19(4830-4839).
IEEE DOI
2002
Correlation, Memory management, Quantization (signal), Redundancy,
Transmission line measurements, Acceleration, Task analysis
BibRef
Kumawat, S.[Sudhakar],
Raman, S.[Shanmuganathan],
LP-3DCNN: Unveiling Local Phase in 3D Convolutional Neural Networks,
CVPR19(4898-4907).
IEEE DOI
2002
BibRef
Choy, C.[Christopher],
Gwak, J.Y.[Jun-Young],
Savarese, S.[Silvio],
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks,
CVPR19(3070-3079).
IEEE DOI
2002
BibRef
Mehta, D.[Dushyant],
Kim, K.I.[Kwang In],
Theobalt, C.[Christian],
On Implicit Filter Level Sparsity in Convolutional Neural Networks,
CVPR19(520-528).
IEEE DOI
2002
BibRef
Li, X.[Xiang],
Wang, W.[Wenhai],
Hu, X.L.[Xiao-Lin],
Yang, J.[Jian],
Selective Kernel Networks,
CVPR19(510-519).
IEEE DOI
2002
BibRef
Tsuzuku, Y.[Yusuke],
Sato, I.[Issei],
On the Structural Sensitivity of Deep Convolutional Networks to the
Directions of Fourier Basis Functions,
CVPR19(51-60).
IEEE DOI
2002
BibRef
Wang, C.[Chen],
Yang, J.F.[Jian-Fei],
Xie, L.H.[Li-Hua],
Yuan, J.S.[Jun-Song],
Kervolutional Neural Networks,
CVPR19(31-40).
IEEE DOI
2002
kernel convolution
BibRef
Nguyen, A.,
Choi, S.,
Kim, W.,
Ahn, S.,
Kim, J.,
Lee, S.,
Distribution Padding in Convolutional Neural Networks,
ICIP19(4275-4279)
IEEE DOI
1910
Deep learning, convolutional neural network, image padding
BibRef
Hataya, R.[Ryuichiro],
Nakayama, H.[Hideki],
LOL: Learning To Optimize Loss Switching Under Label Noise,
ICIP19(3621-3625)
IEEE DOI
1910
Deal with label corruption.
Alternate between Categorical cross entropy and mean absolute error.
BibRef
Zhang, K.[Ke],
Guo, Y.R.[Yu-Rong],
Wang, X.S.[Xin-Sheng],
Yuan, J.S.[Jin-Sha],
Ma, Z.Y.[Zhan-Yu],
Zhao, Z.B.[Zhen-Bing],
Channel-Wise and Feature-Points Reweights DenseNet for Image
Classification,
ICIP19(410-414)
IEEE DOI
1910
CFR-DenseNet, CAPR-DenseNet, FPRM, SEM, Image classification
BibRef
Eda, T.,
Muramatsu, S.,
Enomoto, S.,
Xu, S.,
An Expandable Deep Learning Inference Framework With Adjustability to
Workload Requirement,
ICIP19(2454-2454)
IEEE DOI
1910
BibRef
Zhang, K.,
Zhou, X.,
Wu, J.,
U-Module: Better Parameters Initialization of Convolutional Neural
Network for Medical Image Classification,
ICIP19(799-803)
IEEE DOI
1910
U-module, convolutional neural network, unsupervised loss,
parameters initialization
BibRef
Köpüklü, O.,
Babaee, M.,
Hörmann, S.,
Rigoll, G.,
Convolutional Neural Networks with Layer Reuse,
ICIP19(345-349)
IEEE DOI
1910
layer reuse, convolutional neural networks, inference routing
BibRef
Rodriguez, R.,
Dokladalova, E.,
Dokladal, P.,
Rotation Invariant CNN Using Scattering Transform for Image
Classification,
ICIP19(654-658)
IEEE DOI
1910
Rotation, invariant, covariant, convolutional neural network,
image classification
BibRef
Cotter, F.,
Kingsbury, N.,
A Learnable Scatternet: Locally Invariant Convolutional Layers,
ICIP19(350-354)
IEEE DOI
1910
CNN, ScatterNet, invariant, wavelet, DTCWT
BibRef
Jiang, R.,
Mei, S.,
Polar Coordinate Convolutional Neural Network:
From Rotation-Invariance to Translation-Invariance,
ICIP19(355-359)
IEEE DOI
1910
rotation-invariant, convolutional neural network,
image classification, polar coordinate
BibRef
Peralta, B.[Billy],
Reyes, J.[Juan],
Caro, L.[Luis],
Pieringer, C.[Christian],
A Proposal of Neural Networks with Intermediate Outputs,
IbPRIA19(I:206-215).
Springer DOI
1910
BibRef
Belbahri, M.[Mouloud],
Sari, E.[Eyyüb],
Darabi, S.[Sajad],
Nia, V.P.[Vahid Partovi],
Foothill: A Quasiconvex Regularization for Edge Computing of Deep
Neural Networks,
ICIAR19(II:3-14).
Springer DOI
1909
BibRef
Wong, A.[Alexander],
NetScore: Towards Universal Metrics for Large-Scale Performance
Analysis of Deep Neural Networks for Practical On-Device Edge Usage,
ICIAR19(II:15-26).
Springer DOI
1909
BibRef
Xin, Y.J.[Yong-Jian],
Wang, S.H.[Shu-Hui],
Li, L.[Liang],
Zhang, W.G.[Wei-Gang],
Huang, Q.M.[Qing-Ming],
Reverse Densely Connected Feature Pyramid Network for Object Detection,
ACCV18(V:530-545).
Springer DOI
1906
BibRef
Kim, J.B.[Jun-Bong],
Lee, M.[Minki],
Choi, J.E.[Jong-Eun],
Seo, K.S.[Ki-Sung],
GA-Based Filter Selection for Representation in Convolutional Neural
Networks,
CEFR-LCV18(IV:609-618).
Springer DOI
1905
BibRef
Chitta, K.[Kashyap],
Targeted Kernel Networks: Faster Convolutions with Attentive
Regularization,
CEFR-LCV18(IV:379-397).
Springer DOI
1905
CNN constrained by Attentive Regularization.
BibRef
Martinez, M.[Manuel],
Stiefelhagen, R.[Rainer],
Taming the Cross Entropy Loss,
GCPR18(628-637).
Springer DOI
1905
BibRef
Wang, Y.,
Kato, J.,
Good Choices for Deep Convolutional Feature Encoding,
WACV19(312-320)
IEEE DOI
1904
convolutional neural nets, feature extraction, image coding,
image recognition, deep convolutional feature encoding,
Convolutional codes
BibRef
Atkinson, C.,
McCane, B.,
Szymanski, L.,
Increasing the accuracy of convolutional neural networks with
progressive reinitialisation,
IVCNZ17(1-5)
IEEE DOI
1902
convolution, feedforward neural nets, freezing,
image classification, progressive reinitialisation,
Network architecture
BibRef
Zoph, B.[Barret],
Vasudevan, V.[Vijay],
Shlens, J.[Jonathon],
Le, Q.V.[Quoc V.],
Learning Transferable Architectures for Scalable Image Recognition,
CVPR18(8697-8710)
IEEE DOI
1812
Microprocessors, Computational modeling,
Aerospace electronics, Convolution, Google, Search methods
BibRef
Detlefsen, N.S.[Nicki Skafte],
Freifeld, O.[Oren],
Hauberg, S.[Sřren],
Deep Diffeomorphic Transformer Networks,
CVPR18(4403-4412)
IEEE DOI
1812
Face, Neural networks, Standards,
Task analysis, Computational modeling, Kernel
BibRef
Cheng, C.M.[Chang-Mao],
Fu, Y.W.[Yan-Wei],
Jiang, Y.G.[Yu-Gang],
Liu, W.[Wei],
Lu, W.L.[Wen-Lian],
Feng, J.F.[Jian-Feng],
Xue, X.Y.[Xiang-Yang],
Dual Skipping Networks,
CVPR18(4071-4079)
IEEE DOI
1812
Low frequency and high frequency separate.
Visualization, Convolution, Neuroscience, Task analysis, Testing,
Computational modeling
BibRef
Gast, J.[Jochen],
Roth, S.[Stefan],
Lightweight Probabilistic Deep Networks,
CVPR18(3369-3378)
IEEE DOI
1812
Uncertainty, Probabilistic logic, Bayes methods, Neural networks,
Standards, Supervised learning
BibRef
Pan, B.W.[Bo-Wen],
Lin, W.W.[Wu-Wei],
Fang, X.L.[Xiao-Lin],
Huang, C.Q.[Chao-Qin],
Zhou, B.L.[Bo-Lei],
Lu, C.W.[Ce-Wu],
Recurrent Residual Module for Fast Inference in Videos,
CVPR18(1536-1545)
IEEE DOI
1812
CNN for video.
Videos, Convolution, Acceleration, Computational modeling,
Task analysis, Engines
BibRef
Hosseini, H.,
Xiao, B.,
Jaiswal, M.,
Poovendran, R.,
Assessing Shape Bias Property of Convolutional Neural Networks,
Cognitive18(2004-20048)
IEEE DOI
1812
Pattern recognition.
BibRef
Wang, S.,
Suo, S.,
Ma, W.,
Pokrovsky, A.,
Urtasun, R.,
Deep Parametric Continuous Convolutional Neural Networks,
CVPR18(2589-2597)
IEEE DOI
1812
Convolution, Kernel, Neural networks,
Standards, Computer architecture
BibRef
Dutta, S.,
Tripp, B.,
Taylor, G.W.,
Convolutional Neural Networks Regularized by Correlated Noise,
CRV18(375-382)
IEEE DOI
1812
Neurons, Correlation, Stochastic processes, Visualization,
Biological neural networks, Additives, Correlated Variability,
Stochastic Neurons
BibRef
Modasshir, M.,
Quattrini Li, A.,
Rekleitis, I.,
Deep Neural Networks: A Comparison on Different Computing Platforms,
CRV18(383-389)
IEEE DOI
1812
Task analysis, Robots, Graphics processing units,
Portable computers, Embedded systems, Neural networks,
Comparison
BibRef
Fan, Q.N.[Qing-Nan],
Chen, D.D.[Dong-Dong],
Yuan, L.[Lu],
Hua, G.[Gang],
Yu, N.H.[Neng-Hai],
Chen, B.Q.[Bao-Quan],
Decouple Learning for Parameterized Image Operators,
ECCV18(XIII: 455-471).
Springer DOI
1810
BibRef
Wang, X.[Xin],
Yu, F.[Fisher],
Dou, Z.Y.[Zi-Yi],
Darrell, T.J.[Trevor J.],
Gonzalez, J.E.[Joseph E.],
SkipNet: Learning Dynamic Routing in Convolutional Networks,
ECCV18(XIII: 420-436).
Springer DOI
1810
Skip deep layers for simple tasks.
BibRef
Zhu, X.Y.[Xuan-Yu],
Xu, Y.[Yi],
Xu, H.T.[Hong-Teng],
Chen, C.J.[Chang-Jian],
Quaternion Convolutional Neural Networks,
ECCV18(VIII: 645-661).
Springer DOI
1810
BibRef
Zhang, S.[Shun],
Xie, D.[Di],
Pu, S.L.[Shi-Liang],
Extreme Network Compression via Filter Group Approximation,
ECCV18(VIII: 307-323).
Springer DOI
1810
BibRef
Lai, W.S.[Wei-Sheng],
Huang, J.B.[Jia-Bin],
Wang, O.[Oliver],
Shechtman, E.[Eli],
Yumer, E.[Ersin],
Yang, M.H.[Ming-Hsuan],
Learning Blind Video Temporal Consistency,
ECCV18(XV: 179-195).
Springer DOI
1810
BibRef
Carreira, J.[Joăo],
Patraucean, V.[Viorica],
Mazare, L.[Laurent],
Zisserman, A.[Andrew],
Osindero, S.[Simon],
Massively Parallel Video Networks,
ECCV18(II: 680-697).
Springer DOI
1810
BibRef
Xie, S.N.[Sai-Ning],
Sun, C.[Chen],
Huang, J.[Jonathan],
Tu, Z.W.[Zhuo-Wen],
Murphy, K.[Kevin],
Rethinking Spatiotemporal Feature Learning:
Speed-Accuracy Trade-offs in Video Classification,
ECCV18(XV: 318-335).
Springer DOI
1810
BibRef
Ochs, P.[Peter],
Meinhardt, T.[Tim],
Leal-Taixe, L.[Laura],
Moeller, M.[Michael],
Lifting Layers: Analysis and Applications,
ECCV18(I: 53-68).
Springer DOI
1810
BibRef
Yu, X.[Xiyu],
Liu, T.L.[Tong-Liang],
Gong, M.M.[Ming-Ming],
Tao, D.C.[Da-Cheng],
Learning with Biased Complementary Labels,
ECCV18(I: 69-85).
Springer DOI
1810
BibRef
Ahmed, K.[Karim],
Torresani, L.[Lorenzo],
MaskConnect: Connectivity Learning by Gradient Descent,
ECCV18(VI: 362-378).
Springer DOI
1810
BibRef
Cheng, B.[Bowen],
Wei, Y.C.[Yun-Chao],
Shi, H.H.[Hong-Hui],
Feris, R.S.[Rogerio S.],
Xiong, J.J.[Jin-Jun],
Huang, T.S.[Thomas S.],
Revisiting RCNN: On Awakening the Classification Power of Faster RCNN,
ECCV18(XV: 473-490).
Springer DOI
1810
BibRef
Chang, S.[Simyung],
Yang, J.[John],
Park, S.[Seong_Uk],
Kwak, N.[Nojun],
Broadcasting Convolutional Network for Visual Relational Reasoning,
ECCV18(XV: 780-796).
Springer DOI
1810
BibRef
Son, S.H.[Sang-Hyun],
Nah, S.J.[Seung-Jun],
Lee, K.M.[Kyoung Mu],
Clustering Convolutional Kernels to Compress Deep Neural Networks,
ECCV18(VIII: 225-240).
Springer DOI
1810
BibRef
Chen, C.G.[Chan-Gan],
Tung, F.[Frederick],
Vedula, N.[Naveen],
Mori, G.[Greg],
Constraint-Aware Deep Neural Network Compression,
ECCV18(VIII: 409-424).
Springer DOI
1810
BibRef
Zhang, D.Q.[Dong-Qing],
Yang, J.L.[Jiao-Long],
Ye, D.Q.[Dong-Qiangzi],
Hua, G.[Gang],
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep
Neural Networks,
ECCV18(VIII: 373-390).
Springer DOI
1810
BibRef
He, Y.H.[Yi-Hui],
Lin, J.[Ji],
Liu, Z.J.[Zhi-Jian],
Wang, H.[Hanrui],
Li, L.J.[Li-Jia],
Han, S.[Song],
AMC: AutoML for Model Compression and Acceleration on Mobile Devices,
ECCV18(VII: 815-832).
Springer DOI
1810
To put NN model on mobile device.
BibRef
Data, G.W.P.[Gratianus Wesley Putra],
Ngu, K.[Kirjon],
Murray, D.W.[David William],
Prisacariu, V.A.[Victor Adrian],
Interpolating Convolutional Neural Networks Using Batch Normalization,
ECCV18(XIII: 591-606).
Springer DOI
1810
BibRef
Wu, J.L.[Jia-Lin],
Li, D.[Dai],
Yang, Y.[Yu],
Bajaj, C.[Chandrajit],
Ji, X.Y.[Xiang-Yang],
Dynamic Filtering with Large Sampling Field for ConvNets,
ECCV18(X: 188-203).
Springer DOI
1810
BibRef
Yang, T.J.[Tien-Ju],
Howard, A.[Andrew],
Chen, B.[Bo],
Zhang, X.[Xiao],
Go, A.[Alec],
Sandler, M.[Mark],
Sze, V.[Vivienne],
Adam, H.[Hartwig],
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile
Applications,
ECCV18(X: 289-304).
Springer DOI
1810
BibRef
Dong, J.D.[Jin-Dong],
Cheng, A.C.[An-Chieh],
Juan, D.C.[Da-Cheng],
Wei, W.[Wei],
Sun, M.[Min],
DPP-Net: Device-Aware Progressive Search for Pareto-Optimal Neural
Architectures,
ECCV18(XI: 540-555).
Springer DOI
1810
Optimize for device properties.
BibRef
Decencičre, E.[Etienne],
Velasco-Forero, S.[Santiago],
Min, F.[Fu],
Chen, J.J.[Juan-Juan],
Burdin, H.[Hélčne],
Gauthier, G.[Gervais],
Bornschloegl, B.L.T.[Bruno La˙. Thomas],
Baldeweck, T.[Thérčse],
Dealing with Topological Information Within a Fully Convolutional
Neural Network,
ACIVS18(462-471).
Springer DOI
1810
BibRef
Kim, H.J.[Hyo Jin],
Frahm, J.M.[Jan-Michael],
Hierarchy of Alternating Specialists for Scene Recognition,
ECCV18(XI: 471-488).
Springer DOI
1810
BibRef
Jayaraman, P.K.[Pradeep Kumar],
Mei, J.H.[Jian-Han],
Cai, J.F.[Jian-Fei],
Zheng, J.M.[Jian-Min],
Quadtree Convolutional Neural Networks,
ECCV18(VI: 554-569).
Springer DOI
1810
BibRef
Kenning, M.P.[Michael P.],
Xie, X.H.[Xiang-Hua],
Edwards, M.[Michael],
Deng, J.J.[Jing-Jing],
Local Representation Learning with A Convolutional Autoencoder,
ICIP18(3239-3243)
IEEE DOI
1809
MNIST.
Convolution, Neural networks, Kernel, Encoding, Machine learning,
Image reconstruction, Interpolation
BibRef
Mitschke, N.,
Heizmann, M.,
Noffz, K.,
Wittmann, R.,
Gradient Based Evolution to Optimize the Structure of Convolutional
Neural Networks,
ICIP18(3438-3442)
IEEE DOI
1809
Neurons, Sociology, Statistics, Kernel, Genomics, Bioinformatics,
Biological neural networks, Genetic algorithm, neural networks,
neuroevolution
BibRef
Nousi, P.,
Patsiouras, E.,
Tefas, A.,
Pitas, I.,
Convolutional Neural Networks for Visual Information Analysis with
Limited Computing Resources,
ICIP18(321-325)
IEEE DOI
1809
Detectors, Computational modeling, Feature extraction,
Task analysis, Visualization, Mobile handsets, Optimization,
Inference Optimization
BibRef
Follmann, P.,
Bottger, T.,
A Rotationally-Invariant Convolution Module by Feature Map
Back-Rotation,
WACV18(784-792)
IEEE DOI
1806
convolution, feature extraction, feedforward neural nets,
image classification, learning (artificial intelligence), CNNs,
Transforms
BibRef
Guo, Y.M.[Yan-Ming],
Lew, M.S.[Michael S.],
Bag of Surrogate Parts: one inherent feature of deep CNNs,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Zhao, S.W.[Shan-Wei],
Zhao, Z.C.[Zhi-Cheng],
Su, F.[Fei],
Gram matrix based representation for image retrieval,
VCIP17(1-4)
IEEE DOI
1804
Second order features based on convolutional layers.
feedforward neural nets, image coding, image representation,
image retrieval, matrix algebra, Gram matrix,
image retrieval
BibRef
Yim, J.,
Sohn, K.A.,
Enhancing the Performance of Convolutional Neural Networks on Quality
Degraded Datasets,
DICTA17(1-8)
IEEE DOI
1804
convolution, image classification, image filtering,
learning (artificial intelligence), neural nets,
Noise reduction
BibRef
Huang, M.Y.[Mou-Yue],
Lai, C.H.[Ching-Hao],
Chen, S.H.[Sin-Horng],
Fast and accurate image recognition using Deeply-Fused Branchy
Networks,
ICIP17(2876-2880)
IEEE DOI
1803
Agriculture, Collaboration, Error analysis,
Graphics processing units, Image recognition, Network topology,
inference time
BibRef
Dominguez, M.,
Such, F.P.,
Sah, S.,
Ptucha, R.,
Towards 3D convolutional neural networks with meshes,
ICIP17(3929-3933)
IEEE DOI
1803
Convolution, Convolutional neural networks, Feature extraction,
Graph theory, Tensile stress,
voxels
BibRef
Yoshiyasu, Y.,
Yoshida, E.,
Pirk, S.,
Guibas, L.J.[Leonidas J.],
3D convolutional neural networks by modal fusion,
ICIP17(1777-1781)
IEEE DOI
1803
Encoding, Robots, Shape, Solid modeling, Testing,
BibRef
Pasupuleti, S.K.,
Miniskar, N.R.,
Rajagopal, V.,
Gadde, R.N.,
A novel method to regenerate an optimal CNN by exploiting redundancy
patterns in the network,
ICIP17(4407-4411)
IEEE DOI
1803
Complexity theory, Computational modeling, Convolution, Kernel,
Neural networks, Redundancy, Semantics, Caffe,
light-weight network
BibRef
Jeon, S.R.[Sang-Ryul],
Kim, S.R.[Seung-Ryong],
Sohn, K.H.[Kwang-Hoon],
Convolutional feature pyramid fusion via attention network,
ICIP17(1007-1011)
IEEE DOI
1803
Estimation, Feature extraction,
Optical imaging, Robustness, Semantics, Visualization,
feature pyramid
BibRef
Ishii, M.[Masato],
Sato, A.[Atsushi],
Layer-Wise Weight Decay for Deep Neural Networks,
PSIVT17(276-289).
Springer DOI
1802
BibRef
Gupta, A.,
Duggal, R.,
P-TELU: Parametric Tan Hyperbolic Linear Unit Activation for Deep
Neural Networks,
CEFR-LCV17(974-978)
IEEE DOI
1802
Benchmark testing, Biological neural networks,
Convergence, Neurons, Noise robustness, Standards
BibRef
Marcos, D.[Diego],
Volpi, M.[Michele],
Komodakis, N.[Nikos],
Tuia, D.[Devis],
Rotation Equivariant Vector Field Networks,
ICCV17(5058-5067)
IEEE DOI
1802
CNN encoding roataion invariance.
convolution, filtering theory, image segmentation,
learning (artificial intelligence), medical image processing,
BibRef
Zhang, T.[Ting],
Qi, G.J.[Guo-Jun],
Xiao, B.[Bin],
Wang, J.D.[Jing-Dong],
Interleaved Group Convolutions,
ICCV17(4383-4392)
IEEE DOI
1802
Modularized NN.
convolution, filtering theory, group theory, image classification,
learning (artificial intelligence), neural nets,
Tensile stress
BibRef
Wang, G.,
Xie, X.,
Lai, J.,
Zhuo, J.,
Deep Growing Learning,
ICCV17(2831-2839)
IEEE DOI
1802
convolution, data handling, learning (artificial intelligence),
neural nets, DGL, SSL framework, deep growing learning, deep network,
Visualization
BibRef
Zhang, Y.[Yan],
Ozay, M.[Mete],
Li, S.H.[Shuo-Hao],
Okatani, T.[Takayuki],
Truncating Wide Networks Using Binary Tree Architectures,
ICCV17(2116-2124)
IEEE DOI
1802
image classification, learning (artificial intelligence),
neural nets, pattern classification, trees (mathematics),
Vegetation
BibRef
Wang, Y.[Yan],
Xie, L.X.[Ling-Xi],
Liu, C.X.[Chen-Xi],
Qiao, S.Y.[Si-Yuan],
Zhang, Y.[Ya],
Zhang, W.J.[Wen-Jun],
Tian, Q.[Qi],
Yuille, A.L.[Alan L.],
SORT: Second-Order Response Transform for Visual Recognition,
ICCV17(1368-1377)
IEEE DOI
1802
Second order operators in deep networks.
image recognition, neural nets, transforms, SORT,
Second-Order Response Transform, chain-styled network,
Visualization
BibRef
Dai, J.F.[Ji-Feng],
Qi, H.Z.[Hao-Zhi],
Xiong, Y.[Yuwen],
Li, Y.[Yi],
Zhang, G.D.[Guo-Dong],
Hu, H.[Han],
Wei, Y.C.[Yi-Chen],
Deformable Convolutional Networks,
ICCV17(764-773)
IEEE DOI
1802
convolution, feedforward neural nets,
image segmentation, learning (artificial intelligence),
BibRef
Wen, W.,
Xu, C.,
Wu, C.,
Wang, Y.,
Chen, Y.,
Li, H.,
Coordinating Filters for Faster Deep Neural Networks,
ICCV17(658-666)
IEEE DOI
1802
image classification, image filtering,
learning (artificial intelligence), neural nets,
Tensile stress
BibRef
Osherov, E.,
Lindenbaum, M.,
Increasing CNN Robustness to Occlusions by Reducing Filter Support,
ICCV17(550-561)
IEEE DOI
1802
image classification, image filtering,
learning (artificial intelligence), neural nets,
Weight measurement
BibRef
Cecconi, L.[Leonardo],
Smets, S.[Sander],
Benini, L.[Luca],
Verhelst, M.[Marian],
Optimal Tiling Strategy for Memory Bandwidth Reduction for CNNs,
ACIVS17(89-100).
Springer DOI
1712
BibRef
Ceruti, C.[Claudio],
Campadelli, P.[Paola],
Casiraghi, E.[Elena],
Linear Regularized Compression of Deep Convolutional Neural Networks,
CIAP17(I:244-253).
Springer DOI
1711
BibRef
Wang, P.S.[Pei-Song],
Cheng, J.[Jian],
Fixed-Point Factorized Networks,
CVPR17(3966-3974)
IEEE DOI
1711
DNN.
Acceleration, Computational modeling,
Matrix decomposition, Neural networks, Quantization, (signal)
BibRef
Jeon, Y.H.[Yun-Ho],
Kim, J.[Junmo],
Active Convolution:
Learning the Shape of Convolution for Image Classification,
CVPR17(1846-1854)
IEEE DOI
1711
Convolution, Convolutional codes, Interpolation, Lattices, Neurons, Shape
BibRef
Chollet, F.,
Xception: Deep Learning with Depthwise Separable Convolutions,
CVPR17(1800-1807)
IEEE DOI
1711
Biological neural networks,
Convolutional codes, Correlation,
BibRef
Zamir, A.R.,
Wu, T.L.,
Sun, L.,
Shen, W.B.,
Shi, B.E.,
Malik, J.,
Savarese, S.,
Feedback Networks,
CVPR17(1808-1817)
IEEE DOI
1711
Feedforward systems, Logic gates,
Microprocessors, Predictive models, Taxonomy
BibRef
Harley, A.W.,
Derpanis, K.G.,
Kokkinos, I.,
Segmentation-Aware Convolutional Networks Using Local Attention Masks,
ICCV17(5048-5057)
IEEE DOI
1802
convolution, filtering theory, image segmentation,
learning (artificial intelligence), neural nets,
Semantics
BibRef
Juefei-Xu, F.[Felix],
Savvides, M.[Marios],
Learning to Invert Local Binary Patterns,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Kossaifi, J.[Jean],
Khanna, A.[Aran],
Lipton, Z.[Zachary],
Furlanello, T.[Tommaso],
Anandkumar, A.[Anima],
Tensor Contraction Layers for Parsimonious Deep Nets,
Tensor17(1940-1946)
IEEE DOI
1709
Complexity theory, Tensile stress
BibRef
Araújo, T.[Teresa],
Aresta, G.[Guilherme],
Almada-Lobo, B.[Bernardo],
Mendonça, A.M.[Ana Maria],
Campilho, A.[Aurélio],
Improving Convolutional Neural Network Design via Variable Neighborhood
Search,
ICIAR17(371-379).
Springer DOI
1706
BibRef
Ibrahim, A.[Ahmed],
Abbott, A.L.[A. Lynn],
Hussein, M.E.[Mohamed E.],
Input Fast-Forwarding for Better Deep Learning,
ICIAR17(363-370).
Springer DOI
1706
BibRef
Hernández, G.[Gerardo],
Zamora, E.[Erik],
Sossa, H.[Humberto],
Comparing Deep and Dendrite Neural Networks: A Case Study,
MCPR17(32-41).
Springer DOI
1706
BibRef
Tabernik, D.[Domen],
Kristan, M.[Matej],
Wyatt, J.L.,
Leonardis, A.[Ale],
Towards deep compositional networks,
ICPR16(3470-3475)
IEEE DOI
1705
Computational modeling, Convolution, Cost function,
Mathematical model, Neural networks, Standards, Visualization
BibRef
Käding, C.[Christoph],
Rodner, E.[Erik],
Freytag, A.[Alexander],
Denzler, J.[Joachim],
Fine-Tuning Deep Neural Networks in Continuous Learning Scenarios,
DeepVisual16(III: 588-605).
Springer DOI
1704
BibRef
Gao, Y.,
Liu, Z.,
Wang, D.,
Error models of finite word length arithmetic in CNN accelerator
design,
VCIP16(1-4)
IEEE DOI
1701
Analytical models
BibRef
Shaheen, F.[Fatma],
Verma, B.[Brijesh],
Asafuddoula, M.,
Impact of Automatic Feature Extraction in Deep Learning Architecture,
DICTA16(1-8)
IEEE DOI
1701
Biological neural networks
BibRef
Mao, F.L.[Feng-Ling],
Xiong, W.[Wei],
Du, B.[Bo],
Zhang, L.[Lefei],
Stochastic Decorrelation Constraint Regularized Auto-Encoder for Visual
Recognition,
MMMod17(II: 368-380).
Springer DOI
1701
BibRef
Liu, Y.[Yu],
Guo, Y.M.[Yan-Ming],
Lew, M.S.[Michael S.],
On the Exploration of Convolutional Fusion Networks for Visual
Recognition,
MMMod17(I: 277-289).
Springer DOI
1701
BibRef
Ujiie, T.,
Hiromoto, M.,
Sato, T.,
Approximated Prediction Strategy for Reducing Power Consumption of
Convolutional Neural Network Processor,
ECVW16(870-876)
IEEE DOI
1612
BibRef
Honari, S.[Sina],
Yosinski, J.[Jason],
Vincent, P.[Pascal],
Pal, C.[Christopher],
Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation,
CVPR16(5743-5752)
IEEE DOI
1612
BibRef
Hu, P.Y.[Pei-Yun],
Ramanan, D.[Deva],
Bottom-Up and Top-Down Reasoning with Hierarchical Rectified
Gaussians,
CVPR16(5600-5609)
IEEE DOI
1612
BibRef
Lavin, A.[Andrew],
Gray, S.[Scott],
Fast Algorithms for Convolutional Neural Networks,
CVPR16(4013-4021)
IEEE DOI
1612
BibRef
Misra, I.[Ishan],
Shrivastava, A.[Abhinav],
Gupta, A.[Abhinav],
Hebert, M.[Martial],
Cross-Stitch Networks for Multi-task Learning,
CVPR16(3994-4003)
IEEE DOI
1612
Learn shared representations.
BibRef
Szegedy, C.[Christian],
Vanhoucke, V.[Vincent],
Ioffe, S.[Sergey],
Shlens, J.[Jon],
Wojna, Z.[Zbigniew],
Rethinking the Inception Architecture for Computer Vision,
CVPR16(2818-2826)
IEEE DOI
1612
scale-up CNN recognition to larger number of classes.
BibRef
Jain, A.[Ashesh],
Zamir, A.R.[Amir R.],
Savarese, S.[Silvio],
Saxena, A.[Ashutosh],
Structural-RNN: Deep Learning on Spatio-Temporal Graphs,
CVPR16(5308-5317)
IEEE DOI
1612
Award, CVPR, Student.
BibRef
Xie, L.,
Wang, J.,
Wei, Z.,
Wang, M.,
Tian, Q.,
DisturbLabel: Regularizing CNN on the Loss Layer,
CVPR16(4753-4762)
IEEE DOI
1612
BibRef
Cohen, N.,
Sharir, O.,
Shashua, A.,
Deep SimNets,
CVPR16(4782-4791)
IEEE DOI
1612
BibRef
Shankar, S.,
Robertson, D.,
Ioannou, Y.,
Criminisi, A.,
Cipolla, R.[Roberto],
Refining Architectures of Deep Convolutional Neural Networks,
CVPR16(2212-2220)
IEEE DOI
1612
BibRef
Chen, H.G.,
Jayasuriya, S.,
Yang, J.,
Stephen, J.,
Sivaramakrishnan, S.,
Veeraraghavan, A.,
Molnar, A.,
ASP Vision: Optically Computing the First Layer of Convolutional
Neural Networks Using Angle Sensitive Pixels,
CVPR16(903-912)
IEEE DOI
1612
BibRef
Wang, J.D.[Jing-Dong],
Yuille, A.L.[Alan L.],
Tian, Q.[Qi],
InterActive: Inter-Layer Activeness Propagation,
CVPR16(270-279)
IEEE DOI
1612
BibRef
Tomen, N.[Nergis],
van Gemert, J.C.[Jan C.],
Spectral Leakage and Rethinking the Kernel Size in CNNs,
ICCV21(5118-5127)
IEEE DOI
2203
Convolutional codes, Maximum likelihood detection, Convolution,
Shape, Nonlinear filters, Benchmark testing,
Machine learning architectures and formulations
BibRef
Lebedev, V.,
Lempitsky, V.,
Fast ConvNets Using Group-Wise Brain Damage,
CVPR16(2554-2564)
IEEE DOI
1612
BibRef
Rastegar, S.,
Baghshah, M.S.[Mahdieh Soleymani],
Rabiee, H.R.[Hamid R.],
Shojaee, S.M.,
MDL-CW: A Multimodal Deep Learning Framework with CrossWeights,
CVPR16(2601-2609)
IEEE DOI
1612
BibRef
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Fawzi, A.[Alhussein],
Frossard, P.[Pascal],
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks,
CVPR16(2574-2582)
IEEE DOI
1612
BibRef
Wu, J.X.[Jia-Xiang],
Leng, C.[Cong],
Wang, Y.H.[Yu-Hang],
Hu, Q.H.[Qing-Hao],
Cheng, J.[Jian],
Quantized Convolutional Neural Networks for Mobile Devices,
CVPR16(4820-4828)
IEEE DOI
1612
Implementations.
BibRef
Jin, X.J.[Xiao-Jie],
Chen, Y.P.[Yun-Peng],
Dong, J.[Jian],
Feng, J.S.[Jia-Shi],
Yan, S.C.[Shui-Cheng],
Collaborative Layer-Wise Discriminative Learning in Deep Neural
Networks,
ECCV16(VII: 733-749).
Springer DOI
1611
BibRef
Goo, W.[Wonjoon],
Kim, J.Y.[Ju-Yong],
Kim, G.[Gunhee],
Hwang, S.J.[Sung Ju],
Taxonomy-Regularized Semantic Deep Convolutional Neural Networks,
ECCV16(II: 86-101).
Springer DOI
1611
BibRef
Shen, L.[Li],
Lin, Z.C.[Zhou-Chen],
Huang, Q.M.[Qing-Ming],
Relay Backpropagation for Effective Learning of Deep Convolutional
Neural Networks,
ECCV16(VII: 467-482).
Springer DOI
1611
BibRef
Wang, Z.Y.[Zhen-Yang],
Deng, Z.D.[Zhi-Dong],
Wang, S.[Shiyao],
Accelerating Convolutional Neural Networks with Dominant Convolutional
Kernel and Knowledge Pre-regression,
ECCV16(VIII: 533-548).
Springer DOI
1611
BibRef
Zhou, H.[Hao],
Alvarez, J.M.[Jose M.],
Porikli, F.M.[Fatih M.],
Less Is More: Towards Compact CNNs,
ECCV16(IV: 662-677).
Springer DOI
1611
BibRef
Yu, D.[Dan],
Wu, X.J.[Xiao-Jun],
VLAD Is not Necessary for CNN,
TASKCV16(III: 492-499).
Springer DOI
1611
BibRef
Bach, S.[Sebastian],
Binder, A.[Alexander],
Müller, K.R.[Klaus-Robert],
Samek, W.[Wojciech],
Controlling explanatory heatmap resolution and semantics via
decomposition depth,
ICIP16(2271-2275)
IEEE DOI
1610
Computational modeling
BibRef
Pang, J.,
Lin, H.,
Su, L.,
Zhang, C.,
Zhang, W.,
Duan, L.,
Huang, Q.,
Yin, B.,
Accelerate convolutional neural networks for binary classification
via cascading cost-sensitive feature,
ICIP16(1037-1041)
IEEE DOI
1610
Acceleration
BibRef
Carvalho, M.,
Cord, M.,
Avila, S.,
Thome, N.,
Valle, E.,
Deep neural networks under stress,
ICIP16(4443-4447)
IEEE DOI
1610
Computational modeling
BibRef
Yang, Z.C.[Zi-Chao],
Moczulski, M.[Marcin],
Denil, M.[Misha],
de Freitas, N.[Nando],
Smola, A.J.[Alexander J.],
Song, L.[Le],
Wang, Z.Y.[Zi-Yu],
Deep Fried Convnets,
ICCV15(1476-1483)
IEEE DOI
1602
Adaptive systems
BibRef
Ionescu, C.,
Vantzos, O.,
Sminchisescu, C.,
Matrix Backpropagation for Deep Networks with Structured Layers,
ICCV15(2965-2973)
IEEE DOI
1602
Backpropagation
BibRef
Yang, B.,
Yan, J.,
Lei, Z.,
Li, S.Z.,
Convolutional Channel Features,
ICCV15(82-90)
IEEE DOI
1602
Boosting
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Squeeze-and-Excite Networks .