Neri, A.,
Colonnese, S.,
Russo, G.,
Talone, P.,
Automatic Moving Object and Background Separation,
SP(66), No. 2, April 1998, pp. 219-232.
9807
BibRef
Sullivan, J.,
Blake, A.,
Isard, M.,
MacCormick, J.P.,
Bayesian Object Localisation in Images,
IJCV(44), No. 2, September 2001, pp. 111-135.
DOI Link
0110
BibRef
Earlier:
Object Localization by Bayesian Correlation,
ICCV99(1068-1075).
IEEE DOI Model both foreground (the object) and the background.
Apply a bank of (approximately) independent filters,
learn background/foreground distributions.
BibRef
Sullivan, J.,
Blake, A.,
Rittscher, J.,
Statistical Foreground Modelling for Object Localisation,
ECCV00(II: 307-323).
Springer DOI
0003
BibRef
Cho, J.H.[Ju-Hyun],
Kim, S.D.[Seong-Dae],
Object detection using multi-resolution mosaic in image sequences,
SP:IC(20), No. 3, March 2005, pp. 233-253.
Elsevier DOI
0501
BibRef
Chang, G.H.[Gyu-Hwan],
Jung, H.M.[Hae-Mook],
Kim, S.D.[Seong-Dae],
Choi, J.G.[Jae-Gark],
Lee, S.W.[Si-Woong],
Cho, S.J.[Soon-Jae],
Method for segmenting and estimating a moving object motion
using a hierarchy of motion models,
US_Patent5,734,737, Mar 31, 1998
WWW Link. Frame difference, region segmentation.
BibRef
9803
Cooper, F.J.[Frederick J.],
Skarbo, R.A.[Rune A.],
Method of presence detection using video input,
US_Patent5,892,856, Apr 6, 1999
WWW Link.
BibRef
9904
Hillman, P.,
Hannah, J.,
Renshaw, D.,
Semi-automatic foreground/background segmentation of motion picture
images and image sequences,
VISP(152), No. 4, August 2005, pp. 387-397.
DOI Link
0512
BibRef
Earlier:
Alpha Channel Estimation in High Resolution Images and Image Sequences,
CVPR01(I:1063-1068).
IEEE DOI
0110
Segment actor from background.
BibRef
Butler, D.E.[Darren E.],
Bove, Jr., V.M.[V. Michael],
Sridharan, S.[Sridha],
Real-Time Adaptive Foreground/Background Segmentation,
JASP(2005), No. 14, 2005, pp. 2292-2304.
WWW Link.
0603
BibRef
Kolmogorov, V.[Vladimir],
Criminisi, A.[Antonio],
Blake, A.[Andrew],
Cross, G.[Geoffrey],
Rother, C.[Carsten],
Probabilistic Fusion of Stereo with Color and Contrast for Bi-Layer
Segmentation,
IJCV(76), No. 2, February 2008, pp. 107.
Springer DOI
0801
Part of the CVPR 2005 Award Issue.
BibRef
And:
PAMI(28), No. 9, September 2006, pp. 1480-1492.
IEEE DOI
0608
BibRef
Earlier:
CVPR05(II: 407-414).
IEEE DOI
0507
Award, CVPR.
BibRef
And:
Bi-Layer Segmentation of Binocular Stereo Video,
CVPR05(II: 1186).
IEEE DOI
0507
Award, CVPR, HM. Real-time segmentation of foreground/background in stereo video.
Two different sets, fuse stereo match with color to get layers,
fuse color with stereo hypotheses.
BibRef
Wang, Y.[Yi],
Implementation of Bilayer Segmentation of Live Video,
OnlineCaltech 2006.
WWW Link.
Code, Motion Segmentation.
See also Probabilistic Fusion of Stereo with Color and Contrast for Bi-Layer Segmentation.
BibRef
0600
Grundmann, M.[Matthias],
Kwatra, V.[Vivek],
Han, M.[Mei],
Essa, I.A.[Irfan A.],
Efficient hierarchical graph-based video segmentation,
CVPR10(2141-2148).
IEEE DOI
1006
BibRef
Yin, P.[Pei],
Criminisi, A.[Antonio],
Winn, J.[John],
Essa, I.A.[Irfan A.],
Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers,
PAMI(33), No. 1, January 2011, pp. 30-42.
IEEE DOI
1011
BibRef
Earlier:
Tree-based Classifiers for Bilayer Video Segmentation,
CVPR07(1-8).
IEEE DOI
0706
Automatic segmentation for video, monocular camera, approximate
depth segmentation form stereo. Frames into foreground/background layers.
BibRef
Criminisi, A.,
Cross, G.,
Blake, A.,
Kolmogorov, V.[Vladimir],
Bilayer Segmentation of Live Video,
CVPR06(I: 53-60).
IEEE DOI
0606
BibRef
Nanda, P.K.[Pradipta Kumar],
Ghosh, A.[Asish],
Kanungo, P.[Priyadarshi],
Classification of Objects and
Background Using Parallel Genetic Algorithm Based Clustering,
ELCVIA(6), No. 3, 2007, pp. 42-53.
DOI Link
0803
BibRef
Zhang, X.[Xiang],
Yang, J.[Jie],
Moving object detection based on shape prediction,
JOSA-A(26), No. 2, February 2009, pp. 342-349.
WWW Link.
0902
BibRef
Jiang, H.T.[Hong-Tu],
Owall, V.,
Ardo, H.[Hakan],
A Hardware Architecture for Real-Time Video Segmentation Utilizing
Memory Reduction Techniques,
CirSysVideo(19), No. 2, February 2009, pp. 226-236.
IEEE DOI
0902
BibRef
Earlier: A1, A3, A2:
Real-Time Video Segmentation with VGA Resolution and Memory Bandwidth
Reduction,
AVSBS06(104-104).
IEEE DOI
0611
BibRef
Kristensen, F.[Fredrik],
Nilsson, P.[Peter],
Öwall, V.[Viktor],
Background Segmentation Beyond RGB,
ACCV06(II:602-612).
Springer DOI
0601
BibRef
El Baf, F.[Fida], and
Bouwmans, T.[Thierry],
Robust fuzzy statistical modeling of dynamic backgrounds in IR videos,
SPIE(Newsroom), November 13, 2009.
DOI Link
0911
Taking into account uncertainties in classification results in an
improved alternative to conventional means of detecting moving
objects.
BibRef
Bouwmans, T.[Thierry],
Zahzah, E.H.[El Hadi],
Robust PCA via Principal Component Pursuit:
A review for a comparative evaluation in video surveillance,
CVIU(122), No. 1, 2014, pp. 22-34.
Elsevier DOI
1404
Foreground detection
BibRef
Guyon, C.[Charles],
Bouwmans, T.[Thierry],
Zahzah, E.H.[El-Hadi],
Foreground Detection via Robust Low Rank Matrix Decomposition Including
Spatio-Temporal Constraint,
BMC12(I:315-320).
Springer DOI
1304
BibRef
And:
Foreground detection based on low-rank and block-sparse matrix
decomposition,
ICIP12(1225-1228).
IEEE DOI
1302
BibRef
And:
Foreground detection via robust low rank matrix factorization including
spatial constraint with Iterative reweighted regression,
ICPR12(2805-2808).
WWW Link.
1302
BibRef
And:
Moving Object Detection via Robust Low Rank Matrix Decomposition with
Irls Scheme,
ISVC12(I: 665-674).
Springer DOI
1209
BibRef
And:
Moving Object Detection by Robust PCA Solved via a Linearized Symmetric
Alternating Direction Method,
ISVC12(I: 427-436).
Springer DOI
1209
BibRef
And:
Foreground Detection by Robust PCA Solved via a Linearized Alternating
Direction Method,
ICIAR12(I: 115-122).
Springer DOI
1206
Robust PCA to avoid blending object to background
BibRef
El Baf, F.[Fida],
Bouwmans, T.[Thierry],
Vachon, B.[Bertrand],
Fuzzy statistical modeling of dynamic backgrounds for moving object
detection in infrared videos,
OTCBVS09(60-65).
IEEE DOI
0906
BibRef
Earlier:
Type-2 Fuzzy Mixture of Gaussians Model:
Application to Background Modeling,
ISVC08(I: 772-781).
Springer DOI
0812
BibRef
And:
Fuzzy foreground detection for infrared videos,
OTCBVS08(1-6).
IEEE DOI
0806
BibRef
And:
A fuzzy approach for background subtraction,
ICIP08(2648-2651).
IEEE DOI
0810
BibRef
Wang, L.[Lu],
Yung, N.H.C.[Nelson H.C.],
Extraction of Moving Objects From Their Background Based on Multiple
Adaptive Thresholds and Boundary Evaluation,
ITS(11), No. 1, March 2010, pp. 40-51.
IEEE DOI
1003
BibRef
Bhaskar, H.,
Mihaylova, L.,
Achim, A.,
Video Foreground Detection Based on Symmetric Alpha-Stable Mixture
Models,
CirSysVideo(20), No. 8, August 2010, pp. 1133-1138.
IEEE DOI
1008
BibRef
Kwak, S.[Sooyeong],
Bae, G.[Guntae],
Byun, H.R.[Hye-Ran],
Moving-object segmentation using a foreground history map,
JOSA-A(27), No. 2, February 2010, pp. 180-187.
WWW Link.
1002
BibRef
Hyun, M.H.[Myung-Han],
Kim, S.Y.[Sung-Yeol],
Kang, Y.S.[Yun-Suk],
Ho, Y.S.[Yo-Sung],
Multiview foreground extraction and composition to multiview background
using trimap sharing for natural 3D scene generation,
IJIST(20), No. 3, September 2010, pp. 285-293.
DOI Link
1008
BibRef
Lee, W.W.[Won-Woo],
Woo, W.T.[Woon-Tack],
Boyer, E.[Edmond],
Silhouette Segmentation in Multiple Views,
PAMI(33), No. 7, July 2011, pp. 1429-1441.
IEEE DOI
1106
BibRef
Earlier:
Identifying Foreground from Multiple Images,
ACCV07(II: 580-589).
Springer DOI
0711
Consistent foreground regions. Exploit spatial consistency of several
projections.
BibRef
Caseiro, R.[Rui],
Martins, P.[Pedro],
Henriques, J.F.[João F.],
Batista, J.P.[Jorge P.],
A nonparametric Riemannian framework on tensor field with application
to foreground segmentation,
PR(45), No. 11, November 2012, pp. 3997-4017.
Elsevier DOI
1206
BibRef
Earlier: A1, A3, A2, A4:
ICCV11(1-8).
IEEE DOI
1201
Nonparametric density estimation, Kernel density estimation, Riemannian
geometry, Tensor manifold, Riemannian metrics, Foreground segmentation
on tensor field
BibRef
Caseiro, R.[Rui],
Martins, P.[Pedro],
Henriques, J.F.[Joao F.],
Leite, F.S.[Fatima Silva],
Batista, J.P.[Jorge P.],
Rolling Riemannian Manifolds to Solve the Multi-class Classification
Problem,
CVPR13(41-48)
IEEE DOI
1309
Object Classification, Riemannian Manifolds, Rolling motions
BibRef
Caseiro, R.[Rui],
Henriques, J.F.[João F.],
Martins, P.[Pedro],
Batista, J.P.[Jorge P.],
Semi-intrinsic Mean Shift on Riemannian Manifolds,
ECCV12(I: 342-355).
Springer DOI
1210
BibRef
Caseiro, R.[Rui],
Henriques, J.F.[Joao F.],
Batista, J.P.[Jorge P.],
Foreground Segmentation via Background Modeling on Riemannian Manifolds,
ICPR10(3570-3574).
IEEE DOI
1008
See also Globally optimal solution to multi-object tracking with merged measurements.
BibRef
Caseiro, R.[Rui],
Batista, J.P.[Jorge P.],
Martins, P.[Pedro],
Background Modelling on Tensor Field for Foreground Segmentation,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Gallego, J.[Jaime],
Pardàs, M.[Montse],
Haro, G.[Gloria],
Enhanced foreground segmentation and tracking combining Bayesian
background, shadow and foreground modeling,
PRL(33), No. 12, 1 September 2012, pp. 1558-1568.
Elsevier DOI
1208
BibRef
Earlier:
Bayesian foreground segmentation and tracking using pixel-wise
background model and region based foreground model,
ICIP09(3205-3208).
IEEE DOI
0911
Foreground segmentation, Space-color models, Shadow model, Objects
tracking, GMM
BibRef
Gallego, J.[Jaime],
Pardàs, M.[Montse],
Region based foreground segmentation combining color and depth
sensors via logarithmic opinion pool decision,
JVCIR(25), No. 1, 2014, pp. 184-194.
Elsevier DOI
1502
BibRef
And:
Multiview foreground segmentation using 3D probabilistic model,
ICIP14(3317-3321)
IEEE DOI
1502
BibRef
Earlier:
Enhanced Bayesian foreground segmentation using Brightness and Color
Distortion region-based model for shadow removal,
ICIP10(3449-3452).
IEEE DOI
1009
Foreground segmentation.
Cameras
BibRef
Gallego, J.[Jaime],
Salvador, J.[Jordi],
Casas, J.R.[Josep R.],
Pardas, M.[Montse],
Joint multi-view foreground segmentation and 3D reconstruction with
tolerance loop,
ICIP11(997-1000).
IEEE DOI
1201
BibRef
Tian, Y.L.[Ying Li],
Senior, A.[Andrew],
Lu, M.[Max],
Robust and efficient foreground analysis in complex surveillance videos,
MVA(23), No. 5, September 2012, pp. 967-983.
WWW Link.
1208
BibRef
Tian, Y.L.[Ying-Li],
Lu, M.[Max],
Hampapur, A.[Arun],
Robust and Efficient Foreground Analysis for Real-Time Video
Surveillance,
CVPR05(I: 1182-1187).
IEEE DOI
0507
BibRef
Sun, S.W.[Shih-Wei],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Huang, F.[Fay],
Liao, H.Y.M.[Hong-Yuan Mark],
Moving foreground object detection via robust SIFT trajectories,
JVCIR(24), No. 3, April 2013, pp. 232-243.
Elsevier DOI
1303
Template matching, Object tracking, Video object segmentation;
Foreground segmentation, Background subtraction
BibRef
Zhou, X.W.[Xiao-Wei],
Yang, C.[Can],
Yu, W.C.[Wei-Chuan],
Moving Object Detection by Detecting Contiguous Outliers in the
Low-Rank Representation,
PAMI(35), No. 3, March 2013, pp. 597-610.
IEEE DOI
1303
integrates object detection and background learning
BibRef
Wan, Y.L.[Yan-Li],
Miao, Z.J.[Zhen-Jiang],
Zhang, X.P.[Xiao-Ping],
Tang, Z.[Zhen],
Wang, Z.F.[Zhi-Fei],
Illumination Robust Video Foreground Prediction Based on Color
Recovering,
MultMed(16), No. 3, April 2014, pp. 637-652.
IEEE DOI
1405
image colour analysis
BibRef
Ji, Z.J.[Zhang-Jian],
Wang, W.Q.[Wei-Qiang],
Detect foreground objects via adaptive fusing model in a hybrid
feature space,
PR(47), No. 9, 2014, pp. 2952-2961.
Elsevier DOI
1406
Lighting
Foreground detection
BibRef
Ji, Z.J.[Zhang-Jian],
Wang, W.Q.[Wei-Qiang],
Object tracking based on local dynamic sparse model,
JVCIR(28), No. 1, 2015, pp. 44-52.
Elsevier DOI
1503
BibRef
Earlier:
Robust object tracking via multi-task dynamic sparse model,
ICIP14(393-397)
IEEE DOI
1502
Object tracking
BibRef
Ji, Z.J.[Zhang-Jian],
Wang, W.Q.[Wei-Qiang],
Correlation filter tracker based on sparse regularization,
JVCIR(55), 2018, pp. 354-362.
Elsevier DOI
1809
Object tracking, Correlation filter, Adaptive regularization, Occlusion handling
BibRef
Ji, Z.J.[Zhang-Jian],
Wang, W.Q.[Wei-Qiang],
Lu, K.[Ke],
Robustly tracking objects via multi-task kernel dynamic sparse model,
ICIP15(266-270)
IEEE DOI
1512
BibRef
Earlier:
Extract foreground objects based on sparse model of spatiotemporal
spectrum,
ICIP13(3441-3445)
IEEE DOI
1402
Object tracking.
Sparse model, Spatiotemporal spectrum, foreground object detection
BibRef
He, J.[Jun],
Zhang, D.[Dejiao],
Balzano, L.[Laura],
Tao, T.[Tao],
Iterative Grassmannian optimization for robust image alignment,
IVC(32), No. 10, 2014, pp. 800-813.
Elsevier DOI
1410
BibRef
Earlier:
Iterative online subspace learning for robust image alignment,
FG13(1-8)
IEEE DOI
1309
Robust subspace learning.
computer vision.
Grassmannian Robust Adaptive Subspace Tracking Algorithm.
BibRef
He, J.[Jun],
Balzano, L.[Laura],
Szlam, A.[Arthur],
Incremental gradient on the Grassmannian for online foreground and
background separation in subsampled video,
CVPR12(1568-1575).
IEEE DOI
1208
BibRef
Baktashmotlagh, M.[Mahsa],
Harandi, M.T.[Mehrtash T.],
Lovell, B.C.[Brian C.],
Salzmann, M.[Mathieu],
Discriminative Non-Linear Stationary Subspace Analysis for Video
Classification,
PAMI(36), No. 12, December 2014, pp. 2353-2366.
IEEE DOI
1411
BibRef
Earlier:
Domain Adaptation on the Statistical Manifold,
CVPR14(2481-2488)
IEEE DOI
1409
BibRef
Earlier:
Unsupervised Domain Adaptation by Domain Invariant Projection,
ICCV13(769-776)
IEEE DOI
1403
Separate stationary parts of video from what is moving.
Algorithm design and analysis.
Domain Adaptation, Object Recognition, Statistical Manifold.
Training and test with different distributions.
BibRef
Pereira, A.[Alex],
Saotome, O.[Osamu],
Sampaio, D.[Daniel],
Patch-based local histograms and contour estimation for static
foreground classification,
JIVP(2015), No. 1, 2015, pp. 6.
DOI Link
1503
BibRef
Erichson, N.B.[N. Benjamin],
Donovan, C.[Carl],
Randomized low-rank Dynamic Mode Decomposition for motion detection,
CVIU(146), No. 1, 2016, pp. 40-50.
Elsevier DOI
1604
Dynamic Mode Decomposition
BibRef
Kutz, J.N.,
Fu, X.,
Brunton, S.L.,
Erichson, N.B.,
Multi-resolution Dynamic Mode Decomposition for Foreground/Background
Separation and Object Tracking,
RSL-CV15(921-929)
IEEE DOI
1602
Eigenvalues and eigenfunctions
BibRef
Dong, P.[Pei],
Wang, S.S.[Shan-Shan],
Xia, Y.[Yong],
Liang, D.[Dong],
Feng, D.D.[David Dagan],
Foreground Detection With Simultaneous Dictionary Learning and
Historical Pixel Maintenance,
IP(25), No. 11, November 2016, pp. 5035-5049.
IEEE DOI
1610
image representation
BibRef
Cuevas, C.[Carlos],
Martínez, R.[Raquel],
García, N.[Narciso],
Detection of stationary foreground objects: A survey,
CVIU(152), No. 1, 2016, pp. 41-57.
Elsevier DOI
1609
Survey, Foreground Objects. Stationary foreground
BibRef
Cuevas, C.[Carlos],
Yáñez, E.M.[Eva María],
García, N.[Narciso],
Labeled dataset for integral evaluation of moving object detection
algorithms: LASIESTA,
CVIU(152), No. 1, 2016, pp. 103-117.
Elsevier DOI
1609
Dataset, Foreground Detection. Database
BibRef
Cuevas, C.[Carlos],
Martínez, R.[Raquel],
Berjón, D.,
García, N.[Narciso],
Detection of Stationary Foreground Objects Using Multiple
Nonparametric Background-Foreground Models on a Finite State Machine,
IP(26), No. 3, March 2017, pp. 1127-1142.
IEEE DOI
1703
finite state machines
BibRef
Yang, L.[Lei],
Pong, T.K.[Ting Kei],
Chen, X.J.[Xiao-Jun],
Alternating Direction Method of Multipliers for a Class of Nonconvex
and Nonsmooth Problems with Applications to Background/Foreground
Extraction,
SIIMS(10), No. 1, 2017, pp. 74-110.
DOI Link
1704
BibRef
Kim, H.[Hyuncheol],
Jeon, S.[Semi],
Lee, S.K.[Sang-Keun],
Paik, J.[Joonki],
Robust Visual Tracking Using Structure-Preserving Sparse Learning,
SPLetters(24), No. 5, May 2017, pp. 707-711.
IEEE DOI
1704
Linear programming
BibRef
Xi, T.,
Zhao, W.,
Wang, H.,
Lin, W.,
Salient Object Detection With Spatiotemporal Background Priors for
Video,
IP(26), No. 7, July 2017, pp. 3425-3436.
IEEE DOI
1706
Computational modeling, Feature extraction, Image color analysis,
Image segmentation, Object detection, Spatiotemporal phenomena,
Visualization, Salient object detection, background priors,
geodesic distance, video saliency.
BibRef
Domadiya, P.[Prashant],
Shah, P.[Pratik],
Mitra, S.K.[Suman K.],
Shadow-Free, Expeditious and Precise, Moving Object Separation from
Video,
IJIG(18), No. 01, 2018, pp. 1850005.
DOI Link
1801
BibRef
Earlier:
Fast and Accurate Foreground Background Separation for Video
Surveillance,
PReMI15(95-104).
Springer DOI
1511
BibRef
Aytekin, Ç.,
Possegger, H.,
Mauthner, T.,
Kiranyaz, S.,
Bischof, H.,
Gabbouj, M.,
Spatiotemporal Saliency Estimation by Spectral Foreground Detection,
MultMed(20), No. 1, January 2018, pp. 82-95.
IEEE DOI
1801
feature extraction, graph theory, image colour analysis,
image motion analysis, image segmentation, object detection,
spectral graph theory
BibRef
Guo, J.,
Cheong, L.F.,
Tan, R.,
Video Foreground Cosegmentation Based on Common Fate,
CirSysVideo(28), No. 3, March 2018, pp. 586-600.
IEEE DOI
1804
image motion analysis, image segmentation, iterative methods,
video signal processing, articulated motion,
video segmentation
BibRef
Yang, S.C.[Sheng-Chih],
Lin, G.C.[Geng-Cheng],
Wang, C.M.[Chuin-Mu],
Foreground detection using texture-based codebook method for monitoring
systems,
SIViP(12), No. 4, May 2018, pp. 693-701.
WWW Link.
1805
BibRef
Li, X.,
Liu, K.,
Dong, Y.,
Superpixel-Based Foreground Extraction With Fast Adaptive Trimaps,
Cyber(48), No. 9, September 2018, pp. 2609-2619.
IEEE DOI
1809
feature extraction, graph theory, image resolution,
image segmentation, superpixel-based foreground extraction,
superpixel
BibRef
Kajo, I.,
Kamel, N.,
Ruichek, Y.[Yassine],
Incremental Tensor-Based Completion Method for Detection of
Stationary Foreground Objects,
CirSysVideo(29), No. 5, May 2019, pp. 1325-1338.
IEEE DOI
1905
Tensile stress, Feature extraction, Spatiotemporal phenomena,
Matrix decomposition, Object recognition, Real-time systems,
incremental singular value decomposition
BibRef
Sultana, M.[Maryam],
Mahmood, A.[Arif],
Javed, S.[Sajid],
Jung, S.K.[Soon Ki],
Unsupervised deep context prediction for background estimation and
foreground segmentation,
MVA(30), No. 3, April 2019, pp. 375-395.
WWW Link.
1906
BibRef
Yao, Y.Y.[Yi-Yang],
Liu, P.Z.[Pei-Zhen],
Sun, X.W.[Xiao-Wei],
Zhang, L.M.[Lu-Ming],
RETRACTED: Moving object surveillance using object proposals and background
prior prediction,
JVCIR(69), 2020, pp. 102838.
Elsevier DOI
2006
BibRef
And:
Original:
JVCIR(61), 2019, pp. 85-92.
1906
Video surveillance, Object, Moving target detection, Model learning
BibRef
Ng, H.F.[Hui Fuang],
Chin, C.Y.[Chee Yang],
Effective scene change detection in complex environments,
IJCVR(9), No. 3, 2019, pp. 310-328.
DOI Link
1906
Segment moving foreground objects from static background.
BibRef
Panjappagounder-Rajamanickam, K.[Karthikeyan],
Periyasamy, S.[Sakthivel],
Entropy Based Illumination-Invariant Foreground Detection,
IEICE(E102-D), No. 7, July 2019, pp. 1434-1437.
WWW Link.
1907
BibRef
Croitoru, I.[Ioana],
Bogolin, S.V.[Simion-Vlad],
Leordeanu, M.[Marius],
Unsupervised Learning of Foreground Object Segmentation,
IJCV(127), No. 9, September 2019, pp. 1279-1302.
Springer DOI
1908
BibRef
Earlier:
Unsupervised Learning from Video to Detect Foreground Objects in
Single Images,
ICCV17(4345-4353)
IEEE DOI
1802
image segmentation, neural nets, object detection,
unsupervised learning, video signal processing,
Visualization
BibRef
Leordeanu, M.[Marius],
Collins, R.[Robert],
Unsupervised Learning of Object Features from Video Sequences,
CVPR05(I: 1142-1149).
IEEE DOI
0507
Single or multiple objects, change in pose, low res video.
Related features tend to move the same.
BibRef
García-González, J.[Jorge],
Ortiz-de-Lazcano-Lobato, J.M.[Juan M.],
Luque-Baena, R.M.[Rafael M.],
Molina-Cabello, M.A.[Miguel A.],
López-Rubio, E.[Ezequiel],
Foreground detection by probabilistic modeling of the features
discovered by stacked denoising autoencoders in noisy video sequences,
PRL(125), 2019, pp. 481-487.
Elsevier DOI
1909
BibRef
Fu, Z.H.[Zhi-Hang],
Chen, Y.W.[Yao-Wu],
Yong, H.W.[Hong-Wei],
Jiang, R.X.[Rong-Xin],
Zhang, L.[Lei],
Hua, X.S.[Xian-Sheng],
Foreground Gating and Background Refining Network for Surveillance
Object Detection,
IP(28), No. 12, December 2019, pp. 6077-6090.
IEEE DOI
1909
Surveillance, Videos, Object detection, Feature extraction,
Proposals, Cameras, Task analysis, Object detection,
surveillance video
BibRef
Shinde, T.S.[Tushar Shankar],
Tiwari, A.K.[Anil Kumar],
Lin, W.Y.[Wei-Yao],
Shen, L.Q.[Li-Quan],
Background foreground boundary aware efficient motion search for
surveillance videos,
SP:IC(82), 2020, pp. 115775.
Elsevier DOI
2001
Block matching, Surveillance video, Block classification,
Search complexity, Directional motion
BibRef
Akilan, T.,
Wu, Q.J.,
Safaei, A.,
Huo, J.,
Yang, Y.,
A 3D CNN-LSTM-Based Image-to-Image Foreground Segmentation,
ITS(21), No. 3, March 2020, pp. 959-971.
IEEE DOI
2003
Solid modeling, Image segmentation,
Visualization, Decoding, Encoding, Computational modeling,
spatiotemporal cues
BibRef
Akilan, T.[Thangarajah],
Wu, Q.M.J.[Q. M. Jonathan],
sEnDec: An Improved Image to Image CNN for Foreground Localization,
ITS(21), No. 10, October 2020, pp. 4435-4443.
IEEE DOI
2010
Computational modeling, Encoding,
Image segmentation, Image color analysis, Decoding, Visualization,
encoder-decoder network
BibRef
Singha, A.[Anu],
Bhowmik, M.K.[Mrinal Kanti],
Salient Features for Moving Object Detection in Adverse Weather
Conditions During Night Time,
CirSysVideo(30), No. 10, October 2020, pp. 3317-3331.
IEEE DOI
2010
Atmospheric modeling, Cameras, Atmospheric waves, Aerosols,
Visualization, Object detection, Rain, Atmosphere, aerosols, Infrared,
background model
BibRef
Wang, X.R.[Xi-Ran],
Juang, J.[Jason],
Chan, S.H.[Stanley H.],
Automatic foreground extraction from imperfect backgrounds using
multi-agent consensus equilibrium,
JVCIR(72), 2020, pp. 102907.
Elsevier DOI
2010
Foreground extraction1, Alpha matting, Background subtraction,
Video segmentation, Saliency detection, Plug-and-play ADMM,
Consensus equilibrium
BibRef
Yang, Z.X.[Zong-Xin],
Wei, Y.C.[Yun-Chao],
Yang, Y.[Yi],
Collaborative Video Object Segmentation by Multi-Scale
Foreground-Background Integration,
PAMI(44), No. 9, September 2022, pp. 4701-4712.
IEEE DOI
2208
BibRef
Earlier:
Collaborative Video Object Segmentation by Foreground-background
Integration,
ECCV20(V:332-348).
Springer DOI
2011
Object segmentation, Collaboration, Training, Feature extraction,
Video sequences, Task analysis, Semantics,
metric learning
BibRef
Lutz, S.[Sebastian],
Smolic, A.[Aljosa],
Foreground color prediction through inverse compositing,
WACV21(1609-1618)
IEEE DOI
2106
Deep learning, Recurrent neural networks,
Image color analysis, Estimation, Prediction methods
BibRef
Ge, Y.X.[Yong-Xin],
Zhang, J.[Junyin],
Ren, X.Y.[Xin-Yu],
Zhao, C.Q.[Chen-Qiu],
Yang, J.[Juan],
Basu, A.[Anup],
Deep Variation Transformation Network for Foreground Detection,
CirSysVideo(31), No. 9, September 2021, pp. 3544-3558.
IEEE DOI
2109
Deep learning, Transforms, Image color analysis, Training,
Streaming media, Lighting, Germanium, Foreground detection,
deep learning
BibRef
Kajo, I.[Ibrahim],
Kamel, N.[Nidal],
Ruichek, Y.[Yassine],
Tensor-Based Approach for Background-Foreground Separation in
Maritime Sequences,
ITS(22), No. 11, November 2021, pp. 7115-7128.
IEEE DOI
2112
Matrix decomposition, Cameras, Sea surface, Computational modeling,
Minimization, Dynamics, Real-time systems, Maritime environment,
forgetting mechanism
BibRef
Osman, I.[Islam],
Abdelpakey, M.[Mohamed],
Shehata, M.S.[Mohamed S.],
TransBlast: Self-Supervised Learning Using Augmented Subspace with
Transformer for Background/Foreground Separation,
RSLCV21(215-224)
IEEE DOI
2112
Training, Computational modeling,
Benchmark testing, Predictive models, Transformers, Data models
BibRef
Farhand, S.[Sepehr],
Tsechpenakis, G.[Gavriil],
Foreground discovery in streaming videos with dynamic construction of
content graphs,
CVIU(227), 2023, pp. 103620.
Elsevier DOI
2301
Foreground discovery, Unsupervised detection, Video stream,
Bottom-up, Content graph
BibRef
Rao, A.[Anyi],
Xu, L.N.[Lin-Ning],
Li, Z.Z.[Zhi-Zhong],
Huang, Q.Q.[Qing-Qiu],
Kuang, Z.H.[Zhang-Hui],
Zhang, W.[Wayne],
Lin, D.[Dahua],
A Coarse-to-Fine Framework for Automatic Video Unscreen,
MultMed(25), 2023, pp. 2723-2733.
IEEE DOI
2307
Extract foreground from given videos.
Image segmentation, Pipelines, Image color analysis,
Green products, Estimation, Semantics, Production, background estimation
BibRef
Yang, D.W.[Da-Wei],
He, J.F.[Jian-Feng],
Ma, Y.C.[Yin-Chao],
Yu, Q.J.[Qian-Jin],
Zhang, T.Z.[Tian-Zhu],
Foreground-Background Distribution Modeling Transformer for Visual
Object Tracking,
ICCV23(10083-10093)
IEEE DOI
2401
BibRef
Sauvalle, B.[Bruno],
de la Fortelle, A.[Arnaud],
Autoencoder-based background reconstruction and foreground
segmentation with background noise estimation,
WACV23(3243-3254)
IEEE DOI
2302
Image segmentation, Adaptation models, Computational modeling,
Motion segmentation, Predictive models, Cameras, Real-time systems
BibRef
Benavides-Arce, A.A.[Anthony A.],
Flores-Benites, V.[Victor],
Mora-Colque, R.[Rensso],
Foreground Detection Using an Attention Module and a Video Encoding,
CIAP22(III:195-205).
Springer DOI
2205
BibRef
Habibian, A.[Amirhossein],
Abati, D.[Davide],
Cohen, T.S.[Taco S.],
Bejnordi, B.E.[Babak Ehteshami],
Skip-Convolutions for Efficient Video Processing,
CVPR21(2694-2703)
IEEE DOI
2111
Motion detection (frame-to-frame changes) to skip background, process
foreground.
Convolution, Computational modeling, Redundancy, Logic gates,
Streaming media, Predictive models, Cameras
BibRef
Wu, Z.Z.[Zong-Ze],
Lischinski, D.[Dani],
Shechtman, E.[Eli],
Fine-grained Foreground Retrieval via Teacher-Student Learning,
WACV21(3645-3653)
IEEE DOI
2106
Training, Adaptation models, Image segmentation,
Semantics, Image retrieval, Object detection
BibRef
Germer, T.[Thomas],
Uelwer, T.[Tobias],
Conrad, S.[Stefan],
Harmeling, S.[Stefan],
Fast Multi-Level Foreground Estimation,
ICPR21(1104-1111)
IEEE DOI
2105
Runtime, Image color analysis, Memory management,
Measurement uncertainty, Estimation, Graphics processing units, Size measurement
BibRef
Liang, D.[Dong],
Liu, X.Y.[Xin-Yu],
Coarse-to-fine Foreground Segmentation based on Co-occurrence
Pixel-Block and Spatio-Temporal Attention Model,
ICPR21(3807-3813)
IEEE DOI
2105
Training, Deep learning, Training data, Video surveillance,
Task analysis
BibRef
Yang, Y.C.[Yu-Chen],
Ray, N.[Nilanjan],
Foreground-focused domain adaption for object detection,
ICPR21(6941-6948)
IEEE DOI
2105
Training, Backpropagation, Adaptation models, Pipelines,
Object detection, Detectors, Predictive models
BibRef
García-Gonzàlez, J.,
Molina-Cabello, M.A.,
Luque-Baena, R.M.,
Ortiz-de-Lazcano-Lobato, J.M.,
López-Rubio, E.,
Deep Autoencoder Architectures For Foreground Object Detection In
Video Sequences Based On Probabilistic Mixture Models,
ICIP20(3199-3203)
IEEE DOI
2011
Probabilistic logic, Feature extraction, Training, Mixture models,
Object detection, Video sequences,
video surveillance
BibRef
Chen, J.W.[Jia-Wei],
Leou, J.J.[Jin-Jang],
Video Object Segmentation Using Convex Optimization of Foreground and
Background Distributions,
ICIAR20(I:209-219).
Springer DOI
2007
BibRef
Xie, C.[Christopher],
Xiang, Y.[Yu],
Harchaoui, Z.[Zaid],
Fox, D.[Dieter],
Object Discovery in Videos as Foreground Motion Clustering,
CVPR19(9986-9995).
IEEE DOI
2002
BibRef
Chen, Y.C.[Yun-Chun],
Huang, P.H.[Po-Hsiang],
Yu, L.Y.[Li-Yu],
Huang, J.B.[Jia-Bin],
Yang, M.H.[Ming-Hsuan],
Lin, Y.Y.[Yen-Yu],
Deep Semantic Matching with Foreground Detection and Cycle-Consistency,
ACCV18(III:347-362).
Springer DOI
1906
BibRef
Lin, C.,
Yan, B.,
Tan, W.,
Foreground Detection in Surveillance Video with Fully Convolutional
Semantic Network,
ICIP18(4118-4122)
IEEE DOI
1809
Semantics, Training, Surveillance, Training data, Image segmentation,
Kernel, Robustness, Foreground detection, surveillance
BibRef
Fouzia, S.[Syeda],
Bell, M.[Mark],
Klette, R.[Reinhard],
Deep Learning-Based Improved Object Recognition in Warehouses,
PSIVT17(350-365).
Springer DOI
1802
BibRef
Zheng, T.,
Xie, C.,
Zhou, W.,
Li, H.,
Compressive tracking with adaptive color feature selection and
foreground modeling,
VCIP16(1-4)
IEEE DOI
1701
Adaptation models
BibRef
Haller, E.,
Leordeanu, M.[Marius],
Unsupervised Object Segmentation in Video by Efficient Selection of
Highly Probable Positive Features,
ICCV17(5095-5103)
IEEE DOI
1802
image segmentation, image sequences,
learning (artificial intelligence), motion estimation,
Video sequences
BibRef
Stretcu, O.[Otilia],
Leordeanu, M.[Marius],
Multiple Frames Matching for Object Discovery in Video,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Kao, J.Y.,
Tian, D.[Dong],
Mansour, H.[Hassan],
Vetro, A.[Anthony],
Ortega, A.[Antonio],
Moving object segmentation using depth and optical flow in car
driving sequences,
ICIP16(11-15)
IEEE DOI
1610
Cameras
BibRef
Tian, D.[Dong],
Mansour, H.[Hassan],
Vetro, A.[Anthony],
Depth-weighted group-wise principal component analysis for video
foreground/background separation,
ICIP15(3230-3234)
IEEE DOI
1512
Foreground /Background separation
BibRef
Newson, A.[Alasdair],
Tepper, M.[Mariano],
Sapiro, G.[Guillermo],
Low-Rank Spatio-Temporal Video Segmentation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Tepper, M.[Mariano],
Newson, A.[Alasdair],
Sprechmann, P.[Pablo],
Sapiro, G.[Guillermo],
Multi-temporal foreground detection in videos,
ICIP15(4599-4603)
IEEE DOI
1512
Video, foreground detection, robust PCA
BibRef
Perez-Rua, J.M.[Juan-Manuel],
Crivelli, T.[Tomas],
Perez, P.[Patrick],
Background-foreground tracking for video object segmentation,
ICIP15(1613-1617)
IEEE DOI
1512
Markov random field, Object tracking, Optical flow
BibRef
Gao, W.[Wei],
Kwong, S.[Sam],
Zhou, Y.[Yu],
Wang, X.[Xu],
Phase congruency analysis of down-sampled and blurring images for
foreground extraction,
ICWAPR15(152-157)
IEEE DOI
1511
Gaussian processes
BibRef
Sobral, A.,
Bouwmans, T.,
Zahzah, E.H.[El-Hadi],
Double-constrained RPCA based on saliency maps for foreground
detection in automated maritime surveillance,
AVSS15(1-6)
IEEE DOI
1511
image enhancement
BibRef
Ramesh, L.[Lekshmi],
Shah, P.[Pratik],
R-SpaRCS: An algorithm for foreground-background separation of
compressively-sensed surveillance videos,
AVSS15(1-6)
IEEE DOI
1511
Approximation algorithms
BibRef
Martinez, D.[Duber],
Saggese, A.[Alessia],
Vento, M.[Mario],
Loaiza, H.[Humberto],
Caicedo, E.[Eduardo],
Locally Adapted Gain Control for Reliable Foreground Detection,
CAIP15(I:812-823).
Springer DOI
1511
BibRef
Sato, A.[Akari],
Toda, M.[Masato],
Tsukada, M.[Masato],
Foreground Detection Robust Against Cast Shadows in Outdoor Daytime
Environment,
CIAP15(II:653-664).
Springer DOI
1511
BibRef
Kraft, E.[Erwin],
Brox, T.[Thomas],
Motion Based Foreground Detection and Poselet Motion Features for
Action Recognition,
ACCV14(V: 350-365).
Springer DOI
1504
BibRef
Javed, S.[Sajid],
Bouwmans, T.[Thierry],
Jung, S.K.[Soon Ki],
Combining ARF and OR-PCA for Robust Background Subtraction of Noisy
Videos,
CIAP15(II:340-351).
Springer DOI
1511
BibRef
Javed, S.[Sajid],
Oh, S.H.[Seon Ho],
Sobral, A.[Andrews],
Bouwmans, T.[Thierry],
Jung, S.K.[Soon Ki],
OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic
Backgrounds,
ACCV14(III: 284-299).
Springer DOI
1504
BibRef
Kuo, P.C.[Ping-Cheng],
Chen, C.A.[Chao-An],
Chang, H.C.[Hsing-Chun],
Su, T.F.[Te-Feng],
Lai, S.H.[Shang-Hong],
3D Reconstruction with Automatic Foreground Segmentation from
Multi-view Images Acquired from a Mobile Device,
IMEV14(352-365).
Springer DOI
1504
BibRef
Fu, Z.H.[Zhi-Hui],
Xiong, H.K.[Hong-Kai],
Figure/ground video segmentation using greedy transductive
cosegmentation,
ICIP14(3287-3291)
IEEE DOI
1502
Coherence
BibRef
Lin, K.H.[Kai-Hsiang],
Khorrami, P.[Pooya],
Wang, J.P.[Jiang-Ping],
Hasegawa-Johnson, M.[Mark],
Huang, T.S.[Thomas S.],
Foreground object detection in highly dynamic scenes using saliency,
ICIP14(1125-1129)
IEEE DOI
1502
Algorithm design and analysis
BibRef
Qin, H.W.[Hong-Wei],
Peng, Y.G.[Yi-Gang],
Li, X.[Xiu],
Foreground Extraction of Underwater Videos via Sparse and Low-Rank
Matrix Decomposition,
CVAUI14(65-72)
IEEE DOI
1402
BibRef
Wu, X.M.[Xiao-Meng],
Kashino, K.[Kunio],
Tri-Map Self-Validation Based on Least Gibbs Energy for Foreground
Segmentation,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Wu, J.J.[Jia-Jun],
Zhu, J.[Junyan],
Tu, Z.W.[Zhuo-Wen],
Reverse Image Segmentation: A High-Level Solution to a Low-Level Task,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Guo, X.J.[Xiao-Jie],
Wang, X.G.[Xing-Gang],
Yang, L.[Liang],
Cao, X.C.[Xiao-Chun],
Ma, Y.[Yi],
Robust Foreground Detection Using Smoothness and Arbitrariness
Constraints,
ECCV14(VII: 535-550).
Springer DOI
1408
BibRef
Ashwini, M.J.,
Babu, R.V.[R.Venkatesh],
Ramakrishnan, K.R.,
Context-aware real-time tracking in sparse representation framework,
ICIP13(2450-2454)
IEEE DOI
1402
Foreground/Background classification
BibRef
Wang, W.H.[Wei-Hong],
Wang, Y.[Yang],
Chen, F.[Fang],
Sowmya, A.,
A weakly supervised approach for object detection based on Soft-Label
Boosting,
WACV13(331-338).
IEEE DOI
1303
Combine background subtraction and learning-based approaches to get
best of both.
BibRef
Liu, H.[Hunaxi],
Yan, J.C.[Jun-Chi],
Zhu, J.[Jun],
Lv, X.W.[Xiao-Wei],
Li, X.[Xiong],
Zhu, T.H.[Tian-Hong],
Liu, Y.C.[Yun-Cai],
A Double-Layer Model for Foreground Detection from Video Sequence,
ICIG11(517-520).
IEEE DOI
1109
BibRef
Zhang, Z.H.[Zhao-Hui],
Chen, R.Q.[Rui-Qing],
Lu, H.Q.[Han-Qing],
Yan, Y.K.[Yu-Kun],
Cui, H.Q.[Hui-Qing],
Moving Foreground Detection Based on Modified Codebook,
CISP09(1-5).
IEEE DOI
0910
BibRef
Ilyas, A.[Atif],
Scuturici, M.[Mihaela],
Miguet, S.[Serge],
Real Time Foreground-Background Segmentation Using a Modified Codebook
Model,
AVSBS09(454-459).
IEEE DOI
0909
BibRef
Paris, S.[Sylvain],
Edge-Preserving Smoothing and Mean-Shift Segmentation of Video Streams,
ECCV08(II: 460-473).
Springer DOI
0810
BibRef
Wu, X.Y.[Xiao-Yu],
Wang, Y.S.[Yang-Sheng],
Zheng, X.L.[Xiao-Long],
Monocular video foreground segmentation system,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Dikmen, M.[Mert],
Tsai, S.F.[Shen-Fu],
Huang, T.S.[Thomas S.],
Base selection in estimating sparse foreground in video,
ICIP09(3217-3220).
IEEE DOI
0911
BibRef
Dikmen, M.[Mert],
Huang, T.S.[Thomas S.],
Robust estimation of foreground in surveillance videos by sparse error
estimation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tezuka, H.[Hiroaki],
Nishitani, T.[Takao],
A precise and stable foreground segmentation using fine-to-coarse
approach in transform domain,
ICIP08(2732-2735).
IEEE DOI
0810
BibRef
Wu, Q.[Qiong],
Boulanger, P.[Pierre],
Bischof, W.F.[Walter F.],
Automatic bi-layer video segmentation based on sensor fusion,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Robust Real-Time Bi-Layer Video Segmentation Using Infrared Video,
CRV08(87-94).
IEEE DOI
0805
BibRef
Crabb, R.[Ryan],
Tracey, C.[Colin],
Puranik, A.[Akshaya],
Davis, J.[James],
Real-time foreground segmentation via range and color imaging,
TOF-CV08(1-5).
IEEE DOI
0806
BibRef
Guerzhoy, M.[Michael],
Zhou, H.[Hui],
Segmentation of Rectangular Objects Lying on an Unknown Background in a
Small Preview Scan Image,
CRV08(369-375).
IEEE DOI
0805
BibRef
Kim, H.S.[Han-Sung],
Sakamoto, R.[Ryuuki],
Kitahara, I.[Itaru],
Toriyama, T.[Tomoji],
Kogure, K.[Kiyoshi],
Robust Foreground Extraction Technique Using Gaussian Family Model and
Multiple Thresholds,
ACCV07(I: 758-768).
Springer DOI
0711
BibRef
Fan, J.L.[Jia-Lue],
Yang, M.[Ming],
Wu, Y.[Ying],
A bi-subspace model for robust visual tracking,
ICIP08(2660-2663).
IEEE DOI
0810
BibRef
Yang, M.[Ming],
Wu, Y.[Ying],
Granularity and elasticity adaptation in visual tracking,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Yang, M.[Ming],
Yuan, J.S.[Jun-Song],
Wu, Y.[Ying],
Spatial selection for attentional visual tracking,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Sun, J.[Jian],
Kang, S.B.[Sing Bing],
Xu, Z.B.[Zong-Ben],
Tang, X.O.[Xiao-Ou],
Shum, H.Y.[Heung-Yeung],
Flash Cut: Foreground Extraction with Flash and No-flash Image Pairs,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Teixeira, L.F.[Luis F.],
Corte-Real, L.[Luis],
Cascaded change detection for foreground segmentation,
Motion07(6-6).
IEEE DOI
0702
BibRef
Han, M.[Mei],
Xu, W.[Wei],
Gong, Y.H.[Yi-Hong],
Video Foreground Segmentation Based on Sequential Feature Clustering,
ICPR06(I: 492-496).
IEEE DOI
0609
BibRef
Berrabah, S.A.[Sid Ahmed],
de Cubber, G.[Geert],
Enescu, V.,
Sahli, H.[Hichem],
MRF-Based Foreground Detection in Image Sequences from a Moving Camera,
ICIP06(1125-1128).
IEEE DOI
0610
BibRef
Doshi, A.,
Trivedi, M.M.,
'Hybrid Cone-Cylinder' Codebook Model for Foreground Detection with
Shadow and Highlight Suppression,
AVSBS06(19-19).
IEEE DOI
0611
BibRef
Liang, Y.Q.[Yi-Qing],
Crnic, L.[Linda],
Kobla, V.[Vikrant],
Wolf, W.[Wayne],
System and method for object identification and
behavior characterization using video analysis,
US_Patent6,678,413, Jan 13, 2004
WWW Link.
BibRef
0401
Lluís, J.[Jordi],
Miralles, X.[Xavier],
Bastidas, O.[Oscar],
Reliable real-time foreground detection for video surveillance
applications,
VSSN05(59-62).
WWW Link.
0511
BibRef
Kamkar-Parsi, A.H.[A. Homayoun],
Laganière, R.[Robert],
Bouchard, M.[Martin],
A multi-criteria model for robust foreground extraction,
VSSN05(67-70).
WWW Link.
0511
BibRef
Sormann, M.[Mario],
Zach, C.[Christopher],
Bauer, J.[Joachim],
Karner, K.[Konrad],
Bischof, H.[Horst],
Automatic Foreground Propagation in Image Sequences for 3D
Reconstruction,
DAGM05(93).
Springer DOI
0509
BibRef
Mansouri, A.R.,
Mitiche, A.,
Dolla, F.,
Motion-based figure-ground segmentation by maximum motion separation,
ICIP03(III: 925-928).
IEEE DOI
0312
BibRef
Nordlund, P.[Peter],
Eklundh, J.O.[Jan-Olof],
Real-Time Maintenance of Figure-Ground Segmentation,
CVS99(115 ff.).
Springer DOI
0209
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Background Models, Textured Surfaces, Regions .