Pearlstine, L.[Leonard],
Portier, K.M.[Kenneth M.],
Smith, S.E.[Scot E.],
Textural Discrimination of an Invasive Plant, Schinus terebinthifolius,
from Low Altitude Aerial Digital Imagery,
PhEngRS(71), No. 3, March 2005, pp. 289-298.
WWW Link.
0509
Texture features derived from first and second order statistics and
edge components in high-resolution digital color infrared images were
tested for their ability to discriminate Schinus terebinthifolius in
multiple linear logistic regressions.
BibRef
Olsson, A.,
van Leeuwen, W.,
Marsh, S.,
Feasibility of Invasive Grass Detection in a Desertscrub Community
Using Hyperspectral Field Measurements and Landsat TM Imagery,
RS(3), No. 10, October 2011, pp. 2283-2304.
DOI Link
1203
BibRef
Jones, D.,
Pike, S.,
Thomas, M.,
Murphy, D.,
Object-Based Image Analysis for Detection of Japanese Knotweed s.l.
taxa (Polygonaceae) in Wales (UK),
RS(3), No. 2, February 2011, pp. 319-342.
DOI Link
1203
BibRef
Mirik, M.,
Ansley, R.,
Utility of Satellite and Aerial Images for Quantification of Canopy
Cover and Infilling Rates of the Invasive Woody Species Honey Mesquite
(Prosopis Glandulosa) on Rangeland,
RS(4), No. 7, July 2012, pp. 1947-1962.
DOI Link
1208
BibRef
Taylor, S.L.[Sarah L.],
Hill, R.A.[Ross A.],
Edwards, C.[Colin],
Characterising invasive non-native Rhododendron ponticum spectra
signatures with spectroradiometry in the laboratory and field:
Potential for remote mapping,
PandRS(81), No. 1, July 2013, pp. 70-81.
Elsevier DOI
1306
Hyperspectral remote sensing; Invasive species; Logistic
regression; Species discrimination; Leaf plasticity
BibRef
Mirik, M.,
Ansley, R.,
Steddom, K.,
Jones, D.,
Rush, C.,
Michels, G.,
Elliott, N.,
Remote Distinction of A Noxious Weed (Musk Thistle: CarduusNutans)
Using Airborne Hyperspectral Imagery and the Support Vector Machine
Classifier,
RS(5), No. 2, February 2013, pp. 612-630.
DOI Link
1303
BibRef
Hung, C.[Calvin],
Xu, Z.[Zhe],
Sukkarieh, S.[Salah],
Feature Learning Based Approach for Weed Classification Using High
Resolution Aerial Images from a Digital Camera Mounted on a UAV,
RS(6), No. 12, 2014, pp. 12037-12054.
DOI Link
1412
BibRef
Levick, S.R.[Shaun R.],
Setterfield, S.A.[Samantha A.],
Rossiter-Rachor, N.A.[Natalie A.],
Hutley, L.B.[Lindsay B.],
MacMaster, D.[Damien],
Hacker, J.M.[Jorg M.],
Monitoring the Distribution and Dynamics of an Invasive Grass in
Tropical Savanna Using Airborne LiDAR,
RS(7), No. 5, 2015, pp. 5117-5132.
DOI Link
1506
BibRef
Lehmann, J.R.K.[Jan Rudolf Karl],
Große-Stoltenberg, A.[André],
Römer, M.[Meike],
Oldeland, J.[Jens],
Field Spectroscopy in the VNIR-SWIR Region to Discriminate between
Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf
Tannin Content,
RS(7), No. 2, 2015, pp. 1225-1241.
DOI Link
1503
BibRef
Wallace, C.S.A.[Cynthia S. A.],
Walker, J.J.[Jessica J.],
Skirvin, S.M.[Susan M.],
Patrick-Birdwell, C.[Caroline],
Weltzin, J.F.[Jake F.],
Raichle, H.[Helen],
Mapping Presence and Predicting Phenological Status of Invasive
Buffelgrass in Southern Arizona Using MODIS, Climate and Citizen
Science Observation Data,
RS(8), No. 7, 2016, pp. 524.
DOI Link
1608
BibRef
Peerbhay, K.[Kabir],
Mutanga, O.[Onisimo],
Lottering, R.[Romano],
Bangamwabo, V.[Victor],
Ismail, R.[Riyad],
Detecting bugweed (Solanum mauritianum) abundance in plantation
forestry using multisource remote sensing,
PandRS(121), No. 1, 2016, pp. 167-176.
Elsevier DOI
1609
Remote sensing
BibRef
Liu, X.[Xiang],
Liu, H.Y.[Hui-Yu],
Gong, H.B.[Hai-Bo],
Lin, Z.S.[Zhen-Shan],
Lv, S.C.[Shi-Cheng],
Appling the One-Class Classification Method of Maxent to Detect an
Invasive Plant Spartina alterniflora with Time-Series Analysis,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Dutra Silva, L.[Lara],
Brito de Azevedo, E.[Eduardo],
Bento Elias, R.[Rui],
Silva, L.[Luís],
Species Distribution Modeling:
Comparison of Fixed and Mixed Effects Models Using INLA,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
Invasive species.
BibRef
Alvarez-Taboada, F.[Flor],
Paredes, C.[Claudio],
Julián-Pelaz, J.[Julia],
Mapping of the Invasive Species Hakea sericea Using Unmanned Aerial
Vehicle (UAV) and WorldView-2 Imagery and an Object-Oriented Approach,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Martin, F.M.[François-Marie],
Müllerová, J.[Jana],
Borgniet, L.[Laurent],
Dommanget, F.[Fanny],
Breton, V.[Vincent],
Evette, A.[André],
Using Single- and Multi-Date UAV and Satellite Imagery to Accurately
Monitor Invasive Knotweed Species,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Louargant, M.[Marine],
Jones, G.[Gawain],
Faroux, R.[Romain],
Paoli, J.N.[Jean-Noël],
Maillot, T.[Thibault],
Gée, C.[Christelle],
Villette, S.[Sylvain],
Unsupervised Classification Algorithm for Early Weed Detection in
Row-Crops by Combining Spatial and Spectral Information,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Pflanz, M.[Michael],
Nordmeyer, H.[Henning],
Schirrmann, M.[Michael],
Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image
Classifier,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Bah, M.D.[M Dian],
Hafiane, A.[Adel],
Canals, R.[Raphael],
Deep Learning with Unsupervised Data Labeling for Weed Detection in
Line Crops in UAV Images,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Tarantino, C.[Cristina],
Casella, F.[Francesca],
Adamo, M.[Maria],
Lucas, R.[Richard],
Beierkuhnlein, C.[Carl],
Blonda, P.[Palma],
Ailanthus altissima mapping from multi-temporal very high resolution
satellite images,
PandRS(147), 2019, pp. 90-103.
Elsevier DOI
1901
Invasive species, Alien species, mapping,
multi-temporal WorldView-2 data, Remote sensing, Novel ecosystems
BibRef
Rasti, P.[Pejman],
Ahmad, A.[Ali],
Samiei, S.[Salma],
Belin, E.[Etienne],
Rousseau, D.[David],
Supervised Image Classification by Scattering Transform with
Application to Weed Detection in Culture Crops of High Density,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Mbaabu, P.R.[Purity Rima],
Ng, W.T.[Wai-Tim],
Schaffner, U.[Urs],
Gichaba, M.[Maina],
Olago, D.[Daniel],
Choge, S.[Simon],
Oriaso, S.[Silas],
Eckert, S.[Sandra],
Spatial Evolution of Prosopis Invasion and its Effects on LULC and
Livelihoods in Baringo, Kenya,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Zhu, X.D.[Xu-Dong],
Meng, L.X.[Ling-Xuan],
Zhang, Y.H.[Yi-Hui],
Weng, Q.H.[Qi-Hao],
Morris, J.[James],
Tidal and Meteorological Influences on the Growth of Invasive
Spartina alterniflora: Evidence from UAV Remote Sensing,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Abeysinghe, T.[Tharindu],
Milas, A.S.[Anita Simic],
Arend, K.[Kristin],
Hohman, B.[Breann],
Reil, P.[Patrick],
Gregory, A.[Andrew],
Vázquez-Ortega, A.[Angélica],
Mapping Invasive Phragmites australis in the Old Woman Creek Estuary
Using UAV Remote Sensing and Machine Learning Classifiers,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Luo, Q.[Qian],
Song, J.L.[Jin-Ling],
Yang, L.[Lei],
Wang, J.[Jindi],
Improved Spring Vegetation Phenology Calculation Method Using a
Coupled Model and Anomalous Point Detection,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Farooq, A.[Adnan],
Jia, X.P.[Xiu-Ping],
Hu, J.K.[Jian-Kun],
Zhou, J.[Jun],
Multi-Resolution Weed Classification via Convolutional Neural Network
and Superpixel Based Local Binary Pattern Using Remote Sensing Images,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
See also Superpixel-Based Graphical Model for Remote Sensing Image Mapping.
BibRef
Masemola, C.,
Cho, M.A.,
Ramoelo, A.,
Assessing the Effect of Seasonality on Leaf and Canopy Spectra for
the Discrimination of an Alien Tree Species, Acacia Mearnsii, From
Co-Occurring Native Species Using Parametric and Nonparametric
Classifiers,
GeoRS(57), No. 8, August 2019, pp. 5853-5867.
IEEE DOI
1908
geophysics computing, pattern classification, time series,
vegetation, vegetation mapping, native plant species,
random forest (RF)
BibRef
Bayat, M.[Mahmoud],
Noi, P.T.[Phan Thanh],
Zare, R.[Rozita],
Bui, D.T.[Dieu Tien],
A Semi-empirical Approach Based on Genetic Programming for the Study
of Biophysical Controls on Diameter-Growth of Fagus orientalis in
Northern Iran,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Dash, J.P.[Jonathan P.],
Watt, M.S.[Michael S.],
Paul, T.S.H.[Thomas S. H.],
Morgenroth, J.[Justin],
Pearse, G.D.[Grant D.],
Early Detection of Invasive Exotic Trees Using UAV and Manned
Aircraft Multispectral and LiDAR Data,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Kiala, Z.[Zolo],
Mutanga, O.[Onisimo],
Odindi, J.[John],
Peerbhay, K.[Kabir],
Feature Selection on Sentinel-2 Multispectral Imagery for Mapping a
Landscape Infested by Parthenium Weed,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Ghoussein, Y.[Youssra],
Nicolas, H.[Hervé],
Haury, J.[Jacques],
Fadel, A.[Ali],
Pichelin, P.[Pascal],
Hamdan, H.A.[Hussein Abou],
Faour, G.[Ghaleb],
Multitemporal Remote Sensing Based on an FVC Reference Period Using
Sentinel-2 for Monitoring Eichhornia crassipes on a Mediterranean
River,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
Water hyacinth.
BibRef
Villarreal, M.L.[Miguel L.],
Soulard, C.E.[Christopher E.],
Waller, E.K.[Eric K.],
Landsat Time Series Assessment of Invasive Annual Grasses Following
Energy Development,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
de Castro, A.I.[Ana I.],
Peña, J.M.[José M.],
Torres-Sánchez, J.[Jorge],
Jiménez-Brenes, F.M.[Francisco M.],
Valencia-Gredilla, F.[Francisco],
Recasens, J.[Jordi],
López-Granados, F.[Francisca],
Mapping Cynodon Dactylon Infesting Cover Crops with an Automatic
Decision Tree-OBIA Procedure and UAV Imagery for Precision
Viticulture,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Sabat-Tomala, A.[Anita],
Raczko, E.[Edwin],
Zagajewski, B.[Bogdan],
Comparison of Support Vector Machine and Random Forest Algorithms for
Invasive and Expansive Species Classification Using Airborne
Hyperspectral Data,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Labonté, J.[Joanie],
Drolet, G.[Guillaume],
Sylvain, J.D.[Jean-Daniel],
Thiffault, N.[Nelson],
Hébert, F.[Francois],
Girard, F.[Francois],
Phenology-Based Mapping of an Alien Invasive Species Using Time
Series of Multispectral Satellite Data: A Case-Study with Glossy
Buckthorn in Québec, Canada,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Tian, Y.L.[Yan-Lin],
Jia, M.M.[Ming-Ming],
Wang, Z.M.[Zong-Ming],
Mao, D.H.[De-Hua],
Du, B.J.[Bao-Jia],
Wang, C.[Chao],
Monitoring Invasion Process of Spartina alterniflora by Seasonal
Sentinel-2 Imagery and an Object-Based Random Forest Classification,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Liu, Y.F.[Yi-Fei],
Ma, J.[Jun],
Wang, X.X.[Xin-Xin],
Zhong, Q.Y.[Qiao-Yan],
Zong, J.M.[Jia-Min],
Wu, W.B.[Wan-Ben],
Wang, Q.[Qing],
Zhao, B.[Bin],
Joint Effect of Spartina alterniflora Invasion and Reclamation on the
Spatial and Temporal Dynamics of Tidal Flats in Yangtze River Estuary,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Sheffield, K.[Kathryn],
Dugdale, T.[Tony],
Supporting Urban Weed Biosecurity Programs with Remote Sensing,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Sivakumar, A.N.V.[Arun Narenthiran Veeranampalayam],
Li, J.[Jiating],
Scott, S.[Stephen],
Psota, E.[Eric],
Jhala, A.J.[Amit J.],
Luck, J.D.[Joe D.],
Shi, Y.[Yeyin],
Comparison of Object Detection and Patch-Based Classification Deep
Learning Models on Mid- to Late-Season Weed Detection in UAV Imagery,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Masemola, C.[Cecilia],
Cho, M.A.[Moses Azong],
Ramoelo, A.[Abel],
Towards a semi-automated mapping of Australia native invasive alien
Acacia trees using Sentinel-2 and radiative transfer models in South
Africa,
PandRS(166), 2020, pp. 153-168.
Elsevier DOI
2007
Invasive alien plant, Radiative Transfer Model, PROSAIL,
Sentinel-2, Leaf Area Index, Canopy Chlorophyll Content
BibRef
Worqlul, A.W.[Abeyou W.],
Ayana, E.K.[Essayas K.],
Dile, Y.T.[Yihun T.],
Moges, M.A.[Mamaru A.],
Dersseh, M.G.[Minychl G.],
Tegegne, G.[Getachew],
Kibret, S.[Solomon],
Spatiotemporal Dynamics and Environmental Controlling Factors of the
Lake Tana Water Hyacinth in Ethiopia,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Gée, C.[Christelle],
Denimal, E.[Emmanuel],
RGB Image-Derived Indicators for Spatial Assessment of the Impact of
Broadleaf Weeds on Wheat Biomass,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Cabezas, M.[Mariano],
Kentsch, S.[Sarah],
Tomhave, L.[Luca],
Gross, J.[Jens],
Caceres, M.L.L.[Maximo Larry Lopez],
Diez, Y.[Yago],
Detection of Invasive Species in Wetlands: Practical DL with Heavily
Imbalanced Data,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Dutta, D.[Dipanwita],
Chen, G.[Gang],
Chen, C.[Chen],
Gagné, S.A.[Sara A.],
Li, C.L.[Chang-Lin],
Rogers, C.[Christa],
Matthews, C.[Christopher],
Detecting Plant Invasion in Urban Parks with Aerial Image Time Series
and Residual Neural Network,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Pepe, M.[Monica],
Pompilio, L.[Loredana],
Gioli, B.[Beniamino],
Busetto, L.[Lorenzo],
Boschetti, M.[Mirco],
Detection and Classification of Non-Photosynthetic Vegetation from
PRISMA Hyperspectral Data in Croplands,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Peteinatos, G.G.[Gerassimos G.],
Reichel, P.[Philipp],
Karouta, J.[Jeremy],
Andújar, D.[Dionisio],
Gerhards, R.[Roland],
Weed Identification in Maize, Sunflower, and Potatoes with the Aid of
Convolutional Neural Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Liu, X.[Xiang],
Liu, H.Y.[Hui-Yu],
Datta, P.[Pawanjeet],
Frey, J.[Julian],
Koch, B.[Barbara],
Mapping an Invasive Plant Spartina alterniflora by Combining an
Ensemble One-Class Classification Algorithm with a Phenological NDVI
Time-Series Analysis Approach in Middle Coast of Jiangsu, China,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Singh, G.[Geethen],
Reynolds, C.[Chevonne],
Byrne, M.[Marcus],
Rosman, B.[Benjamin],
A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and
Invasive Water Hyacinth at National Extents,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Haagsma, M.[Marja],
Page, G.F.M.[Gerald F. M.],
Johnson, J.S.[Jeremy S.],
Still, C.[Christopher],
Waring, K.M.[Kristen M.],
Sniezko, R.A.[Richard A.],
Selker, J.S.[John S.],
Using Hyperspectral Imagery to Detect an Invasive Fungal Pathogen and
Symptom Severity in Pinus strobiformis Seedlings of Different
Genotypes,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Zou, K.L.[Kun-Lin],
Chen, X.[Xin],
Zhang, F.[Fan],
Zhou, H.[Hang],
Zhang, C.L.[Chun-Long],
A Field Weed Density Evaluation Method Based on UAV Imaging and
Modified U-Net,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Ronay, I.[Inbal],
Ephrath, J.E.[Jhonathan E.],
Eizenberg, H.[Hanan],
Blumberg, D.G.[Dan G.],
Maman, S.[Shimrit],
Hyperspectral Reflectance and Indices for Characterizing the Dynamics
of Crop-Weed Competition for Water,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Pfitzner, K.[Kirrilly],
Bartolo, R.[Renee],
Whiteside, T.[Tim],
Loewensteiner, D.[David],
Esparon, A.[Andrew],
Hyperspectral Monitoring of Non-Native Tropical Grasses over
Phenological Seasons,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Bolch, E.A.[Erik A.],
Hestir, E.L.[Erin L.],
Khanna, S.[Shruti],
Performance and Feasibility of Drone-Mounted Imaging Spectroscopy for
Invasive Aquatic Vegetation Detection,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Benjamin, A.R.[Adam R.],
Abd-Elrahman, A.[Amr],
Gettys, L.A.[Lyn A.],
Hochmair, H.H.[Hartwig H.],
Thayer, K.[Kyle],
Monitoring the Efficacy of Crested Floatingheart (Nymphoides
cristata) Management with Object-Based Image Analysis of UAS Imagery,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Bransky, N.[Nathaniel],
Sankey, T.[Temuulen],
Sankey, J. .B.[Joel B.],
Johnson, M.[Matthew],
Jamison, L.[Levi],
Monitoring Tamarix Changes Using WorldView-2 Satellite Imagery in
Grand Canyon National Park, Arizona,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
Tamarisk -- invasive shrub.
BibRef
Kaivosoja, J.[Jere],
Hautsalo, J.H.[Ju-Ho],
Heikkinen, J.[Jaakko],
Hiltunen, L.[Lea],
Ruuttunen, P.[Pentti],
Näsi, R.[Roope],
Niemeläinen, O.[Oiva],
Lemsalu, M.[Madis],
Honkavaara, E.[Eija],
Salonen, J.[Jukka],
Reference Measurements in Developing UAV Systems for Detecting Pests,
Weeds, and Diseases,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Larson, K.B.[Kyle B.],
Tuor, A.R.[Aaron R.],
Deep Learning Classification of Cheatgrass Invasion in the Western
United States Using Biophysical and Remote Sensing Data,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Mattivi, P.[Pietro],
Pappalardo, S.E.[Salvatore Eugenio],
Nikolic, N.[Nebojša],
Mandolesi, L.[Luca],
Persichetti, A.[Antonio],
de Marchi, M.[Massimo],
Masin, R.[Roberta],
Can Commercial Low-Cost Drones and Open-Source GIS Technologies Be
Suitable for Semi-Automatic Weed Mapping for Smart Farming? A Case
Study in NE Italy,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Brooks, C.[Colin],
Weinstein, C.[Charlotte],
Poley, A.[Andrew],
Grimm, A.[Amanda],
Marion, N.[Nicholas],
Bourgeau-Chavez, L.[Laura],
Hansen, D.[Dana],
Kowalski, K.[Kurt],
Using Uncrewed Aerial Vehicles for Identifying the Extent of Invasive
Phragmites australis in Treatment Areas Enrolled in an Adaptive
Management Program,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Hu, C.S.[Cheng-Song],
Sapkota, B.B.[Bishwa B.],
Thomasson, J.A.[J. Alex],
Bagavathiannan, M.V.[Muthukumar V.],
Influence of Image Quality and Light Consistency on the Performance
of Convolutional Neural Networks for Weed Mapping,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Huang, T.C.[Tie-Cheng],
Ding, X.J.[Xiao-Juan],
Zhu, X.[Xuan],
Chen, S.J.[Shu-Jiang],
Chen, M.Y.[Meng-Yu],
Jia, X.[Xiang],
Lai, F.B.[Feng-Bing],
Zhang, X.L.[Xiao-Li],
Assessment of Poplar Looper (Apocheima cinerarius Erschoff)
Infestation on Euphrates (Populus euphratica) Using Time-Series MODIS
NDVI Data Based on the Wavelet Transform and Discriminant Analysis,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Quan, L.Z.[Long-Zhe],
Li, H.D.[Heng-Da],
Li, H.L.[Hai-Long],
Jiang, W.[Wei],
Lou, Z.X.[Zhao-Xia],
Chen, L.Q.[Li-Qing],
Two-Stream Dense Feature Fusion Network Based on RGB-D Data for the
Real-Time Prediction of Weed Aboveground Fresh Weight in a Field
Environment,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Anderson, C.J.[Connor J.],
Heins, D.[Daniel],
Pelletier, K.C.[Keith C.],
Bohnen, J.L.[Julia L.],
Knight, J.F.[Joseph F.],
Mapping Invasive Phragmites australis Using Unoccupied Aircraft
System Imagery, Canopy Height Models, and Synthetic Aperture Radar,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Anderson, C.J.[Connor J.],
Heins, D.[Daniel],
Pelletier, K.C.[Keith C.],
Knight, J.F.[Joseph F.],
Using Voting-Based Ensemble Classifiers to Map Invasive Phragmites
australis,
RS(15), No. 14, 2023, pp. 3511.
DOI Link
2307
BibRef
Mouta, N.[Nuno],
Silva, R.[Renato],
Pais, S.[Silvana],
Alonso, J.M.[Joaquim M.],
Gonçalves, J.F.[João F.],
Honrado, J.[João],
Vicente, J.R.[Joana R.],
'The Best of Two Worlds': Combining Classifier Fusion and Ecological
Models to Map and Explain Landscape Invasion by an Alien Shrub,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Iqbal, I.M.[Iram M.],
Balzter, H.[Heiko],
Firdaus-e-Bareen,
Shabbir, A.[Asad],
Identifying the Spectral Signatures of Invasive and Native Plant
Species in Two Protected Areas of Pakistan through Field Spectroscopy,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Parker, K.[Kelsey],
Elmes, A.[Arthur],
Boucher, P.[Peter],
Hallett, R.A.[Richard A.],
Thompson, J.E.[John E.],
Simek, Z.[Zachary],
Bowers, J.[Justin],
Reinmann, A.B.[Andrew B.],
Crossing the Great Divide: Bridging the Researcher-Practitioner Gap
to Maximize the Utility of Remote Sensing for Invasive Species
Monitoring and Management,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Lan, Y.B.[Yu-Bin],
Huang, K.H.[Kang-Hua],
Yang, C.[Chang],
Lei, L.C.[Luo-Cheng],
Ye, J.H.[Jia-Hang],
Zhang, J.L.[Jian-Ling],
Zeng, W.[Wen],
Zhang, Y.[Yali],
Deng, J.Z.[Ji-Zhong],
Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote
Sensing Based on Improved Semantic Segmentation Model,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Schulze-Brüninghoff, D.[Damian],
Wachendorf, M.[Michael],
Astor, T.[Thomas],
Potentials and Limitations of WorldView-3 Data for the Detection of
Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shen, M.[Ming],
Tang, M.F.[Mao-Feng],
Li, Y.K.[Ying-Kui],
Phenology and Spectral Unmixing-Based Invasive Kudzu Mapping: A Case
Study in Knox County, Tennessee,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Rakhmatuiln, I.[Ildar],
Kamilaris, A.[Andreas],
Andreasen, C.[Christian],
Deep Neural Networks to Detect Weeds from Crops in Agricultural
Environments in Real-Time: A Review,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Eide, A.[Austin],
Koparan, C.[Cengiz],
Zhang, Y.[Yu],
Ostlie, M.[Michael],
Howatt, K.[Kirk],
Sun, X.[Xin],
UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed
Canopies for Glyphosate Resistance Detection,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Koco, Š.[Štefan],
Dubravská, A.[Anna],
Vilcek, J.[Jozef],
Grulová, D.[Daniela],
Geospatial Approaches to Monitoring the Spread of Invasive Species of
Solidago spp.,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Etienne, A.[Aaron],
Ahmad, A.[Aanis],
Aggarwal, V.[Varun],
Saraswat, D.[Dharmendra],
Deep Learning-Based Object Detection System for Identifying Weeds
Using UAS Imagery,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sabat-Tomala, A.[Anita],
Raczko, E.[Edwin],
Zagajewski, B.[Bogdan],
Mapping Invasive Plant Species with Hyperspectral Data Based on
Iterative Accuracy Assessment Techniques,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Reedha, R.[Reenul],
Dericquebourg, E.[Eric],
Canals, R.[Raphael],
Hafiane, A.[Adel],
Transformer Neural Network for Weed and Crop Classification of High
Resolution UAV Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Liang, S.[Shuang],
Gong, Z.N.[Zhao-Ning],
Wang, Y.C.[Ying-Cong],
Zhao, J.[Jiafu],
Zhao, W.J.[Wen-Ji],
Accurate Monitoring of Submerged Aquatic Vegetation in a Macrophytic
Lake Using Time-Series Sentinel-2 Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Mafanya, M.[Madodomzi],
Tsele, P.[Philemon],
Zengeya, T.[Tsungai],
Ramoelo, A.[Abel],
An assessment of image classifiers for generating machine-learning
training samples for mapping the invasive Campuloclinium
macrocephalum (Less.) DC (pompom weed) using DESIS hyperspectral
imagery,
PandRS(185), 2022, pp. 188-200.
Elsevier DOI
2202
Image classifiers, Training samples, Pompom weed,
Spectral angle mapper, Maximum likelihood, DESIS
BibRef
Kiala, Z.[Zolo],
Odindi, J.[John],
Mutanga, O.[Onisimo],
Determining the Capability of the Tree-Based Pipeline Optimization
Tool (TPOT) in Mapping Parthenium Weed Using Multi-Date Sentinel-2
Image Data,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Curtarelli, M.P.[Marcelo Pedroso],
Kurtz, D.J.[Diego Jacob],
Salgueiro, T.P.[Taisa Pereira],
Identifying Priority Areas for Vegetation Management in the Context
of Energy Distribution Networks Using PlanetScope Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Dmitriev, P.A.[Pavel A.],
Kozlovsky, B.L.[Boris L.],
Kupriushkin, D.P.[Denis P.],
Dmitrieva, A.A.[Anastasia A.],
Rajput, V.D.[Vishnu D.],
Chokheli, V.A.[Vasily A.],
Tarik, E.P.[Ekaterina P.],
Kapralova, O.A.[Olga A.],
Tokhtar, V.K.[Valeriy K.],
Minkina, T.M.[Tatiana M.],
Varduni, T.V.[Tatiana V.],
Assessment of Invasive and Weed Species by Hyperspectral Imagery in
Agrocenoses Ecosystem,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhu, W.Q.[Wen-Qing],
Ren, G.[Guangbo],
Wang, J.P.[Jian-Ping],
Wang, J.[Jianbu],
Hu, Y.[Yabin],
Lin, Z.Y.[Zhao-Yang],
Li, W.[Wei],
Zhao, Y.J.[Ya-Jie],
Li, S.[Shibao],
Wang, N.[Ning],
Monitoring the Invasive Plant Spartina alterniflora in Jiangsu
Coastal Wetland Using MRCNN and Long-Time Series Landsat Data,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Sheffield, K.J.[Kathryn J.],
Clements, D.[Daniel],
Clune, D.J.[Darryl J.],
Constantine, A.[Angela],
Dugdale, T.M.[Tony M.],
Detection of Aquatic Alligator Weed (Alternanthera philoxeroides)
from Aerial Imagery Using Random Forest Classification,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Simpson, M.D.[Morgan David],
Akbari, V.[Vahid],
Marino, A.[Armando],
Prabhu, G.N.[G. Nagendra],
Bhowmik, D.[Deepayan],
Rupavatharam, S.[Srikanth],
Datta, A.[Aviraj],
Kleczkowski, A.[Adam],
Sujeetha, J.A.R.P.[J. Alice R. P.],
Anantrao, G.G.[Girish Gunjotikar],
Poduvattil, V.K.[Vidhu Kampurath],
Kumar, S.[Saurav],
Maharaj, S.[Savitri],
Hunter, P.D.[Peter D.],
Detecting Water Hyacinth Infestation in Kuttanad, India, Using
Dual-Pol Sentinel-1 SAR Imagery,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ade, C.[Christiana],
Khanna, S.[Shruti],
Lay, M.[Mui],
Ustin, S.L.[Susan L.],
Hestir, E.L.[Erin L.],
Genus-Level Mapping of Invasive Floating Aquatic Vegetation Using
Sentinel-2 Satellite Remote Sensing,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Andujar, D.[Dionisio],
Martinez-Guanter, J.[Jorge],
An Overview of Precision Weed Mapping and Management Based on Remote
Sensing,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Salim, S.[Samla],
Sarath, R.,
An improved invasive weed optimization enabled Shepard convolutional
neural network for classification of breast cancer,
IJIST(32), No. 5, 2022, pp. 1521-1534.
DOI Link
2209
breast cancer classification, histopathological image,
invasive weed optimization, morphological operation,
water wave optimization
BibRef
Fraccaro, P.[Paolo],
Butt, J.[Junaid],
Edwards, B.[Blair],
Freckleton, R.P.[Robert P.],
Childs, D.Z.[Dylan Z.],
Reusch, K.[Katharina],
Comont, D.[David],
A Deep Learning Application to Map Weed Spatial Extent from Unmanned
Aerial Vehicles Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Gutiérrez-Lazcano, L.[Lucia],
Camacho-Bello, C.J.[César J.],
Cornejo-Velazquez, E.[Eduardo],
Arroyo-Núñez, J.H.[José Humberto],
Clavel-Maqueda, M.[Mireya],
Cuscuta spp. Segmentation Based on Unmanned Aerial Vehicles (UAVs)
and Orthomasaics Using a U-Net Xception-Style Model,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ribeiro, J.W.[José W.],
Harmon, K.[Kristopher],
Leite, G.A.[Gabriel Augusto],
de Melo, T.N.[Tomaz Nascimento],
LeBien, J.[Jack],
Campos-Cerqueira, M.[Marconi],
Passive Acoustic Monitoring as a Tool to Investigate the Spatial
Distribution of Invasive Alien Species,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Chávez, R.O.[Roberto O.],
Estay, S.A.[Sergio A.],
Lastra, J.A.[José A.],
Riquelme, C.G.[Carlos G.],
Olea, M.[Matías],
Aguayo, J.[Javiera],
Decuyper, M.[Mathieu],
npphen: An R-Package for Detecting and Mapping Extreme Vegetation
Anomalies Based on Remotely Sensed Phenological Variability,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Gao, B.T.[Bing-Tao],
Yu, L.F.[Lin-Feng],
Ren, L.[Lili],
Zhan, Z.Y.[Zhong-Yi],
Luo, Y.Q.[You-Qing],
Early Detection of Dendroctonus valens Infestation at Tree Level with
a Hyperspectral UAV Image,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Innangi, M.[Michele],
Marzialetti, F.[Flavio],
di Febbraro, M.[Mirko],
Acosta, A.T.R.[Alicia Teresa Rosario],
de Simone, W.[Walter],
Frate, L.[Ludovico],
Finizio, M.[Michele],
Perna, P.V.[Priscila Villalobos],
Carranza, M.L.[Maria Laura],
Coastal Dune Invaders: Integrative Mapping of Carpobrotus sp. pl.
(Aizoaceae) Using UAVs,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Gallo, I.[Ignazio],
Ur Rehman, A.[Anwar],
Dehkordi, R.H.[Ramin Heidarian],
Landro, N.[Nicola],
La Grassa, R.[Riccardo],
Boschetti, M.[Mirco],
Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real
Case Dataset from UAV Images,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Chaudhuri, G.[Gargi],
Mishra, N.B.[Niti B.],
Detection of Aquatic Invasive Plants in Wetlands of the Upper
Mississippi River from UAV Imagery Using Transfer Learning,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Mallmann, C.L.[Caroline Lorenci],
Filho, W.P.[Waterloo Pereira],
Dreyer, J.B.B.[Jaqueline B. B.],
Tabaldi, L.A.[Luciane A.],
Durgante, F.M.[Flavia Machado],
Leaf-Level Field Spectroscopy to Discriminate Invasive Species
(Psidium guajava L. and Hovenia dulcis Thunb.) from Native Tree
Species in the Southern Brazilian Atlantic Forest,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Domingo, D.[Dario],
Pérez-Rodríguez, F.[Fernando],
Gómez-García, E.[Esteban],
Rodríguez-Puerta, F.[Francisco],
Assessing the Efficacy of Phenological Spectral Differences to Detect
Invasive Alien Acacia dealbata Using Sentinel-2 Data in Southern
Europe,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Anderson, C.J.[Connor J.],
Heins, D.[Daniel],
Pelletier, K.C.[Keith C.],
Knight, J.F.[Joseph F.],
Improving Machine Learning Classifications of Phragmites australis
Using Object-Based Image Analysis,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Iqbal, I.M.[Iram M.],
Balzter, H.[Heiko],
Firdaus-e-Bareen,
Shabbir, A.[Asad],
Mapping Lantana camara and Leucaena leucocephala in Protected Areas
of Pakistan: A Geo-Spatial Approach,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Amarasingam, N.[Narmilan],
Hamilton, M.[Mark],
Kelly, J.E.[Jane E.],
Zheng, L.H.[Li-Hong],
Sandino, J.[Juan],
Gonzalez, F.[Felipe],
Dehaan, R.L.[Remy L.],
Cherry, H.[Hillary],
Autonomous Detection of Mouse-Ear Hawkweed Using Drones,
Multispectral Imagery and Supervised Machine Learning,
RS(15), No. 6, 2023, pp. 1633.
DOI Link
2304
BibRef
Danilevicz, M.F.[Monica F.],
Rocha, R.L.[Roberto Lujan],
Batley, J.[Jacqueline],
Bayer, P.E.[Philipp E.],
Bennamoun, M.[Mohammed],
Edwards, D.[David],
Ashworth, M.B.[Michael B.],
Segmentation of Sandplain Lupin Weeds from Morphologically Similar
Narrow-Leafed Lupins in the Field,
RS(15), No. 7, 2023, pp. 1817.
DOI Link
2304
BibRef
Raja, G.[Gunasekaran],
Philips, N.D.[Nisha Deborah],
Ramasamy, R.K.[Ramesh Krishnan],
Dev, K.[Kapal],
Kumar, N.[Neeraj],
Intelligent Drones Trajectory Generation for Mapping Weed Infested
Regions Over 6G Networks,
ITS(24), No. 7, July 2023, pp. 7506-7515.
IEEE DOI
2307
Trajectory, Splines (mathematics), Optimization,
Genetic algorithms, 6G mobile communication, Drones,
non-uniform rational B-splines
BibRef
Du, B.[Bobo],
Ding, X.L.[Xiao-Long],
Ji, C.[Chao],
Lin, K.[Kejian],
Guo, J.[Jing],
Lu, L.[Longhui],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Wang, N.[Ning],
Estimating Leymus chinensis Loss Caused by Oedaleus decorus asiaticus
Using an Unmanned Aerial Vehicle (UAV),
RS(15), No. 17, 2023, pp. 4352.
DOI Link
2310
BibRef
Zhao, J.S.[Jiang-San],
Berge, T.W.[Therese With],
Geipel, J.[Jakob],
Transformer in UAV Image-Based Weed Mapping,
RS(15), No. 21, 2023, pp. 5165.
DOI Link
2311
BibRef
Khan, S.D.[Sultan Daud],
Basalamah, S.[Saleh],
Lbath, A.[Ahmed],
Weed-Crop Segmentation in Drone Images with a Novel
Encoder-Decoder Framework Enhanced via Attention Modules,
RS(15), No. 23, 2023, pp. 5615.
DOI Link
2312
BibRef
Huang, T.C.[Tie-Cheng],
Yang, T.[Tong],
Wang, K.[Kun],
Huang, W.J.[Wen-Jiang],
Assessing the Current and Future Potential Distribution of Solanum
rostratum Dunal in China Using Multisource Remote Sensing Data and
Principal Component Analysis,
RS(16), No. 2, 2024, pp. 271.
DOI Link
2402
BibRef
Thürkow, F.[Florian],
Lorenz, C.G.[Christopher Günter],
Pause, M.[Marion],
Birger, J.[Jens],
Advanced Detection of Invasive Neophytes in Agricultural Landscapes:
A Multisensory and Multiscale Remote Sensing Approach,
RS(16), No. 3, 2024, pp. 500.
DOI Link
2402
BibRef
de Figueiredo Meyer, M.[Manuel],
Gonçalves, J.A.[José Alberto],
Bio, A.M.F.[Ana Maria Ferreira],
Using Remote Sensing Multispectral Imagery for Invasive Species
Quantification: The Effect of Image Resolution on Area and Biomass
Estimation,
RS(16), No. 4, 2024, pp. 652.
DOI Link
2402
BibRef
Zagajewski, B.[Bogdan],
Kluczek, M.[Marcin],
Zdunek, K.B.[Karolina Barbara],
Holland, D.[David],
Sentinel-2 versus PlanetScope Images for Goldenrod Invasive Plant
Species Mapping,
RS(16), No. 4, 2024, pp. 636.
DOI Link
2402
BibRef
Sabat-Tomala, A.[Anita],
Raczko, E.[Edwin],
Zagajewski, B.[Bogdan],
Airborne Hyperspectral Images and Machine Learning Algorithms for the
Identification of Lupine Invasive Species in Natura 2000 Meadows,
RS(16), No. 3, 2024, pp. 580.
DOI Link
2402
BibRef
Valero-Jorge, A.[Alexey],
Zayas, R.G.D.[Roberto González-De],
Matos-Pupo, F.[Felipe],
Becerra-González, A.L.[Angel Luis],
Álvarez-Taboada, F.[Flor],
Mapping and Monitoring of the Invasive Species Dichrostachys cinerea
(Marabú) in Central Cuba Using Landsat Imagery and Machine Learning
(1994-2022),
RS(16), No. 5, 2024, pp. 798.
DOI Link
2403
BibRef
Xing, F.[Fei],
An, R.[Ru],
Guo, X.[Xulin],
Shen, X.J.[Xiao-Ji],
Mapping the Continuous Cover of Invasive Noxious Weed Species Using
Sentinel-2 Imagery and a Novel Convolutional Neural Regression
Network,
RS(16), No. 9, 2024, pp. 1648.
DOI Link
2405
BibRef
Amarasingam, N.[Narmilan],
Vanegas, F.[Fernando],
Hele, M.[Melissa],
Warfield, A.[Angus],
Gonzalez, F.[Felipe],
Integrating Artificial Intelligence and UAV-Acquired Multispectral
Imagery for the Mapping of Invasive Plant Species in Complex Natural
Environments,
RS(16), No. 9, 2024, pp. 1582.
DOI Link
2405
BibRef
Bastos, A.P.[Ana Pestana],
Taborda, R.[Rui],
Andrade, C.[César],
Lira, C.P.[Cristina Ponte],
Silva, A.N.[Ana Nobre],
Short-Term Foredune Dynamics in Response to Invasive Vegetation
Control Actions,
RS(16), No. 9, 2024, pp. 1487.
DOI Link
2405
BibRef
Peterson, P.G.[Paul G.],
Shepherd, J.D.[James D.],
Hill, R.L.[Richard L.],
Davey, C.I.[Craig I.],
Remote Sensing Guides Management Strategy for Invasive Legumes on the
Central Plateau, New Zealand,
RS(16), No. 13, 2024, pp. 2503.
DOI Link
2407
BibRef
Ronay, I.[Inbal],
Lati, R.N.[Ran Nisim],
Kizel, F.[Fadi],
Weed Species Identification: Acquisition, Feature Analysis, and
Evaluation of a Hyperspectral and RGB Dataset with Labeled Data,
RS(16), No. 15, 2024, pp. 2808.
DOI Link
2408
BibRef
Mesías-Ruiz, G.A.[Gustavo A.],
Peña, J.M.[José M.],
de Castro, A.I.[Ana I.],
Borra-Serrano, I.[Irene],
Dorado, J.[José],
Cognitive Computing Advancements: Improving Precision Crop Protection
through UAV Imagery for Targeted Weed Monitoring,
RS(16), No. 16, 2024, pp. 3026.
DOI Link
2408
BibRef
Chowdhury, S.[Shaif],
Hamerly, G.[Greg],
McGarrity, M.[Monica],
Active Learning Strategy Using Contrastive Learning and K-means for
Aquatic Invasive Species Recognition,
Maritime24(848-858)
IEEE DOI
2404
Training, Deep learning, Invasive species, Costs, Plankton,
Machine vision, Supervised learning
BibRef
Satyarthi, D.[Devshri],
Arya, K.V.,
Rathore, S.S.[Santosh Singh],
Weed Detection Using AlexN et in Sesame Crops,
ICCVMI23(1-6)
IEEE DOI
2403
Analytical models, Uncertainty, Computational modeling,
Transfer learning, Sociology, Crops, Computer architecture,
Performance matrices
BibRef
Wang, Y.[Yuemin],
Ha, T.[Thuan],
Aldridge, K.[Kathryn],
Duddu, H.[Hema],
Shirtliffe, S.[Steve],
Stavness, I.[Ian],
Weed Mapping with Convolutional Neural Networks on High Resolution
Whole-Field Images,
CVPPA23(505-514)
IEEE DOI
2401
BibRef
Melki, P.[Paul],
Bombrun, L.[Lionel],
Diallo, B.[Boubacar],
Dias, J.[Jérôme],
Costa, J.P.D.[Jean-Pierre Da],
Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification,
CVPPA23(614-623)
IEEE DOI
2401
BibRef
Celikkan, E.[Ekin],
Saberioon, M.[Mohammadmehdi],
Herold, M.[Martin],
Klein, N.[Nadja],
Semantic Segmentation of Crops and Weeds with Probabilistic Modeling
and Uncertainty Quantification,
CVPPA23(582-592)
IEEE DOI
2401
BibRef
Schmidt, P.[Patrick],
Güldenring, R.[Ronja],
Nalpantidis, L.[Lazaros],
Sift-guided Saliency-based Augmentation for Weed Detection in Grassland
Images: Fusing Classic Computer Vision with Deep Learning,
CVS23(137-147).
Springer DOI
2312
BibRef
Rozendo, G.B.[Guilherme Botazzo],
Roberto, G.F.[Guilherme Freire],
do Nascimento, M.Z.[Marcelo Zanchetta],
Neves, L.A.[Leandro Alves],
Lumini, A.[Alessandra],
Weeds Classification with Deep Learning: An Investigation Using Cnn,
Vision Transformers, Pyramid Vision Transformers, and Ensemble Strategy,
CIARP23(I:229-243).
Springer DOI
2312
BibRef
Steininger, D.[Daniel],
Trondl, A.[Andreas],
Croonen, G.[Gerardus],
Simon, J.[Julia],
Widhalm, V.[Verena],
The CropAndWeed Dataset: a Multi-Modal Learning Approach for
Efficient Crop and Weed Manipulation,
WACV23(3718-3727)
IEEE DOI
2302
Location awareness, Training, Image segmentation, Annotations, Crops,
Training data, Benchmark testing, Applications: Agriculture, visual reasoning
BibRef
Iancu, O.D.[Ovidiu Dan],
Yang, K.[Kara],
Man, H.[Han],
Menard, T.C.[Theresa Cabrera],
An Automated and Scalable ML Solution for Mapping Invasive Species:
the Case of the Australian Tree Fern in Hawaiian Forests,
RealWorld23(140-147)
IEEE DOI
2302
Training, Web services, Pipelines, Training data, Vegetation, Organizations
BibRef
Elias, N.[Nathan],
Deep Learning Methodology for Early Detection and Outbreak Prediction
of Invasive Species Growth,
WACV23(6324-6332)
IEEE DOI
2302
Training, Deep learning, Solid modeling, Laser radar, Manuals,
Predictive models, Animals/Insects
BibRef
Amziane, A.[Anis],
Losson, O.[Olivier],
Mathon, B.[Benjamin],
Dumenil, A.[Aurélien],
Macaire, L.[Ludovic],
Frame-based reflectance estimation from multispectral images for weed
identification in varying illumination conditions,
IPTA20(1-7)
IEEE DOI
2206
Reflectivity, Image segmentation, Lighting, Estimation,
Vegetation mapping, Tools, Cameras, Multispectral imaging, Linescan camera
BibRef
Gimenez, R.,
Lassalle, G.,
Hédacq, R.,
Elger, A.,
Dubucq, D.,
Credoz, A.,
Jennet, C.,
Fabre, S.,
Exploitation of Spectral and Temporal Information for Mapping Plant
Species in a Former Industrial Site,
ISPRS21(B3-2021: 559-566).
DOI Link
2201
BibRef
Liu, J.,
Hossain, M.D.,
Chen, D.,
A Procedure for Identifying Invasive Wild Parsnip Plants Based On
Visible Bands From UAV Images,
ISPRS21(B1-2021: 173-181).
DOI Link
2201
BibRef
Nyawacha, S.O.,
Meta, V.,
Osio, A.,
Spatial Temporal Mapping of Spread of Water Hyacinth In Winum Gulf,
Lake Victoria,
ISPRS21(B3-2021: 341-346).
DOI Link
2201
BibRef
Asad, M.H.[Muhammad Hamza],
Bais, A.[Abdul],
Weed Density Estimation Using Semantic Segmentation,
PSIVT19(162-171).
Springer DOI
2003
BibRef
Baidar, T.,
Shrestha, A.B.,
Ranjit, R.,
Adhikari, R.,
Ghimire, S.,
Shrestha, N.,
Impact Assessment of Mikania Micrantha On Land Cover And Maxent
Modeling to Predict Its Potential Invasion Sites,
Hannover17(305-310).
DOI Link
1805
BibRef
Martínez-Sánchez, J.,
González-de Santos, L.M.,
Novo, A.,
González-Jorge, H.,
UAV and Satellite Imagery Applied to Alien Species Mapping in NW Spain,
UAV-g19(455-459).
DOI Link
1912
BibRef
Mudereri, B.T.,
Dube, T.,
Adel-Rahman, E.M.,
Niassy, S.,
Kimathi, E.,
Khan, Z.,
Landmann, T.,
A Comparative Analysis of Planetscope and Sentinel Sentinel-2
Space-borne Sensors in Mapping Striga Weed Using Guided Regularised
Random Forest Classification Ensemble,
IWIDF19(701-708).
DOI Link
1912
BibRef
Förster, M.,
Schmidt, T.,
Wolf, R.,
Kleinschmit, B.,
Fassnacht, F.E.,
Cabezas, J.,
Kattenborn, T.,
Detecting the spread of invasive species in central Chile with a
Sentinel-2 time-series,
MultiTemp17(1-4)
IEEE DOI
1712
geophysical image processing, hyperspectral imaging,
image segmentation, land cover, least squares approximations,
time-series
BibRef
Marshall, V.,
Lewis, M.,
Ostendorf, B.,
Do Additional Bands (coastal, Nir-2, Red-edge And Yellow) In
Worldview-2 Multispectral Imagery Improve Discrimination Of An Invasive
Tussock, Buffel Grass (cenchrus Ciliaris)?,
ISPRS12(XXXIX-B8:277-281).
DOI Link
1209
P>
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Soybean Crop Analysis, Beans, Production, Detection, Health, Change .