Feyaerts, F.,
Van Gool, L.J.,
Multi-spectral vision system for weed detection,
PRL(22), No. 6-7, May 2001, pp. 667-674.
Elsevier DOI
0105
BibRef
Vioix, J.B.[Jean-Baptiste],
Douzals, J.P.[Jean-Paul],
Truchetet, F.[Frédéric],
Assémat, L.[Louis],
Guillemin, J.P.[Jean-Philippe],
Spatial and Spectral Methods for Weed Detection and Localization,
JASP(2002), No. 7, July 2002, pp. 679-685.
0208
BibRef
Foschi, P.G.[Patricia G.],
Liu, H.[Huan],
Active learning for detecting a spectrally variable subject in color
infrared imagery,
PRL(25), No. 13, 1 October 2004, pp. 1509-1517.
Elsevier DOI
0410
feature extraction, automatic classification, active learning, and
experimental evaluation for
water weed classification.
BibRef
Watchareeruetai, U.[Ukrit],
Takeuchi, Y.[Yoshinori],
Matsumoto, T.[Tetsuya],
Kudo, H.[Hiroaki],
Ohnishi, N.[Noboru],
Computer vision based methods for detecting weeds in lawns,
MVA(17), No. 5, October 2006, pp. 287-296.
Springer DOI
0609
BibRef
Tellaeche, A.[Alberto],
Burgos-Artizzu, X.P.[Xavier P.],
Pajares, G.[Gonzalo],
Ribeiro, A.[Angela],
A vision-based method for weeds identification through the Bayesian
decision theory,
PR(41), No. 2, February 2008, pp. 521-530.
Elsevier DOI
0711
Bayesian estimation; Parzen's window; Decision making; Machine vision;
Image segmentation; Weed identification; Precision agriculture
BibRef
Somers, B.,
Delalieux, S.,
Verstraeten, W.W.,
Verbesselt, J.,
Lhermitte, S.,
Coppin, P.,
Magnitude- and Shape-Related Feature Integration in Hyperspectral
Mixture Analysis to Monitor Weeds in Citrus Orchards,
GeoRS(47), No. 11, November 2009, pp. 3630-3642.
IEEE DOI
0911
BibRef
Hiremath, S.[Santosh],
Tolpekin, V.A.[Valentyn A.],
van der Heijden, G.[Gerie],
Stein, A.[Alfred],
Segmentation of Rumex obtusifolius using Gaussian Markov random fields,
MVA(24), No. 4, May 2013, pp. 845-854.
Springer DOI
1304
Broad-leavd Dock, a weed.
BibRef
Wong, W.K.,
Chekima, A.[Ali],
Wee, C.C.[Choo Chee],
Brendon, K.[Khoo],
Marriappan, M.[Muralindran],
Modular-based classification system for weed classification using
mixture of features,
IJCVR(3), No. 3, 2013, pp. 261-278.
DOI Link
1412
BibRef
Prema, P.,
Murugan, D.,
A Novel Angular Texture Pattern (ATP) Extraction Method for Crop and
Weed Discrimination Using Curvelet Transformation,
ELCVIA(15), No. 1, 2016, pp. 27-59.
DOI Link
1608
BibRef
de Castro, A.I.[Ana I.],
Torres-Sánchez, J.[Jorge],
Peña, J.M.[Jose M.],
Jiménez-Brenes, F.M.[Francisco M.],
Csillik, O.[Ovidiu],
López-Granados, F.[Francisca],
An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping
between and within Crop Rows Using UAV Imagery,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Madsen, S.L.[Simon Leminen],
Mathiassen, S.K.[Solvejg Kopp],
Dyrmann, M.[Mads],
Laursen, M.S.[Morten Stigaard],
Paz, L.C.[Laura-Carlota],
Jørgensen, R.N.[Rasmus Nyholm],
Open Plant Phenotype Database of Common Weeds in Denmark,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Zahidi, U.A.[Usman A.],
Cielniak, G.[Grzegorz],
Active Learning for Crop-Weed Discrimination by Image Classification
from Convolutional Neural Network's Feature Pyramid Levels,
CVS21(245-257).
Springer DOI
2109
BibRef
Bah, M.D.,
Hafiane, A.,
Canals, R.,
Weeds detection in UAV imagery using SLIC and the hough transform,
IPTA17(1-6)
IEEE DOI
1804
Hough transforms, agriculture, agrochemicals,
autonomous aerial vehicles, crops, geophysical image processing,
precision agriculture
BibRef
Kounalakis, T.[Tsampikos],
Triantafyllidis, G.A.[Georgios A.],
Nalpantidis, L.[Lazaros],
Vision System for Robotized Weed Recognition in Crops and Grasslands,
CVS17(485-498).
Springer DOI
1711
BibRef
Haug, S.[Sebastian],
Ostermann, J.[Jörn],
A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision
Based Precision Agriculture Tasks,
PlantType14(105-116).
Springer DOI
1504
BibRef
Haug, S.[Sebastian],
Michaels, A.[Andreas],
Biber, P.[Peter],
Ostermann, J.[Jorn],
Plant classification system for crop /weed discrimination without
segmentation,
WACV14(1142-1149)
IEEE DOI
1406
Accuracy
BibRef
Shi, C.J.[Chang-Jiang],
Ji, G.R.[Guang-Rong],
Recognition Method of Weed Seeds Based on Computer Vision,
CISP09(1-4).
IEEE DOI
0910
BibRef
Chapron, M.,
Boissard, P.,
Assemat, L.,
A Multiresolution Based Method for Recognizing Weeds in Corn Fields,
ICPR00(Vol II: 303-306).
IEEE DOI
0009
BibRef
Sánchez, A.J.,
Marchant, J.A.,
Fusing 3D Information for Crop/weeds Classification,
ICPR00(Vol IV: 295-298).
IEEE DOI
0009
Close range images.
BibRef
Chapron, M.,
Martin-Chefson, L.,
Assemat, L.,
Boissard, P.,
A Multiresolution Weed Recognition Method based on Multispectral Image
Processing,
SCIA99(Image Analysis).
BibRef
9900
Chapron, M.,
Khalfi, K.,
Boissard, P., and
Assemat, L.,
Weed Recognition by Color Image Processing,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Pollen Detection, Analysis .