Pospisil, A.,
AMOS: the 'learning' multiclass pattern classifier,
PR(3), No. 3, October 1971, pp. 253-268.
Elsevier DOI
0309
Adaptive thresholds.
BibRef
Dubes, R.C.[Richard C.],
How many clusters are best? - An experiment,
PR(20), No. 6, 1987, pp. 645-663.
Elsevier DOI
0309
BibRef
Begovich, C.L.,
Kane, V.E.,
Estimating the number of groups and group membership using simulation
cluster analysis,
PR(15), No. 4, 1982, pp. 335-342.
Elsevier DOI
0309
BibRef
Soklic, M.E.[Milan E.],
Adaptive model for decision making,
PR(15), No. 6, 1982, pp. 485-493.
Elsevier DOI
0309
BibRef
Soklic, M.E.[Milan E.],
The partition of N-dimensional space, using shells,
PR(17), No. 3, 1984, pp. 339-344.
Elsevier DOI
0309
BibRef
di Gesù, V.,
Sacco, B.,
Some statistical properties of the minimum spanning forest,
PR(16), No. 5, 1983, pp. 525-531.
Elsevier DOI
0309
Finds cluster patterns in a random graph of points.
BibRef
Dubes, R.C.[Richard C.],
Hoffman, R.L.[Richard L.],
Remarks on some statistical properties of the minimum spanning forest,
PR(19), No. 1, 1986, pp. 49-53.
Elsevier DOI
0309
BibRef
Suen, C.Y.,
Wang, Q.R.,
ISOETRP: An interactive clustering algorithm with new objectives,
PR(17), No. 2, 1984, pp. 211-219.
Elsevier DOI
0309
BibRef
Zhang, Q.W.[Qi-Wen],
Wang, Q.R.[Qing Ren],
Knowledge based ISOETRP clustering procedure,
ICPR88(II: 1233-1235).
IEEE DOI
8811
BibRef
Jolion, J.M.[Jean-Michel],
Rosenfeld, A.[Azriel],
Cluster Detection in Background Noise,
PR(22), No. 5, 1989, pp. 603-607.
Elsevier DOI
0309
BibRef
Sher, C.A.,
Rosenfeld, A.,
Pyramid Cluster Detection and Delineation by Consensus,
PRL(12), 1991, pp. 477-482.
BibRef
9100
de Biase, G.A.,
di Gesu, V.,
Sacco, B.,
Detection of Diffuse Clusters in Noise Background,
PRL(4), 1986, pp. 39-44.
BibRef
8600
Kurita, T.[Takio],
An efficient agglomerative clustering algorithm using a heap,
PR(24), No. 3, 1991, pp. 205-209.
Elsevier DOI
0401
BibRef
And:
Author's reply to comments,
PR(26), No. 7, July 1993, pp. 1121.
Elsevier DOI
0401
BibRef
Cho, T.H.[Tai-Hoon],
Comments on 'An efficient agglomerative clustering algorithm using a
heap',
PR(26), No. 7, July 1993, pp. 1121.
Elsevier DOI
0401
BibRef
Krishnapuram, R.[Raghu],
Freg, C.P.[Chih-Pin],
Fitting An Unknown Number of Lines and Planes to Image Data
Through Compatible Cluster Merging,
PR(25), No. 4, April 1992, pp. 385-400.
Elsevier DOI
BibRef
9204
Aldaoud, M.B.,
Roberts, S.A.,
New Methods for the Initialization of Clusters,
PRL(17), No. 5, May 1 1996, pp. 451-455.
9606
BibRef
Herbin, M.,
Bonnet, N.,
Vautrot, P.,
A Clustering Method Based on the Estimation of the
Probability Density-Function and on the Skeleton by Influence Zones:
Application to Image-Processing,
PRL(17), No. 11, September 16 1996, pp. 1141-1150.
9611
BibRef
Herbin, M.,
Bonnet, N.,
Vautrot, P.,
Estimation of the number of clusters and influence zones,
PRL(22), No. 14, December 2001, pp. 1557-1568.
Elsevier DOI
0110
BibRef
Frigui, H.[Hichem],
Krishnapuram, R.,
A Robust Competitive Clustering Algorithm with
Applications in Computer Vision,
PAMI(21), No. 5, May 1999, pp. 450-465.
IEEE DOI Find the right number of clusters, starting with a lot of clusters.
BibRef
9905
Frigui, H.[Hichem],
Krishnapuram, R.[Raghu],
A Robust Algorithm for Automatic Extraction of an Unknown Number of
Clusters from Noisy Data,
PRL(17), No. 12, October 25 1996, pp. 1223-1232.
9612
BibRef
Earlier:
A Robust Clustering Algorithm Based on Competitive Agglomeration and
Soft Rejection of Outliers,
CVPR96(550-555).
IEEE DOI
BibRef
Frigui, H.[Hichem],
Krishnapuram, R.[Raghu],
Clustering by Competitive Agglomeration,
PR(30), No. 7, July 1997, pp. 1109-1119.
Elsevier DOI
9707
BibRef
Frigui, H.[Hichem],
Clustering: Algorithms and Applications,
IPTA08(1-11).
IEEE DOI
0811
BibRef
Frigui, H.[Hichem],
Membershipmap: data transformation based on membership aggregation,
ICPR04(II: 463-466).
IEEE DOI
0409
BibRef
Frigui, H.[Hichem],
Hwang, C.[Cheul],
Rhee, F.C.H.[Frank Chung-Hoon],
Clustering and aggregation of relational data with applications to
image database categorization,
PR(40), No. 11, November 2007, pp. 3053-3068.
Elsevier DOI
0707
Relational clustering; Feature aggregation; Image database categorization
BibRef
Nakamura, E.[Eiji],
Kehtarnavaz, N.[Nasser],
Determining number of clusters and prototype locations via multi-scale
clustering,
PRL(19), No. 14, December 1998, pp. 1265-1283.
BibRef
9812
Kothari, R.[Ravi],
Pitts, D.[Dax],
On finding the number of clusters,
PRL(20), No. 4, April 1999, pp. 405-416.
BibRef
9904
Pan, W.[Wei],
Shrinking classification trees for boot-strap aggregation,
PRL(20), No. 8, August 1999, pp. 961-965.
BibRef
9908
Tibshirani, R.,
Guenther, W.,
Hastie, T.,
Estimating the number of clusters in a data set
via the gap statistic,
RoyalStat(B 63), 2001, pp. 411-423.
DOI Link
BibRef
0100
Sbai, E.,
Cluster analysis by adaptive rank-order filters,
PR(34), No. 10, October 2001, pp. 2015-2027.
Elsevier DOI
0108
BibRef
Veenman, C.J.[Cor J.],
Reinders, M.J.T.[Marcel J.T.],
Backer, E.[Eric],
A Maximum Variance Cluster Algorithm,
PAMI(24), No. 9, September 2002, pp. 1273-1280.
IEEE Abstract.
0209
minimize the sum-of-squared-error with a constraint on cluster variance.
BibRef
Sugar, C.A.,
James, G.M.,
Finding the number of clusters in a data set:
An information theoretic approach,
ASAJ(98), 2003, pp. 750-763.
DOI Link
1706
BibRef
Hathaway, R.J.[Richard J.],
Bezdek, J.C.[James C.],
Visual cluster validity for prototype generator clustering models,
PRL(24), No. 9-10, June 2003, pp. 1563-1569.
Elsevier DOI
0304
BibRef
Huband, J.M.[Jacalyn M.],
Bezdek, J.C.[James C.],
Hathaway, R.J.[Richard J.],
bigVAT: Visual assessment of cluster tendency for large data sets,
PR(38), No. 11, November 2005, pp. 1875-1886.
Elsevier DOI
0509
BibRef
Hathaway, R.J.[Richard J.],
Bezdek, J.C.[James C.],
Huband, J.M.[Jacalyn M.],
Scalable visual assessment of cluster tendency for large data sets,
PR(39), No. 7, July 2006, pp. 1315-1324.
Elsevier DOI Clustering; Similarity measures; Cluster validity; Data visualization;
Scalability
0606
BibRef
Earlier:
Maximin Initialization for Cluster Analysis,
CIARP06(14-26).
Springer DOI
0611
BibRef
Franc, V.[Vojtech],
Hlavác, V.[Václav],
An iterative algorithm learning the maximal margin classifier,
PR(36), No. 9, September 2003, pp. 1985-1996.
Elsevier DOI
0307
BibRef
And:
Greedy Algorithm for a Training Set Reduction in the Kernel Methods,
CAIP03(426-433).
Springer DOI
0311
BibRef
Earlier:
Multi-class support vector machine,
ICPR02(II: 236-239).
IEEE DOI
0211
BibRef
Uricár, M.[Michal],
Franc, V.[Vojtech],
Hlavác, V.[Václav],
Bundle Methods for Structured Output Learning: Back to the Roots,
SCIA13(162-171).
Springer DOI
1311
BibRef
Kim, D.W.[Dae-Won],
Lee, K.H.[Kwang H.],
Lee, D.[Doheon],
On cluster validity index for estimation of the optimal number of fuzzy
clusters,
PR(37), No. 10, October 2004, pp. 2009-2025.
Elsevier DOI
0409
BibRef
Sun, H.J.[Hao-Jun],
Wang, S.R.[Sheng-Rui],
Jiang, Q.S.[Qing-Shan],
FCM-Based Model Selection Algorithms for Determining the Number of
Clusters,
PR(37), No. 10, October 2004, pp. 2027-2037.
Elsevier DOI
0409
BibRef
Chen, S.,
Hong, X.,
Harris, C.J.,
Sparse Kernel Density Construction Using Orthogonal Forward Regression
With Leave-One-Out Test Score and Local Regularization,
SMC-B(34), No. 4, August 2004, pp. 1708-1717.
IEEE Abstract.
0409
Alternative to SVM.
BibRef
Tran, T.N.,
Wehrens, R.,
Hoekman, D.H.,
Buydens, L.M.C.,
Initialization of Markov random field clustering of large remote
sensing images,
GeoRS(43), No. 8, August 2005, pp. 1912-1919.
IEEE DOI
0508
BibRef
Silva, H.B.[Helena Brás],
Brito, P.[Paula],
Pinto da Costa, J.[Joaquim],
A partitional clustering algorithm validated by a clustering tendency
index based on graph theory,
PR(39), No. 5, May 2006, pp. 776-788.
Elsevier DOI
0604
Unsupervised learning; Clustering algorithms; Clustering validity
BibRef
Kärkkäinen, I.[Ismo],
Fränti, P.[Pasi],
Gradual model generator for single-pass clustering,
PR(40), No. 3, March 2007, pp. 784-795.
Elsevier DOI
0611
BibRef
And:
Dynamic local search for clustering with unknown number of clusters,
ICPR02(II: 240-243).
IEEE DOI
0211
Clustering; Gaussian mixture model; Single-pass; Large data sets
BibRef
Moussa, A.[Ahmed],
Sbihi, A.[Abderrahmane],
Postaire, J.G.[Jack-Gerard],
A Markov random field model for mode detection in cluster analysis,
PRL(29), No. 9, 1 July 2008, pp. 1197-1207.
Elsevier DOI
0711
Markov field; Gibbs distribution; Potential function;
Mode detection; Classification
BibRef
Raykar, V.C.[Vikas C.],
Duraiswami, R.[Ramani],
Krishnapuram, B.[Balaji],
A Fast Algorithm for Learning a Ranking Function from Large-Scale Data
Sets,
PAMI(30), No. 7, July 2008, pp. 1158-1170.
IEEE DOI
0806
maximizes a generalization of the Wilcoxon-Mann-Whitney statistic
on the training data
BibRef
Srinivasan, B.V.[Balaji Vasan],
Duraiswami, R.[Ramani],
Efficient subset selection via the kernelized Rényi distance,
ICCV09(1081-1088).
IEEE DOI
0909
BibRef
Hochbaum, D.S.[Dorit S.],
Polynomial Time Algorithms for Ratio Regions and a Variant of
Normalized Cut,
PAMI(32), No. 5, May 2010, pp. 889-898.
IEEE DOI
1003
For clustering group similar objects, each group is dissimilar for others.
BibRef
He, Z.S.[Zhao-Shui],
Cichocki, A.[Andrzej],
Xie, S.L.[Sheng-Li],
Choi, K.[Kyuwan],
Detecting the Number of Clusters in n-Way Probabilistic Clustering,
PAMI(32), No. 11, November 2010, pp. 2006-2021.
IEEE DOI
1011
BibRef
Tan, S.C.[Swee Chuan],
Ting, K.M.[Kai Ming],
Teng, S.W.[Shyh Wei],
A general stochastic clustering method for automatic cluster discovery,
PR(44), No. 10-11, October-November 2011, pp. 2786-2799.
Elsevier DOI
1101
Clustering; Ant-based clustering; Automatic cluster detection
BibRef
Dagher, I.,
Dahdah, K.,
Adaptive bandwidth mode detection algorithm,
IET-IPR(5), No. 8, 2011, pp. 645-660.
DOI Link
1108
recover the correct density function.
BibRef
Qian, Q.A.[Qi-Ang],
Chen, S.C.[Song-Can],
Cai, W.L.[Wei-Ling],
Simultaneous clustering and classification over cluster structure
representation,
PR(45), No. 6, June 2012, pp. 2227-2236.
Elsevier DOI
1202
Structure in data; Clustering learning; Classification learning;
Simultaneous classification and clustering learning
BibRef
Koonsanit, K.[Kitti],
Jaruskulchai, C.[Chuleerat],
Automatic Determination of the Appropriate Number of Clusters for
Multispectral Image Data,
IEICE(E95-D), No. 5, May 2012, pp. 1256-1263.
WWW Link.
1202
BibRef
Hansen, P.[Pierre],
Ruiz, M.[Manuel],
Aloise, D.[Daniel],
A VNS heuristic for escaping local extrema entrapment in normalized cut
clustering,
PR(45), No. 12, December 2012, pp. 4337-4345.
Elsevier DOI
1208
Normalized cut; Clustering; Variable neighborhood search; Heuristics
BibRef
Cheung, Y.M.[Yiu-Ming],
Jia, H.[Hong],
Categorical-and-numerical-attribute data clustering based on a unified
similarity metric without knowing cluster number,
PR(46), No. 8, August 2013, pp. 2228-2238.
Elsevier DOI
1304
Clustering; Similarity metric; Categorical attribute; Numerical
attribute; Number of clusters
BibRef
Liu, C.[Cong],
Zhou, A.[Aimin],
Zhang, G.X.[Gui-Xu],
Automatic clustering method based on evolutionary optimisation,
IET-CV(7), No. 4, 2013, pp. 258-271.
DOI Link
1307
Set the number of clusters.
BibRef
Liu, C.[Cong],
Zhou, A.[Aimin],
Zhang, Q.,
Zhang, G.X.[Gui-Xu],
Adaptive image segmentation by using mean-shift and evolutionary
optimisation,
IET-IPR(8), No. 6, June 2014, pp. 327-333.
DOI Link
1407
BibRef
Long, D.[Di],
Singh, V.P.,
An Entropy-Based Multispectral Image Classification Algorithm,
GeoRS(51), No. 12, 2013, pp. 5225-5238.
IEEE DOI
1312
entropy
BibRef
Chi, Y.J.[Yue-Jie],
Porikli, F.M.[Fatih M.],
Classification and Boosting with Multiple Collaborative
Representations,
PAMI(36), No. 8, August 2014, pp. 1519-1531.
IEEE DOI
1407
BibRef
Earlier:
Connecting the dots in multi-class classification:
From nearest subspace to collaborative representation,
CVPR12(3602-3609).
IEEE DOI
1208
Biomedical measurement
BibRef
Kolesnikov, A.[Alexander],
Trichina, E.[Elena],
Kauranne, T.[Tuomo],
Estimating the number of clusters in a numerical data set via
quantization error modeling,
PR(48), No. 3, 2015, pp. 941-952.
Elsevier DOI
1412
Clustering
BibRef
Hennig, C.[Christian],
What are the true clusters?,
PRL(64), No. 1, 2015, pp. 53-62.
Elsevier DOI
1509
Constructivism
BibRef
Fornells, A.[Albert],
Rodrigo, Z.[Zaida],
Rovira, X.[Xari],
Sánchez, M.[Mónica],
Santomà, R.[Ricard],
Teixidó-Navarro, F.[Francesc],
Golobardes, E.[Elisabet],
Promoting consensus in the concept mapping methodology:
An application in the hospitality sector,
PRL(67, Part 1), No. 1, 2015, pp. 39-48.
Elsevier DOI
1511
Concept mapping methodology
BibRef
Liang, Z.[Zhou],
Chen, P.[Pei],
Delta-density based clustering with a divide-and-conquer strategy:
3DC clustering,
PRL(73), No. 1, 2016, pp. 52-59.
Elsevier DOI
1604
Divide-and-conquer
BibRef
Li, H.P.[Hua-Peng],
Zhang, S.Q.[Shu-Qing],
Ding, X.H.[Xiao-Hui],
Zhang, C.[Ce],
Dale, P.[Patricia],
Performance Evaluation of Cluster Validity Indices (CVIs) on
Multi/Hyperspectral Remote Sensing Datasets,
RS(8), No. 4, 2016, pp. 295.
DOI Link
1604
BibRef
Saki, F.[Fatemeh],
Kehtarnavaz, N.[Nasser],
Online frame-based clustering with unknown number of clusters,
PR(57), No. 1, 2016, pp. 70-83.
Elsevier DOI
1605
Online clustering for streaming data
BibRef
Luo, J.J.[Juan-Juan],
Jiao, L.C.[Li-Cheng],
Shang, R.H.[Rong-Hua],
Liu, F.[Fang],
Learning simultaneous adaptive clustering and classification via MOEA,
PR(60), No. 1, 2016, pp. 37-50.
Elsevier DOI
1609
Multiobjective optimization
BibRef
Zhu, Y.[Ye],
Ting, K.M.[Kai Ming],
Carman, M.J.[Mark J.],
Density-ratio based clustering for discovering clusters with varying
densities,
PR(60), No. 1, 2016, pp. 983-997.
Elsevier DOI
1609
Density-ratio
BibRef
Carton, C.[Cérès],
Lemaitre, A.[Aurélie],
Coüasnon, B.[Bertrand],
Eyes Wide Open:
An interactive learning method for the design of rule-based systems,
IJDAR(20), No. 2, June 2017, pp. 91-103.
Springer DOI
1706
rule-based document recognition systems. User guided analysis of document
corpus.
BibRef
Zhan, Q.M.[Qing-Ming],
Deng, S.G.[Shu-Guang],
Zheng, Z.H.[Zhi-Hua],
An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on
Gestalt,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Hayes, J.J.[James J.],
Castillo, O.[Oscar],
A New Approach for Interpreting the Morisita Index of Aggregation
through Quadrat Size,
IJGI(6), No. 10, 2017, pp. xx-yy.
DOI Link
1710
Analysis of spatial distribution of organisms.
BibRef
Rudd, E.M.[Ethan M.],
Jain, L.P.[Lalit P.],
Scheirer, W.J.[Walter J.],
Boult, T.E.[Terrance E.],
The Extreme Value Machine,
PAMI(40), No. 3, March 2018, pp. 762-768.
IEEE DOI
1802
Recognize that test inputs are not in a trained class.
Bandwidth, Calibration, Extraterrestrial measurements, Kernel,
Pattern recognition, Training, Visualization, Machine learning,
supervised classification
BibRef
Laber, E.S.[Eduardo Sany],
de A. Mello Pereira, F.[Felipe],
Splitting criteria for classification problems with multi-valued
attributes and large number of classes,
PRL(111), 2018, pp. 58-63.
Elsevier DOI
1808
Decision trees, Approximation algorithms, Attribute selection, Max-cut problem
BibRef
Gialampoukidis, I.[Ilias],
Vrochidis, S.[Stefanos],
Kompatsiaris, I.[Ioannis],
Antoniou, I.[Ioannis],
Probabilistic density-based estimation of the number of clusters
using the DBSCAN-martingale process,
PRL(123), 2019, pp. 23-30.
Elsevier DOI
1906
Density-based clustering, DBSCAN-Martingale, Graph-clustering,
Image clustering, Number of clusters, Text clustering
BibRef
Bhowmik, M.K.[Mrinal Kanti],
Debnath, T.[Tathagata],
Bhattacharjee, D.[Debotosh],
Dutta, P.[Paramartha],
EF-Index: Determining number of clusters (K) to estimate number of
segments (S) in an image,
IVC(88), 2019, pp. 29-40.
Elsevier DOI
1908
Clustering, Cluster-indexing, Segmentation,
Electrostatic Force Image (EF-Image), Force Influence Image,
BibRef
Song, C.[Ci],
Pei, T.[Tao],
Decomposition of Repulsive Clusters in Complex Point Processes with
Heterogeneous Components,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Shi, Z.C.[Zhi-Cheng],
Ma, D.[Ding],
Yan, X.[Xue],
Zhu, W.[Wei],
Zhao, Z.G.[Zhi-Gang],
A Density-Peak-Based Clustering Method for Multiple Densities Dataset,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tabak, E.G.[Esteban G.],
Trigila, G.[Giulio],
Zhao, W.J.[Wen-Jun],
Distributional barycenter problem through data-driven flows,
PR(130), 2022, pp. 108795.
Elsevier DOI
2206
Optimal transport, Barycenter problem, Pattern visualization,
Simulation, Generative models
BibRef
Bagirov, A.M.[Adil M.],
Aliguliyev, R.M.[Ramiz M.],
Sultanova, N.[Nargiz],
Finding compact and well-separated clusters:
Clustering using silhouette coefficients,
PR(135), 2023, pp. 109144.
Elsevier DOI
2212
Cluster analysis, Cluster validity index,
Silhouette coefficients, Nonsmooth optimization, Incremental algorithm
BibRef
Chen, Y.[Yinong],
Debnath, T.[Tathagata],
Cai, A.[Andrew],
Song, M.Z.[Ming-Zhou],
Circular Silhouette and a Fast Algorithm,
PAMI(45), No. 11, November 2023, pp. 14038-14044.
IEEE DOI
2310
BibRef
Jazayeri, A.[Ali],
Yang, C.C.[Christopher C.],
Frequent Pattern Mining in Continuous-Time Temporal Networks,
PAMI(46), No. 1, January 2024, pp. 305-321.
IEEE DOI
2312
Continuous-time networks, frequent subgraphs, pattern mining, temporal networks
BibRef
Zhao, B.X.[Bo-Xiang],
Wang, S.L.[Shu-Liang],
Chi, L.H.[Lian-Hua],
Yuan, H.[Hanning],
Yuan, Y.[Ye],
Li, Q.[Qi],
Geng, J.[Jing],
Zhang, S.L.[Shao-Liang],
Coresets for fast causal discovery with the additive noise model,
PR(148), 2024, pp. 110149.
Elsevier DOI
2402
Causal discovery, Coresets, Functional causal model,
Additive noise model, Big data
BibRef
Serrano, B.[Breno],
Vidal, T.[Thibaut],
Community detection in the stochastic block model by mixed integer
programming,
PR(152), 2024, pp. 110487.
Elsevier DOI
2405
Community detection, Stochastic block model,
Mixed integer programming, Machine learning, Local search
BibRef
Hu, Z.X.[Zhan-Xuan],
Xu, Y.[Yan],
He, L.[Lang],
Nie, F.P.[Fei-Ping],
Interactive Supervision for New Intent Discovery,
SPLetters(31), 2024, pp. 1680-1684.
IEEE DOI
2407
Representation learning, Semantics, Measurement, Banking, Training,
Reliability, Vectors, Intent discovery, clustering, embedding
BibRef
Chi, H.A.[Hao-Ang],
Yang, W.J.[Wen-Jing],
Liu, F.[Feng],
Lan, L.[Long],
Qin, T.[Tao],
Han, B.[Bo],
Does Confusion Really Hurt Novel Class Discovery?,
IJCV(132), No. 8, August 2024, pp. 3191-3207.
Springer DOI
2408
BibRef
Hou, J.[Jian],
Lin, H.[Houshen],
Yuan, H.Q.[Hua-Qiang],
Pelillo, M.[Marcello],
Flexible density peak clustering for real-world data,
PR(156), 2024, pp. 110772.
Elsevier DOI
2408
Clustering, Density peak, Real-world data, Number of clusters
BibRef
Li, Y.X.[Yong-Xiang],
Qin, Y.[Yang],
Sun, Y.[Yuan],
Peng, D.Z.[De-Zhong],
Peng, X.[Xi],
Hu, P.[Peng],
RoMo: Robust Unsupervised Multimodal Learning With Noisy Pseudo
Labels,
IP(33), 2024, pp. 5086-5097.
IEEE DOI
2410
Noise measurement, Semantics, Noise, Predictive models,
Feature extraction, Annotations,
robust discriminant learning
BibRef
Zeng, P.X.[Peng-Xin],
Li, Y.F.[Yun-Fan],
Hu, P.[Peng],
Peng, D.Z.[De-Zhong],
Lv, J.C.[Jian-Cheng],
Peng, X.[Xi],
Deep Fair Clustering via Maximizing and Minimizing Mutual
Information: Theory, Algorithm and Metric,
CVPR23(23986-23995)
IEEE DOI
2309
WWW Link.
BibRef
Otholt, J.[Jona],
Meinel, C.[Christoph],
Yang, H.J.[Hao-Jin],
Guided Cluster Aggregation:
A Hierarchical Approach to Generalized Category Discovery,
WACV24(2606-2615)
IEEE DOI Code:
WWW Link.
2404
Image recognition, Codes, Aggregates, Clustering algorithms,
Machine learning, Semisupervised learning, Algorithms,
Image recognition and understanding
BibRef
Wen, X.[Xin],
Zhao, B.C.[Bing-Chen],
Qi, X.J.[Xiao-Juan],
Parametric Classification for Generalized Category Discovery:
A Baseline Study,
ICCV23(16544-16554)
IEEE DOI Code:
WWW Link.
2401
BibRef
Du, R.Y.[Ruo-Yi],
Chang, D.L.[Dong-Liang],
Liang, K.M.[Kong-Ming],
Hospedales, T.M.[Timothy M.],
Song, Y.Z.[Yi-Zhe],
Ma, Z.Y.[Zhan-Yu],
On-the-Fly Category Discovery,
CVPR23(11691-11700)
IEEE DOI
2309
WWW Link.
BibRef
Li, W.B.[Wen-Bin],
Fan, Z.C.[Zhi-Chen],
Huo, J.[Jing],
Gao, Y.[Yang],
Modeling Inter-Class and Intra-Class Constraints in Novel Class
Discovery,
CVPR23(3449-3458)
IEEE DOI
2309
BibRef
Yang, M.[Muli],
Wang, L.[Liancheng],
Deng, C.[Cheng],
Zhang, H.W.[Han-Wang],
Bootstrap Your Own Prior:
Towards Distribution-Agnostic Novel Class Discovery,
CVPR23(3459-3468)
IEEE DOI
2309
BibRef
Zhang, S.[Sheng],
Khan, S.[Salman],
Shen, Z.Q.[Zhi-Qiang],
Naseer, M.[Muzammal],
Chen, G.Y.[Guang-Yi],
Khan, F.S.[Fahad Shahbaz],
PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery,
CVPR23(3479-3488)
IEEE DOI
2309
BibRef
Sohn, K.[Kihyuk],
Yoon, J.[Jinsung],
Li, C.L.[Chun-Liang],
Lee, C.Y.[Chen-Yu],
Pfister, T.[Tomas],
Anomaly Clustering:
Grouping Images into Coherent Clusters of Anomaly Types,
WACV23(5468-5479)
IEEE DOI
2302
Clustering methods, Euclidean distance, Mutual information, Anomaly detection
BibRef
Joseph, K.J.,
Paul, S.[Sujoy],
Aggarwal, G.[Gaurav],
Biswas, S.[Soma],
Rai, P.[Piyush],
Han, K.[Kai],
Balasubramanian, V.N.[Vineeth N.],
Spacing Loss for Discovering Novel Categories,
CLVision22(3760-3765)
IEEE DOI
2210
Training, Computational modeling, Machine learning,
Benchmark testing, Data models
BibRef
Gialampoukidis, I.[Ilias],
Andreadis, S.[Stelios],
Pantelidis, N.[Nick],
Hayat, S.[Sameed],
Zhong, L.[Li],
Bakratsas, M.[Marios],
Hoppe, D.[Dennis],
Vrochidis, S.[Stefanos],
Kompatsiaris, I.[Ioannis],
Parallel DBSCAN-Martingale Estimation of the Number of Concepts for
Automatic Satellite Image Clustering,
MMMod22(I:95-106).
Springer DOI
2203
BibRef
Fini, E.[Enrico],
Sangineto, E.[Enver],
Lathuilière, S.[Stéphane],
Zhong, Z.[Zhun],
Nabi, M.[Moin],
Ricci, E.[Elisa],
A Unified Objective for Novel Class Discovery,
ICCV21(9264-9272)
IEEE DOI
2203
Interference, Benchmark testing, Linear programming,
Feature extraction, Unsupervised learning,
Recognition and classification
BibRef
Kamgar-Parsi, B.[Behzad],
Kamgar-Parsi, B.[Behrooz],
Penalized K-Means Algorithms for Finding the Number of Clusters,
ICPR21(969-974)
IEEE DOI
2105
Additives, Clustering algorithms, Reliability,
Guidelines, additive penalty, cludtering, multiplicative penalty,
unsupervised learning
BibRef
Yang, L.[Lei],
Zhan, X.H.[Xiao-Hang],
Chen, D.P.[Da-Peng],
Yan, J.J.[Jun-Jie],
Loy, C.C.[Chen Change],
Lin, D.[Dahua],
Learning to Cluster Faces on an Affinity Graph,
CVPR19(2293-2301).
IEEE DOI
2002
Clustering unlabeled faces.
BibRef
Bondarev, A.E.,
Visual Analysis And Processing of Clusters Structures In
Multidimensional Datasets,
PTVSBB17(151-154).
DOI Link
1805
BibRef
Wang, Z.Y.[Zi-Yin],
Tsechpenakis, G.[Gavriil],
Feature Clustering with Fading Affect Bias:
Building Visual Vocabularies on the Fly,
CIAP17(I:445-456).
Springer DOI
1711
BibRef
Levinkov, E.[Evgeny],
Kirillov, A.[Alexander],
Andres, B.[Bjoern],
A Comparative Study of Local Search Algorithms for Correlation
Clustering,
GCPR17(103-114).
Springer DOI
1711
Applied to image segmentation, hand-written digit classification
and social network analysis.
BibRef
Liu, J.C.[Jun-Cheng],
Lian, Z.H.[Zhou-Hui],
Wang, Y.[Yi],
Xiao, J.G.[Jian-Guo],
Incremental Kernel Null Space Discriminant Analysis for Novelty
Detection,
CVPR17(4123-4131)
IEEE DOI
1711
Is the data really part of any current class.
Algorithm design and analysis, Null space,
Pattern recognition, Training, Training, data
BibRef
Guo, P.C.[Peng-Cheng],
Wang, X.[Xing],
Wang, Y.B.[Yu-Bing],
Cheng, Y.[Yue],
Zhang, Y.[Ying],
Research on automatic determining clustering centers algorithm based
on linear regression analysis,
ICIVC17(1016-1023)
IEEE DOI
1708
clustering center, density peak, linear regression, residual, analysis
BibRef
Comiter, M.[Marcus],
Cha, M.[Miriam],
Kung, H.T.,
Teerapittayanon, S.[Surat],
Lambda means clustering:
Automatic parameter search and distributed computing implementation,
ICPR16(2331-2337)
IEEE DOI
1705
Clustering algorithms, Computers, Distributed computing, Elbow,
Measurement, Multicore processing, Partitioning, algorithms
BibRef
Wang, Y.,
Li, Y.,
Zhao, Q.H.,
Coupling Regular Tessellation with RJMCMC Algorithm to Segment SAR
Image With Unknown Number Of Classes,
ISPRS16(B7: 393-397).
DOI Link
1610
BibRef
Zhao, X.M.[Xue-Mei],
Li, Y.[Yu],
Zhao, Q.H.[Quan-Hua],
Wang, C.Y.[Chun-Yan],
An Entropy-kl Strategy For Estimating Number Of Classes In Image
Segmentation Issues,
ISPRS16(B7: 437-441).
DOI Link
1610
BibRef
Zhang, Z.M.[Zi-Ming],
Chen, Y.T.[Yu-Ting],
Saligrama, V.[Venkatesh],
Group Membership Prediction,
ICCV15(3916-3924)
IEEE DOI
1602
Predict whether a collection of instances share a certain semantic property.
BibRef
Tepper, M.[Mariano],
Sapiro, G.[Guillermo],
From Local to Global Communities in Large Networks Through Consensus,
CIARP15(659-666).
Springer DOI
1511
BibRef
Mohammed, A.J.[Athraa Jasim],
Yusof, Y.[Yuhanis],
Husni, H.[Husniza],
Determining Number of Clusters Using Firefly Algorithm with Cluster
Merging for Text Clustering,
IVIC15(14-24).
Springer DOI
1511
BibRef
Kim, M.[Minkyu],
Lim, J.M.[Jeong-Mook],
Shin, H.[Heesook],
Oh, C.[Changmok],
Jeong, H.T.[Hyun-Tae],
Estimating the Number of Clusters with Database for Texture
Segmentation Using Gabor Filter,
CVS15(435-444).
Springer DOI
1507
BibRef
Hautamäki, V.[Ville],
Pöllänen, A.[Antti],
Kinnunen, T.[Tomi],
Lee, K.A.[Kong Aik],
Li, H.Z.[Hai-Zhou],
Fränti, P.[Pasi],
A Comparison of Categorical Attribute Data Clustering Methods,
SSSPR14(53-62).
Springer DOI
1408
BibRef
Kading, C.[Christoph],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Active learning and discovery of object categories in the presence of
unnameable instances,
CVPR15(4343-4352)
IEEE DOI
1510
BibRef
Al-Rawi, M.S.[Mohammed Sadeq],
Cunha, J.P.S.[João Paulo Silva],
Using Permutation Tests to Study How the Dimensionality, the Number of
Classes, and the Number of Samples Affect Classification Analysis,
ICIAR12(I: 34-42).
Springer DOI
1206
BibRef
Kolesnikov, A.[Alexander],
Trichina, E.[Elena],
Determining the Number of Clusters with Rate-Distortion Curve Modeling,
ICIAR12(I: 43-50).
Springer DOI
1206
BibRef
Mittal, M.[Mamta],
Singh, V.P.,
Sharma, R.K.,
Random automatic detection of clusters,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Chen, G.L.[Guang-Liang],
Maggioni, M.[Mauro],
Multiscale geometric and spectral analysis of plane arrangements,
CVPR11(2825-2832).
IEEE DOI
1106
Based on SVD clustering.
BibRef
Gopalan, R.[Raghuraman],
Sankaranarayanan, J.[Jagan],
Max-margin clustering:
Detecting margins from projections of points on lines,
CVPR11(2769-2776).
IEEE DOI
1106
BibRef
Zeng, Z.M.[Zi-Ming],
Wang, W.H.[Wen-Hui],
Yang, L.Z.[Long-Zhi],
Zwiggelaar, R.[Reyer],
Automatic Estimation of the Number of Segmentation Groups Based on MI,
IbPRIA11(532-539).
Springer DOI
1106
Mutual Information
BibRef
Thakoor, N.[Ninad],
Devarajan, V.[Venkat],
Gao, J.X.[Jean X.],
Computation complexity of branch-and-bound model selection,
ICCV09(1895-1900).
IEEE DOI
0909
Segmentation. Number of clusters.
See also Multistage Branch-and-Bound Merging for Planar Surface Segmentation in Disparity Space.
BibRef
Hua, C.S.[Chun-Sheng],
Sagawa, R.[Ryusuke],
Yagi, Y.S.[Yasu-Shi],
Scale-invariant density-based clustering initialization algorithm and
its application,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Recovery Rate of Clustering Algorithms,
PSIVT09(1058-1069).
Springer DOI
0901
Given old clusters, evaluation of performance to compute new clusters.
See also Decomposing a Simple Polygon into Trapezoids.
BibRef
Franti, P.[Pasi],
Virmajoki, O.[Olli],
Hautamaki, V.[Ville],
Probabilistic clustering by random swap algorithm,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhao, Q.P.[Qin-Pei],
Hautamaki, V.[Ville],
Fränti, P.[Pasi],
Knee Point Detection in BIC for Detecting the Number of Clusters,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Zhang, Z.M.[Zi-Ming],
Chan, S.[Syin],
Chia, L.T.[Liang-Tien],
Discriminative Signatures for Image Classification,
ICIP07(II: 197-200).
IEEE DOI
0709
Discover discriminable features for classification.
BibRef
Grim, J.[Jirí],
EM Cluster Analysis for Categorical Data,
SSPR06(640-648).
Springer DOI
0608
Sequential estimation of components to guarantee a unique identification
of clusters by means of EM algorithm.
BibRef
Klawonn, F.[Frank],
Identifying Single Good Clusters in Data Sets,
IWICPAS06(160-167).
Springer DOI
0608
A single cluster, not multiple clusters.
BibRef
Yan, S.C.[Shui-Cheng],
Yuan, T.Q.[Tian-Qiang],
Tang, X.[Xiaoou],
Learning Semantic Patterns with Discriminant Localized Binary
Projections,
CVPR06(I: 168-174).
IEEE DOI
0606
Turn into a clustering problem.
BibRef
Nasios, N.[Nikolaos],
Bors, A.G.[Adrian G.],
Finding the Number of Clusters for Nonparametric Segmentation,
CAIP05(213).
Springer DOI
0509
BibRef
Zheng, X.[Xin],
Lin, X.Y.[Xue-Yin],
Automatic determination of intrinsic cluster number family in spectral
clustering using random walk on graph,
ICIP04(V: 3471-3474).
IEEE DOI
0505
BibRef
Law, M.H.C.[Martin H.C.],
Topchy, A.P.[Alexander P.],
Jain, A.K.,
Multiobjective data clustering,
CVPR04(II: 424-430).
IEEE DOI
0408
Cluster with multiple objective functions. Two stages, use all, integrate.
BibRef
Zhang, H.[Hao],
Malik, J.,
Learning a discriminative classifier using shape context distances,
CVPR03(I: 242-247).
IEEE DOI
0307
BibRef
Marazzi, A.[Andrea],
Gamba, P.,
Mecocci, A.,
Semboloni, A.,
Automatic Selection of the Number of Clusters in Multidimensional
Data Problems,
ICIP96(III: 631-634).
IEEE DOI
BibRef
9600
Wallace, R.S., and
Kanade, T.,
Finding Natural Clusters Having Minimal Description Lengths,
ICPR90(I: 438-442).
IEEE DOI
BibRef
9000
Bandapadhay, A.,
Fu, J.L.,
Searching parameter spaces with noisy linear constraints,
CVPR88(550-555).
IEEE DOI
0403
predicated on some invariant properties of affine transformations and
on the course-to-fine search paradigm.
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Open Set, Open World Recongnition .