Yanulevskaya, V.[Victoria],
Uijlings, J.[Jasper],
Geusebroek, J.M.[Jan-Mark],
Salient object detection: From pixels to segments,
IVC(31), No. 1, January 2013, pp. 31-42.
Elsevier DOI
1302
Salient object detection; Object-based visual attention theory;
Proto-objects
BibRef
Yanulevskaya, V.[Victoria],
Uijlings, J.[Jasper],
Sebe, N.[Nicu],
Learning to Group Objects,
CVPR14(3134-3141)
IEEE DOI
1409
Class independent object proposals
BibRef
Jie, Z.Q.[Ze-Qun],
Liang, X.D.[Xiao-Dan],
Feng, J.S.[Jia-Shi],
Lu, W.F.[Wen Feng],
Tay, E.H.F.[Eng Hock Francis],
Yan, S.C.[Shui-Cheng],
Scale-Aware Pixelwise Object Proposal Networks,
IP(25), No. 10, October 2016, pp. 4525-4539.
IEEE DOI
1610
neural nets
BibRef
Hu, P.,
Wang, W.,
Zhang, C.,
Lu, K.,
Detecting Salient Objects via Color and Texture Compactness
Hypotheses,
IP(25), No. 10, October 2016, pp. 4653-4664.
IEEE DOI
1610
image classification
BibRef
Huo, L.[Lina],
Jiao, L.C.[Li-Cheng],
Wang, S.[Shuang],
Yang, S.Y.[Shu-Yuan],
Object-level saliency detection with color attributes,
PR(49), No. 1, 2016, pp. 162-173.
Elsevier DOI
1511
Candidate objectness
BibRef
Kuang, P.J.[Pei-Jiang],
Zhou, Z.H.[Zhi-Heng],
Wu, D.C.[Dong-Cheng],
Improved Edge Boxes with Object Saliency and Location Awards,
IEICE(E99-D), No. 2, February 2016, pp. 488-495.
WWW Link.
1604
BibRef
Lee, D.[Daeha],
Kim, J.[Jaehong],
Kim, H.H.[Ho-Hee],
Kim, S.J.[Soon-Ja],
The Computation Reduction in Object Detection via Composite Structure
of Modified Integral Images,
IEICE(E100-D), No. 1, January 2017, pp. 229-233.
WWW Link.
1701
BibRef
Pont-Tuset, J.[Jordi],
Arbeláez, P.[Pablo],
Barron, J.T.[Jon T.],
Marques, F.[Ferran],
Malik, J.[Jitendra],
Multiscale Combinatorial Grouping for Image Segmentation and Object
Proposal Generation,
PAMI(39), No. 1, January 2017, pp. 128-140.
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4, A5:
Multiscale Combinatorial Grouping,
CVPR14(328-335)
IEEE DOI
1409
Detectors.
Image Segmentation; Object Candidates
BibRef
Huang, S.,
Wang, W.,
He, S.F.[Sheng-Feng],
Lau, R.W.H.[Rynson W.H.],
Stereo Object Proposals,
IP(26), No. 2, February 2017, pp. 671-683.
IEEE DOI
1702
object detection
BibRef
Huang, S.,
Wang, W.,
He, S.F.[Sheng-Feng],
Lau, R.W.H.[Rynson W.H.],
Egocentric Temporal Action Proposals,
IP(27), No. 2, February 2018, pp. 764-777.
IEEE DOI
1712
Atom optics, Cameras, Optical computing, Optical imaging, Proposals,
Videos, Temporal action proposals, actionness estimation,
temporal actionness network
BibRef
Ramesh, B.,
Xiang, C.,
Lee, T.H.,
Multiple object cues for high performance vector quantization,
PR(67), No. 1, 2017, pp. 380-395.
Elsevier DOI
1704
Log-polar transform
BibRef
Li, J.A.[Jian-An],
Wei, Y.C.[Yun-Chao],
Liang, X.D.[Xiao-Dan],
Dong, J.[Jian],
Xu, T.F.[Ting-Fa],
Feng, J.S.[Jia-Shi],
Yan, S.C.[Shui-Cheng],
Attentive Contexts for Object Detection,
MultMed(19), No. 5, May 2017, pp. 944-954.
IEEE DOI
1704
Context for object detection.
BibRef
Wang, J.[Jing],
Shen, J.[Jie],
Li, P.[Ping],
Object proposal with kernelized partial ranking,
PR(69), No. 1, 2017, pp. 299-309.
Elsevier DOI
1706
Object proposal
BibRef
Li, W.[Wei],
Li, H.L.[Hong-Liang],
Luo, B.[Bing],
Shi, H.C.[Heng-Can],
Wu, Q.B.[Qing-Bo],
Ngan, K.N.[King Ngi],
Improving object proposals with top-down cues,
SP:IC(56), No. 1, 2017, pp. 20-27.
Elsevier DOI
1706
Object, proposals
BibRef
Tang, S.,
Li, Y.,
Deng, L.,
Zhang, Y.,
Object Localization Based on Proposal Fusion,
MultMed(19), No. 9, September 2017, pp. 2105-2116.
IEEE DOI
1708
Complexity theory, Feature extraction, Object detection, Proposals,
Search problems, Testing, Training, Dense proposal fusion,
object detection, object localization, region proposal
BibRef
Jie, Z.Q.[Ze-Qun],
Lu, W.F.[Wen Feng],
Sakhavi, S.[Siavash],
Wei, Y.C.[Yun-Chao],
Tay, E.H.F.[Eng Hock Francis],
Yan, S.C.[Shui-Cheng],
Object Proposal Generation With Fully Convolutional Networks,
CirSysVideo(28), No. 1, January 2018, pp. 62-75.
IEEE DOI
1801
Image edge detection, Object detection, Pipelines, Proposals,
Semantics, Support vector machines, Testing,
object proposals
BibRef
Li, Y.[Yu],
Tang, S.[Sheng],
Lin, M.[Min],
Zhang, Y.D.[Yong-Dong],
Li, J.T.[Jin-Tao],
Yan, S.C.[Shui-Cheng],
Implicit Negative Sub-Categorization and Sink Diversion for Object
Detection,
IP(27), No. 4, April 2018, pp. 1561-1574.
IEEE DOI
1802
feature extraction, image classification, image representation,
image segmentation, object detection, probability, VOC,
faster R-CNN
BibRef
Guo, G.,
Wang, H.,
Zhao, W.L.,
Yan, Y.,
Li, X.,
Object Discovery via Cohesion Measurement,
Cyber(48), No. 3, March 2018, pp. 862-875.
IEEE DOI
1802
Distortion, Eigenvalues and eigenfunctions, Image color analysis,
Image segmentation, Laplace equations, Proposals, Robustness,
spectral clustering
BibRef
Murtaza, F.,
Yousaf, M.H.,
Velastin, S.A.,
PMHI: Proposals From Motion History Images for Temporal Segmentation
of Long Uncut Videos,
SPLetters(25), No. 2, February 2018, pp. 179-183.
IEEE DOI
1802
image motion analysis, image segmentation,
image sequences, learning (artificial intelligence),
uncut videos
BibRef
Kuang, H.,
Yang, K.F.,
Chen, L.,
Li, Y.J.,
Chan, L.L.H.,
Yan, H.,
Bayes Saliency-Based Object Proposal Generator for Nighttime Traffic
Images,
ITS(19), No. 3, March 2018, pp. 814-825.
IEEE DOI
1804
Feature extraction, Generators, Image edge detection, Proposals,
Support vector machines, Vehicle detection, Bayes rule,
saliency detection
BibRef
Zhu, H.,
Vial, R.,
Lu, S.,
Peng, X.,
Fu, H.,
Tian, Y.,
Cao, X.,
YoTube:
Searching Action Proposal Via Recurrent and Static Regression Networks,
IP(27), No. 6, June 2018, pp. 2609-2622.
IEEE DOI
1804
dynamic programming, image classification, image motion analysis,
learning (artificial intelligence), object detection,
object detection
BibRef
Li, J.,
Liang, X.,
Li, J.,
Wei, Y.,
Xu, T.,
Feng, J.,
Yan, S.,
Multistage Object Detection With Group Recursive Learning,
MultMed(20), No. 7, July 2018, pp. 1645-1655.
IEEE DOI
1806
Computer architecture, Feature extraction, Image segmentation,
Object detection, Proposals, Semantics, Image segmentation,
BibRef
Wang, J.[Juan],
Tao, X.M.[Xiao-Ming],
Xu, M.[Mai],
Duan, Y.P.[Yi-Ping],
Lu, J.H.[Jian-Hua],
Hierarchical objectness network for region proposal generation and
object detection,
PR(83), 2018, pp. 260-272.
Elsevier DOI
1808
Object detection, Object localization,
Region proposal generation, Convolutional neural network
BibRef
Huang, X.,
Zheng, Y.,
Huang, J.,
Zhang, Y.,
A Minimum Barrier Distance Based Saliency Box for Object Proposals
Generation,
SPLetters(25), No. 8, August 2018, pp. 1126-1130.
IEEE DOI
1808
image segmentation, object detection,
minimum barrier distance based saliency box, MBDSal Box,
saliency box
BibRef
Zhuge, Y.Z.[Yun-Zhi],
Yang, G.[Gang],
Zhang, P.P.[Ping-Ping],
Lu, H.C.[Hu-Chuan],
Boundary-Guided Feature Aggregation Network for Salient Object
Detection,
SPLetters(25), No. 12, December 2018, pp. 1800-1804.
IEEE DOI
1812
feature extraction, image enhancement, image resolution,
neural nets, object detection, multilevel feature maps,
salient object detection
BibRef
Zhang, M.[Miao],
Ji, W.[Wei],
Piao, Y.R.[Yong-Ri],
Li, J.J.[Jing-Jing],
Zhang, Y.[Yu],
Xu, S.[Shuang],
Lu, H.C.[Hu-Chuan],
LFNet: Light Field Fusion Network for Salient Object Detection,
IP(29), 2020, pp. 6276-6287.
IEEE DOI
2005
Light field, salient object detection,
convolutional neural networks, fusion network
BibRef
Kong, Y.Q.[Yu-Qiu],
Feng, M.Y.[Meng-Yang],
Li, X.[Xin],
Lu, H.C.[Hu-Chuan],
Liu, X.P.[Xiu-Ping],
Yin, B.C.[Bao-Cai],
Spatial context-aware network for salient object detection,
PR(114), 2021, pp. 107867.
Elsevier DOI
2103
Salient object detection, Context-aware methods, Deep learning
BibRef
Piao, Y.R.[Yong-Ri],
Jiang, Y.Y.[Yong-Yao],
Zhang, M.[Miao],
Wang, J.[Jian],
Lu, H.C.[Hu-Chuan],
PANet: Patch-Aware Network for Light Field Salient Object Detection,
Cyber(53), No. 1, January 2023, pp. 379-391.
IEEE DOI
2301
Saliency detection, Feature extraction, Object detection, Decoding,
Task analysis, Cybernetics, Sensors,
saliency object detection
BibRef
Feng, M.Y.[Meng-Yang],
Lu, H.C.[Hu-Chuan],
Ding, E.[Errui],
Attentive Feedback Network for Boundary-Aware Salient Object Detection,
CVPR19(1623-1632).
IEEE DOI
2002
BibRef
Guan, W.L.[Wen-Long],
Wang, T.T.[Tian-Tian],
Qi, J.Q.[Jin-Qing],
Zhang, L.H.[Li-He],
Lu, H.C.[Hu-Chuan],
Edge-Aware Convolution Neural Network Based Salient Object Detection,
SPLetters(26), No. 1, January 2019, pp. 114-118.
IEEE DOI
1901
edge detection, feature extraction, feedforward neural nets,
learning (artificial intelligence), object detection,
convolutional neural networks (CNNs)
BibRef
Zhang, P.P.[Ping-Ping],
Liu, W.[Wei],
Wang, H.Y.[Hong-Yu],
Lei, Y.J.[Yin-Jie],
Lu, H.C.[Hu-Chuan],
Deep gated attention networks for large-scale street-level scene
segmentation,
PR(88), 2019, pp. 702-714.
Elsevier DOI
1901
Scene segmentation, Fully convolutional network,
Spatial gated attention, Street-level image understanding
BibRef
Zhang, X.N.[Xiao-Ning],
Wang, T.T.[Tian-Tian],
Qi, J.Q.[Jin-Qing],
Lu, H.C.[Hu-Chuan],
Wang, G.[Gang],
Progressive Attention Guided Recurrent Network for Salient Object
Detection,
CVPR18(714-722)
IEEE DOI
1812
Feature extraction, Semantics, Object detection,
Saliency detection, Task analysis, Estimation, Convolutional neural networks
BibRef
Jian, M.[Muwei],
Zhao, R.X.[Run-Xia],
Sun, X.[Xin],
Luo, H.J.[Han-Jiang],
Zhang, W.Y.[Wen-Yin],
Zhang, H.X.[Hua-Xiang],
Dong, J.Y.[Jun-Yu],
Yin, Y.L.[Yi-Long],
Lam, K.M.[Kin-Man],
Saliency detection based on background seeds by object proposals and
extended random walk,
JVCIR(57), 2018, pp. 202-211.
Elsevier DOI
1812
Saliency detection, Object proposals, Background seeds, Extended random walk
BibRef
Zhang, X.,
Xiong, H.,
Lin, W.,
Tian, Q.,
Weak to Strong Detector Learning for Simultaneous Classification and
Localization,
CirSysVideo(29), No. 2, February 2019, pp. 418-432.
IEEE DOI
1902
Detectors, Training, Image representation, Task analysis,
Support vector machines, Optimization, Automobiles,
object localization
BibRef
Zhang, X.,
Feng, J.,
Xiong, H.,
Tian, Q.,
Zigzag Learning for Weakly Supervised Object Detection,
CVPR18(4262-4270)
IEEE DOI
1812
Training, Object detection, Reliability, Energy measurement,
Detectors, Image edge detection, Proposals
BibRef
Ke, W.[Wei],
Chen, J.[Jie],
Ye, Q.X.[Qi-Xiang],
Deep contour and symmetry scored object proposal,
PRL(119), 2019, pp. 172-179.
Elsevier DOI
1902
Object proposal, Super-pixel grouping, FCN, Proposal scoring
BibRef
Xiang, C.C.[Chen-Chao],
Yu, Z.[Zhou],
Zhu, S.[Suguo],
Yu, J.[Jun],
Yang, X.K.[Xiao-Kang],
End-to-end visual grounding via region proposal networks and bilinear
pooling,
IET-CV(13), No. 2, March 2019, pp. 131-138.
DOI Link
1902
BibRef
Zhang, D.W.[Ding-Wen],
Han, J.W.[Jun-Wei],
Zhao, L.[Long],
Meng, D.Y.[De-Yu],
Leveraging Prior-Knowledge for Weakly Supervised Object Detection Under
a Collaborative Self-Paced Curriculum Learning Framework,
IJCV(127), No. 4, April 2019, pp. 363-380.
Springer DOI
1903
BibRef
Dong, X.Y.[Xuan-Yi],
Zheng, L.[Liang],
Ma, F.[Fan],
Yang, Y.[Yi],
Meng, D.Y.[De-Yu],
Few-Example Object Detection with Model Communication,
PAMI(41), No. 7, July 2019, pp. 1641-1654.
IEEE DOI
1906
Training, Object detection, Detectors, Videos,
Semisupervised learning, Task analysis, Sun, Few-example learning,
convolutional neural network
BibRef
Li, H.Y.[Hong-Yang],
Liu, Y.[Yu],
Ouyang, W.L.[Wan-Li],
Wang, X.G.[Xiao-Gang],
Zoom Out-and-In Network with Map Attention Decision for Region Proposal
and Object Detection,
IJCV(127), No. 3, March 2019, pp. 225-238.
Springer DOI
1903
Anchors of different sizes require different features.
BibRef
Park, S.W.[Sung Woo],
Kwon, J.[Junseok],
Orthogonal object proposal and its application,
IET-CV(13), No. 4, June 2019, pp. 420-427.
DOI Link
1906
BibRef
Chen, M.,
Zhang, J.,
He, S.,
Yang, Q.,
Li, Q.,
Yang, M.,
Interactive Hierarchical Object Proposals,
CirSysVideo(29), No. 9, September 2019, pp. 2552-2566.
IEEE DOI
1909
Proposals, Object detection, Image segmentation,
Motion segmentation, Shape, Object proposal,
transfer learning
BibRef
Xiong, B.[Bo],
Jain, S.D.[Suyog Dutt],
Grauman, K.[Kristen],
Pixel Objectness: Learning to Segment Generic Objects Automatically
in Images and Videos,
PAMI(41), No. 11, November 2019, pp. 2677-2692.
IEEE DOI
1910
Image segmentation, Videos, Motion segmentation, Training, Proposals,
Object segmentation, Task analysis, Image segmentation,
foreground segmentation
BibRef
Shen, Y.,
Ji, R.,
Yang, K.,
Deng, C.,
Wang, C.,
Category-Aware Spatial Constraint for Weakly Supervised Detection,
IP(29), No. 1, 2020, pp. 843-858.
IEEE DOI
1910
Proposals, Shape, Object detection, Image color analysis, Training,
Feature extraction, Detectors, Weakly supervised learning,
multi-center regularization
BibRef
Huang, X.,
Zheng, Y.,
Huang, J.,
Zhang, Y.,
50 FPS Object-Level Saliency Detection via Maximally Stable Region,
IP(29), No. , 2020, pp. 1384-1396.
IEEE DOI
1911
Saliency detection, Proposals, Object detection, Graphical models,
Visual systems, Deep learning, Visualization, Saliency detection,
seed selection
BibRef
Chen, H.,
Wang, Y.,
Wang, G.,
Bai, X.,
Qiao, Y.,
Progressive Object Transfer Detection,
IP(29), No. , 2020, pp. 986-1000.
IEEE DOI
1911
Detectors, Object detection, Proposals, Task analysis,
Benchmark testing, Deep learning, Labeling, Object detection,
low-shot learning
BibRef
Wang, J.W.[Jin-Wang],
Ding, J.[Jian],
Guo, H.[Haowen],
Cheng, W.S.[Wen-Sheng],
Pan, T.[Ting],
Yang, W.[Wen],
Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box
Representation for Multi-Category Object Detection in Aerial Images,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Tao, X.Y.[Xiao-Yu],
Gong, Y.H.[Yi-Hong],
Shi, W.W.[Wei-Wei],
Cheng, D.[De],
Object detection with class aware region proposal network and focused
attention objective,
PRL(130), 2020, pp. 353-361.
Elsevier DOI
2002
Convolutional neural networks, Object detection, Region proposal
BibRef
Alqasir, H.[Hiba],
Muselet, D.[Damien],
Ducottet, C.[Christophe],
Region Proposal Oriented Approach for Domain Adaptive Object Detection,
ACIVS20(38-50).
Springer DOI
2003
BibRef
Kang, B.R.[Ba Rom],
Lee, H.[Hyunku],
Park, K.[Keunju],
Ryu, H.[Hyunsurk],
Kim, H.Y.[Ha Young],
BshapeNet: Object detection and instance segmentation with bounding
shape masks,
PRL(131), 2020, pp. 449-455.
Elsevier DOI
2004
BibRef
Majelan, S.G.[Sina Ghofrani],
Havaei, M.[Mohammad],
CAGNet: Content-Aware Guidance for Salient Object Detection,
PR(103), 2020, pp. 107303.
Elsevier DOI
2005
Saliency detection, Fully convolutional neural networks, Attention guidance
BibRef
Zhang, D.W.[Ding-Wen],
Han, J.W.[Jun-Wei],
Guo, G.Y.[Guang-Yu],
Zhao, L.[Long],
Learning Object Detectors With Semi-Annotated Weak Labels,
CirSysVideo(29), No. 12, December 2019, pp. 3622-3635.
IEEE DOI
1912
Training, Object detection, Detectors, Training data, Generators,
Visualization, Semantics, image processing,
learning (artificial intelligence)
BibRef
Han, J.W.[Jun-Wei],
Zhang, D.W.[Ding-Wen],
Cheng, G.[Gong],
Guo, L.[Lei],
Ren, J.C.[Jin-Chang],
Object Detection in Optical Remote Sensing Images Based on Weakly
Supervised Learning and High-Level Feature Learning,
GeoRS(53), No. 6, June 2015, pp. 3325-3337.
IEEE DOI
1503
feature extraction. Combine low level features with higher
level grouping features.
BibRef
Zhang, D.W.[Ding-Wen],
Zeng, W.Y.[Wen-Yuan],
Yao, J.[Jieru],
Han, J.W.[Jun-Wei],
Weakly Supervised Object Detection Using Proposal- and Semantic-Level
Relationships,
PAMI(44), No. 6, June 2022, pp. 3349-3363.
IEEE DOI
2205
Cognition, Proposals, Object detection, Supervised learning,
Semantics, Task analysis, Network architecture,
graphical convolutional network
BibRef
Cheng, G.[Gong],
Yang, J.Y.[Jun-Yu],
Gao, D.C.[De-Cheng],
Guo, L.[Lei],
Han, J.W.[Jun-Wei],
High-Quality Proposals for Weakly Supervised Object Detection,
IP(29), 2020, pp. 5794-5804.
IEEE DOI
2005
Proposals, Training, Detectors, Object detection, Search problems,
Task analysis, Convolutional neural networks,
convolutional neural networks (CNNs)
BibRef
Cheng, G.[Gong],
Han, J.W.[Jun-Wei],
A survey on object detection in optical remote sensing images,
PandRS(117), No. 1, 2016, pp. 11-28.
Elsevier DOI
1605
Object detection
BibRef
Cheng, G.[Gong],
Zhou, P.,
Han, J.W.[Jun-Wei],
Learning Rotation-Invariant Convolutional Neural Networks for Object
Detection in VHR Optical Remote Sensing Images,
GeoRS(54), No. 12, December 2016, pp. 7405-7415.
IEEE DOI
1612
BibRef
And:
RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional
Neural Networks for Object Detection,
CVPR16(2884-2893)
IEEE DOI
1612
image processing
BibRef
Feng, X.X.[Xiao-Xu],
Yao, X.[Xiwen],
Shen, H.[Hui],
Cheng, G.[Gong],
Xiao, B.[Bin],
Han, J.W.[Jun-Wei],
Learning an Invariant and Equivariant Network for Weakly Supervised
Object Detection,
PAMI(45), No. 10, October 2023, pp. 11977-11992.
IEEE DOI
2310
BibRef
Earlier: A1, A2, A4, A6, Only:
Weakly Supervised Rotation-Invariant Aerial Object Detection Network,
CVPR22(14126-14135)
IEEE DOI
2210
Representation learning, Training, Couplings, Codes, Detectors,
Object detection, Recognition: detection, categorization,
Self- semi- meta- unsupervised learning
BibRef
Yao, X.[Xiwen],
Feng, X.X.[Xiao-Xu],
Han, J.W.[Jun-Wei],
Cheng, G.[Gong],
Guo, L.[Lei],
Automatic Weakly Supervised Object Detection From High Spatial
Resolution Remote Sensing Images via Dynamic Curriculum Learning,
GeoRS(59), No. 1, January 2021, pp. 675-685.
IEEE DOI
2012
Training, Detectors, Remote sensing, Object detection, Proposals,
Robustness, Spatial resolution,
weakly supervised object detection (WSOD)
BibRef
Li, K.[Ke],
Wan, G.[Gang],
Cheng, G.[Gong],
Meng, L.Q.[Li-Qiu],
Han, J.W.[Jun-Wei],
Object detection in optical remote sensing images:
A survey and a new benchmark,
PandRS(159), 2020, pp. 296-307.
Elsevier DOI
1912
Object detection, Deep learning, Convolutional Neural Network (CNN),
Benchmark dataset, Optical remote sensing images
BibRef
Li, K.[Ke],
Cheng, G.[Gong],
Bu, S.H.[Shu-Hui],
You, X.[Xiong],
Rotation-Insensitive and Context-Augmented Object Detection in Remote
Sensing Images,
GeoRS(56), No. 4, April 2018, pp. 2337-2348.
IEEE DOI
1804
Context modeling, Feature extraction, Geospatial analysis,
Object detection, Proposals, Remote sensing, Satellites,
restricted Boltzmann machine (RBM)
BibRef
Cheng, G.[Gong],
Zhou, P.,
Han, J.W.[Jun-Wei],
Duplex Metric Learning for Image Set Classification,
IP(27), No. 1, January 2018, pp. 281-292.
IEEE DOI
1712
face recognition, image classification, image coding,
image reconstruction, image representation, image sampling,
metric learning
BibRef
Cheng, G.,
Han, J.,
Zhou, P.,
Xu, D.,
Learning Rotation-Invariant and Fisher Discriminative Convolutional
Neural Networks for Object Detection,
IP(28), No. 1, January 2019, pp. 265-278.
IEEE DOI
1810
convolution, feature extraction, feedforward neural nets,
image representation, learning (artificial intelligence),
rotation invariance
BibRef
Feng, X.X.[Xiao-Xu],
Han, J.W.[Jun-Wei],
Yao, X.W.[Xi-Wen],
Cheng, G.[Gong],
Progressive Contextual Instance Refinement for Weakly Supervised
Object Detection in Remote Sensing Images,
GeoRS(58), No. 11, November 2020, pp. 8002-8012.
IEEE DOI
2011
Proposals, Object detection, Remote sensing, Detectors,
Feature extraction, Annotations, Training,
weakly supervised object detection (WSOD)
BibRef
Feng, X.X.[Xiao-Xu],
Han, J.W.[Jun-Wei],
Yao, X.W.[Xi-Wen],
Cheng, G.[Gong],
TCANet: Triple Context-Aware Network for Weakly Supervised Object
Detection in Remote Sensing Images,
GeoRS(59), No. 8, August 2021, pp. 6946-6955.
IEEE DOI
2108
Object detection, Proposals, Visualization, Remote sensing,
Annotations, Semantics, Detectors, Context-aware network,
weakly supervised object detection (WSOD)
BibRef
Yao, X.,
Han, J.W.[Jun-Wei],
Cheng, G.,
Qian, X.,
Guo, L.,
Semantic Annotation of High-Resolution Satellite Images via Weakly
Supervised Learning,
GeoRS(54), No. 6, June 2016, pp. 3660-3671.
IEEE DOI
1606
feature extraction
BibRef
Cheng, G.,
Yang, C.,
Yao, X.,
Guo, L.,
Han, J.,
When Deep Learning Meets Metric Learning: Remote Sensing Image Scene
Classification via Learning Discriminative CNNs,
GeoRS(56), No. 5, May 2018, pp. 2811-2821.
IEEE DOI
1805
Computer architecture, Feature extraction, Image color analysis,
Learning systems, Machine learning, Measurement, Remote sensing,
remote sensing image scene classification
BibRef
Li, D.[Dong],
Huang, J.B.[Jia-Bin],
Li, Y.L.[Ya-Li],
Wang, S.J.[Sheng-Jin],
Yang, M.H.[Ming-Hsuan],
Progressive Representation Adaptation for Weakly Supervised Object
Localization,
PAMI(42), No. 6, June 2020, pp. 1424-1438.
IEEE DOI
2005
BibRef
Earlier:
Weakly Supervised Object Localization with Progressive Domain
Adaptation,
CVPR16(3512-3520)
IEEE DOI
1612
Image level annotation, not location.
Proposals, Detectors, Training, Feature extraction, Clutter,
Noise measurement, Adaptation models, Weakly supervised learning,
domain adaptation.
BibRef
Kong, T.,
Sun, F.,
Liu, H.,
Jiang, Y.,
Li, L.,
Shi, J.,
FoveaBox: Beyound Anchor-Based Object Detection,
IP(29), 2020, pp. 7389-7398.
IEEE DOI
2007
Object detection, anchor free, foveabox
BibRef
Tian, Z.Z.[Zhuang-Zhuang],
Zhan, R.H.[Rong-Hui],
Hu, J.[Jiemin],
Wang, W.[Wei],
He, Z.Q.[Zhi-Qiang],
Zhuang, Z.W.[Zhao-Wen],
Generating Anchor Boxes Based on Attention Mechanism for Object
Detection in Remote Sensing Images,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Jin, Z.C.[Zhen-Chao],
Liu, B.[Bin],
Chu, Q.[Qi],
Yu, N.H.[Neng-Hai],
SAFNet: A Semi-Anchor-Free Network With Enhanced Feature Pyramid for
Object Detection,
IP(29), 2020, pp. 9445-9457.
IEEE DOI
2010
Feature extraction, Detectors, Object detection, Generators,
Semantics, Task analysis, Training, Object detection,
deep learning
BibRef
Wang, H.[Hao],
Wang, Q.L.[Qi-Long],
Li, P.H.[Pei-Hua],
Zuo, W.M.[Wang-Meng],
Multi-scale structural kernel representation for object detection,
PR(110), 2021, pp. 107593.
Elsevier DOI
2011
Object detection, High-order statistics, Polynomial kernel, Matrix power normalization
BibRef
Wang, H.[Hao],
Wang, Q.L.[Qi-Long],
Gao, M.Q.[Ming-Qi],
Li, P.H.[Pei-Hua],
Zuo, W.M.[Wang-Meng],
Multi-scale Location-Aware Kernel Representation for Object Detection,
CVPR18(1248-1257)
IEEE DOI
1812
Object detection, Kernel, Convolution, Proposals, Feature extraction,
Benchmark testing
BibRef
Dou, Z.,
Gao, K.,
Zhang, X.,
Wang, H.,
Wang, J.,
Improving Performance and Adaptivity of Anchor-Based Detector Using
Differentiable Anchoring With Efficient Target Generation,
IP(30), 2021, pp. 712-724.
IEEE DOI
2012
Detectors, Shape, Optimization, Training, Object detection,
Feature extraction, Task analysis, Object detection, anchor.
BibRef
Chen, Z.[Zhe],
Zhang, J.[Jing],
Tao, D.C.[Da-Cheng],
Recursive Context Routing for Object Detection,
IJCV(129), No. 1, January 2021, pp. 142-160.
Springer DOI
2101
Context in detection.
BibRef
Chen, Z.[Zhe],
Huang, S.[Shaoli],
Tao, D.C.[Da-Cheng],
Context Refinement for Object Detection,
ECCV18(VIII: 74-89).
Springer DOI
1810
BibRef
Chen, X.,
Yu, J.,
Kong, S.,
Wu, Z.,
Wen, L.,
Joint Anchor-Feature Refinement for Real-Time Accurate Object
Detection in Images and Videos,
CirSysVideo(31), No. 2, February 2021, pp. 594-607.
IEEE DOI
2102
Feature extraction, Head, Object detection, Videos, Detectors,
Real-time systems, Task analysis, Object detection, deep learning
BibRef
Xu, Y.C.[Yong-Chao],
Fu, M.T.[Ming-Tao],
Wang, Q.M.[Qi-Meng],
Wang, Y.K.[Yu-Kang],
Chen, K.[Kai],
Xia, G.S.[Gui-Song],
Bai, X.[Xiang],
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented
Object Detection,
PAMI(43), No. 4, April 2021, pp. 1452-1459.
IEEE DOI
2103
Object detection, Feature extraction, Proposals, Detectors,
Benchmark testing, Runtime, Object detection, R-CNN, pedestrian detection
BibRef
Solovyev, R.[Roman],
Wang, W.M.[Wei-Min],
Gabruseva, T.[Tatiana],
Weighted boxes fusion: Ensembling boxes from different object
detection models,
IVC(107), 2021, pp. 104117.
Elsevier DOI
2103
Object detection, Deep learning
BibRef
Zou, W.B.[Wen-Bin],
Zhang, Z.Y.[Zheng-Yu],
Peng, Y.Q.[Ying-Qing],
Xiang, C.Q.[Can-Qun],
Tian, S.S.[Shi-Shun],
Zhang, L.[Lu],
SC-RPN: A Strong Correlation Learning Framework for Region Proposal,
IP(30), 2021, pp. 4084-4098.
IEEE DOI
2104
Proposals, Correlation, Detectors, Task analysis, Training, Merging,
Object detection, Region proposal, two-stage, strong correlation, SC-RPN
BibRef
Wang, J.W.[Jin-Wang],
Yang, W.[Wen],
Li, H.C.[Heng-Chao],
Zhang, H.J.[Hai-Jian],
Xia, G.S.[Gui-Song],
Learning Center Probability Map for Detecting Objects in Aerial
Images,
GeoRS(59), No. 5, May 2021, pp. 4307-4323.
IEEE DOI
2104
Task analysis, Image segmentation, Feature extraction, Semantics,
Image color analysis, Object detection, Sensors, Aerial images,
oriented bounding boxes (OBBs)
BibRef
Xu, H.Y.[Hong-Yu],
Lv, X.[Xutao],
Wang, X.Y.[Xiao-Yu],
Ren, Z.[Zhou],
Bodla, N.[Navaneeth],
Chellappa, R.[Rama],
Deep Regionlets: Blended Representation and Deep Learning for Generic
Object Detection,
PAMI(43), No. 6, June 2021, pp. 1914-1927.
IEEE DOI
2106
BibRef
Earlier:
Deep Regionlets for Object Detection,
ECCV18(XI: 827-844).
Springer DOI
1810
Feature extraction, Detectors, Object detection, Proposals,
Machine learning, Deformable models, Strain, Object detection,
spatial transformation
BibRef
Xu, Y.J.[You-Jiang],
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Wu, F.[Fei],
Training Robust Object Detectors From Noisy Category Labels and
Imprecise Bounding Boxes,
IP(30), 2021, pp. 5782-5792.
IEEE DOI
2106
Noise measurement, Detectors, Annotations, Object detection,
Training, Proposals, Feature extraction, Deep learning,
object detection
BibRef
Qu, Z.[Zhong],
Zhang, R.[Run],
Bao, K.H.[Kang-Hua],
A keypoint-based object detection method with wide dual-path backbone
network and attention modules,
IET-IPR(15), No. 8, 2021, pp. 1800-1813.
DOI Link
2106
BibRef
Shi, S.S.[Shao-Shuai],
Wang, Z.[Zhe],
Shi, J.P.[Jian-Ping],
Wang, X.G.[Xiao-Gang],
Li, H.S.[Hong-Sheng],
From Points to Parts: 3D Object Detection From Point Cloud With
Part-Aware and Part-Aggregation Network,
PAMI(43), No. 8, August 2021, pp. 2647-2664.
IEEE DOI
2107
BibRef
Earlier: A1, A4, A5, Only:
PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud,
CVPR19(770-779).
IEEE DOI
2002
Feature extraction, Proposals,
Object detection, Convolution,
autonomous driving
BibRef
Mao, J.F.[Jia-Feng],
Yu, Q.[Qing],
Aizawa, K.[Kiyoharu],
Noisy Localization Annotation Refinement for Object Detection,
IEICE(E104-D), No. 9, September 2021, pp. 1478-1485.
WWW Link.
2109
BibRef
Earlier:
ICIP20(2006-2010)
IEEE DOI
2011
Noise measurement, Training, Detectors, Object detection,
Noise level, Task analysis, Robustness, joint optimization
BibRef
Cao, J.[Jie],
Ren, W.[Wei],
Zhang, H.[Hong],
Chen, Z.[Zuohan],
Candidate box fusion based approach to adjust position of the
candidate box for object detection,
IET-IPR(15), No. 12, 2021, pp. 2799-2809.
DOI Link
2109
BibRef
Perreault, H.[Hughes],
Bilodeau, G.A.[Guillaume-Alexandre],
Saunier, N.[Nicolas],
Héritier, M.[Maguelonne],
FFAVOD: Feature fusion architecture for video object detection,
PRL(151), 2021, pp. 294-301.
Elsevier DOI
2110
BibRef
Earlier:
SpotNet: Self-Attention Multi-Task Network for Object Detection,
CRV20(230-237)
IEEE DOI
2006
Video object detection, Feature fusion, Traffic scenes.
Object Detection, Segmentation, Self-Attention,
Multi-Task Learning, Traffic Scenes
BibRef
Perreault, H.[Hughes],
Heritier, M.[Maguelonne],
Gravel, P.[Pierre],
Bilodeau, G.A.[Guillaume-Alexandre],
Saunier, N.[Nicolas],
RN-VID: A Feature Fusion Architecture for Video Object Detection,
ICIAR20(I:125-138).
Springer DOI
2007
BibRef
Li, W.Y.[Wu-Yang],
Chen, Z.[Zhen],
Li, B.[Baopu],
Zhang, D.W.[Ding-Wen],
Yuan, Y.X.[Yi-Xuan],
HTD: Heterogeneous Task Decoupling for Two-Stage Object Detection,
IP(30), 2021, pp. 9456-9469.
IEEE DOI
2112
Semantics, Task analysis, Proposals, Object detection,
Feature extraction, Cognition, Location awareness, task-decoupled framework
BibRef
Chen, L.R.[Lv-Ran],
Zheng, H.C.[Hui-Cheng],
Yan, Z.W.[Zhi-Wei],
Li, Y.[Ye],
Discriminative Region Mining for Object Detection,
MultMed(23), 2021, pp. 4297-4310.
IEEE DOI
2112
Detectors, Object detection, Feature extraction, Task analysis,
Streaming media, Proposals, Visualization,
object detection
BibRef
Liu, A.A.[An-An],
Wang, Y.H.[Yan-Hui],
Xu, N.[Ning],
Nie, W.Z.[Wei-Zhi],
Nie, J.[Jie],
Zhang, Y.D.[Yong-Dong],
Adaptively Clustering-Driven Learning for Visual Relationship
Detection,
MultMed(23), 2021, pp. 4515-4525.
IEEE DOI
2112
Visualization, Task analysis, Semantics, Proposals, Object detection,
Feature extraction, Portable computers,
visual relationship detection
BibRef
Bernhard, M.[Maximilian],
Schubert, M.[Matthias],
Correcting Imprecise Object Locations for Training Object Detectors
in Remote Sensing Applications,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Bonnaerens, M.[Maxim],
Freiberger, M.[Matthias],
Dambre, J.[Joni],
Anchor pruning for object detection,
CVIU(221), 2022, pp. 103445.
Elsevier DOI
2206
Object detection, Pruning, Real time
BibRef
Xiao, J.S.[Jin-Sheng],
Guo, H.W.[Hao-Wen],
Yao, Y.T.[Yun-Tao],
Zhang, S.H.[Shu-Hao],
Zhou, J.[Jian],
Jiang, Z.J.[Zhi-Jun],
Multi-Scale Object Detection with the Pixel Attention Mechanism in a
Complex Background,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhao, G.Q.[Guo-Qing],
Dong, T.Y.[Tian-Yang],
Jiang, Y.M.[Yi-Ming],
Corner-based object detection method for reactivating box constraints,
IET-IPR(16), No. 13, 2022, pp. 3446-3457.
DOI Link
2210
BibRef
Wang, C.Z.[Chen-Zhong],
Gong, X.[Xun],
Bounding box regression with balance for harmonious object detection,
JVCIR(89), 2022, pp. 103665.
Elsevier DOI
2212
Object detection, Reinforcement learning, Bounding box regression
BibRef
Dong, C.[Chen],
Duo-Qian, M.[Miao],
Control Distance IoU and Control Distance IoU Loss for Better
Bounding Box Regression,
PR(137), 2023, pp. 109256.
Elsevier DOI
2302
Computer vision, Object detection, IoU, Loss function
BibRef
Deng, Y.[Ying],
Hu, X.L.[Xin-Liang],
Teng, D.[Da],
Li, B.[Bing],
Zhang, C.X.[Cong-Xuan],
Hu, W.M.[Wei-Ming],
Dynamic adjustment of hyperparameters for anchor-based detection of
objects with large image size differences,
PRL(167), 2023, pp. 196-203.
Elsevier DOI
2303
Detection of objects with large image size differences,
Anchor-based dynamic training, Adjustment of hyper-parameters
BibRef
Gao, L.[Lei],
Gao, H.[Hui],
Wang, Y.H.[Yu-Han],
Liu, D.[Dong],
Momanyi, B.M.[Biffon Manyura],
Center-Ness and Repulsion:
Constraints to Improve Remote Sensing Object Detection via RepPoints,
RS(15), No. 6, 2023, pp. 1479.
DOI Link
2304
Within bounding box.
BibRef
Zhou, L.M.[Li-Ming],
Liu, Z.H.[Zhe-Hao],
Zhao, H.[Hang],
Hou, Y.E.[Yan-E],
Liu, Y.[Yang],
Zuo, X.Y.[Xian-Yu],
Dang, L.X.[Lan-Xue],
A Multi-Scale Object Detector Based on Coordinate and Global
Information Aggregation for UAV Aerial Images,
RS(15), No. 14, 2023, pp. 3468.
DOI Link
2307
Wide scale variation in the objects.
BibRef
Wang, Z.[Zuyi],
Zhu, W.J.[Wen-Jun],
Zhao, W.[Wei],
Xu, L.[Li],
Balanced One-Stage Object Detection by Enhancing the Effect of
Positive Samples,
CirSysVideo(33), No. 8, August 2023, pp. 4011-4026.
IEEE DOI
2308
Detectors, Training, Task analysis, Object detection, Proposals,
Optimization, Feature extraction, Object detection, imbalance problem
BibRef
Murtaza, S.[Shakeeb],
Belharbi, S.[Soufiane],
Pedersoli, M.[Marco],
Sarraf, A.[Aydin],
Granger, E.[Eric],
DiPS: Discriminative pseudo-label sampling with self-supervised
transformers for weakly supervised object localization,
IVC(140), 2023, pp. 104838.
Elsevier DOI Code:
WWW Link.
2312
BibRef
Earlier:
Discriminative Sampling of Proposals in Self-Supervised Transformers
for Weakly Supervised Object Localization,
RealWorld23(1-11)
IEEE DOI
2302
Weakly supervised object localization,
Self-supervised learning, Vision transformers, Deep learning.
Location awareness, Training, Visualization, Surveillance,
Poles and towers, Transformers, Search problems
BibRef
Tao, M.[Manli],
Zhao, C.Y.[Chao-Yang],
Wang, J.Q.[Jin-Qiao],
Tang, M.[Ming],
ImFusion: Boosting Two-Stage 3D Object Detection via Image Candidates,
SPLetters(31), 2024, pp. 241-245.
IEEE DOI
2402
Proposals, Object detection, Feature extraction, Point cloud compression,
Aggregates, Sun, 3D object detection, target missing
BibRef
He, Z.H.[Zi-Hang],
Li, Y.[Yong],
Determining the proper number of proposals for individual images,
IET-CV(18), No. 1, 2024, pp. 141-149.
DOI Link
2403
convolutional neural nets, object detection
BibRef
Duan, K.W.[Kai-Wen],
Bai, S.[Song],
Xie, L.X.[Ling-Xi],
Qi, H.G.[Hong-Gang],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
CenterNet++ for Object Detection,
PAMI(46), No. 5, May 2024, pp. 3509-3521.
IEEE DOI
2404
Proposals, Object detection, Shape, Feature extraction, Detectors,
Real-time systems, Geometry, Anchor-free, bottom-up, deep learning,
object detection
BibRef
Duan, K.W.[Kai-Wen],
Xie, L.X.[Ling-Xi],
Qi, H.G.[Hong-Gang],
Bai, S.[Song],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Corner Proposal Network for Anchor-free, Two-stage Object Detection,
ECCV20(III:399-416).
Springer DOI
2012
BibRef
Wang, Y.Y.[Yin-Yuan],
Du, H.[Haowen],
Cheng, Z.[Zhuo],
Gao, C.X.[Chang-Xin],
Wei, L.S.[Long-Sheng],
Fang, B.[Bin],
Xiao, F.[Fei],
Luo, D.P.[Da-Peng],
KRRNet: Keypoint Relational Regression Network for Bottom-Up
Anchor-Free Object Detection,
CirSysVideo(34), No. 4, April 2024, pp. 2249-2260.
IEEE DOI
2404
Feature extraction, Detectors, Object detection, Proposals, Shape,
Semantics, Clutter, Anchor-free detection, object keypoints,
random background sampling
BibRef
Jeon, M.W.[Min-Woo],
Park, G.M.[Gyeong-Moon],
Hwang, H.[Hyoseok],
Fisheye Object Detection with Visual Prompting-Aided Fine-Tuning,
RS(16), No. 12, 2024, pp. 2054.
DOI Link
2406
BibRef
Law, H.[Hei],
Deng, J.[Jia],
Label-Free Synthetic Pretraining of Object Detectors,
WACV24(935-945)
IEEE DOI Code:
WWW Link.
2404
Solid modeling, Computational modeling, Semantics, Layout, Detectors,
Algorithms, Image recognition and understanding
BibRef
Inkawhich, M.[Matthew],
Inkawhich, N.[Nathan],
Li, H.[Hai],
Chen, Y.[Yiran],
Tunable Hybrid Proposal Networks for the Open World,
WACV24(1977-1988)
IEEE DOI
2404
Training, Protocols, Object detection, Computer architecture,
Distance measurement, Data models, Algorithms,
Image recognition and understanding
BibRef
Zhang, T.Y.[Tian-Yi],
Kasichainula, K.[Kishore],
Zhuo, Y.X.[Yao-Xin],
Li, B.X.[Bao-Xin],
Seo, J.S.[Jae-Sun],
Cao, Y.[Yu],
Patch-based Selection and Refinement for Early Object Detection,
WACV24(718-727)
IEEE DOI
2404
Heuristic algorithms, Computational modeling, Object detection,
Transformers, Safety, Task analysis, Algorithms
BibRef
Pham, C.[Chau],
Vu, T.[Truong],
Nguyen, K.[Khoi],
LP-OVOD: Open-Vocabulary Object Detection by Linear Probing,
WACV24(768-777)
IEEE DOI Code:
WWW Link.
2404
Training, Codes, Object detection, Detectors, Proposals,
Object recognition, Algorithms,
Vision + language and/or other modalities
BibRef
Wu, D.[Di],
Chen, P.F.[Peng-Fei],
Yu, X.H.[Xue-Hui],
Li, G.R.[Guo-Rong],
Han, Z.J.[Zhen-Jun],
Jiao, J.B.[Jian-Bin],
Spatial Self-Distillation for Object Detection with Inaccurate
Bounding Boxes,
ICCV23(6832-6842)
IEEE DOI Code:
WWW Link.
2401
BibRef
Fu, S.H.[Sheng-Hao],
Yan, J.K.[Jun-Kai],
Gao, Y.P.[Yi-Peng],
Xie, X.H.[Xiao-Hua],
Zheng, W.S.[Wei-Shi],
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive
Sparse Anchor Generation,
ICCV23(6305-6315)
IEEE DOI Code:
WWW Link.
2401
BibRef
Lv, Y.L.[Yi-Long],
Li, M.[Min],
He, Y.J.[Yu-Jie],
He, Z.[Zhuzhen],
Li, S.P.[Shao-Peng],
Yang, A.[Aitao],
Anchor-Intermediate Detector: Decoupling and Coupling Bounding Boxes
for Accurate Object Detection,
ICCV23(6252-6261)
IEEE DOI
2401
BibRef
Liu, Y.Y.[Yu-Yang],
Cong, Y.[Yang],
Goswami, D.[Dipam],
Liu, X.L.[Xia-Lei],
van de Weijer, J.[Joost],
Augmented Box Replay:
Overcoming Foreground Shift for Incremental Object Detection,
ICCV23(11333-11343)
IEEE DOI
2401
BibRef
He, W.Z.[Wei-Zhen],
Chen, W.J.[Wei-Jie],
Chen, B.B.[Bin-Bin],
Yang, S.[Shicai],
Xie, D.[Di],
Lin, L.[Luojun],
Qi, D.L.[Dong-Lian],
Zhuang, Y.T.[Yue-Ting],
Unsupervised Prompt Tuning for Text-Driven Object Detection,
ICCV23(2651-2661)
IEEE DOI
2401
BibRef
Ding, K.[Kun],
He, G.J.[Guo-Jin],
Gu, H.X.[Hu-Xiang],
Zhong, Z.S.[Zi-Sha],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Packdet: Packed Long-Head Object Detector,
ECCV20(XIII:172-188).
Springer DOI
2011
BibRef
Lyu, M.Y.[Meng-Yao],
Zhou, J.D.[Jun-Dong],
Chen, H.[Hui],
Huang, Y.J.[Yi-Jie],
Yu, D.D.[Dong-Dong],
Li, Y.Q.[Ya-Qian],
Guo, Y.D.[Yan-Dong],
Guo, Y.C.[Yu-Chen],
Xiang, L.[Liuyu],
Ding, G.G.[Gui-Guang],
Box-Level Active Detection,
CVPR23(23766-23775)
IEEE DOI
2309
BibRef
Huang, Q.D.[Qi-Dong],
Dong, X.Y.[Xiao-Yi],
Chen, D.D.[Dong-Dong],
Zhang, W.M.[Wei-Ming],
Wang, F.F.[Fei-Fei],
Hua, G.[Gang],
Yu, N.H.[Neng-Hai],
Diversity-Aware Meta Visual Prompting,
CVPR23(10878-10887)
IEEE DOI
2309
WWW Link.
BibRef
Nie, Y.[Yinyu],
Dai, A.[Angela],
Han, X.G.[Xiao-Guang],
NieBner, M.[Matthias],
Learning 3D Scene Priors with 2D Supervision,
CVPR23(792-802)
IEEE DOI
2309
WWW Link.
BibRef
Dang, T.[Trung],
Kornblith, S.[Simon],
Nguyen, H.T.[Huy Thong],
Chin, P.[Peter],
Khademi, M.[Maryam],
A Study on Self-supervised Object Detection Pretraining,
SelfLearn22(86-99).
Springer DOI
2304
BibRef
Yang, Y.[Yang],
Asthana, A.[Akshay],
Zheng, L.[Liang],
Does Keypoint Estimation Benefit Object Detection? An Empirical Study
of One-stage and Two-stage Detectors,
FG21(1-7)
IEEE DOI
2303
Face recognition, Estimation, Detectors,
Object detection, Gesture recognition, Task analysis
BibRef
Han, B.[Byeolyi],
Oh, T.H.[Tae-Hyun],
Learning Few-shot Segmentation from Bounding Box Annotations,
WACV23(3739-3748)
IEEE DOI
2302
Annotations, Semantic segmentation, Computational modeling,
Semantics, Prototypes, Performance gain, visual reasoning
BibRef
Gilg, J.[Johannes],
Teepe, T.[Torben],
Herzog, F.[Fabian],
Rigoll, G.[Gerhard],
The Box Size Confidence Bias Harms Your Object Detector,
WACV23(1471-1480)
IEEE DOI
2302
Histograms, Neural networks, Training data, Detectors,
Object detection, Algorithms: Explainable, fair, accountable, visual reasoning
BibRef
Wang, Y.T.[Yu-Ting],
Guerrero, R.[Ricardo],
Pavlovic, V.[Vladimir],
D2F2WOD: Learning Object Proposals for Weakly-Supervised Object
Detection via Progressive Domain Adaptation,
WACV23(22-31)
IEEE DOI
2302
Location awareness, Adaptation models, Computational modeling,
Object detection, Detectors, Feature extraction
BibRef
Wang, B.[Bo],
Wang, S.[Shiang],
Yuan, C.F.[Chun-Feng],
Wu, Z.H.[Zhong-Hai],
Li, B.[Bing],
Hu, W.M.[Wei-Ming],
Xiong, J.[Jeffrey],
Learnable Pixel Clustering Via Structure and Semantic Dual
Constraints for Unsupervised Image Segmentation,
ICIP22(1041-1045)
IEEE DOI
2211
Representation learning, Image segmentation, Smoothing methods,
Annotations, Semantics, Proposals, Task analysis, image segmentation,
mutual information maximization
BibRef
Chen, P.F.[Peng-Fei],
Yu, X.H.[Xue-Hui],
Han, X.[Xumeng],
Hassan, N.[Najmul],
Wang, K.[Kai],
Li, J.C.[Jia-Chen],
Zhao, J.[Jian],
Shi, H.[Humphrey],
Han, Z.J.[Zhen-Jun],
Ye, Q.X.[Qi-Xiang],
Point-to-Box Network for Accurate Object Detection via Single Point
Supervision,
ECCV22(IX:51-67).
Springer DOI
2211
BibRef
Chen, H.L.[Hong-Lin],
Venkatesh, R.[Rahul],
Friedman, Y.[Yoni],
Wu, J.J.[Jia-Jun],
Tenenbaum, J.B.[Joshua B.],
Yamins, D.L.K.[Daniel L. K.],
Bear, D.M.[Daniel M.],
Unsupervised Segmentation in Real-World Images via Spelke Object
Inference,
ECCV22(XXIX:719-735).
Springer DOI
2211
BibRef
Liu, C.X.[Cheng-Xin],
Wang, K.W.[Ke-Wei],
Lu, H.[Hao],
Cao, Z.G.[Zhi-Guo],
Zhang, Z.M.[Zi-Ming],
Robust Object Detection with Inaccurate Bounding Boxes,
ECCV22(X:53-69).
Springer DOI
2211
BibRef
Bai, Y.T.[Yu-Tong],
Chen, X.L.[Xin-Lei],
Kirillov, A.[Alexander],
Yuille, A.L.[Alan L.],
Berg, A.C.[Alexander C.],
Point-Level Region Contrast for Object Detection Pre-Training,
CVPR22(16040-16049)
IEEE DOI
2210
Location awareness, Training, Visualization, Codes, Object detection,
Pattern recognition, Representation learning,
Self- semi- meta- unsupervised learning
BibRef
Shi, H.C.[Heng-Can],
Hayat, M.[Munawar],
Wu, Y.C.[Yi-Cheng],
Cai, J.F.[Jian-Fei],
ProposalCLIP: Unsupervised Open-Category Object Proposal Generation
via Exploiting CLIP Cues,
CVPR22(9601-9610)
IEEE DOI
2210
Visualization, Ethics, Annotations, Merging, Genomics,
Object detection, Recognition: detection, categorization
BibRef
Burghouts, G.J.[Gertjan J.],
Kruithof, M.[Maarten],
Huizinga, W.[Wyke],
Schutte, K.[Klamer],
Cluster Centers Provide Good First Labels for Object Detection,
CIAP22(I:404-413).
Springer DOI
2205
BibRef
Yoo, J.[Jaeyoung],
Lee, H.[Hojun],
Chung, I.[Inseop],
Seo, G.[Geonseok],
Kwak, N.[Nojun],
Training Multi-Object Detector by Estimating Bounding Box
Distribution for Input Image,
ICCV21(3417-3426)
IEEE DOI
2203
Training, Neural networks, Estimation, Detectors, Mixture models,
Object detection, Detection and localization in 2D and 3D,
Scene analysis and understanding
BibRef
Li, Y.M.[Yi-Meng],
Košecká, J.[Jana],
Uncertainty Aware Proposal Segmentation for Unknown Object Detection,
Novelty22(241-250)
IEEE DOI
2202
Training, Adaptation models, Uncertainty, Semantics, Estimation,
Object detection, Radial basis function networks
BibRef
Cho, S.[Sungmin],
Paeng, J.[Jinwook],
Kwon, J.[Junseok],
Densely-packed Object Detection via Hard Negative-Aware Anchor
Attention,
WACV22(1401-1410)
IEEE DOI
2202
Codes, Object detection,
Large-scale Vision Applications Object Detection/Recognition/Categorization
BibRef
Zhou, M.[Man],
Liu, L.[Liu],
Wang, R.[Rujing],
Reinforcedet: Object Detection By Integrating Reinforcement Learning
With Decoupled Pipeline,
ICIP21(2778-2782)
IEEE DOI
2201
Anchor free object detection.
Pipelines, Neural networks, Reinforcement learning,
Object detection, Feature extraction, Computational efficiency,
Decoupled Pipeline
BibRef
Fang, F.[Fen],
Xu, Q.L.[Qian-Li],
Gauthier, N.[Nicolas],
Li, L.Y.[Li-Yuan],
Lim, J.H.[Joo-Hwee],
Enhancing Multi-Step Action Prediction for Active Object Detection,
ICIP21(2189-2193)
IEEE DOI
2201
Training, Adaptation models, Visualization, Uncertainty,
Image processing, Object detection, Reinforcement learning,
deep q-learning network (DQN)
BibRef
Zhang, M.[Ming],
Liu, S.C.[Shuai-Cheng],
Zeng, B.[Bing],
Hierarchical Region Proposal Refinement Network for Weakly Supervised
Object Detection,
ICIP21(669-673)
IEEE DOI
2201
Training, Annotations, Image processing, Image edge detection,
Detectors, Object detection, Weakly supervised object detection,
Instance regression refinement
BibRef
Duan, C.Z.[Cheng-Zhen],
Wei, Z.W.[Zhi-Wei],
Zhang, C.[Chi],
Qu, S.Y.[Si-Ying],
Wang, H.P.[Hong-Peng],
Coarse-grained Density Map Guided Object Detection in Aerial Images,
VisDrone21(2789-2798)
IEEE DOI
2112
Training, Image resolution, Estimation,
Crops, Clustering algorithms
BibRef
Iwayoshi, T.[Takaaki],
Mitsuhara, M.[Masahiro],
Takada, M.[Masayuki],
Hirakawa, T.[Tsubasa],
Yamashita, T.[Takayoshi],
Fujiyoshi, H.[Hironobu],
Attention Mining Branch for Optimizing Attention Map,
MVA21(1-5)
DOI Link
2109
Attention branch networks work on region of interest, but object may not be
there.
Measurement, Training, Visualization, Target recognition, Dogs
BibRef
He, Y.L.[Yu-Lin],
Zhang, L.[Limeng],
Chen, W.[Wei],
Luo, X.[Xin],
Jia, X.G.[Xiao-Gang],
Li, C.[Chen],
CenterRepp: Predict Central Representative Point Set's Distribution
For Detection,
ICPR21(8960-8967)
IEEE DOI
2105
Detectors, Object detection, Benchmark testing, Neck, Standards
BibRef
Li, Y.L.[Yin-Lin],
Qian, Y.[Yang],
Yang, X.[Xu],
Zhang, Y.[Yuren],
Activity and Relationship Modeling Driven Weakly Supervised Object
Detection,
ICPR21(9628-9634)
IEEE DOI
2105
Training, Object detection, Gaussian distribution, Proposals
BibRef
Adhikari, B.[Bishwo],
Huttunen, H.[Heikki],
Iterative Bounding Box Annotation for Object Detection,
ICPR21(4040-4046)
IEEE DOI
2105
Training, Measurement, Annotations, Pipelines, Manuals,
Object detection
BibRef
Quan, Y.[Yu],
Li, Z.X.[Zhi-Xin],
Zhang, C.L.[Can-Long],
Ma, H.F.[Hui-Fang],
Object Detection Model Based on Scene-Level Region Proposal
Self-Attention,
ICPR21(954-961)
IEEE DOI
2105
Training, Analytical models, Visualization, Target recognition,
Semantics, Object detection, Feature extraction, object detection,
self-attention mechanism
BibRef
Choi, M.K.[Min-Kook],
Jung, H.[Heechul],
Development of Fast Refinement Detectors on AI Edge Platforms,
IML20(592-606).
Springer DOI
2103
Code, Object Detection.
WWW Link. Object detection on GPU
BibRef
Xu, X.L.[Xiao-Long],
Meng, F.M.[Fan-Man],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Ngi Ngan, K.[King],
Chen, S.[Shuai],
A New Bounding Box based Pseudo Annotation Generation Method for
Semantic Segmentation,
VCIP20(100-103)
IEEE DOI
2102
Annotations, Image segmentation, Training, Semantics,
Predictive models, Task analysis, Pipelines, Bounding Box,
Class-agnostic Model
BibRef
Zhao, G.L.[Gan-Long],
Li, G.B.[Guan-Bin],
Xu, R.J.[Rui-Jia],
Lin, L.[Liang],
Collaborative Training Between Region Proposal Localization and
Classification for Domain Adaptive Object Detection,
ECCV20(XVIII:86-102).
Springer DOI
2012
BibRef
Kim, K.[Kang],
Lee, H.S.[Hee Seok],
Probabilistic Anchor Assignment with IoU Prediction for Object
Detection,
ECCV20(XXV:355-371).
Springer DOI
2011
Intersection-over-Unions.
BibRef
Chen, R.[Ran],
Liu, Y.[Yong],
Zhang, M.[Mengdan],
Liu, S.[Shu],
Yu, B.[Bei],
Tai, Y.W.[Yu-Wing],
Dive Deeper into Box for Object Detection,
ECCV20(XXII:412-428).
Springer DOI
2011
BibRef
Xu, X.,
Luo, X.,
Ma, L.,
Context-Aware Hierarchical Feature Attention Network For Multi-Scale
Object Detection,
ICIP20(2011-2015)
IEEE DOI
2011
Feature extraction, Detectors, Object detection, Context modeling,
Semantics, Benchmark testing, Training, Object detection,
Attention mechanism
BibRef
Seo, G.,
Yoo, J.,
Cho, J.,
Kwak, N.,
Kl-Divergence-Based Region Proposal Network For Object Detection,
ICIP20(2001-2005)
IEEE DOI
2011
Uncertainty, Standards, Proposals, Training, Object detection,
Gaussian distribution, Probability distribution,
KL-Divergence
BibRef
Chen, Q.[Qi],
Sun, L.[Lin],
Wang, Z.X.[Zhi-Xin],
Jia, K.[Kui],
Yuille, A.L.[Alan L.],
Object as Hotspots: An Anchor-free 3d Object Detection Approach via
Firing of Hotspots,
ECCV20(XXI:68-84).
Springer DOI
2011
BibRef
Zhao, Z.[Zhen],
Guo, Y.H.[Yu-Hong],
Shen, H.F.[Hai-Feng],
Ye, J.P.[Jie-Ping],
Adaptive Object Detection with Dual Multi-label Prediction,
ECCV20(XXVIII:54-69).
Springer DOI
2011
BibRef
Ma, W.S.[Wen-Shuo],
Tian, T.Z.[Ting-Zhong],
Xu, H.[Hang],
Huang, Y.M.[Yi-Min],
Li, Z.G.[Zhen-Guo],
AABO: Adaptive Anchor Box Optimization for Object Detection via
Bayesian Sub-sampling,
ECCV20(V:560-575).
Springer DOI
2011
BibRef
Lan, S.,
Ren, Z.,
Wu, Y.,
Davis, L.S.,
Hua, G.,
SaccadeNet: A Fast and Accurate Object Detector,
CVPR20(10394-10403)
IEEE DOI
2008
Detectors, Training, Feature extraction,
Object detection, Proposals, Aggregates
BibRef
Qian, Q.,
Chen, L.,
Li, H.,
Jin, R.,
DR Loss: Improving Object Detection by Distributional Ranking,
CVPR20(12161-12169)
IEEE DOI
2008
Detectors, Object detection, Proposals, Neural networks,
Task analysis, Feature extraction, Object recognition
BibRef
Zhang, S.,
Chi, C.,
Yao, Y.,
Lei, Z.,
Li, S.Z.,
Bridging the Gap Between Anchor-Based and Anchor-Free Detection via
Adaptive Training Sample Selection,
CVPR20(9756-9765)
IEEE DOI
2008
Detectors, Training, Object detection, Proposals, Feature extraction,
Bridges
BibRef
Hosoya, Y.,
Suganuma, M.,
Okatani, T.,
Analysis and a Solution of Momentarily Missed Detection for
Anchor-based Object Detectors,
WACV20(1399-1407)
IEEE DOI
2006
Detectors, Bicycles, Switches, Task analysis, Object detection,
Employment, Clutter
BibRef
Uzkent, B.,
Yeh, C.,
Ermon, S.,
Efficient Object Detection in Large Images Using Deep Reinforcement
Learning,
WACV20(1813-1822)
IEEE DOI
2006
Detectors, Spatial resolution, Object detection,
Proposals, Satellites
BibRef
Chen, J.,
Luo, B.,
Wu, Q.,
Chen, J.,
Peng, X.,
Overlap Sampler for Region-Based Object Detection,
WACV20(756-764)
IEEE DOI
2006
Detectors, Training, Upper bound, Proposals, Object detection,
Benchmark testing, Sampling methods
BibRef
Dhamija, A.R.,
Günther, M.,
Ventura, J.,
Boult, T.E.,
The Overlooked Elephant of Object Detection: Open Set,
WACV20(1010-1019)
IEEE DOI
2006
Detectors, Object detection, Training, Protocols, Object recognition,
Proposals, Training data
BibRef
Gupta, D.[Dikshant],
Anantharaman, A.[Aditya],
Mamgain, N.[Nehal],
Kamath, S.S.[S. Sowmya],
Balasubramanian, V.N.[Vineeth N.],
Jawahar, C.V.,
A Multi-Space Approach to Zero-Shot Object Detection,
WACV20(1198-1206)
IEEE DOI
2006
Semantics, Visualization, Object detection, Proposals, Task analysis,
Training, Correlation
BibRef
Li, Z.,
Du, X.,
Cao, Y.,
GAR: Graph Assisted Reasoning for Object Detection,
WACV20(1284-1293)
IEEE DOI
2006
Object detection, Proposals, Detectors, Image edge detection,
Cognition, Task analysis, Cows
BibRef
Zhong, Y.,
Wang, J.,
Peng, J.,
Zhang, L.,
Anchor Box Optimization for Object Detection,
WACV20(1275-1283)
IEEE DOI
2006
Shape, Training, Optimization, Object detection, Detectors, Robustness,
Neural networks
BibRef
Levinshtein, A.,
Sereshkeh, A.R.,
Derpanis, K.G.,
DATNet: Dense Auxiliary Tasks for Object Detection,
WACV20(1408-1416)
IEEE DOI
2006
Task analysis, Feature extraction, Semantics, Object detection,
Proposals, Detectors, Transforms
BibRef
Le, T.,
Akihiro, S.,
Ono, S.,
Kawasaki, H.,
Toward Interactive Self-Annotation For Video Object Bounding Box:
Recurrent Self-Learning And Hierarchical Annotation Based Framework,
WACV20(3220-3229)
IEEE DOI
2006
Detectors, Labeling, Tools, Training data, Task analysis, Training,
Machine learning
BibRef
Tan, Z.,
Nie, X.,
Qian, Q.,
Li, N.,
Li, H.,
Learning to Rank Proposals for Object Detection,
ICCV19(8272-8280)
IEEE DOI
2004
edge detection, feature extraction, image fusion,
learning (artificial intelligence), object detection
BibRef
Yang, F.,
Fan, H.,
Chu, P.,
Blasch, E.,
Ling, H.,
Clustered Object Detection in Aerial Images,
ICCV19(8310-8319)
IEEE DOI
2004
estimation theory, feature extraction, image segmentation,
object detection, pattern clustering, aerial images,
Image resolution
BibRef
Batchelor, O.,
Green, R.,
Object detection for Verification Based Annotation,
IVCNZ19(1-6)
IEEE DOI
2004
convolutional neural nets, image resolution, object detection,
object detector, machine annotations, human annotator,
human-in-the-loop
BibRef
Chen, B.[Bo],
Ghiasi, G.[Golnaz],
Liu, H.X.[Han-Xiao],
Lin, T.Y.[Tsung-Yi],
Kalenichenko, D.[Dmitry],
Adam, H.[Hartwig],
Le, Q.V.[Quoc V.],
MnasFPN: Learning Latency-Aware Pyramid Architecture for Object
Detection on Mobile Devices,
CVPR20(13604-13613)
IEEE DOI
2008
BibRef
Earlier: A2, A4, A7, Only:
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object
Detection,
CVPR19(7029-7038).
IEEE DOI
2002
Computer architecture, Head, Object detection, Search problems,
Feature extraction, Mobile handsets, Aerospace electronics
BibRef
Wang, J.[Jiaqi],
Chen, K.[Kai],
Yang, S.[Shuo],
Loy, C.C.[Chen Change],
Lin, D.[Dahua],
Region Proposal by Guided Anchoring,
CVPR19(2960-2969).
IEEE DOI
2002
BibRef
Singh, K.K.[Krishna Kumar],
Lee, Y.J.[Yong Jae],
You Reap What You Sow: Using Videos to Generate High Precision Object
Proposals for Weakly-Supervised Object Detection,
CVPR19(9406-9414).
IEEE DOI
2002
BibRef
Rezatofighi, H.[Hamid],
Tsoi, N.[Nathan],
Gwak, J.[JunYoung],
Sadeghian, A.[Amir],
Reid, I.D.[Ian D.],
Savarese, S.[Silvio],
Generalized Intersection Over Union:
A Metric and a Loss for Bounding Box Regression,
CVPR19(658-666).
IEEE DOI
2002
BibRef
He, Y.H.[Yi-Hui],
Zhu, C.C.[Chen-Chen],
Wang, J.R.[Jian-Ren],
Savvides, M.[Marios],
Zhang, X.Y.[Xiang-Yu],
Bounding Box Regression With Uncertainty for Accurate Object Detection,
CVPR19(2883-2892).
IEEE DOI
2002
BibRef
Ribera, J.[Javier],
Guera, D.[David],
Chen, Y.H.[Yu-Hao],
Delp, E.J.[Edward J.],
Locating Objects Without Bounding Boxes,
CVPR19(6472-6482).
IEEE DOI
2002
BibRef
Cho, M.,
Chung, T.,
Lee, H.,
Lee, S.,
N-RPN: Hard Example Learning For Region Proposal Networks,
ICIP19(3955-3959)
IEEE DOI
1910
Region proposal, hard negative example learning,
hard example mining, object detection
BibRef
Guo, L.,
Fan, G.,
Sheng, W.,
Creating 3D Bounding Box Hypotheses From Deep Network Score-Maps,
ICIP19(904-908)
IEEE DOI
1910
object detection in RGB-D, bounding box generation,
semantic labeling, deep learning
BibRef
Nabati, R.,
Qi, H.,
RRPN: Radar Region Proposal Network for Object Detection in
Autonomous Vehicles,
ICIP19(3093-3097)
IEEE DOI
1910
Region Proposal Network, Autonomous Driving, Object Detection
BibRef
Lee, S.K.[Seung-Kwan],
Kwak, S.[Suha],
Cho, M.[Minsu],
Universal Bounding Box Regression and Its Applications,
ACCV18(VI:373-387).
Springer DOI
1906
BibRef
Tychsen-Smith, L.[Lachlan],
Petersson, L.[Lars],
Improving Object Localization with Fitness NMS and Bounded IoU Loss,
CVPR18(6877-6885)
IEEE DOI
1812
Evaluate bounding boxes.
Training, Detectors, Clustering algorithms, Testing,
Object recognition, Upper bound, Object detection
BibRef
Chen, K.[Kan],
Gao, J.[Jiyang],
Nevatia, R.[Ram],
Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,
CVPR18(4042-4050)
IEEE DOI
1812
Visualization, Proposals, Grounding, Image reconstruction,
Feature extraction, Training, Task analysis
BibRef
Zhai, Y.,
Fu, J.,
Lu, Y.,
Li, H.,
Feature Selective Networks for Object Detection,
CVPR18(4139-4147)
IEEE DOI
1812
Feature extraction, Proposals, Object detection, Detectors,
Dimensionality reduction, Visualization, Pattern recognition
BibRef
Zhao, F.,
Li, J.,
Zhao, J.,
Feng, J.,
Weakly Supervised Phrase Localization with Multi-scale Anchored
Transformer Network,
CVPR18(5696-5705)
IEEE DOI
1812
Proposals, Training, Dogs, Computational modeling,
Image reconstruction, Image edge detection, Visualization
BibRef
Zhao, X.M.[Xiao-Ming],
Zhao, Z.Z.[Zhi-Zhen],
Schwing, A.G.[Alexander G.],
Initialization and Alignment for Adversarial Texture Optimization,
ECCV22(XXVII:641-658).
Springer DOI
2211
BibRef
And:
CVMeta22(587-604).
Springer DOI
2304
BibRef
Yeh, R.A.,
Do, M.N.,
Schwing, A.G.,
Unsupervised Textual Grounding: Linking Words to Image Concepts,
CVPR18(6125-6134)
IEEE DOI
1812
Grounding, Task analysis, Visualization, Proposals, Training,
Object detection, Feature extraction
BibRef
Peng, C.,
Xiao, T.,
Li, Z.,
Jiang, Y.,
Zhang, X.,
Jia, K.,
Yu, G.,
Sun, J.,
MegDet: A Large Mini-Batch Object Detector,
CVPR18(6181-6189)
IEEE DOI
1812
Training, Detectors, Object detection, Proposals, Convergence,
Task analysis, Industries
BibRef
Yao, Y.,
Dong, Y.,
Huang, Z.,
Bai, H.,
Dense Receptive Field for Object Detection,
ICPR18(1815-1820)
IEEE DOI
1812
Feature extraction, Detectors, Object detection, Proposals,
Computational efficiency, Fuses, Neural networks
BibRef
Lyu, J.,
Yuan, Z.,
Chen, D.,
Zhao, Y.,
Zhang, H.,
Learning Fixation Point Strategy for Object Detection and
Classification,
ICPR18(2081-2086)
IEEE DOI
1812
Task analysis, Stochastic processes, Object detection, Proposals,
Detectors, Automobiles
BibRef
Wang, H.Y.[Han-Yuan],
Xu, J.[Jie],
Li, L.K.[Lin-Ke],
Tian, Y.[Ye],
Xu, D.[Du],
Xu, S.Z.[Shi-Zhong],
Multi-Scale Fusion with Context-Aware Network for Object Detection,
ICPR18(2486-2491)
IEEE DOI
1812
Proposals, Feature extraction, Object detection, Detectors,
Semantics, Computational efficiency, Convolution
BibRef
Razinkov, E.,
Saveleva, I.,
Matas, J.G.,
ALFA: Agglomerative Late Fusion Algorithm for Object Detection,
ICPR18(2594-2599)
IEEE DOI
1812
Detectors, Proposals, Object detection, Feature extraction,
Convolutional codes, Prediction algorithms, Heuristic algorithms
BibRef
Galteri, L.,
Bertini, M.,
Seidenari, L.,
del Bimbo, A.[Alberto],
Video Compression for Object Detection Algorithms,
ICPR18(3007-3012)
IEEE DOI
1812
Visualization, Streaming media, Encoding, Proposals, Bit rate,
Video coding, Detectors
BibRef
Rao, Y.,
Lin, D.,
Lu, J.,
Zhou, J.,
Learning Globally Optimized Object Detector via Policy Gradient,
CVPR18(6190-6198)
IEEE DOI
1812
Detectors, Object detection, Training, Proposals, Optimization,
Feature extraction, Task analysis
BibRef
Zhao, X.,
Liang, S.,
Wei, Y.,
Pseudo Mask Augmented Object Detection,
CVPR18(4061-4070)
IEEE DOI
1812
Image segmentation, Object detection, Task analysis,
Object segmentation, Training, Optimization, Network architecture
BibRef
Pirinen, A.,
Sminchisescu, C.,
Deep Reinforcement Learning of Region Proposal Networks for Object
Detection,
CVPR18(6945-6954)
IEEE DOI
1812
Proposals, Detectors, Search problems, Object detection,
Task analysis, History
BibRef
Cheng, J.,
Tsai, Y.,
Hung, W.,
Wang, S.,
Yang, M.,
Fast and Accurate Online Video Object Segmentation via Tracking Parts,
CVPR18(7415-7424)
IEEE DOI
1812
Object segmentation, Target tracking, Task analysis, Proposals,
Image segmentation, Strain
BibRef
Uehara, K.[Kohei],
Tejero-De-Pablos, A.[Antonio],
Ushiku, Y.[Yoshitaka],
Harada, T.[Tatsuya],
Visual Question Generation for Class Acquisition of Unknown Objects,
ECCV18(XII: 492-507).
Springer DOI
1810
Code, dataset:
WWW Link.
BibRef
Wu, X.,
Ma, X.,
Zhang, J.,
Wang, A.,
Jin, Z.,
Salient Object Detection Via Deformed Smoothness Constraint,
ICIP18(2815-2819)
IEEE DOI
1809
Object detection, Image edge detection, Standards,
Noise measurement, Proposals, Deformable models, Visualization,
map refinement
BibRef
Dai, S.L.[Shuang-Lu],
Su, P.Y.[Peng-Yu],
Man, H.[Hong],
Object Discovery and Localization Via Structural Contrast,
ICIP18(2760-2764)
IEEE DOI
1809
Proposals, Adaptation models, Image edge detection, Visualization,
Data models, Measurement, Semantics, Object discovery,
Structural contrast
BibRef
Kaya, E.C.,
Alatan, A.A.,
Improving Proposal-Based Object Detection Using Convolutional Context
Features,
ICIP18(1308-1312)
IEEE DOI
1809
Feature extraction, Proposals, Context modeling, Training,
Object detection, Conferences, CNN,
Deep Learning
BibRef
Kolesnikov, A.[Alexander],
Lampert, C.H.[Christoph H.],
Improving Weakly-Supervised Object Localization By Micro-Annotation,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Teh, E.W.[Eu Wern],
Rochan, M.[Mrigank],
Wang, Y.[Yang],
Attention Networks for Weakly Supervised Object Localization,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Teh, E.W.,
Guo, Z.,
Wang, Y.,
Object localization in weakly labeled data using regularized
attention networks,
VCIP17(1-4)
IEEE DOI
1804
object detection, attention scores, object detector,
object proposals, regularization term,
weakly supervised object localization
BibRef
Zhou, L.,
Fang, J.,
Ju, Y.,
Xue, J.,
Multi-Saliency Detection via Instance Specific Element Homology,
DICTA17(1-8)
IEEE DOI
1804
image colour analysis, image matching, image segmentation,
object detection, optimisation, probability, ISEH,
Proposals
BibRef
Liu, J.[Juan],
Wu, Z.Y.[Zheng-Yang],
Li, F.X.[Fu-Xin],
Ranking video segments with LSTM and determinantal point processes,
ICIP17(2369-2373)
IEEE DOI
1803
Feature extraction, Image segmentation, Logic gates,
Motion segmentation, Prediction algorithms, Proposals, Training, DPP,
Video Segmentation
BibRef
Mukherjee, P.,
Lall, B.,
Tandon, S.,
Salprop: Salient object proposals via aggregated edge cues,
ICIP17(2423-2429)
IEEE DOI
1803
Bayes methods, Image color analysis, Image edge detection,
Image segmentation, Proposals, Training, CRF, object proposals
BibRef
Malik, J.,
Aytekin, C.,
Gabbouj, M.,
Category independent object proposals using quantum superposition,
ICIP17(4172-4176)
IEEE DOI
1803
Computational efficiency, Eigenvalues and eigenfunctions,
Image segmentation, Object detection, Proposals, quantum superposition
BibRef
Wang, T.,
Context Propagation from Proposals for Semantic Video Object
Segmentation,
ICIP18(256-260)
IEEE DOI
1809
BibRef
And:
Submodular video object proposal selection for semantic object
segmentation,
ICIP17(4522-4526)
IEEE DOI
1803
Semantics, Proposals, Context modeling, Labeling,
Object segmentation, Convergence, Object detection,
semantic video object segmentation.
Cows, Image color analysis, Motion segmentation, Noise measurement,
Submodular function.
BibRef
Ye, L.,
Liu, Z.,
Wang, Y.,
Depth-aware object instance segmentation,
ICIP17(325-329)
IEEE DOI
1803
Detectors, Estimation, Image resolution, Image segmentation,
Object detection, Proposals, Semantics, depth, instance segmentation,
occlusion reasoning
BibRef
Qiao, S.,
Shen, W.,
Qiu, W.,
Liu, C.,
Yuille, A.L.[Alan L.],
ScaleNet:
Guiding Object Proposal Generation in Supermarkets and Beyond,
ICCV17(1809-1818)
IEEE DOI
1802
object detection, MS COCO dataset, ScaleNet,
natural images, object proposal generation,
Virtual environments
BibRef
Zhu, Y.,
Zhou, Y.,
Ye, Q.,
Qiu, Q.,
Jiao, J.,
Soft Proposal Networks for Weakly Supervised Object Localization,
ICCV17(1859-1868)
IEEE DOI
1802
feedforward neural nets, image classification,
image representation, learning (artificial intelligence),
Visualization
BibRef
Ma, J.,
Ming, A.,
Huang, Z.,
Wang, X.,
Zhou, Y.,
Object-Level Proposals,
ICCV17(4931-4939)
IEEE DOI
1802
edge detection, object detection, VOC, object detection,
object-level proposal model, object-level proposals,
Visualization
BibRef
Singh, B.,
Davis, L.S.,
An Analysis of Scale Invariance in Object Detection - SNIP,
CVPR18(3578-3587)
IEEE DOI
1812
Image resolution, Training, Detectors, Object detection,
Feature extraction, Convolution, Semantics
BibRef
Bodla, N.,
Singh, B.,
Chellappa, R.,
Davis, L.S.,
Soft-NMS: Improving Object Detection with One Line of Code,
ICCV17(5562-5570)
IEEE DOI
1802
computational complexity,
learning (artificial intelligence), neural nets,
Proposals
BibRef
Chen, X.,
Gupta, A.,
Spatial Memory for Context Reasoning in Object Detection,
ICCV17(4106-4116)
IEEE DOI
1802
image sequences, inference mechanisms,
learning (artificial intelligence), neural nets,
Proposals
BibRef
Portaz, M.,
Kohl, M.,
Quénot, G.,
Chevallet, J.P.,
Fully Convolutional Network and Region Proposal for Instance
Identification with Egocentric Vision,
Egocentric17(2383-2391)
IEEE DOI
1802
Cameras, Image representation, Image retrieval, Painting, Proposals,
Search problems
BibRef
Deng, Z.,
Latecki, L.J.,
Amodal Detection of 3D Objects:
Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images,
CVPR17(398-406)
IEEE DOI
1711
Feature extraction, Object detection, Proposals, Solid modeling,
Two, dimensional, displays
BibRef
Abbeloos, W.,
Caccamo, S.,
Ataer-Cansizoglu, E.,
Taguchi, Y.,
Feng, C.,
Lee, T.Y.,
Detecting and Grouping Identical Objects for Region Proposal and
Classification,
DeepLearnRV17(501-502)
IEEE DOI
1709
Clustering algorithms,
Object detection, Object recognition, Pipelines, Proposals
BibRef
Li, S.,
Zhang, H.,
Zhang, J.,
Ren, Y.,
Kuo, C.C.J.,
Box Refinement: Object Proposal Enhancement and Pruning,
WACV17(979-988)
IEEE DOI
1609
Detectors, Feature extraction, Image edge detection,
Neural networks, Proposals, Search, problems
BibRef
Lauri, M.[Mikko],
Frintrop, S.[Simone],
Object Proposal Generation Applying the Distance Dependent Chinese
Restaurant Process,
SCIA17(I: 260-272).
Springer DOI
1706
BibRef
Waris, M.A.,
Iosifidis, A.,
Gabbouj, M.,
Object proposals using CNN-based edge filtering,
ICPR16(627-632)
IEEE DOI
1705
Feature extraction, Image edge detection, Merging,
Object detection, Proposals, Semantics, Deep Learning,
Object Detection, Object Proposals, Region of Interest
BibRef
Zhang, H.Y.[Hao-Yang],
He, X.M.[Xu-Ming],
Porikli, F.M.[Fatih M.],
Learning Spatial Transforms for Refining Object Segment Proposals,
WACV17(37-46)
IEEE DOI
1609
BibRef
Earlier:
Learning to Generate Object Segment Proposals with Multi-modal Cues,
ACCV16(I: 121-136).
Springer DOI
1704
Feature extraction, Image segmentation, Pipelines, Proposals,
Semantics, Transforms, Two, dimensional, displays
BibRef
Zhang, R.,
Wang, W.,
An advanced local offset matching strategy for object proposal
matching,
VCIP16(1-4)
IEEE DOI
1701
Bayes methods
BibRef
Knaub, A.[Anton],
Narayan, V.[Vikram],
Adameck, M.[Markus],
Performance Evaluation of Bottom-Up Saliency Models for Object
Proposal Generation,
CRV16(266-272)
IEEE DOI
1612
Object proposal generation
BibRef
Ke, W.,
Zhang, T.,
Chen, J.,
Wan, F.,
Ye, Q.,
Han, Z.,
Texture Complexity Based Redundant Regions Ranking for Object
Proposal,
Robust16(1083-1091)
IEEE DOI
1612
BibRef
Zhang, Y.,
Jiang, Z.,
Chen, X.,
Davis, L.S.,
Generating Discriminative Object Proposals via Submodular Ranking,
Robust16(1168-1176)
IEEE DOI
1612
BibRef
Singh, K.K.[Krishna Kumar],
Lee, Y.J.[Yong Jae],
Hide-and-Seek: Forcing a Network to be Meticulous for
Weakly-Supervised Object and Action Localization,
ICCV17(3544-3553)
IEEE DOI
1802
image classification, image representation,
learning (artificial intelligence), object detection,
Visualization
BibRef
Singh, K.K.[Krishna Kumar],
Xiao, F.Y.[Fan-Yi],
Lee, Y.J.[Yong Jae],
Track and Transfer: Watching Videos to Simulate Strong Human
Supervision for Weakly-Supervised Object Detection,
CVPR16(3548-3556)
IEEE DOI
1612
BibRef
Sun, C.[Chen],
Paluri, M.[Manohar],
Collobert, R.[Ronan],
Nevatia, R.[Ram],
Bourdev, L.[Lubomir],
ProNet:
Learning to Propose Object-Specific Boxes for Cascaded Neural Networks,
CVPR16(3485-3493)
IEEE DOI
1612
BibRef
Pham, T.T.,
Rezatofighi, S.H.,
Reid, I.D.,
Chin, T.J.,
Efficient Point Process Inference for Large-Scale Object Detection,
CVPR16(2837-2845)
IEEE DOI
1612
BibRef
Lu, Y.X.[Yong-Xi],
Javidi, T.[Tara],
Lazebnik, S.[Svetlana],
Adaptive Object Detection Using Adjacency and Zoom Prediction,
CVPR16(2351-2359)
IEEE DOI
1612
BibRef
Kong, T.,
Yao, A.,
Chen, Y.,
Sun, F.,
HyperNet: Towards Accurate Region Proposal Generation and Joint
Object Detection,
CVPR16(845-853)
IEEE DOI
1612
BibRef
Chavali, N.,
Agrawal, H.,
Mahendru, A.,
Batra, D.,
Object-Proposal Evaluation Protocol is 'Gameable',
CVPR16(835-844)
IEEE DOI
1612
BibRef
Zeng, X.Y.[Xing-Yu],
Ouyang, W.L.[Wan-Li],
Yang, B.[Bin],
Yan, J.J.[Jun-Jie],
Wang, X.G.[Xiao-Gang],
Gated Bi-Directional CNN for Object Detection,
ECCV16(VII: 354-369).
Springer DOI
1611
BibRef
Tiwari, L.[Lokender],
Anand, S.[Saket],
DGSAC: Density Guided Sampling and Consensus,
WACV18(974-982)
IEEE DOI
1806
computational geometry, image reconstruction,
image segmentation, matrix algebra, DGSAC,
Robustness
BibRef
Tiwari, L.[Lokender],
Anand, S.[Saket],
Mittal, S.[Sushil],
Robust Multi-Model Fitting Using Density and Preference Analysis,
ACCV16(IV: 308-323).
Springer DOI
1704
BibRef
Tiwari, L.[Lokender],
Anand, S.[Saket],
Fast hypothesis filtering for multi-structure geometric model fitting,
ICIP16(3728-3732)
IEEE DOI
1610
Clustering algorithms
BibRef
Bappy, J.H.,
Roy-Chowdhury, A.K.,
Inter-dependent CNNs for joint scene and object recognition,
ICPR16(3386-3391)
IEEE DOI
1705
BibRef
And:
CNN based region proposals for efficient object detection,
ICIP16(3658-3662)
IEEE DOI
1610
Detectors, Feature extraction, Neural networks, Object detection,
Object recognition, Proposals.
BibRef
Paul, S.,
Bappy, J.H.,
Roy-Chowdhury, A.K.,
Efficient selection of informative and diverse training samples with
applications in scene classification,
ICIP16(494-498)
IEEE DOI
1610
Computational modeling
BibRef
Horiguchi, S.,
Aizawa, K.,
Ogawa, M.,
The log-normal distribution of the size of objects in daily meal
images and its application to the efficient reduction of object
proposals,
ICIP16(3668-3672)
IEEE DOI
1610
Gaussian distribution
BibRef
Zhang, H.,
He, X.,
Porikli, F.M.,
Kneip, L.,
Semantic context and depth-aware object proposal generation,
ICIP16(1-5)
IEEE DOI
1610
Context
BibRef
Peng, L.,
Qi, X.,
Temporal objectness: Model-free learning of object proposals in video,
ICIP16(3663-3667)
IEEE DOI
1610
Detectors
BibRef
Werner, T.[Thomas],
Martín-García, G.[Germán],
Frintrop, S.[Simone],
Saliency-Guided Object Candidates Based on Gestalt Principles,
CVS15(34-44).
Springer DOI
1507
BibRef
Klein, D.A.[Dominik Alexander],
Frintrop, S.[Simone],
Salient Pattern Detection Using W2 on Multivariate Normal Distributions,
DAGM12(246-255).
Springer DOI
1209
BibRef
Klein, D.A.[Dominik Alexander],
Schulz, D.[Dirk],
Frintrop, S.[Simone],
Boosting with a Joint Feature Pool from Different Sensors,
CVS09(63-72).
Springer DOI
0910
BibRef
Frintrop, S.,
The high repeatability of salient regions,
ViA08(xx-yy).
0810
BibRef
Lee, T.,
Fidler, S.,
Dickinson, S.J.,
Learning to Combine Mid-Level Cues for Object Proposal Generation,
ICCV15(1680-1688)
IEEE DOI
1602
Adaptation models
BibRef
Zhu, H.Y.[Hong-Yuan],
Lu, S.J.[Shi-Jian],
Cai, J.F.[Jian-Fei],
Lee, G.Q.[Guang-Qing],
Diagnosing state-of-the-art object proposal methods,
BMVC15(xx-yy).
DOI Link
1601
See also How good are detection proposals, really?.
BibRef
Chen, X.Z.[Xiao-Zhi],
Ma, H.M.[Hui-Min],
Wang, X.[Xiang],
Zhao, Z.C.[Zhi-Chen],
Improving object proposals with multi-thresholding straddling
expansion,
CVPR15(2587-2595)
IEEE DOI
1510
BibRef
Liu, S.[Shu],
Lu, C.[Cewu],
Jia, J.Y.[Jia-Ya],
Box Aggregation for Proposal Decimation:
Last Mile of Object Detection,
ICCV15(2569-2577)
IEEE DOI
1602
Computational modeling
BibRef
Pont-Tuset, J.[Jordi],
van Gool, L.J.[Luc J.],
Boosting Object Proposals: From Pascal to COCO,
ICCV15(1546-1554)
IEEE DOI
1602
Survey of techniques and impact of changing standard benchmark datasets.
See also COCO: Common Objects in Context.
See also PASCAL Visual Object Classes Challenge 2012, The.
BibRef
Manen, S.[Santiago],
Guillaumin, M.[Matthieu],
Van Gool, L.J.[Luc J.],
Prime Object Proposals with Randomized Prim's Algorithm,
ICCV13(2536-2543)
IEEE DOI
1403
Object Detection; Object Proposal
BibRef
Ristin, M.[Marko],
Gall, J.[Juergen],
Van Gool, L.J.[Luc J.],
Local Context Priors for Object Proposal Generation,
ACCV12(I:57-70).
Springer DOI
1304
Selective search to get hypotheses
BibRef
He, S.F.[Sheng-Feng],
Lau, R.W.H.[Rynson W. H.],
Oriented Object Proposals,
ICCV15(280-288)
IEEE DOI
1602
Detectors
BibRef
Kwak, S.[Suha],
Cho, M.[Minsu],
Laptev, I.,
Ponce, J.[Jean],
Schmid, C.[Cordelia],
Unsupervised Object Discovery and Tracking in Video Collections,
ICCV15(3173-3181)
IEEE DOI
1602
BibRef
And: A2, A1, A5, A4, Only:
Unsupervised object discovery and localization in the wild:
Part-based matching with bottom-up region proposals,
CVPR15(1201-1210)
IEEE DOI
1510
Coherence.
dominant objects from a noisy image collection with multiple object classes.
BibRef
Zitnick, C.L.[C. Lawrence],
Dollár, P.[Piotr],
Edge Boxes: Locating Object Proposals from Edges,
ECCV14(V: 391-405).
Springer DOI
1408
BibRef
Krähenbühl, P.[Philipp],
Koltun, V.[Vladlen],
Geodesic Object Proposals,
ECCV14(V: 725-739).
Springer DOI
1408
BibRef
Rantalankila, P.[Pekka],
Kannala, J.H.[Ju-Ho],
Rahtu, E.[Esa],
Generating Object Segmentation Proposals Using Global and Local
Search,
CVPR14(2417-2424)
IEEE DOI
1409
Object detection
BibRef
Bonev, B.[Boyan],
Yuille, A.L.[Alan L.],
A Fast and Simple Algorithm for Producing Candidate Regions,
ECCV14(III: 535-549).
Springer DOI
1408
e.g. initial bounding box?
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Small Objects, Detect Small Objects .