7.1.11.2 Object Proposals, Initial Points, Proto-Objects, Candidates

Chapter Contents (Back)
Object Detection. Object Proposals. Proposals.
See also Co-Segmentation, Cosegmentation.
See also Instance of Particular Object, Specified Object.

Yanulevskaya, V.[Victoria], Uijlings, J.[Jasper], Geusebroek, J.M.[Jan-Mark],
Salient object detection: From pixels to segments,
IVC(31), No. 1, January 2013, pp. 31-42.
Elsevier DOI 1302
Salient object detection; Object-based visual attention theory; Proto-objects BibRef

Yanulevskaya, V.[Victoria], Uijlings, J.[Jasper], Sebe, N.[Nicu],
Learning to Group Objects,
CVPR14(3134-3141)
IEEE DOI 1409
Class independent object proposals BibRef

Jie, Z.Q.[Ze-Qun], Liang, X.D.[Xiao-Dan], Feng, J.S.[Jia-Shi], Lu, W.F.[Wen Feng], Tay, E.H.F.[Eng Hock Francis], Yan, S.C.[Shui-Cheng],
Scale-Aware Pixelwise Object Proposal Networks,
IP(25), No. 10, October 2016, pp. 4525-4539.
IEEE DOI 1610
neural nets BibRef

Hu, P., Wang, W., Zhang, C., Lu, K.,
Detecting Salient Objects via Color and Texture Compactness Hypotheses,
IP(25), No. 10, October 2016, pp. 4653-4664.
IEEE DOI 1610
image classification BibRef

Huo, L.[Lina], Jiao, L.C.[Li-Cheng], Wang, S.[Shuang], Yang, S.Y.[Shu-Yuan],
Object-level saliency detection with color attributes,
PR(49), No. 1, 2016, pp. 162-173.
Elsevier DOI 1511
Candidate objectness BibRef

Kuang, P.J.[Pei-Jiang], Zhou, Z.H.[Zhi-Heng], Wu, D.C.[Dong-Cheng],
Improved Edge Boxes with Object Saliency and Location Awards,
IEICE(E99-D), No. 2, February 2016, pp. 488-495.
WWW Link. 1604
BibRef

Lee, D.[Daeha], Kim, J.[Jaehong], Kim, H.H.[Ho-Hee], Kim, S.J.[Soon-Ja],
The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images,
IEICE(E100-D), No. 1, January 2017, pp. 229-233.
WWW Link. 1701
BibRef

Pont-Tuset, J.[Jordi], Arbeláez, P.[Pablo], Barron, J.T.[Jon T.], Marques, F.[Ferran], Malik, J.[Jitendra],
Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation,
PAMI(39), No. 1, January 2017, pp. 128-140.
IEEE DOI 1612
BibRef
Earlier: A2, A1, A3, A4, A5:
Multiscale Combinatorial Grouping,
CVPR14(328-335)
IEEE DOI 1409
Detectors. Image Segmentation; Object Candidates BibRef

Huang, S., Wang, W., He, S.F.[Sheng-Feng], Lau, R.W.H.[Rynson W.H.],
Stereo Object Proposals,
IP(26), No. 2, February 2017, pp. 671-683.
IEEE DOI 1702
object detection BibRef

Huang, S., Wang, W., He, S.F.[Sheng-Feng], Lau, R.W.H.[Rynson W.H.],
Egocentric Temporal Action Proposals,
IP(27), No. 2, February 2018, pp. 764-777.
IEEE DOI 1712
Atom optics, Cameras, Optical computing, Optical imaging, Proposals, Videos, Temporal action proposals, actionness estimation, temporal actionness network BibRef

Ramesh, B., Xiang, C., Lee, T.H.,
Multiple object cues for high performance vector quantization,
PR(67), No. 1, 2017, pp. 380-395.
Elsevier DOI 1704
Log-polar transform BibRef

Li, J.A.[Jian-An], Wei, Y.C.[Yun-Chao], Liang, X.D.[Xiao-Dan], Dong, J.[Jian], Xu, T.F.[Ting-Fa], Feng, J.S.[Jia-Shi], Yan, S.C.[Shui-Cheng],
Attentive Contexts for Object Detection,
MultMed(19), No. 5, May 2017, pp. 944-954.
IEEE DOI 1704
Context for object detection. BibRef

Wang, J.[Jing], Shen, J.[Jie], Li, P.[Ping],
Object proposal with kernelized partial ranking,
PR(69), No. 1, 2017, pp. 299-309.
Elsevier DOI 1706
Object proposal BibRef

Li, W.[Wei], Li, H.L.[Hong-Liang], Luo, B.[Bing], Shi, H.C.[Heng-Can], Wu, Q.B.[Qing-Bo], Ngan, K.N.[King Ngi],
Improving object proposals with top-down cues,
SP:IC(56), No. 1, 2017, pp. 20-27.
Elsevier DOI 1706
Object, proposals BibRef

Tang, S., Li, Y., Deng, L., Zhang, Y.,
Object Localization Based on Proposal Fusion,
MultMed(19), No. 9, September 2017, pp. 2105-2116.
IEEE DOI 1708
Complexity theory, Feature extraction, Object detection, Proposals, Search problems, Testing, Training, Dense proposal fusion, object detection, object localization, region proposal BibRef

Jie, Z.Q.[Ze-Qun], Lu, W.F.[Wen Feng], Sakhavi, S.[Siavash], Wei, Y.C.[Yun-Chao], Tay, E.H.F.[Eng Hock Francis], Yan, S.C.[Shui-Cheng],
Object Proposal Generation With Fully Convolutional Networks,
CirSysVideo(28), No. 1, January 2018, pp. 62-75.
IEEE DOI 1801
Image edge detection, Object detection, Pipelines, Proposals, Semantics, Support vector machines, Testing, object proposals BibRef

Li, Y.[Yu], Tang, S.[Sheng], Lin, M.[Min], Zhang, Y.D.[Yong-Dong], Li, J.T.[Jin-Tao], Yan, S.C.[Shui-Cheng],
Implicit Negative Sub-Categorization and Sink Diversion for Object Detection,
IP(27), No. 4, April 2018, pp. 1561-1574.
IEEE DOI 1802
feature extraction, image classification, image representation, image segmentation, object detection, probability, VOC, faster R-CNN BibRef

Guo, G., Wang, H., Zhao, W.L., Yan, Y., Li, X.,
Object Discovery via Cohesion Measurement,
Cyber(48), No. 3, March 2018, pp. 862-875.
IEEE DOI 1802
Distortion, Eigenvalues and eigenfunctions, Image color analysis, Image segmentation, Laplace equations, Proposals, Robustness, spectral clustering BibRef

Murtaza, F., Yousaf, M.H., Velastin, S.A.,
PMHI: Proposals From Motion History Images for Temporal Segmentation of Long Uncut Videos,
SPLetters(25), No. 2, February 2018, pp. 179-183.
IEEE DOI 1802
image motion analysis, image segmentation, image sequences, learning (artificial intelligence), uncut videos BibRef

Kuang, H., Yang, K.F., Chen, L., Li, Y.J., Chan, L.L.H., Yan, H.,
Bayes Saliency-Based Object Proposal Generator for Nighttime Traffic Images,
ITS(19), No. 3, March 2018, pp. 814-825.
IEEE DOI 1804
Feature extraction, Generators, Image edge detection, Proposals, Support vector machines, Vehicle detection, Bayes rule, saliency detection BibRef

Zhu, H., Vial, R., Lu, S., Peng, X., Fu, H., Tian, Y., Cao, X.,
YoTube: Searching Action Proposal Via Recurrent and Static Regression Networks,
IP(27), No. 6, June 2018, pp. 2609-2622.
IEEE DOI 1804
dynamic programming, image classification, image motion analysis, learning (artificial intelligence), object detection, object detection BibRef

Li, J., Liang, X., Li, J., Wei, Y., Xu, T., Feng, J., Yan, S.,
Multistage Object Detection With Group Recursive Learning,
MultMed(20), No. 7, July 2018, pp. 1645-1655.
IEEE DOI 1806
Computer architecture, Feature extraction, Image segmentation, Object detection, Proposals, Semantics, Image segmentation, BibRef

Wang, J.[Juan], Tao, X.M.[Xiao-Ming], Xu, M.[Mai], Duan, Y.P.[Yi-Ping], Lu, J.H.[Jian-Hua],
Hierarchical objectness network for region proposal generation and object detection,
PR(83), 2018, pp. 260-272.
Elsevier DOI 1808
Object detection, Object localization, Region proposal generation, Convolutional neural network BibRef

Huang, X., Zheng, Y., Huang, J., Zhang, Y.,
A Minimum Barrier Distance Based Saliency Box for Object Proposals Generation,
SPLetters(25), No. 8, August 2018, pp. 1126-1130.
IEEE DOI 1808
image segmentation, object detection, minimum barrier distance based saliency box, MBDSal Box, saliency box BibRef

Zhuge, Y.Z.[Yun-Zhi], Yang, G.[Gang], Zhang, P.P.[Ping-Ping], Lu, H.C.[Hu-Chuan],
Boundary-Guided Feature Aggregation Network for Salient Object Detection,
SPLetters(25), No. 12, December 2018, pp. 1800-1804.
IEEE DOI 1812
feature extraction, image enhancement, image resolution, neural nets, object detection, multilevel feature maps, salient object detection BibRef

Zhang, M.[Miao], Ji, W.[Wei], Piao, Y.R.[Yong-Ri], Li, J.J.[Jing-Jing], Zhang, Y.[Yu], Xu, S.[Shuang], Lu, H.C.[Hu-Chuan],
LFNet: Light Field Fusion Network for Salient Object Detection,
IP(29), 2020, pp. 6276-6287.
IEEE DOI 2005
Light field, salient object detection, convolutional neural networks, fusion network BibRef

Kong, Y.Q.[Yu-Qiu], Feng, M.Y.[Meng-Yang], Li, X.[Xin], Lu, H.C.[Hu-Chuan], Liu, X.P.[Xiu-Ping], Yin, B.C.[Bao-Cai],
Spatial context-aware network for salient object detection,
PR(114), 2021, pp. 107867.
Elsevier DOI 2103
Salient object detection, Context-aware methods, Deep learning BibRef

Piao, Y.R.[Yong-Ri], Jiang, Y.Y.[Yong-Yao], Zhang, M.[Miao], Wang, J.[Jian], Lu, H.C.[Hu-Chuan],
PANet: Patch-Aware Network for Light Field Salient Object Detection,
Cyber(53), No. 1, January 2023, pp. 379-391.
IEEE DOI 2301
Saliency detection, Feature extraction, Object detection, Decoding, Task analysis, Cybernetics, Sensors, saliency object detection BibRef

Feng, M.Y.[Meng-Yang], Lu, H.C.[Hu-Chuan], Ding, E.[Errui],
Attentive Feedback Network for Boundary-Aware Salient Object Detection,
CVPR19(1623-1632).
IEEE DOI 2002
BibRef

Guan, W.L.[Wen-Long], Wang, T.T.[Tian-Tian], Qi, J.Q.[Jin-Qing], Zhang, L.H.[Li-He], Lu, H.C.[Hu-Chuan],
Edge-Aware Convolution Neural Network Based Salient Object Detection,
SPLetters(26), No. 1, January 2019, pp. 114-118.
IEEE DOI 1901
edge detection, feature extraction, feedforward neural nets, learning (artificial intelligence), object detection, convolutional neural networks (CNNs) BibRef

Zhang, P.P.[Ping-Ping], Liu, W.[Wei], Wang, H.Y.[Hong-Yu], Lei, Y.J.[Yin-Jie], Lu, H.C.[Hu-Chuan],
Deep gated attention networks for large-scale street-level scene segmentation,
PR(88), 2019, pp. 702-714.
Elsevier DOI 1901
Scene segmentation, Fully convolutional network, Spatial gated attention, Street-level image understanding BibRef

Zhang, X.N.[Xiao-Ning], Wang, T.T.[Tian-Tian], Qi, J.Q.[Jin-Qing], Lu, H.C.[Hu-Chuan], Wang, G.[Gang],
Progressive Attention Guided Recurrent Network for Salient Object Detection,
CVPR18(714-722)
IEEE DOI 1812
Feature extraction, Semantics, Object detection, Saliency detection, Task analysis, Estimation, Convolutional neural networks BibRef

Jian, M.[Muwei], Zhao, R.X.[Run-Xia], Sun, X.[Xin], Luo, H.J.[Han-Jiang], Zhang, W.Y.[Wen-Yin], Zhang, H.X.[Hua-Xiang], Dong, J.Y.[Jun-Yu], Yin, Y.L.[Yi-Long], Lam, K.M.[Kin-Man],
Saliency detection based on background seeds by object proposals and extended random walk,
JVCIR(57), 2018, pp. 202-211.
Elsevier DOI 1812
Saliency detection, Object proposals, Background seeds, Extended random walk BibRef

Zhang, X., Xiong, H., Lin, W., Tian, Q.,
Weak to Strong Detector Learning for Simultaneous Classification and Localization,
CirSysVideo(29), No. 2, February 2019, pp. 418-432.
IEEE DOI 1902
Detectors, Training, Image representation, Task analysis, Support vector machines, Optimization, Automobiles, object localization BibRef

Zhang, X., Feng, J., Xiong, H., Tian, Q.,
Zigzag Learning for Weakly Supervised Object Detection,
CVPR18(4262-4270)
IEEE DOI 1812
Training, Object detection, Reliability, Energy measurement, Detectors, Image edge detection, Proposals BibRef

Ke, W.[Wei], Chen, J.[Jie], Ye, Q.X.[Qi-Xiang],
Deep contour and symmetry scored object proposal,
PRL(119), 2019, pp. 172-179.
Elsevier DOI 1902
Object proposal, Super-pixel grouping, FCN, Proposal scoring BibRef

Xiang, C.C.[Chen-Chao], Yu, Z.[Zhou], Zhu, S.[Suguo], Yu, J.[Jun], Yang, X.K.[Xiao-Kang],
End-to-end visual grounding via region proposal networks and bilinear pooling,
IET-CV(13), No. 2, March 2019, pp. 131-138.
DOI Link 1902
BibRef

Zhang, D.W.[Ding-Wen], Han, J.W.[Jun-Wei], Zhao, L.[Long], Meng, D.Y.[De-Yu],
Leveraging Prior-Knowledge for Weakly Supervised Object Detection Under a Collaborative Self-Paced Curriculum Learning Framework,
IJCV(127), No. 4, April 2019, pp. 363-380.
Springer DOI 1903
BibRef

Dong, X.Y.[Xuan-Yi], Zheng, L.[Liang], Ma, F.[Fan], Yang, Y.[Yi], Meng, D.Y.[De-Yu],
Few-Example Object Detection with Model Communication,
PAMI(41), No. 7, July 2019, pp. 1641-1654.
IEEE DOI 1906
Training, Object detection, Detectors, Videos, Semisupervised learning, Task analysis, Sun, Few-example learning, convolutional neural network BibRef

Li, H.Y.[Hong-Yang], Liu, Y.[Yu], Ouyang, W.L.[Wan-Li], Wang, X.G.[Xiao-Gang],
Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection,
IJCV(127), No. 3, March 2019, pp. 225-238.
Springer DOI 1903
Anchors of different sizes require different features. BibRef

Park, S.W.[Sung Woo], Kwon, J.[Junseok],
Orthogonal object proposal and its application,
IET-CV(13), No. 4, June 2019, pp. 420-427.
DOI Link 1906
BibRef

Chen, M., Zhang, J., He, S., Yang, Q., Li, Q., Yang, M.,
Interactive Hierarchical Object Proposals,
CirSysVideo(29), No. 9, September 2019, pp. 2552-2566.
IEEE DOI 1909
Proposals, Object detection, Image segmentation, Motion segmentation, Shape, Object proposal, transfer learning BibRef

Xiong, B.[Bo], Jain, S.D.[Suyog Dutt], Grauman, K.[Kristen],
Pixel Objectness: Learning to Segment Generic Objects Automatically in Images and Videos,
PAMI(41), No. 11, November 2019, pp. 2677-2692.
IEEE DOI 1910
Image segmentation, Videos, Motion segmentation, Training, Proposals, Object segmentation, Task analysis, Image segmentation, foreground segmentation BibRef

Shen, Y., Ji, R., Yang, K., Deng, C., Wang, C.,
Category-Aware Spatial Constraint for Weakly Supervised Detection,
IP(29), No. 1, 2020, pp. 843-858.
IEEE DOI 1910
Proposals, Shape, Object detection, Image color analysis, Training, Feature extraction, Detectors, Weakly supervised learning, multi-center regularization BibRef

Huang, X., Zheng, Y., Huang, J., Zhang, Y.,
50 FPS Object-Level Saliency Detection via Maximally Stable Region,
IP(29), No. , 2020, pp. 1384-1396.
IEEE DOI 1911
Saliency detection, Proposals, Object detection, Graphical models, Visual systems, Deep learning, Visualization, Saliency detection, seed selection BibRef

Chen, H., Wang, Y., Wang, G., Bai, X., Qiao, Y.,
Progressive Object Transfer Detection,
IP(29), No. , 2020, pp. 986-1000.
IEEE DOI 1911
Detectors, Object detection, Proposals, Task analysis, Benchmark testing, Deep learning, Labeling, Object detection, low-shot learning BibRef

Wang, J.W.[Jin-Wang], Ding, J.[Jian], Guo, H.[Haowen], Cheng, W.S.[Wen-Sheng], Pan, T.[Ting], Yang, W.[Wen],
Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Tao, X.Y.[Xiao-Yu], Gong, Y.H.[Yi-Hong], Shi, W.W.[Wei-Wei], Cheng, D.[De],
Object detection with class aware region proposal network and focused attention objective,
PRL(130), 2020, pp. 353-361.
Elsevier DOI 2002
Convolutional neural networks, Object detection, Region proposal BibRef

Alqasir, H.[Hiba], Muselet, D.[Damien], Ducottet, C.[Christophe],
Region Proposal Oriented Approach for Domain Adaptive Object Detection,
ACIVS20(38-50).
Springer DOI 2003
BibRef

Kang, B.R.[Ba Rom], Lee, H.[Hyunku], Park, K.[Keunju], Ryu, H.[Hyunsurk], Kim, H.Y.[Ha Young],
BshapeNet: Object detection and instance segmentation with bounding shape masks,
PRL(131), 2020, pp. 449-455.
Elsevier DOI 2004
BibRef

Majelan, S.G.[Sina Ghofrani], Havaei, M.[Mohammad],
CAGNet: Content-Aware Guidance for Salient Object Detection,
PR(103), 2020, pp. 107303.
Elsevier DOI 2005
Saliency detection, Fully convolutional neural networks, Attention guidance BibRef

Zhang, D.W.[Ding-Wen], Han, J.W.[Jun-Wei], Guo, G.Y.[Guang-Yu], Zhao, L.[Long],
Learning Object Detectors With Semi-Annotated Weak Labels,
CirSysVideo(29), No. 12, December 2019, pp. 3622-3635.
IEEE DOI 1912
Training, Object detection, Detectors, Training data, Generators, Visualization, Semantics, image processing, learning (artificial intelligence) BibRef

Han, J.W.[Jun-Wei], Zhang, D.W.[Ding-Wen], Cheng, G.[Gong], Guo, L.[Lei], Ren, J.C.[Jin-Chang],
Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-Level Feature Learning,
GeoRS(53), No. 6, June 2015, pp. 3325-3337.
IEEE DOI 1503
feature extraction. Combine low level features with higher level grouping features. BibRef

Zhang, D.W.[Ding-Wen], Zeng, W.Y.[Wen-Yuan], Yao, J.[Jieru], Han, J.W.[Jun-Wei],
Weakly Supervised Object Detection Using Proposal- and Semantic-Level Relationships,
PAMI(44), No. 6, June 2022, pp. 3349-3363.
IEEE DOI 2205
Cognition, Proposals, Object detection, Supervised learning, Semantics, Task analysis, Network architecture, graphical convolutional network BibRef

Cheng, G.[Gong], Yang, J.Y.[Jun-Yu], Gao, D.C.[De-Cheng], Guo, L.[Lei], Han, J.W.[Jun-Wei],
High-Quality Proposals for Weakly Supervised Object Detection,
IP(29), 2020, pp. 5794-5804.
IEEE DOI 2005
Proposals, Training, Detectors, Object detection, Search problems, Task analysis, Convolutional neural networks, convolutional neural networks (CNNs) BibRef

Cheng, G.[Gong], Han, J.W.[Jun-Wei],
A survey on object detection in optical remote sensing images,
PandRS(117), No. 1, 2016, pp. 11-28.
Elsevier DOI 1605
Object detection BibRef

Cheng, G.[Gong], Zhou, P., Han, J.W.[Jun-Wei],
Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images,
GeoRS(54), No. 12, December 2016, pp. 7405-7415.
IEEE DOI 1612
BibRef
And:
RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection,
CVPR16(2884-2893)
IEEE DOI 1612
image processing BibRef

Feng, X.X.[Xiao-Xu], Yao, X.[Xiwen], Shen, H.[Hui], Cheng, G.[Gong], Xiao, B.[Bin], Han, J.W.[Jun-Wei],
Learning an Invariant and Equivariant Network for Weakly Supervised Object Detection,
PAMI(45), No. 10, October 2023, pp. 11977-11992.
IEEE DOI 2310
BibRef
Earlier: A1, A2, A4, A6, Only:
Weakly Supervised Rotation-Invariant Aerial Object Detection Network,
CVPR22(14126-14135)
IEEE DOI 2210
Representation learning, Training, Couplings, Codes, Detectors, Object detection, Recognition: detection, categorization, Self- semi- meta- unsupervised learning BibRef

Yao, X.[Xiwen], Feng, X.X.[Xiao-Xu], Han, J.W.[Jun-Wei], Cheng, G.[Gong], Guo, L.[Lei],
Automatic Weakly Supervised Object Detection From High Spatial Resolution Remote Sensing Images via Dynamic Curriculum Learning,
GeoRS(59), No. 1, January 2021, pp. 675-685.
IEEE DOI 2012
Training, Detectors, Remote sensing, Object detection, Proposals, Robustness, Spatial resolution, weakly supervised object detection (WSOD) BibRef

Li, K.[Ke], Wan, G.[Gang], Cheng, G.[Gong], Meng, L.Q.[Li-Qiu], Han, J.W.[Jun-Wei],
Object detection in optical remote sensing images: A survey and a new benchmark,
PandRS(159), 2020, pp. 296-307.
Elsevier DOI 1912
Object detection, Deep learning, Convolutional Neural Network (CNN), Benchmark dataset, Optical remote sensing images BibRef

Li, K.[Ke], Cheng, G.[Gong], Bu, S.H.[Shu-Hui], You, X.[Xiong],
Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images,
GeoRS(56), No. 4, April 2018, pp. 2337-2348.
IEEE DOI 1804
Context modeling, Feature extraction, Geospatial analysis, Object detection, Proposals, Remote sensing, Satellites, restricted Boltzmann machine (RBM) BibRef

Cheng, G.[Gong], Zhou, P., Han, J.W.[Jun-Wei],
Duplex Metric Learning for Image Set Classification,
IP(27), No. 1, January 2018, pp. 281-292.
IEEE DOI 1712
face recognition, image classification, image coding, image reconstruction, image representation, image sampling, metric learning BibRef

Cheng, G., Han, J., Zhou, P., Xu, D.,
Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection,
IP(28), No. 1, January 2019, pp. 265-278.
IEEE DOI 1810
convolution, feature extraction, feedforward neural nets, image representation, learning (artificial intelligence), rotation invariance BibRef

Feng, X.X.[Xiao-Xu], Han, J.W.[Jun-Wei], Yao, X.W.[Xi-Wen], Cheng, G.[Gong],
Progressive Contextual Instance Refinement for Weakly Supervised Object Detection in Remote Sensing Images,
GeoRS(58), No. 11, November 2020, pp. 8002-8012.
IEEE DOI 2011
Proposals, Object detection, Remote sensing, Detectors, Feature extraction, Annotations, Training, weakly supervised object detection (WSOD) BibRef

Feng, X.X.[Xiao-Xu], Han, J.W.[Jun-Wei], Yao, X.W.[Xi-Wen], Cheng, G.[Gong],
TCANet: Triple Context-Aware Network for Weakly Supervised Object Detection in Remote Sensing Images,
GeoRS(59), No. 8, August 2021, pp. 6946-6955.
IEEE DOI 2108
Object detection, Proposals, Visualization, Remote sensing, Annotations, Semantics, Detectors, Context-aware network, weakly supervised object detection (WSOD) BibRef

Yao, X., Han, J.W.[Jun-Wei], Cheng, G., Qian, X., Guo, L.,
Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning,
GeoRS(54), No. 6, June 2016, pp. 3660-3671.
IEEE DOI 1606
feature extraction BibRef

Cheng, G., Yang, C., Yao, X., Guo, L., Han, J.,
When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs,
GeoRS(56), No. 5, May 2018, pp. 2811-2821.
IEEE DOI 1805
Computer architecture, Feature extraction, Image color analysis, Learning systems, Machine learning, Measurement, Remote sensing, remote sensing image scene classification BibRef

Li, D.[Dong], Huang, J.B.[Jia-Bin], Li, Y.L.[Ya-Li], Wang, S.J.[Sheng-Jin], Yang, M.H.[Ming-Hsuan],
Progressive Representation Adaptation for Weakly Supervised Object Localization,
PAMI(42), No. 6, June 2020, pp. 1424-1438.
IEEE DOI 2005
BibRef
Earlier:
Weakly Supervised Object Localization with Progressive Domain Adaptation,
CVPR16(3512-3520)
IEEE DOI 1612
Image level annotation, not location. Proposals, Detectors, Training, Feature extraction, Clutter, Noise measurement, Adaptation models, Weakly supervised learning, domain adaptation. BibRef

Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.,
FoveaBox: Beyound Anchor-Based Object Detection,
IP(29), 2020, pp. 7389-7398.
IEEE DOI 2007
Object detection, anchor free, foveabox BibRef

Tian, Z.Z.[Zhuang-Zhuang], Zhan, R.H.[Rong-Hui], Hu, J.[Jiemin], Wang, W.[Wei], He, Z.Q.[Zhi-Qiang], Zhuang, Z.W.[Zhao-Wen],
Generating Anchor Boxes Based on Attention Mechanism for Object Detection in Remote Sensing Images,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Jin, Z.C.[Zhen-Chao], Liu, B.[Bin], Chu, Q.[Qi], Yu, N.H.[Neng-Hai],
SAFNet: A Semi-Anchor-Free Network With Enhanced Feature Pyramid for Object Detection,
IP(29), 2020, pp. 9445-9457.
IEEE DOI 2010
Feature extraction, Detectors, Object detection, Generators, Semantics, Task analysis, Training, Object detection, deep learning BibRef

Wang, H.[Hao], Wang, Q.L.[Qi-Long], Li, P.H.[Pei-Hua], Zuo, W.M.[Wang-Meng],
Multi-scale structural kernel representation for object detection,
PR(110), 2021, pp. 107593.
Elsevier DOI 2011
Object detection, High-order statistics, Polynomial kernel, Matrix power normalization BibRef

Wang, H.[Hao], Wang, Q.L.[Qi-Long], Gao, M.Q.[Ming-Qi], Li, P.H.[Pei-Hua], Zuo, W.M.[Wang-Meng],
Multi-scale Location-Aware Kernel Representation for Object Detection,
CVPR18(1248-1257)
IEEE DOI 1812
Object detection, Kernel, Convolution, Proposals, Feature extraction, Benchmark testing BibRef

Dou, Z., Gao, K., Zhang, X., Wang, H., Wang, J.,
Improving Performance and Adaptivity of Anchor-Based Detector Using Differentiable Anchoring With Efficient Target Generation,
IP(30), 2021, pp. 712-724.
IEEE DOI 2012
Detectors, Shape, Optimization, Training, Object detection, Feature extraction, Task analysis, Object detection, anchor. BibRef

Chen, Z.[Zhe], Zhang, J.[Jing], Tao, D.C.[Da-Cheng],
Recursive Context Routing for Object Detection,
IJCV(129), No. 1, January 2021, pp. 142-160.
Springer DOI 2101
Context in detection. BibRef

Chen, Z.[Zhe], Huang, S.[Shaoli], Tao, D.C.[Da-Cheng],
Context Refinement for Object Detection,
ECCV18(VIII: 74-89).
Springer DOI 1810
BibRef

Chen, X., Yu, J., Kong, S., Wu, Z., Wen, L.,
Joint Anchor-Feature Refinement for Real-Time Accurate Object Detection in Images and Videos,
CirSysVideo(31), No. 2, February 2021, pp. 594-607.
IEEE DOI 2102
Feature extraction, Head, Object detection, Videos, Detectors, Real-time systems, Task analysis, Object detection, deep learning BibRef

Xu, Y.C.[Yong-Chao], Fu, M.T.[Ming-Tao], Wang, Q.M.[Qi-Meng], Wang, Y.K.[Yu-Kang], Chen, K.[Kai], Xia, G.S.[Gui-Song], Bai, X.[Xiang],
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection,
PAMI(43), No. 4, April 2021, pp. 1452-1459.
IEEE DOI 2103
Object detection, Feature extraction, Proposals, Detectors, Benchmark testing, Runtime, Object detection, R-CNN, pedestrian detection BibRef

Solovyev, R.[Roman], Wang, W.M.[Wei-Min], Gabruseva, T.[Tatiana],
Weighted boxes fusion: Ensembling boxes from different object detection models,
IVC(107), 2021, pp. 104117.
Elsevier DOI 2103
Object detection, Deep learning BibRef

Zou, W.B.[Wen-Bin], Zhang, Z.Y.[Zheng-Yu], Peng, Y.Q.[Ying-Qing], Xiang, C.Q.[Can-Qun], Tian, S.S.[Shi-Shun], Zhang, L.[Lu],
SC-RPN: A Strong Correlation Learning Framework for Region Proposal,
IP(30), 2021, pp. 4084-4098.
IEEE DOI 2104
Proposals, Correlation, Detectors, Task analysis, Training, Merging, Object detection, Region proposal, two-stage, strong correlation, SC-RPN BibRef

Wang, J.W.[Jin-Wang], Yang, W.[Wen], Li, H.C.[Heng-Chao], Zhang, H.J.[Hai-Jian], Xia, G.S.[Gui-Song],
Learning Center Probability Map for Detecting Objects in Aerial Images,
GeoRS(59), No. 5, May 2021, pp. 4307-4323.
IEEE DOI 2104
Task analysis, Image segmentation, Feature extraction, Semantics, Image color analysis, Object detection, Sensors, Aerial images, oriented bounding boxes (OBBs) BibRef

Xu, H.Y.[Hong-Yu], Lv, X.[Xutao], Wang, X.Y.[Xiao-Yu], Ren, Z.[Zhou], Bodla, N.[Navaneeth], Chellappa, R.[Rama],
Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection,
PAMI(43), No. 6, June 2021, pp. 1914-1927.
IEEE DOI 2106
BibRef
Earlier:
Deep Regionlets for Object Detection,
ECCV18(XI: 827-844).
Springer DOI 1810
Feature extraction, Detectors, Object detection, Proposals, Machine learning, Deformable models, Strain, Object detection, spatial transformation BibRef

Xu, Y.J.[You-Jiang], Zhu, L.C.[Lin-Chao], Yang, Y.[Yi], Wu, F.[Fei],
Training Robust Object Detectors From Noisy Category Labels and Imprecise Bounding Boxes,
IP(30), 2021, pp. 5782-5792.
IEEE DOI 2106
Noise measurement, Detectors, Annotations, Object detection, Training, Proposals, Feature extraction, Deep learning, object detection BibRef

Qu, Z.[Zhong], Zhang, R.[Run], Bao, K.H.[Kang-Hua],
A keypoint-based object detection method with wide dual-path backbone network and attention modules,
IET-IPR(15), No. 8, 2021, pp. 1800-1813.
DOI Link 2106
BibRef

Shi, S.S.[Shao-Shuai], Wang, Z.[Zhe], Shi, J.P.[Jian-Ping], Wang, X.G.[Xiao-Gang], Li, H.S.[Hong-Sheng],
From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network,
PAMI(43), No. 8, August 2021, pp. 2647-2664.
IEEE DOI 2107
BibRef
Earlier: A1, A4, A5, Only:
PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud,
CVPR19(770-779).
IEEE DOI 2002
Feature extraction, Proposals, Object detection, Convolution, autonomous driving BibRef

Mao, J.F.[Jia-Feng], Yu, Q.[Qing], Aizawa, K.[Kiyoharu],
Noisy Localization Annotation Refinement for Object Detection,
IEICE(E104-D), No. 9, September 2021, pp. 1478-1485.
WWW Link. 2109
BibRef
Earlier: ICIP20(2006-2010)
IEEE DOI 2011
Noise measurement, Training, Detectors, Object detection, Noise level, Task analysis, Robustness, joint optimization BibRef

Cao, J.[Jie], Ren, W.[Wei], Zhang, H.[Hong], Chen, Z.[Zuohan],
Candidate box fusion based approach to adjust position of the candidate box for object detection,
IET-IPR(15), No. 12, 2021, pp. 2799-2809.
DOI Link 2109
BibRef

Perreault, H.[Hughes], Bilodeau, G.A.[Guillaume-Alexandre], Saunier, N.[Nicolas], Héritier, M.[Maguelonne],
FFAVOD: Feature fusion architecture for video object detection,
PRL(151), 2021, pp. 294-301.
Elsevier DOI 2110
BibRef
Earlier:
SpotNet: Self-Attention Multi-Task Network for Object Detection,
CRV20(230-237)
IEEE DOI 2006
Video object detection, Feature fusion, Traffic scenes. Object Detection, Segmentation, Self-Attention, Multi-Task Learning, Traffic Scenes BibRef

Perreault, H.[Hughes], Heritier, M.[Maguelonne], Gravel, P.[Pierre], Bilodeau, G.A.[Guillaume-Alexandre], Saunier, N.[Nicolas],
RN-VID: A Feature Fusion Architecture for Video Object Detection,
ICIAR20(I:125-138).
Springer DOI 2007
BibRef

Li, W.Y.[Wu-Yang], Chen, Z.[Zhen], Li, B.[Baopu], Zhang, D.W.[Ding-Wen], Yuan, Y.X.[Yi-Xuan],
HTD: Heterogeneous Task Decoupling for Two-Stage Object Detection,
IP(30), 2021, pp. 9456-9469.
IEEE DOI 2112
Semantics, Task analysis, Proposals, Object detection, Feature extraction, Cognition, Location awareness, task-decoupled framework BibRef

Chen, L.R.[Lv-Ran], Zheng, H.C.[Hui-Cheng], Yan, Z.W.[Zhi-Wei], Li, Y.[Ye],
Discriminative Region Mining for Object Detection,
MultMed(23), 2021, pp. 4297-4310.
IEEE DOI 2112
Detectors, Object detection, Feature extraction, Task analysis, Streaming media, Proposals, Visualization, object detection BibRef

Liu, A.A.[An-An], Wang, Y.H.[Yan-Hui], Xu, N.[Ning], Nie, W.Z.[Wei-Zhi], Nie, J.[Jie], Zhang, Y.D.[Yong-Dong],
Adaptively Clustering-Driven Learning for Visual Relationship Detection,
MultMed(23), 2021, pp. 4515-4525.
IEEE DOI 2112
Visualization, Task analysis, Semantics, Proposals, Object detection, Feature extraction, Portable computers, visual relationship detection BibRef

Bernhard, M.[Maximilian], Schubert, M.[Matthias],
Correcting Imprecise Object Locations for Training Object Detectors in Remote Sensing Applications,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Bonnaerens, M.[Maxim], Freiberger, M.[Matthias], Dambre, J.[Joni],
Anchor pruning for object detection,
CVIU(221), 2022, pp. 103445.
Elsevier DOI 2206
Object detection, Pruning, Real time BibRef

Xiao, J.S.[Jin-Sheng], Guo, H.W.[Hao-Wen], Yao, Y.T.[Yun-Tao], Zhang, S.H.[Shu-Hao], Zhou, J.[Jian], Jiang, Z.J.[Zhi-Jun],
Multi-Scale Object Detection with the Pixel Attention Mechanism in a Complex Background,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhao, G.Q.[Guo-Qing], Dong, T.Y.[Tian-Yang], Jiang, Y.M.[Yi-Ming],
Corner-based object detection method for reactivating box constraints,
IET-IPR(16), No. 13, 2022, pp. 3446-3457.
DOI Link 2210
BibRef

Wang, C.Z.[Chen-Zhong], Gong, X.[Xun],
Bounding box regression with balance for harmonious object detection,
JVCIR(89), 2022, pp. 103665.
Elsevier DOI 2212
Object detection, Reinforcement learning, Bounding box regression BibRef

Dong, C.[Chen], Duo-Qian, M.[Miao],
Control Distance IoU and Control Distance IoU Loss for Better Bounding Box Regression,
PR(137), 2023, pp. 109256.
Elsevier DOI 2302
Computer vision, Object detection, IoU, Loss function BibRef

Deng, Y.[Ying], Hu, X.L.[Xin-Liang], Teng, D.[Da], Li, B.[Bing], Zhang, C.X.[Cong-Xuan], Hu, W.M.[Wei-Ming],
Dynamic adjustment of hyperparameters for anchor-based detection of objects with large image size differences,
PRL(167), 2023, pp. 196-203.
Elsevier DOI 2303
Detection of objects with large image size differences, Anchor-based dynamic training, Adjustment of hyper-parameters BibRef

Gao, L.[Lei], Gao, H.[Hui], Wang, Y.H.[Yu-Han], Liu, D.[Dong], Momanyi, B.M.[Biffon Manyura],
Center-Ness and Repulsion: Constraints to Improve Remote Sensing Object Detection via RepPoints,
RS(15), No. 6, 2023, pp. 1479.
DOI Link 2304
Within bounding box. BibRef

Zhou, L.M.[Li-Ming], Liu, Z.H.[Zhe-Hao], Zhao, H.[Hang], Hou, Y.E.[Yan-E], Liu, Y.[Yang], Zuo, X.Y.[Xian-Yu], Dang, L.X.[Lan-Xue],
A Multi-Scale Object Detector Based on Coordinate and Global Information Aggregation for UAV Aerial Images,
RS(15), No. 14, 2023, pp. 3468.
DOI Link 2307
Wide scale variation in the objects. BibRef

Wang, Z.[Zuyi], Zhu, W.J.[Wen-Jun], Zhao, W.[Wei], Xu, L.[Li],
Balanced One-Stage Object Detection by Enhancing the Effect of Positive Samples,
CirSysVideo(33), No. 8, August 2023, pp. 4011-4026.
IEEE DOI 2308
Detectors, Training, Task analysis, Object detection, Proposals, Optimization, Feature extraction, Object detection, imbalance problem BibRef

Murtaza, S.[Shakeeb], Belharbi, S.[Soufiane], Pedersoli, M.[Marco], Sarraf, A.[Aydin], Granger, E.[Eric],
DiPS: Discriminative pseudo-label sampling with self-supervised transformers for weakly supervised object localization,
IVC(140), 2023, pp. 104838.
Elsevier DOI Code:
WWW Link. 2312
BibRef
Earlier:
Discriminative Sampling of Proposals in Self-Supervised Transformers for Weakly Supervised Object Localization,
RealWorld23(1-11)
IEEE DOI 2302
Weakly supervised object localization, Self-supervised learning, Vision transformers, Deep learning. Location awareness, Training, Visualization, Surveillance, Poles and towers, Transformers, Search problems BibRef

Tao, M.[Manli], Zhao, C.Y.[Chao-Yang], Wang, J.Q.[Jin-Qiao], Tang, M.[Ming],
ImFusion: Boosting Two-Stage 3D Object Detection via Image Candidates,
SPLetters(31), 2024, pp. 241-245.
IEEE DOI 2402
Proposals, Object detection, Feature extraction, Point cloud compression, Aggregates, Sun, 3D object detection, target missing BibRef

He, Z.H.[Zi-Hang], Li, Y.[Yong],
Determining the proper number of proposals for individual images,
IET-CV(18), No. 1, 2024, pp. 141-149.
DOI Link 2403
convolutional neural nets, object detection BibRef

Duan, K.W.[Kai-Wen], Bai, S.[Song], Xie, L.X.[Ling-Xi], Qi, H.G.[Hong-Gang], Huang, Q.M.[Qing-Ming], Tian, Q.[Qi],
CenterNet++ for Object Detection,
PAMI(46), No. 5, May 2024, pp. 3509-3521.
IEEE DOI 2404
Proposals, Object detection, Shape, Feature extraction, Detectors, Real-time systems, Geometry, Anchor-free, bottom-up, deep learning, object detection BibRef

Duan, K.W.[Kai-Wen], Xie, L.X.[Ling-Xi], Qi, H.G.[Hong-Gang], Bai, S.[Song], Huang, Q.M.[Qing-Ming], Tian, Q.[Qi],
Corner Proposal Network for Anchor-free, Two-stage Object Detection,
ECCV20(III:399-416).
Springer DOI 2012
BibRef

Wang, Y.Y.[Yin-Yuan], Du, H.[Haowen], Cheng, Z.[Zhuo], Gao, C.X.[Chang-Xin], Wei, L.S.[Long-Sheng], Fang, B.[Bin], Xiao, F.[Fei], Luo, D.P.[Da-Peng],
KRRNet: Keypoint Relational Regression Network for Bottom-Up Anchor-Free Object Detection,
CirSysVideo(34), No. 4, April 2024, pp. 2249-2260.
IEEE DOI 2404
Feature extraction, Detectors, Object detection, Proposals, Shape, Semantics, Clutter, Anchor-free detection, object keypoints, random background sampling BibRef

Jeon, M.W.[Min-Woo], Park, G.M.[Gyeong-Moon], Hwang, H.[Hyoseok],
Fisheye Object Detection with Visual Prompting-Aided Fine-Tuning,
RS(16), No. 12, 2024, pp. 2054.
DOI Link 2406
BibRef


Wang, Z.[Zhao], Li, A.[Aoxue], Li, Z.G.[Zhen-Guo], Dou, Q.[Qi],
Efficient Transferability Assessment for Selection of Pre-trained Detectors,
WACV24(1668-1678)
IEEE DOI 2404
Training, Measurement, Computational modeling, Memory management, Detectors, Benchmark testing, Predictive models, Algorithms BibRef

Law, H.[Hei], Deng, J.[Jia],
Label-Free Synthetic Pretraining of Object Detectors,
WACV24(935-945)
IEEE DOI Code:
WWW Link. 2404
Solid modeling, Computational modeling, Semantics, Layout, Detectors, Algorithms, Image recognition and understanding BibRef

Inkawhich, M.[Matthew], Inkawhich, N.[Nathan], Li, H.[Hai], Chen, Y.[Yiran],
Tunable Hybrid Proposal Networks for the Open World,
WACV24(1977-1988)
IEEE DOI 2404
Training, Protocols, Object detection, Computer architecture, Distance measurement, Data models, Algorithms, Image recognition and understanding BibRef

Zhang, T.Y.[Tian-Yi], Kasichainula, K.[Kishore], Zhuo, Y.X.[Yao-Xin], Li, B.X.[Bao-Xin], Seo, J.S.[Jae-Sun], Cao, Y.[Yu],
Patch-based Selection and Refinement for Early Object Detection,
WACV24(718-727)
IEEE DOI 2404
Heuristic algorithms, Computational modeling, Object detection, Transformers, Safety, Task analysis, Algorithms BibRef

Pham, C.[Chau], Vu, T.[Truong], Nguyen, K.[Khoi],
LP-OVOD: Open-Vocabulary Object Detection by Linear Probing,
WACV24(768-777)
IEEE DOI Code:
WWW Link. 2404
Training, Codes, Object detection, Detectors, Proposals, Object recognition, Algorithms, Vision + language and/or other modalities BibRef

Wu, D.[Di], Chen, P.F.[Peng-Fei], Yu, X.H.[Xue-Hui], Li, G.R.[Guo-Rong], Han, Z.J.[Zhen-Jun], Jiao, J.B.[Jian-Bin],
Spatial Self-Distillation for Object Detection with Inaccurate Bounding Boxes,
ICCV23(6832-6842)
IEEE DOI Code:
WWW Link. 2401
BibRef

Fu, S.H.[Sheng-Hao], Yan, J.K.[Jun-Kai], Gao, Y.P.[Yi-Peng], Xie, X.H.[Xiao-Hua], Zheng, W.S.[Wei-Shi],
ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation,
ICCV23(6305-6315)
IEEE DOI Code:
WWW Link. 2401
BibRef

Lv, Y.L.[Yi-Long], Li, M.[Min], He, Y.J.[Yu-Jie], He, Z.[Zhuzhen], Li, S.P.[Shao-Peng], Yang, A.[Aitao],
Anchor-Intermediate Detector: Decoupling and Coupling Bounding Boxes for Accurate Object Detection,
ICCV23(6252-6261)
IEEE DOI 2401
BibRef

Liu, Y.Y.[Yu-Yang], Cong, Y.[Yang], Goswami, D.[Dipam], Liu, X.L.[Xia-Lei], van de Weijer, J.[Joost],
Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection,
ICCV23(11333-11343)
IEEE DOI 2401
BibRef

He, W.Z.[Wei-Zhen], Chen, W.J.[Wei-Jie], Chen, B.B.[Bin-Bin], Yang, S.[Shicai], Xie, D.[Di], Lin, L.[Luojun], Qi, D.L.[Dong-Lian], Zhuang, Y.T.[Yue-Ting],
Unsupervised Prompt Tuning for Text-Driven Object Detection,
ICCV23(2651-2661)
IEEE DOI 2401
BibRef

Ding, K.[Kun], He, G.J.[Guo-Jin], Gu, H.X.[Hu-Xiang], Zhong, Z.S.[Zi-Sha], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Packdet: Packed Long-Head Object Detector,
ECCV20(XIII:172-188).
Springer DOI 2011
BibRef

Lyu, M.Y.[Meng-Yao], Zhou, J.D.[Jun-Dong], Chen, H.[Hui], Huang, Y.J.[Yi-Jie], Yu, D.D.[Dong-Dong], Li, Y.Q.[Ya-Qian], Guo, Y.D.[Yan-Dong], Guo, Y.C.[Yu-Chen], Xiang, L.[Liuyu], Ding, G.G.[Gui-Guang],
Box-Level Active Detection,
CVPR23(23766-23775)
IEEE DOI 2309
BibRef

Huang, Q.D.[Qi-Dong], Dong, X.Y.[Xiao-Yi], Chen, D.D.[Dong-Dong], Zhang, W.M.[Wei-Ming], Wang, F.F.[Fei-Fei], Hua, G.[Gang], Yu, N.H.[Neng-Hai],
Diversity-Aware Meta Visual Prompting,
CVPR23(10878-10887)
IEEE DOI 2309

WWW Link. BibRef

Nie, Y.[Yinyu], Dai, A.[Angela], Han, X.G.[Xiao-Guang], NieBner, M.[Matthias],
Learning 3D Scene Priors with 2D Supervision,
CVPR23(792-802)
IEEE DOI 2309

WWW Link. BibRef

Dang, T.[Trung], Kornblith, S.[Simon], Nguyen, H.T.[Huy Thong], Chin, P.[Peter], Khademi, M.[Maryam],
A Study on Self-supervised Object Detection Pretraining,
SelfLearn22(86-99).
Springer DOI 2304
BibRef

Yang, Y.[Yang], Asthana, A.[Akshay], Zheng, L.[Liang],
Does Keypoint Estimation Benefit Object Detection? An Empirical Study of One-stage and Two-stage Detectors,
FG21(1-7)
IEEE DOI 2303
Face recognition, Estimation, Detectors, Object detection, Gesture recognition, Task analysis BibRef

Han, B.[Byeolyi], Oh, T.H.[Tae-Hyun],
Learning Few-shot Segmentation from Bounding Box Annotations,
WACV23(3739-3748)
IEEE DOI 2302
Annotations, Semantic segmentation, Computational modeling, Semantics, Prototypes, Performance gain, visual reasoning BibRef

Gilg, J.[Johannes], Teepe, T.[Torben], Herzog, F.[Fabian], Rigoll, G.[Gerhard],
The Box Size Confidence Bias Harms Your Object Detector,
WACV23(1471-1480)
IEEE DOI 2302
Histograms, Neural networks, Training data, Detectors, Object detection, Algorithms: Explainable, fair, accountable, visual reasoning BibRef

Wang, Y.T.[Yu-Ting], Guerrero, R.[Ricardo], Pavlovic, V.[Vladimir],
D2F2WOD: Learning Object Proposals for Weakly-Supervised Object Detection via Progressive Domain Adaptation,
WACV23(22-31)
IEEE DOI 2302
Location awareness, Adaptation models, Computational modeling, Object detection, Detectors, Feature extraction BibRef

Wang, B.[Bo], Wang, S.[Shiang], Yuan, C.F.[Chun-Feng], Wu, Z.H.[Zhong-Hai], Li, B.[Bing], Hu, W.M.[Wei-Ming], Xiong, J.[Jeffrey],
Learnable Pixel Clustering Via Structure and Semantic Dual Constraints for Unsupervised Image Segmentation,
ICIP22(1041-1045)
IEEE DOI 2211
Representation learning, Image segmentation, Smoothing methods, Annotations, Semantics, Proposals, Task analysis, image segmentation, mutual information maximization BibRef

Chen, P.F.[Peng-Fei], Yu, X.H.[Xue-Hui], Han, X.[Xumeng], Hassan, N.[Najmul], Wang, K.[Kai], Li, J.C.[Jia-Chen], Zhao, J.[Jian], Shi, H.[Humphrey], Han, Z.J.[Zhen-Jun], Ye, Q.X.[Qi-Xiang],
Point-to-Box Network for Accurate Object Detection via Single Point Supervision,
ECCV22(IX:51-67).
Springer DOI 2211
BibRef

Chen, H.L.[Hong-Lin], Venkatesh, R.[Rahul], Friedman, Y.[Yoni], Wu, J.J.[Jia-Jun], Tenenbaum, J.B.[Joshua B.], Yamins, D.L.K.[Daniel L. K.], Bear, D.M.[Daniel M.],
Unsupervised Segmentation in Real-World Images via Spelke Object Inference,
ECCV22(XXIX:719-735).
Springer DOI 2211
BibRef

Liu, C.X.[Cheng-Xin], Wang, K.W.[Ke-Wei], Lu, H.[Hao], Cao, Z.G.[Zhi-Guo], Zhang, Z.M.[Zi-Ming],
Robust Object Detection with Inaccurate Bounding Boxes,
ECCV22(X:53-69).
Springer DOI 2211
BibRef

Bai, Y.T.[Yu-Tong], Chen, X.L.[Xin-Lei], Kirillov, A.[Alexander], Yuille, A.L.[Alan L.], Berg, A.C.[Alexander C.],
Point-Level Region Contrast for Object Detection Pre-Training,
CVPR22(16040-16049)
IEEE DOI 2210
Location awareness, Training, Visualization, Codes, Object detection, Pattern recognition, Representation learning, Self- semi- meta- unsupervised learning BibRef

Shi, H.C.[Heng-Can], Hayat, M.[Munawar], Wu, Y.C.[Yi-Cheng], Cai, J.F.[Jian-Fei],
ProposalCLIP: Unsupervised Open-Category Object Proposal Generation via Exploiting CLIP Cues,
CVPR22(9601-9610)
IEEE DOI 2210
Visualization, Ethics, Annotations, Merging, Genomics, Object detection, Recognition: detection, categorization BibRef

Burghouts, G.J.[Gertjan J.], Kruithof, M.[Maarten], Huizinga, W.[Wyke], Schutte, K.[Klamer],
Cluster Centers Provide Good First Labels for Object Detection,
CIAP22(I:404-413).
Springer DOI 2205
BibRef

Yoo, J.[Jaeyoung], Lee, H.[Hojun], Chung, I.[Inseop], Seo, G.[Geonseok], Kwak, N.[Nojun],
Training Multi-Object Detector by Estimating Bounding Box Distribution for Input Image,
ICCV21(3417-3426)
IEEE DOI 2203
Training, Neural networks, Estimation, Detectors, Mixture models, Object detection, Detection and localization in 2D and 3D, Scene analysis and understanding BibRef

Li, Y.M.[Yi-Meng], Košecká, J.[Jana],
Uncertainty Aware Proposal Segmentation for Unknown Object Detection,
Novelty22(241-250)
IEEE DOI 2202
Training, Adaptation models, Uncertainty, Semantics, Estimation, Object detection, Radial basis function networks BibRef

Cho, S.[Sungmin], Paeng, J.[Jinwook], Kwon, J.[Junseok],
Densely-packed Object Detection via Hard Negative-Aware Anchor Attention,
WACV22(1401-1410)
IEEE DOI 2202
Codes, Object detection, Large-scale Vision Applications Object Detection/Recognition/Categorization BibRef

Zhou, M.[Man], Liu, L.[Liu], Wang, R.[Rujing],
Reinforcedet: Object Detection By Integrating Reinforcement Learning With Decoupled Pipeline,
ICIP21(2778-2782)
IEEE DOI 2201
Anchor free object detection. Pipelines, Neural networks, Reinforcement learning, Object detection, Feature extraction, Computational efficiency, Decoupled Pipeline BibRef

Fang, F.[Fen], Xu, Q.L.[Qian-Li], Gauthier, N.[Nicolas], Li, L.Y.[Li-Yuan], Lim, J.H.[Joo-Hwee],
Enhancing Multi-Step Action Prediction for Active Object Detection,
ICIP21(2189-2193)
IEEE DOI 2201
Training, Adaptation models, Visualization, Uncertainty, Image processing, Object detection, Reinforcement learning, deep q-learning network (DQN) BibRef

Zhang, M.[Ming], Liu, S.C.[Shuai-Cheng], Zeng, B.[Bing],
Hierarchical Region Proposal Refinement Network for Weakly Supervised Object Detection,
ICIP21(669-673)
IEEE DOI 2201
Training, Annotations, Image processing, Image edge detection, Detectors, Object detection, Weakly supervised object detection, Instance regression refinement BibRef

Duan, C.Z.[Cheng-Zhen], Wei, Z.W.[Zhi-Wei], Zhang, C.[Chi], Qu, S.Y.[Si-Ying], Wang, H.P.[Hong-Peng],
Coarse-grained Density Map Guided Object Detection in Aerial Images,
VisDrone21(2789-2798)
IEEE DOI 2112
Training, Image resolution, Estimation, Crops, Clustering algorithms BibRef

Iwayoshi, T.[Takaaki], Mitsuhara, M.[Masahiro], Takada, M.[Masayuki], Hirakawa, T.[Tsubasa], Yamashita, T.[Takayoshi], Fujiyoshi, H.[Hironobu],
Attention Mining Branch for Optimizing Attention Map,
MVA21(1-5)
DOI Link 2109
Attention branch networks work on region of interest, but object may not be there. Measurement, Training, Visualization, Target recognition, Dogs BibRef

He, Y.L.[Yu-Lin], Zhang, L.[Limeng], Chen, W.[Wei], Luo, X.[Xin], Jia, X.G.[Xiao-Gang], Li, C.[Chen],
CenterRepp: Predict Central Representative Point Set's Distribution For Detection,
ICPR21(8960-8967)
IEEE DOI 2105
Detectors, Object detection, Benchmark testing, Neck, Standards BibRef

Li, Y.L.[Yin-Lin], Qian, Y.[Yang], Yang, X.[Xu], Zhang, Y.[Yuren],
Activity and Relationship Modeling Driven Weakly Supervised Object Detection,
ICPR21(9628-9634)
IEEE DOI 2105
Training, Object detection, Gaussian distribution, Proposals BibRef

Adhikari, B.[Bishwo], Huttunen, H.[Heikki],
Iterative Bounding Box Annotation for Object Detection,
ICPR21(4040-4046)
IEEE DOI 2105
Training, Measurement, Annotations, Pipelines, Manuals, Object detection BibRef

Quan, Y.[Yu], Li, Z.X.[Zhi-Xin], Zhang, C.L.[Can-Long], Ma, H.F.[Hui-Fang],
Object Detection Model Based on Scene-Level Region Proposal Self-Attention,
ICPR21(954-961)
IEEE DOI 2105
Training, Analytical models, Visualization, Target recognition, Semantics, Object detection, Feature extraction, object detection, self-attention mechanism BibRef

Choi, M.K.[Min-Kook], Jung, H.[Heechul],
Development of Fast Refinement Detectors on AI Edge Platforms,
IML20(592-606).
Springer DOI 2103
Code, Object Detection.
WWW Link. Object detection on GPU BibRef

Xu, X.L.[Xiao-Long], Meng, F.M.[Fan-Man], Li, H.L.[Hong-Liang], Wu, Q.B.[Qing-Bo], Ngi Ngan, K.[King], Chen, S.[Shuai],
A New Bounding Box based Pseudo Annotation Generation Method for Semantic Segmentation,
VCIP20(100-103)
IEEE DOI 2102
Annotations, Image segmentation, Training, Semantics, Predictive models, Task analysis, Pipelines, Bounding Box, Class-agnostic Model BibRef

Zhao, G.L.[Gan-Long], Li, G.B.[Guan-Bin], Xu, R.J.[Rui-Jia], Lin, L.[Liang],
Collaborative Training Between Region Proposal Localization and Classification for Domain Adaptive Object Detection,
ECCV20(XVIII:86-102).
Springer DOI 2012
BibRef

Kim, K.[Kang], Lee, H.S.[Hee Seok],
Probabilistic Anchor Assignment with IoU Prediction for Object Detection,
ECCV20(XXV:355-371).
Springer DOI 2011
Intersection-over-Unions. BibRef

Chen, R.[Ran], Liu, Y.[Yong], Zhang, M.[Mengdan], Liu, S.[Shu], Yu, B.[Bei], Tai, Y.W.[Yu-Wing],
Dive Deeper into Box for Object Detection,
ECCV20(XXII:412-428).
Springer DOI 2011
BibRef

Xu, X., Luo, X., Ma, L.,
Context-Aware Hierarchical Feature Attention Network For Multi-Scale Object Detection,
ICIP20(2011-2015)
IEEE DOI 2011
Feature extraction, Detectors, Object detection, Context modeling, Semantics, Benchmark testing, Training, Object detection, Attention mechanism BibRef

Seo, G., Yoo, J., Cho, J., Kwak, N.,
Kl-Divergence-Based Region Proposal Network For Object Detection,
ICIP20(2001-2005)
IEEE DOI 2011
Uncertainty, Standards, Proposals, Training, Object detection, Gaussian distribution, Probability distribution, KL-Divergence BibRef

Chen, Q.[Qi], Sun, L.[Lin], Wang, Z.X.[Zhi-Xin], Jia, K.[Kui], Yuille, A.L.[Alan L.],
Object as Hotspots: An Anchor-free 3d Object Detection Approach via Firing of Hotspots,
ECCV20(XXI:68-84).
Springer DOI 2011
BibRef

Zhao, Z.[Zhen], Guo, Y.H.[Yu-Hong], Shen, H.F.[Hai-Feng], Ye, J.P.[Jie-Ping],
Adaptive Object Detection with Dual Multi-label Prediction,
ECCV20(XXVIII:54-69).
Springer DOI 2011
BibRef

Ma, W.S.[Wen-Shuo], Tian, T.Z.[Ting-Zhong], Xu, H.[Hang], Huang, Y.M.[Yi-Min], Li, Z.G.[Zhen-Guo],
AABO: Adaptive Anchor Box Optimization for Object Detection via Bayesian Sub-sampling,
ECCV20(V:560-575).
Springer DOI 2011
BibRef

Lan, S., Ren, Z., Wu, Y., Davis, L.S., Hua, G.,
SaccadeNet: A Fast and Accurate Object Detector,
CVPR20(10394-10403)
IEEE DOI 2008
Detectors, Training, Feature extraction, Object detection, Proposals, Aggregates BibRef

Qian, Q., Chen, L., Li, H., Jin, R.,
DR Loss: Improving Object Detection by Distributional Ranking,
CVPR20(12161-12169)
IEEE DOI 2008
Detectors, Object detection, Proposals, Neural networks, Task analysis, Feature extraction, Object recognition BibRef

Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.,
Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection,
CVPR20(9756-9765)
IEEE DOI 2008
Detectors, Training, Object detection, Proposals, Feature extraction, Bridges BibRef

Hosoya, Y., Suganuma, M., Okatani, T.,
Analysis and a Solution of Momentarily Missed Detection for Anchor-based Object Detectors,
WACV20(1399-1407)
IEEE DOI 2006
Detectors, Bicycles, Switches, Task analysis, Object detection, Employment, Clutter BibRef

Uzkent, B., Yeh, C., Ermon, S.,
Efficient Object Detection in Large Images Using Deep Reinforcement Learning,
WACV20(1813-1822)
IEEE DOI 2006
Detectors, Spatial resolution, Object detection, Proposals, Satellites BibRef

Chen, J., Luo, B., Wu, Q., Chen, J., Peng, X.,
Overlap Sampler for Region-Based Object Detection,
WACV20(756-764)
IEEE DOI 2006
Detectors, Training, Upper bound, Proposals, Object detection, Benchmark testing, Sampling methods BibRef

Dhamija, A.R., Günther, M., Ventura, J., Boult, T.E.,
The Overlooked Elephant of Object Detection: Open Set,
WACV20(1010-1019)
IEEE DOI 2006
Detectors, Object detection, Training, Protocols, Object recognition, Proposals, Training data BibRef

Gupta, D.[Dikshant], Anantharaman, A.[Aditya], Mamgain, N.[Nehal], Kamath, S.S.[S. Sowmya], Balasubramanian, V.N.[Vineeth N.], Jawahar, C.V.,
A Multi-Space Approach to Zero-Shot Object Detection,
WACV20(1198-1206)
IEEE DOI 2006
Semantics, Visualization, Object detection, Proposals, Task analysis, Training, Correlation BibRef

Li, Z., Du, X., Cao, Y.,
GAR: Graph Assisted Reasoning for Object Detection,
WACV20(1284-1293)
IEEE DOI 2006
Object detection, Proposals, Detectors, Image edge detection, Cognition, Task analysis, Cows BibRef

Zhong, Y., Wang, J., Peng, J., Zhang, L.,
Anchor Box Optimization for Object Detection,
WACV20(1275-1283)
IEEE DOI 2006
Shape, Training, Optimization, Object detection, Detectors, Robustness, Neural networks BibRef

Levinshtein, A., Sereshkeh, A.R., Derpanis, K.G.,
DATNet: Dense Auxiliary Tasks for Object Detection,
WACV20(1408-1416)
IEEE DOI 2006
Task analysis, Feature extraction, Semantics, Object detection, Proposals, Detectors, Transforms BibRef

Le, T., Akihiro, S., Ono, S., Kawasaki, H.,
Toward Interactive Self-Annotation For Video Object Bounding Box: Recurrent Self-Learning And Hierarchical Annotation Based Framework,
WACV20(3220-3229)
IEEE DOI 2006
Detectors, Labeling, Tools, Training data, Task analysis, Training, Machine learning BibRef

Tan, Z., Nie, X., Qian, Q., Li, N., Li, H.,
Learning to Rank Proposals for Object Detection,
ICCV19(8272-8280)
IEEE DOI 2004
edge detection, feature extraction, image fusion, learning (artificial intelligence), object detection BibRef

Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H.,
Clustered Object Detection in Aerial Images,
ICCV19(8310-8319)
IEEE DOI 2004
estimation theory, feature extraction, image segmentation, object detection, pattern clustering, aerial images, Image resolution BibRef

Batchelor, O., Green, R.,
Object detection for Verification Based Annotation,
IVCNZ19(1-6)
IEEE DOI 2004
convolutional neural nets, image resolution, object detection, object detector, machine annotations, human annotator, human-in-the-loop BibRef

Chen, B.[Bo], Ghiasi, G.[Golnaz], Liu, H.X.[Han-Xiao], Lin, T.Y.[Tsung-Yi], Kalenichenko, D.[Dmitry], Adam, H.[Hartwig], Le, Q.V.[Quoc V.],
MnasFPN: Learning Latency-Aware Pyramid Architecture for Object Detection on Mobile Devices,
CVPR20(13604-13613)
IEEE DOI 2008
BibRef
Earlier: A2, A4, A7, Only:
NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection,
CVPR19(7029-7038).
IEEE DOI 2002
Computer architecture, Head, Object detection, Search problems, Feature extraction, Mobile handsets, Aerospace electronics BibRef

Wang, J.[Jiaqi], Chen, K.[Kai], Yang, S.[Shuo], Loy, C.C.[Chen Change], Lin, D.[Dahua],
Region Proposal by Guided Anchoring,
CVPR19(2960-2969).
IEEE DOI 2002
BibRef

Singh, K.K.[Krishna Kumar], Lee, Y.J.[Yong Jae],
You Reap What You Sow: Using Videos to Generate High Precision Object Proposals for Weakly-Supervised Object Detection,
CVPR19(9406-9414).
IEEE DOI 2002
BibRef

Rezatofighi, H.[Hamid], Tsoi, N.[Nathan], Gwak, J.[JunYoung], Sadeghian, A.[Amir], Reid, I.D.[Ian D.], Savarese, S.[Silvio],
Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression,
CVPR19(658-666).
IEEE DOI 2002
BibRef

He, Y.H.[Yi-Hui], Zhu, C.C.[Chen-Chen], Wang, J.R.[Jian-Ren], Savvides, M.[Marios], Zhang, X.Y.[Xiang-Yu],
Bounding Box Regression With Uncertainty for Accurate Object Detection,
CVPR19(2883-2892).
IEEE DOI 2002
BibRef

Ribera, J.[Javier], Guera, D.[David], Chen, Y.H.[Yu-Hao], Delp, E.J.[Edward J.],
Locating Objects Without Bounding Boxes,
CVPR19(6472-6482).
IEEE DOI 2002
BibRef

Cho, M., Chung, T., Lee, H., Lee, S.,
N-RPN: Hard Example Learning For Region Proposal Networks,
ICIP19(3955-3959)
IEEE DOI 1910
Region proposal, hard negative example learning, hard example mining, object detection BibRef

Guo, L., Fan, G., Sheng, W.,
Creating 3D Bounding Box Hypotheses From Deep Network Score-Maps,
ICIP19(904-908)
IEEE DOI 1910
object detection in RGB-D, bounding box generation, semantic labeling, deep learning BibRef

Nabati, R., Qi, H.,
RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles,
ICIP19(3093-3097)
IEEE DOI 1910
Region Proposal Network, Autonomous Driving, Object Detection BibRef

Lee, S.K.[Seung-Kwan], Kwak, S.[Suha], Cho, M.[Minsu],
Universal Bounding Box Regression and Its Applications,
ACCV18(VI:373-387).
Springer DOI 1906
BibRef

Tychsen-Smith, L.[Lachlan], Petersson, L.[Lars],
Improving Object Localization with Fitness NMS and Bounded IoU Loss,
CVPR18(6877-6885)
IEEE DOI 1812
Evaluate bounding boxes. Training, Detectors, Clustering algorithms, Testing, Object recognition, Upper bound, Object detection BibRef

Chen, K.[Kan], Gao, J.[Jiyang], Nevatia, R.[Ram],
Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,
CVPR18(4042-4050)
IEEE DOI 1812
Visualization, Proposals, Grounding, Image reconstruction, Feature extraction, Training, Task analysis BibRef

Zhai, Y., Fu, J., Lu, Y., Li, H.,
Feature Selective Networks for Object Detection,
CVPR18(4139-4147)
IEEE DOI 1812
Feature extraction, Proposals, Object detection, Detectors, Dimensionality reduction, Visualization, Pattern recognition BibRef

Zhao, F., Li, J., Zhao, J., Feng, J.,
Weakly Supervised Phrase Localization with Multi-scale Anchored Transformer Network,
CVPR18(5696-5705)
IEEE DOI 1812
Proposals, Training, Dogs, Computational modeling, Image reconstruction, Image edge detection, Visualization BibRef

Zhao, X.M.[Xiao-Ming], Zhao, Z.Z.[Zhi-Zhen], Schwing, A.G.[Alexander G.],
Initialization and Alignment for Adversarial Texture Optimization,
ECCV22(XXVII:641-658).
Springer DOI 2211
BibRef
And: CVMeta22(587-604).
Springer DOI 2304
BibRef

Yeh, R.A., Do, M.N., Schwing, A.G.,
Unsupervised Textual Grounding: Linking Words to Image Concepts,
CVPR18(6125-6134)
IEEE DOI 1812
Grounding, Task analysis, Visualization, Proposals, Training, Object detection, Feature extraction BibRef

Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., Sun, J.,
MegDet: A Large Mini-Batch Object Detector,
CVPR18(6181-6189)
IEEE DOI 1812
Training, Detectors, Object detection, Proposals, Convergence, Task analysis, Industries BibRef

Yao, Y., Dong, Y., Huang, Z., Bai, H.,
Dense Receptive Field for Object Detection,
ICPR18(1815-1820)
IEEE DOI 1812
Feature extraction, Detectors, Object detection, Proposals, Computational efficiency, Fuses, Neural networks BibRef

Lyu, J., Yuan, Z., Chen, D., Zhao, Y., Zhang, H.,
Learning Fixation Point Strategy for Object Detection and Classification,
ICPR18(2081-2086)
IEEE DOI 1812
Task analysis, Stochastic processes, Object detection, Proposals, Detectors, Automobiles BibRef

Wang, H.Y.[Han-Yuan], Xu, J.[Jie], Li, L.K.[Lin-Ke], Tian, Y.[Ye], Xu, D.[Du], Xu, S.Z.[Shi-Zhong],
Multi-Scale Fusion with Context-Aware Network for Object Detection,
ICPR18(2486-2491)
IEEE DOI 1812
Proposals, Feature extraction, Object detection, Detectors, Semantics, Computational efficiency, Convolution BibRef

Razinkov, E., Saveleva, I., Matas, J.G.,
ALFA: Agglomerative Late Fusion Algorithm for Object Detection,
ICPR18(2594-2599)
IEEE DOI 1812
Detectors, Proposals, Object detection, Feature extraction, Convolutional codes, Prediction algorithms, Heuristic algorithms BibRef

Galteri, L., Bertini, M., Seidenari, L., del Bimbo, A.[Alberto],
Video Compression for Object Detection Algorithms,
ICPR18(3007-3012)
IEEE DOI 1812
Visualization, Streaming media, Encoding, Proposals, Bit rate, Video coding, Detectors BibRef

Rao, Y., Lin, D., Lu, J., Zhou, J.,
Learning Globally Optimized Object Detector via Policy Gradient,
CVPR18(6190-6198)
IEEE DOI 1812
Detectors, Object detection, Training, Proposals, Optimization, Feature extraction, Task analysis BibRef

Zhao, X., Liang, S., Wei, Y.,
Pseudo Mask Augmented Object Detection,
CVPR18(4061-4070)
IEEE DOI 1812
Image segmentation, Object detection, Task analysis, Object segmentation, Training, Optimization, Network architecture BibRef

Pirinen, A., Sminchisescu, C.,
Deep Reinforcement Learning of Region Proposal Networks for Object Detection,
CVPR18(6945-6954)
IEEE DOI 1812
Proposals, Detectors, Search problems, Object detection, Task analysis, History BibRef

Cheng, J., Tsai, Y., Hung, W., Wang, S., Yang, M.,
Fast and Accurate Online Video Object Segmentation via Tracking Parts,
CVPR18(7415-7424)
IEEE DOI 1812
Object segmentation, Target tracking, Task analysis, Proposals, Image segmentation, Strain BibRef

Uehara, K.[Kohei], Tejero-De-Pablos, A.[Antonio], Ushiku, Y.[Yoshitaka], Harada, T.[Tatsuya],
Visual Question Generation for Class Acquisition of Unknown Objects,
ECCV18(XII: 492-507).
Springer DOI 1810
Code, dataset:
WWW Link. BibRef

Wu, X., Ma, X., Zhang, J., Wang, A., Jin, Z.,
Salient Object Detection Via Deformed Smoothness Constraint,
ICIP18(2815-2819)
IEEE DOI 1809
Object detection, Image edge detection, Standards, Noise measurement, Proposals, Deformable models, Visualization, map refinement BibRef

Dai, S.L.[Shuang-Lu], Su, P.Y.[Peng-Yu], Man, H.[Hong],
Object Discovery and Localization Via Structural Contrast,
ICIP18(2760-2764)
IEEE DOI 1809
Proposals, Adaptation models, Image edge detection, Visualization, Data models, Measurement, Semantics, Object discovery, Structural contrast BibRef

Kaya, E.C., Alatan, A.A.,
Improving Proposal-Based Object Detection Using Convolutional Context Features,
ICIP18(1308-1312)
IEEE DOI 1809
Feature extraction, Proposals, Context modeling, Training, Object detection, Conferences, CNN, Deep Learning BibRef

Kolesnikov, A.[Alexander], Lampert, C.H.[Christoph H.],
Improving Weakly-Supervised Object Localization By Micro-Annotation,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Teh, E.W.[Eu Wern], Rochan, M.[Mrigank], Wang, Y.[Yang],
Attention Networks for Weakly Supervised Object Localization,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Teh, E.W., Guo, Z., Wang, Y.,
Object localization in weakly labeled data using regularized attention networks,
VCIP17(1-4)
IEEE DOI 1804
object detection, attention scores, object detector, object proposals, regularization term, weakly supervised object localization BibRef

Zhou, L., Fang, J., Ju, Y., Xue, J.,
Multi-Saliency Detection via Instance Specific Element Homology,
DICTA17(1-8)
IEEE DOI 1804
image colour analysis, image matching, image segmentation, object detection, optimisation, probability, ISEH, Proposals BibRef

Liu, J.[Juan], Wu, Z.Y.[Zheng-Yang], Li, F.X.[Fu-Xin],
Ranking video segments with LSTM and determinantal point processes,
ICIP17(2369-2373)
IEEE DOI 1803
Feature extraction, Image segmentation, Logic gates, Motion segmentation, Prediction algorithms, Proposals, Training, DPP, Video Segmentation BibRef

Mukherjee, P., Lall, B., Tandon, S.,
Salprop: Salient object proposals via aggregated edge cues,
ICIP17(2423-2429)
IEEE DOI 1803
Bayes methods, Image color analysis, Image edge detection, Image segmentation, Proposals, Training, CRF, object proposals BibRef

Malik, J., Aytekin, C., Gabbouj, M.,
Category independent object proposals using quantum superposition,
ICIP17(4172-4176)
IEEE DOI 1803
Computational efficiency, Eigenvalues and eigenfunctions, Image segmentation, Object detection, Proposals, quantum superposition BibRef

Wang, T.,
Context Propagation from Proposals for Semantic Video Object Segmentation,
ICIP18(256-260)
IEEE DOI 1809
BibRef
And:
Submodular video object proposal selection for semantic object segmentation,
ICIP17(4522-4526)
IEEE DOI 1803
Semantics, Proposals, Context modeling, Labeling, Object segmentation, Convergence, Object detection, semantic video object segmentation. Cows, Image color analysis, Motion segmentation, Noise measurement, Submodular function. BibRef

Ye, L., Liu, Z., Wang, Y.,
Depth-aware object instance segmentation,
ICIP17(325-329)
IEEE DOI 1803
Detectors, Estimation, Image resolution, Image segmentation, Object detection, Proposals, Semantics, depth, instance segmentation, occlusion reasoning BibRef

Qiao, S., Shen, W., Qiu, W., Liu, C., Yuille, A.L.[Alan L.],
ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond,
ICCV17(1809-1818)
IEEE DOI 1802
object detection, MS COCO dataset, ScaleNet, natural images, object proposal generation, Virtual environments BibRef

Zhu, Y., Zhou, Y., Ye, Q., Qiu, Q., Jiao, J.,
Soft Proposal Networks for Weakly Supervised Object Localization,
ICCV17(1859-1868)
IEEE DOI 1802
feedforward neural nets, image classification, image representation, learning (artificial intelligence), Visualization BibRef

Ma, J., Ming, A., Huang, Z., Wang, X., Zhou, Y.,
Object-Level Proposals,
ICCV17(4931-4939)
IEEE DOI 1802
edge detection, object detection, VOC, object detection, object-level proposal model, object-level proposals, Visualization BibRef

Singh, B., Davis, L.S.,
An Analysis of Scale Invariance in Object Detection - SNIP,
CVPR18(3578-3587)
IEEE DOI 1812
Image resolution, Training, Detectors, Object detection, Feature extraction, Convolution, Semantics BibRef

Bodla, N., Singh, B., Chellappa, R., Davis, L.S.,
Soft-NMS: Improving Object Detection with One Line of Code,
ICCV17(5562-5570)
IEEE DOI 1802
computational complexity, learning (artificial intelligence), neural nets, Proposals BibRef

Chen, X., Gupta, A.,
Spatial Memory for Context Reasoning in Object Detection,
ICCV17(4106-4116)
IEEE DOI 1802
image sequences, inference mechanisms, learning (artificial intelligence), neural nets, Proposals BibRef

Portaz, M., Kohl, M., Quénot, G., Chevallet, J.P.,
Fully Convolutional Network and Region Proposal for Instance Identification with Egocentric Vision,
Egocentric17(2383-2391)
IEEE DOI 1802
Cameras, Image representation, Image retrieval, Painting, Proposals, Search problems BibRef

Deng, Z., Latecki, L.J.,
Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images,
CVPR17(398-406)
IEEE DOI 1711
Feature extraction, Object detection, Proposals, Solid modeling, Two, dimensional, displays BibRef

Abbeloos, W., Caccamo, S., Ataer-Cansizoglu, E., Taguchi, Y., Feng, C., Lee, T.Y.,
Detecting and Grouping Identical Objects for Region Proposal and Classification,
DeepLearnRV17(501-502)
IEEE DOI 1709
Clustering algorithms, Object detection, Object recognition, Pipelines, Proposals BibRef

Li, S., Zhang, H., Zhang, J., Ren, Y., Kuo, C.C.J.,
Box Refinement: Object Proposal Enhancement and Pruning,
WACV17(979-988)
IEEE DOI 1609
Detectors, Feature extraction, Image edge detection, Neural networks, Proposals, Search, problems BibRef

Lauri, M.[Mikko], Frintrop, S.[Simone],
Object Proposal Generation Applying the Distance Dependent Chinese Restaurant Process,
SCIA17(I: 260-272).
Springer DOI 1706
BibRef

Waris, M.A., Iosifidis, A., Gabbouj, M.,
Object proposals using CNN-based edge filtering,
ICPR16(627-632)
IEEE DOI 1705
Feature extraction, Image edge detection, Merging, Object detection, Proposals, Semantics, Deep Learning, Object Detection, Object Proposals, Region of Interest BibRef

Zhang, H.Y.[Hao-Yang], He, X.M.[Xu-Ming], Porikli, F.M.[Fatih M.],
Learning Spatial Transforms for Refining Object Segment Proposals,
WACV17(37-46)
IEEE DOI 1609
BibRef
Earlier:
Learning to Generate Object Segment Proposals with Multi-modal Cues,
ACCV16(I: 121-136).
Springer DOI 1704
Feature extraction, Image segmentation, Pipelines, Proposals, Semantics, Transforms, Two, dimensional, displays BibRef

Zhang, R., Wang, W.,
An advanced local offset matching strategy for object proposal matching,
VCIP16(1-4)
IEEE DOI 1701
Bayes methods BibRef

Knaub, A.[Anton], Narayan, V.[Vikram], Adameck, M.[Markus],
Performance Evaluation of Bottom-Up Saliency Models for Object Proposal Generation,
CRV16(266-272)
IEEE DOI 1612
Object proposal generation BibRef

Ke, W., Zhang, T., Chen, J., Wan, F., Ye, Q., Han, Z.,
Texture Complexity Based Redundant Regions Ranking for Object Proposal,
Robust16(1083-1091)
IEEE DOI 1612
BibRef

Zhang, Y., Jiang, Z., Chen, X., Davis, L.S.,
Generating Discriminative Object Proposals via Submodular Ranking,
Robust16(1168-1176)
IEEE DOI 1612
BibRef

Singh, K.K.[Krishna Kumar], Lee, Y.J.[Yong Jae],
Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization,
ICCV17(3544-3553)
IEEE DOI 1802
image classification, image representation, learning (artificial intelligence), object detection, Visualization BibRef

Singh, K.K.[Krishna Kumar], Xiao, F.Y.[Fan-Yi], Lee, Y.J.[Yong Jae],
Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection,
CVPR16(3548-3556)
IEEE DOI 1612
BibRef

Sun, C.[Chen], Paluri, M.[Manohar], Collobert, R.[Ronan], Nevatia, R.[Ram], Bourdev, L.[Lubomir],
ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks,
CVPR16(3485-3493)
IEEE DOI 1612
BibRef

Pham, T.T., Rezatofighi, S.H., Reid, I.D., Chin, T.J.,
Efficient Point Process Inference for Large-Scale Object Detection,
CVPR16(2837-2845)
IEEE DOI 1612
BibRef

Lu, Y.X.[Yong-Xi], Javidi, T.[Tara], Lazebnik, S.[Svetlana],
Adaptive Object Detection Using Adjacency and Zoom Prediction,
CVPR16(2351-2359)
IEEE DOI 1612
BibRef

Kong, T., Yao, A., Chen, Y., Sun, F.,
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection,
CVPR16(845-853)
IEEE DOI 1612
BibRef

Chavali, N., Agrawal, H., Mahendru, A., Batra, D.,
Object-Proposal Evaluation Protocol is 'Gameable',
CVPR16(835-844)
IEEE DOI 1612
BibRef

Zeng, X.Y.[Xing-Yu], Ouyang, W.L.[Wan-Li], Yang, B.[Bin], Yan, J.J.[Jun-Jie], Wang, X.G.[Xiao-Gang],
Gated Bi-Directional CNN for Object Detection,
ECCV16(VII: 354-369).
Springer DOI 1611
BibRef

Tiwari, L.[Lokender], Anand, S.[Saket],
DGSAC: Density Guided Sampling and Consensus,
WACV18(974-982)
IEEE DOI 1806
computational geometry, image reconstruction, image segmentation, matrix algebra, DGSAC, Robustness BibRef

Tiwari, L.[Lokender], Anand, S.[Saket], Mittal, S.[Sushil],
Robust Multi-Model Fitting Using Density and Preference Analysis,
ACCV16(IV: 308-323).
Springer DOI 1704
BibRef

Tiwari, L.[Lokender], Anand, S.[Saket],
Fast hypothesis filtering for multi-structure geometric model fitting,
ICIP16(3728-3732)
IEEE DOI 1610
Clustering algorithms BibRef

Bappy, J.H., Roy-Chowdhury, A.K.,
Inter-dependent CNNs for joint scene and object recognition,
ICPR16(3386-3391)
IEEE DOI 1705
BibRef
And:
CNN based region proposals for efficient object detection,
ICIP16(3658-3662)
IEEE DOI 1610
Detectors, Feature extraction, Neural networks, Object detection, Object recognition, Proposals. BibRef

Paul, S., Bappy, J.H., Roy-Chowdhury, A.K.,
Efficient selection of informative and diverse training samples with applications in scene classification,
ICIP16(494-498)
IEEE DOI 1610
Computational modeling BibRef

Horiguchi, S., Aizawa, K., Ogawa, M.,
The log-normal distribution of the size of objects in daily meal images and its application to the efficient reduction of object proposals,
ICIP16(3668-3672)
IEEE DOI 1610
Gaussian distribution BibRef

Zhang, H., He, X., Porikli, F.M., Kneip, L.,
Semantic context and depth-aware object proposal generation,
ICIP16(1-5)
IEEE DOI 1610
Context BibRef

Peng, L., Qi, X.,
Temporal objectness: Model-free learning of object proposals in video,
ICIP16(3663-3667)
IEEE DOI 1610
Detectors BibRef

Werner, T.[Thomas], Martín-García, G.[Germán], Frintrop, S.[Simone],
Saliency-Guided Object Candidates Based on Gestalt Principles,
CVS15(34-44).
Springer DOI 1507
BibRef

Klein, D.A.[Dominik Alexander], Frintrop, S.[Simone],
Salient Pattern Detection Using W2 on Multivariate Normal Distributions,
DAGM12(246-255).
Springer DOI 1209
BibRef

Klein, D.A.[Dominik Alexander], Schulz, D.[Dirk], Frintrop, S.[Simone],
Boosting with a Joint Feature Pool from Different Sensors,
CVS09(63-72).
Springer DOI 0910
BibRef

Frintrop, S.,
The high repeatability of salient regions,
ViA08(xx-yy). 0810
BibRef

Lee, T., Fidler, S., Dickinson, S.J.,
Learning to Combine Mid-Level Cues for Object Proposal Generation,
ICCV15(1680-1688)
IEEE DOI 1602
Adaptation models BibRef

Zhu, H.Y.[Hong-Yuan], Lu, S.J.[Shi-Jian], Cai, J.F.[Jian-Fei], Lee, G.Q.[Guang-Qing],
Diagnosing state-of-the-art object proposal methods,
BMVC15(xx-yy).
DOI Link 1601

See also How good are detection proposals, really?. BibRef

Chen, X.Z.[Xiao-Zhi], Ma, H.M.[Hui-Min], Wang, X.[Xiang], Zhao, Z.C.[Zhi-Chen],
Improving object proposals with multi-thresholding straddling expansion,
CVPR15(2587-2595)
IEEE DOI 1510
BibRef

Liu, S.[Shu], Lu, C.[Cewu], Jia, J.Y.[Jia-Ya],
Box Aggregation for Proposal Decimation: Last Mile of Object Detection,
ICCV15(2569-2577)
IEEE DOI 1602
Computational modeling BibRef

Pont-Tuset, J.[Jordi], van Gool, L.J.[Luc J.],
Boosting Object Proposals: From Pascal to COCO,
ICCV15(1546-1554)
IEEE DOI 1602
Survey of techniques and impact of changing standard benchmark datasets.
See also COCO: Common Objects in Context.
See also PASCAL Visual Object Classes Challenge 2012, The. BibRef

Manen, S.[Santiago], Guillaumin, M.[Matthieu], Van Gool, L.J.[Luc J.],
Prime Object Proposals with Randomized Prim's Algorithm,
ICCV13(2536-2543)
IEEE DOI 1403
Object Detection; Object Proposal BibRef

Ristin, M.[Marko], Gall, J.[Juergen], Van Gool, L.J.[Luc J.],
Local Context Priors for Object Proposal Generation,
ACCV12(I:57-70).
Springer DOI 1304
Selective search to get hypotheses BibRef

He, S.F.[Sheng-Feng], Lau, R.W.H.[Rynson W. H.],
Oriented Object Proposals,
ICCV15(280-288)
IEEE DOI 1602
Detectors BibRef

Kwak, S.[Suha], Cho, M.[Minsu], Laptev, I., Ponce, J.[Jean], Schmid, C.[Cordelia],
Unsupervised Object Discovery and Tracking in Video Collections,
ICCV15(3173-3181)
IEEE DOI 1602
BibRef
And: A2, A1, A5, A4, Only:
Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals,
CVPR15(1201-1210)
IEEE DOI 1510
Coherence. dominant objects from a noisy image collection with multiple object classes. BibRef

Zitnick, C.L.[C. Lawrence], Dollár, P.[Piotr],
Edge Boxes: Locating Object Proposals from Edges,
ECCV14(V: 391-405).
Springer DOI 1408
BibRef

Krähenbühl, P.[Philipp], Koltun, V.[Vladlen],
Geodesic Object Proposals,
ECCV14(V: 725-739).
Springer DOI 1408
BibRef

Rantalankila, P.[Pekka], Kannala, J.H.[Ju-Ho], Rahtu, E.[Esa],
Generating Object Segmentation Proposals Using Global and Local Search,
CVPR14(2417-2424)
IEEE DOI 1409
Object detection BibRef

Bonev, B.[Boyan], Yuille, A.L.[Alan L.],
A Fast and Simple Algorithm for Producing Candidate Regions,
ECCV14(III: 535-549).
Springer DOI 1408
e.g. initial bounding box? BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Small Objects, Detect Small Objects .


Last update:Sep 28, 2024 at 17:47:54