Harwood, D.A.,
Chang, S., and
Davis, L.S.,
Interpreting Aerial Photographs by Segmentation and Search,
DARPA87(507-520).
(
See also Sigma Image Understanding System, The. )
Find segments (homogeneous regions), then find instances which
satisfy definitions of object types, then search for support, then
improve instances, then iterate with new estimates of parameters.
See also Fua and Leclerc Guided Segmentation Papers.
BibRef
8700
Meng, J.,
Yuan, J.,
Yang, J.,
Wang, G.,
Tan, Y.P.,
Object Instance Search in Videos via Spatio-Temporal Trajectory
Discovery,
MultMed(18), No. 1, January 2016, pp. 116-127.
IEEE DOI
1601
Find specific object.
BibRef
Wang, L.T.[Lian-Tao],
Meng, D.,
Hu, X.L.[Xue-Lei],
Lu, J.F.[Jian-Feng],
Zhao, J.[Ji],
Instance Annotation via Optimal BoW for Weakly Supervised Object
Localization,
Cyber(47), No. 5, May 2017, pp. 1313-1324.
IEEE DOI
1704
BibRef
Earlier: A1, A5, A3, A4, Only:
Weakly supervised object localization via maximal entropy randomwalk,
ICIP14(1614-1617)
IEEE DOI
1502
Birds. Entropy
BibRef
Yu, J.G.[Jin-Gang],
Li, Y.S.[Yan-Sheng],
Gao, C.X.[Chang-Xin],
Gao, H.X.[Hong-Xia],
Xia, G.S.[Gui-Song],
Yu, Z.L.[Zhu Liang],
Li, Y.Q.[Yuan-Qing],
Exemplar-Based Recursive Instance Segmentation With Application to
Plant Image Analysis,
IP(29), No. 1, 2020, pp. 389-404.
IEEE DOI
1910
biology computing, computational complexity,
image classification, image segmentation, inference mechanisms,
plant phenotyping
BibRef
Zhang, H.,
Tian, Y.,
Wang, K.,
Zhang, W.,
Wang, F.,
Mask SSD: An Effective Single-Stage Approach to Object Instance
Segmentation,
IP(29), 2020, pp. 2078-2093.
IEEE DOI
2001
Object detection, instance segmentation, feedback features, single-shot detector
BibRef
Goldman, E.[Eran],
Goldberger, J.[Jacob],
CRF with deep class embedding for large scale classification,
CVIU(191), 2020, pp. 102865.
Elsevier DOI
2002
CRF, Class embedding, Matrix factorization,
Surrogate likelihood, Batch normalization
BibRef
Goldman, E.[Eran],
Herzig, R.[Roei],
Eisenschtat, A.[Aviv],
Goldberger, J.[Jacob],
Hassner, T.[Tal],
Precise Detection in Densely Packed Scenes,
CVPR19(5222-5231).
IEEE DOI
2002
E.g. man-made scenes with numerous identical objects.
BibRef
Su, H.[Hao],
Wei, S.J.[Shun-Jun],
Liu, S.[Shan],
Liang, J.D.[Jia-Dian],
Wang, C.[Chen],
Shi, J.[Jun],
Zhang, X.L.[Xiao-Ling],
HQ-ISNet: High-Quality Instance Segmentation for Remote Sensing
Imagery,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Grard, M.[Matthieu],
Dellandréa, E.[Emmanuel],
Chen, L.M.[Li-Ming],
Deep Multicameral Decoding for Localizing Unoccluded Object Instances
from a Single RGB Image,
IJCV(128), No. 5, May 2020, pp. 1331-1359.
Springer DOI
2005
BibRef
Oba, T.[Takeru],
Ukita, N.[Norimichi],
Instance Segmentation by Semi-Supervised Learning and Image Synthesis,
IEICE(E103-D), No. 6, June 2020, pp. 1247-1256.
WWW Link.
2006
BibRef
Hafiz, A.M.[Abdul Mueed],
Bhat, G.M.[Ghulam Mohiuddin],
A survey on instance segmentation: state of the art,
MultInfoRetr(9), No. 3, September 2020, pp. 171-189.
WWW Link.
2008
BibRef
Kim, N.[Nuri],
Lee, D.[Donghoon],
Oh, S.H.[Song-Hwai],
Learning instance-aware object detection using determinantal point
processes,
CVIU(201), 2020, pp. 103061.
Elsevier DOI
2011
Determinantal Point Processes, Object Detection, Crowd Detection
BibRef
Hu, Z.[Zheng],
Liu, Z.[Zhi],
Li, G.Y.[Gong-Yang],
Ye, L.W.[Lin-Wei],
Zhou, L.[Lei],
Wang, Y.[Yang],
Weakly supervised instance segmentation using multi-stage erasing
refinement and saliency-guided proposals ordering,
JVCIR(73), 2020, pp. 102957.
Elsevier DOI
2012
Weakly supervised instance segmentation,
Image-level annotations, Multi-stage erasing refinement,
Saliency-guided proposals ordering
BibRef
Feng, D.[Dong],
Liang, M.G.[Man-Gui],
Gao, F.[Feng],
Huang, Y.C.[Yi-Cheng],
Zhang, X.F.[Xin-Feng],
Duan, L.Y.[Ling-Yu],
Towards Large-Scale Object Instance Search: A Multi-Block N-Ary Trie,
CirSysVideo(31), No. 1, January 2021, pp. 372-386.
IEEE DOI
2101
Veins, Binary codes, Search problems, Computational efficiency,
Task analysis, Optimization, Indexing, Object search, binary code,
approximate nearest neighbor (ANN) search
BibRef
Ferreira de Carvalho, O.L.[Osmar Luiz],
de Carvalho Júnior, O.A.[Osmar Abílio],
de Albuquerque, A.O.[Anesmar Olino],
de Bem, P.P.[Pablo Pozzobon],
Silva, C.R.[Cristiano Rosa],
Ferreira, P.H.G.[Pedro Henrique Guimarães],
dos Santos de Moura, R.[Rebeca],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
Guimarães, R.F.[Renato Fontes],
Borges, D.L.[Díbio Leandro],
Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery
Using Mask-RCNN and a Mosaicking Approach,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Liu, D.,
Zhang, D.,
Song, Y.,
Huang, H.,
Cai, W.,
Panoptic Feature Fusion Net: A Novel Instance Segmentation Paradigm
for Biomedical and Biological Images,
IP(30), 2021, pp. 2045-2059.
IEEE DOI
2101
Semantics, Image segmentation, Task analysis, Biology,
Biomedical imaging, Computer architecture, Histopathology,
plant phenotype images
BibRef
Chen, L.W.[Lin-Wei],
Fu, Y.[Ying],
You, S.[Shaodi],
Liu, H.Z.[Hong-Zhe],
Efficient Hybrid Supervision for Instance Segmentation in Aerial
Images,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Gao, N.Y.[Nai-Yu],
Shan, Y.H.[Yan-Hu],
Wang, Y.P.[Yu-Pei],
Zhao, X.[Xin],
Huang, K.Q.[Kai-Qi],
SSAP: Single-Shot Instance Segmentation With Affinity Pyramid,
CirSysVideo(31), No. 2, February 2021, pp. 661-673.
IEEE DOI
2102
Semantics, Image segmentation, Training, Proposals, Task analysis,
Automation, Predictive models, Instance segmentation,
graph partition
BibRef
Gao, N.Y.[Nai-Yu],
Shan, Y.H.[Yan-Hu],
Wang, Y.P.[Yu-Pei],
Zhao, X.[Xin],
Yu, Y.N.[Yi-Nan],
Yang, M.[Ming],
Huang, K.Q.[Kai-Qi],
SSAP: Single-Shot Instance Segmentation With Affinity Pyramid,
ICCV19(642-651)
IEEE DOI
2004
graph theory, image segmentation, learning (artificial intelligence),
Acceleration
BibRef
Xu, Y.,
Zhou, C.,
Yu, X.,
Xiao, B.,
Yang, Y.,
Pyramidal Multiple Instance Detection Network With Mask Guided
Self-Correction for Weakly Supervised Object Detection,
IP(30), 2021, pp. 3029-3040.
IEEE DOI
2102
Proposals, Annotations, Object detection, Training,
Image segmentation, Detectors, Task analysis, pyramidal network
BibRef
Yu, J.,
Yao, J.,
Zhang, J.,
Yu, Z.,
Tao, D.,
SPRNet: Single-Pixel Reconstruction for One-Stage Instance
Segmentation,
Cyber(51), No. 4, April 2021, pp. 1731-1742.
IEEE DOI
2103
Semantics, Detectors, Image segmentation, Object detection,
Task analysis, Proposals, Image reconstruction,
video analyze
BibRef
Wu, Y.H.,
Liu, Y.,
Zhang, L.,
Gao, W.,
Cheng, M.M.,
Regularized Densely-Connected Pyramid Network for Salient Instance
Segmentation,
IP(30), 2021, pp. 3897-3907.
IEEE DOI
2104
Feature extraction, Semantics, Image segmentation, Visualization,
Task analysis, Object detection, Convolution,
RoIAlign
BibRef
Liu, Y.[Yun],
Wu, Y.H.[Yu-Huan],
Wen, P.S.[Pei-Song],
Shi, Y.J.[Yu-Jun],
Qiu, Y.[Yu],
Cheng, M.M.[Ming-Ming],
Leveraging Instance-, Image- and Dataset-Level Information for Weakly
Supervised Instance Segmentation,
PAMI(44), No. 3, March 2022, pp. 1415-1428.
IEEE DOI
2202
Semantics, Proposals, Image segmentation, Training,
Probability distribution, Feature extraction, Noise measurement,
multi-way cut
BibRef
Zhu, L.C.[Lin-Chao],
Fan, H.H.[He-He],
Luo, Y.W.[Ya-Wei],
Xu, M.L.[Ming-Liang],
Yang, Y.[Yi],
Few-Shot Common-Object Reasoning Using Common-Centric Localization
Network,
IP(30), 2021, pp. 4253-4262.
IEEE DOI
2104
Feature extraction, Object detection, Task analysis,
Location awareness, Annotations, Cognition, Proposals,
object detection
BibRef
Wang, H.[Hui],
Li, H.[Hao],
Qian, W.L.[Wan-Li],
Diao, W.H.[Wen-Hui],
Zhao, L.J.[Liang-Jin],
Zhang, J.H.[Jing-Hua],
Zhang, D.B.[Dao-Bing],
Dynamic Pseudo-Label Generation for Weakly Supervised Object
Detection in Remote Sensing Images,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Fu, K.[Kun],
Chang, Z.H.[Zhong-Han],
Zhang, Y.[Yue],
Sun, X.[Xian],
Point-Based Estimator for Arbitrary-Oriented Object Detection in
Aerial Images,
GeoRS(59), No. 5, May 2021, pp. 4370-4387.
IEEE DOI
2104
Object detection, Detectors, Task analysis, Feature extraction,
Predictive models, Object recognition, Quantization (signal),
point-based estimator
BibRef
Lu, J.Y.[Jun-Yan],
Jia, H.G.[Hong-Guang],
Li, T.[Tie],
Li, Z.Q.[Zhu-Qiang],
Ma, J.Y.[Jing-Yu],
Zhu, R.F.[Rui-Fei],
An Instance Segmentation Based Framework for Large-Sized
High-Resolution Remote Sensing Images Registration,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Tan, J.[Jingang],
Wang, K.[Kangru],
Chen, L.[Lili],
Zhang, G.H.[Guang-Hui],
Li, J.[Jiamao],
Zhang, X.L.[Xiao-Lin],
HCFS3D: Hierarchical coupled feature selection network for 3D
semantic and instance segmentation,
IVC(109), 2021, pp. 104129.
Elsevier DOI
2105
Point clouds, Semantic segmentation, Instance segmentation,
Feature selection, Mutual assistance, Conditional random fields
BibRef
Pang, J.M.[Jiang-Miao],
Chen, K.[Kai],
Li, Q.[Qi],
Xu, Z.H.[Zhi-Hai],
Feng, H.J.[Hua-Jun],
Shi, J.P.[Jian-Ping],
Ouyang, W.L.[Wan-Li],
Lin, D.H.[Da-Hua],
Towards Balanced Learning for Instance Recognition,
IJCV(129), No. 5, May 2021, pp. 1376-1393.
Springer DOI
2105
BibRef
Sung, P.W.[Po-Wei],
Yang, W.J.[Wei-Jong],
Yang, J.F.[Jar-Ferr],
Chan, D.Y.[Din-Yuan],
An interactive instance segmentation system with multi-resolution
convolutional neural networks,
IET-CV(15), No. 2, 2021, pp. 99-109.
DOI Link
2106
BibRef
Liu, N.[Nian],
Zhao, W.B.[Wang-Bo],
Shao, L.[Ling],
Han, J.W.[Jun-Wei],
SCG: Saliency and Contour Guided Salient Instance Segmentation,
IP(30), 2021, pp. 5862-5874.
IEEE DOI
2107
Task analysis, Saliency detection, Image segmentation, Head,
Proposals, Feature extraction, Computational modeling,
attention model
BibRef
Gao, N.[Naiyu],
Shan, Y.[Yanhu],
Zhao, X.[Xin],
Huang, K.Q.[Kai-Qi],
Learning Category- and Instance-Aware Pixel Embedding for Fast
Panoptic Segmentation,
IP(30), 2021, pp. 6013-6023.
IEEE DOI
2107
Semantic and instance together.
Image segmentation, Semantics, Predictive models, Task analysis,
Pipelines, Image color analysis, Head, Panoptic segmentation, pixel embedding
BibRef
Wu, Z.T.[Zi-Tong],
Hou, B.[Biao],
Ren, B.[Bo],
Ren, Z.L.[Zhong-Le],
Wang, S.[Shuang],
Jiao, L.C.[Li-Cheng],
A Deep Detection Network Based on Interaction of Instance
Segmentation and Object Detection for SAR Images,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Tan, J.[Jingang],
Chen, L.[Lili],
Wang, K.R.[Kang-Ru],
Li, J.M.[Jia-Mao],
Zhang, X.L.[Xiao-Lin],
SASO: Joint 3D semantic-instance segmentation via multi-scale
semantic association and salient point clustering optimization,
IET-CV(15), No. 5, 2021, pp. 366-379.
DOI Link
2107
BibRef
Zeng, X.F.[Xiang-Feng],
Wei, S.J.[Shun-Jun],
Wei, J.S.[Jin-Shan],
Zhou, Z.C.[Zi-Chen],
Shi, J.[Jun],
Zhang, X.L.[Xiao-Ling],
Fan, F.[Fan],
CPISNet: Delving into Consistent Proposals of Instance Segmentation
Network for High-Resolution Aerial Images,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Yi, J.R.[Jing-Ru],
Wu, P.X.[Peng-Xiang],
Tang, H.[Hui],
Liu, B.[Bo],
Huang, Q.[Qiaoying],
Qu, H.[Hui],
Han, L.[Lianyi],
Fan, W.[Wei],
Hoeppner, D.J.[Daniel J.],
Metaxas, D.N.[Dimitris N.],
Object-Guided Instance Segmentation With Auxiliary Feature Refinement
for Biological Images,
MedImg(40), No. 9, September 2021, pp. 2403-2414.
IEEE DOI
2109
Image segmentation, Heating systems, Head, Feature extraction,
Detectors, Object detection, Shape, Instance segmentation,
medical image segmentation
BibRef
Zhan, Y.[Yu],
Zhao, W.L.[Wan-Lei],
Instance search via instance level segmentation and feature
representation,
JVCIR(79), 2021, pp. 103253.
Elsevier DOI
2109
Instance search, Instance segmentation, CNN
BibRef
Gominski, D.[Dimitri],
Gouet-Brunet, V.[Valérie],
Chen, L.M.[Li-Ming],
Connecting Images through Sources: Exploring Low-Data, Heterogeneous
Instance Retrieval,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Karara, G.[Ghizlane],
Hajji, R.[Rafika],
Poux, F.[Florent],
3D Point Cloud Semantic Augmentation: Instance Segmentation of 360°
Panoramas by Deep Learning Techniques,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Hao, S.Y.[Sheng-Yu],
Wang, G.[Gaoang],
Gu, R.S.[Ren-Shu],
Weakly supervised instance segmentation using multi-prior fusion,
CVIU(211), 2021, pp. 103261.
Elsevier DOI
2110
Instance segmentation, Weakly supervised, Multi-priors, Bounding box annotations
BibRef
Chen, F.[Feng],
Wu, F.[Fei],
Gao, G.W.[Guang-Wei],
Ji, Y.[Yimu],
Xu, J.[Jing],
Jiang, G.P.[Guo-Ping],
Jing, X.Y.[Xiao-Yuan],
JSPNet: Learning joint semantic and instance segmentation of point
clouds via feature self-similarity and cross-task probability,
PR(122), 2022, pp. 108250.
Elsevier DOI
2112
Instance semantic segmentation, Point could processing, Multi-task learning
BibRef
Yang, F.[Feng],
Yuan, X.Y.[Xiang-Yue],
Ran, J.[Jie],
Shu, W.Q.[Wen-Qiang],
Zhao, Y.[Yue],
Qin, A.[Anyong],
Gao, C.Q.[Chen-Qiang],
Accurate Instance Segmentation for Remote Sensing Images via Adaptive
and Dynamic Feature Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, T.[Tao],
Liew, J.H.[Jun Hao],
Li, Y.[Yu],
Chen, Y.P.[Yun-Peng],
Feng, J.S.[Jia-Shi],
SODAR: Exploring Locally Aggregated Learning of Mask Representations
for Instance Segmentation,
IP(31), 2022, pp. 839-851.
IEEE DOI
2201
Computer architecture, Microprocessors, Image segmentation,
Convolution, Predictive models, Shape, Computational modeling,
mask representation
BibRef
Bolya, D.[Daniel],
Zhou, C.[Chong],
Xiao, F.[Fanyi],
Lee, Y.J.[Yong Jae],
YOLACT++ Better Real-Time Instance Segmentation,
PAMI(44), No. 2, February 2022, pp. 1108-1121.
IEEE DOI
2201
BibRef
Earlier:
YOLACT: Real-Time Instance Segmentation,
ICCV19(9156-9165)
IEEE DOI
2004
Prototypes, Real-time systems, Image segmentation,
Object detection, Detectors, Task analysis, Shape, real time.
convolutional neural nets,
learning (artificial intelligence)
BibRef
Bolya, D.[Daniel],
Foley, S.[Sean],
Hays, J.[James],
Hoffman, J.[Judy],
TIDE: A General Toolbox for Identifying Object Detection Errors,
ECCV20(III:558-573).
Springer DOI
2012
BibRef
Zhang, X.L.[Xiao-Liang],
Li, H.L.[Hong-Liang],
Meng, F.[Fanman],
Song, Z.C.[Zi-Chen],
Xu, L.F.[Lin-Feng],
Segmenting Beyond the Bounding Box for Instance Segmentation,
CirSysVideo(32), No. 2, February 2022, pp. 704-714.
IEEE DOI
2202
Object detection, Image segmentation, Semantics, Proposals,
Detectors, Task analysis, Training, Instance segmentation, pixel embedding
BibRef
Oksuz, K.[Kemal],
Cam, B.C.[Baris Can],
Akbas, E.[Emre],
Kalkan, S.[Sinan],
Rank &Sort Loss for Object Detection and Instance Segmentation,
ICCV21(2989-2998)
IEEE DOI
2203
Training, Visualization, Pipelines, Detectors, Object detection,
Multitasking, Loss measurement,
BibRef
Wang, G.H.[Gai-Hua],
Lin, J.H.[Jin-Heng],
Zhai, Q.Y.[Qian-Yu],
Cheng, L.[Lei],
Dai, Y.Y.[Ying-Ying],
Zhang, T.L.[Tian-Lun],
MAMask: Multi-feature aggregation instance segmentation with pyramid
attention mechanism,
IET-IPR(16), No. 5, 2022, pp. 1341-1348.
DOI Link
2203
BibRef
Wang, G.H.[Gai-Hua],
Zhai, Q.Y.[Qian-Yu],
Lin, J.H.[Jin-Heng],
Multi-scale network for remote sensing segmentation,
IET-IPR(16), No. 6, 2022, pp. 1742-1751.
DOI Link
2204
BibRef
Gu, W.C.[Wen-Chao],
Bai, S.[Shuang],
Kong, L.X.[Ling-Xing],
A review on 2D instance segmentation based on deep neural networks,
IVC(120), 2022, pp. 104401.
Elsevier DOI
2204
Instance segmentation, Deep neural networks, Computer vision, Review
BibRef
Chen, X.Y.[Xiao-Yu],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Meng, F.[Fanman],
Qiu, H.Q.[He-Qian],
Bal-R2CNN: High Quality Recurrent Object Detection With Balance
Optimization,
MultMed(24), 2022, pp. 1558-1569.
IEEE DOI
2204
Proposals, Detectors, Location awareness, Optimization, Training,
Task analysis, Object detection, Convolutional neural network,
object recognition
BibRef
Wang, Y.[Yan],
Li, Y.[Yang],
Guo, X.H.[Xiao-Hui],
Jiao, L.C.[Li-Cheng],
Liu, X.[Xu],
CDANet: Common-and-Differential Attention Network for Object
Detection and Instance Segmentation,
PRL(158), 2022, pp. 48-54.
Elsevier DOI
2205
Object detection, Common-and-differential operations, Attention mechanism
BibRef
Hu, J.F.[Jian-Fang],
Sun, J.X.[Jiang-Xin],
Lin, Z.H.[Zi-Hang],
Lai, J.H.[Jian-Huang],
Zeng, W.J.[Wen-Jun],
Zheng, W.S.[Wei-Shi],
APANet: Auto-Path Aggregation for Future Instance Segmentation
Prediction,
PAMI(44), No. 7, July 2022, pp. 3386-3403.
IEEE DOI
2206
Feature extraction, Image segmentation, Predictive models,
Aggregates, Task analysis, Adaptation models, Hidden Markov models,
auto-path aggregation
BibRef
Yang, R.P.[Rui-Ping],
Yu, J.[Jiguo],
Yin, J.[Jian],
Liu, K.[Kun],
Xu, S.H.[Shao-Hua],
A dense R-CNN multi-target instance segmentation model and its
application in medical image processing,
IET-IPR(16), No. 9, 2022, pp. 2495-2505.
DOI Link
2206
BibRef
Lv, K.F.[Ke-Feng],
Zhang, Y.S.[Yong-Sheng],
Yu, Y.[Ying],
Wang, H.[Hanyun],
Li, L.[Lei],
Jiang, H.G.[Huai-Gang],
Dai, C.G.[Chen-Guang],
Contour deformation network for instance segmentation,
PRL(159), 2022, pp. 213-219.
Elsevier DOI
2206
Instance segmentation, Contour deformation network, Graph convolutional network
BibRef
Xie, E.[Enze],
Wang, W.[Wenhai],
Ding, M.Y.[Ming-Yu],
Zhang, R.[Ruimao],
Luo, P.[Ping],
PolarMask++: Enhanced Polar Representation for Single-Shot Instance
Segmentation and Beyond,
PAMI(44), No. 9, September 2022, pp. 5385-5400.
IEEE DOI
2208
Pipelines, Image segmentation, Object detection,
Feature extraction, Detectors, Tensors, Proposals,
fully convolutional network
BibRef
Xie, E.,
Sun, P.,
Song, X.,
Wang, W.,
Liu, X.,
Liang, D.,
Shen, C.,
Luo, P.,
PolarMask: Single Shot Instance Segmentation With Polar
Representation,
CVPR20(12190-12199)
IEEE DOI
2008
Image segmentation, Task analysis, Training, Detectors,
Complexity theory, Pipelines, Feature extraction
BibRef
Zheng, Z.H.[Zhao-Hui],
Wang, P.[Ping],
Ren, D.W.[Dong-Wei],
Liu, W.[Wei],
Ye, R.G.[Rong-Guang],
Hu, Q.H.[Qing-Hua],
Zuo, W.M.[Wang-Meng],
Enhancing Geometric Factors in Model Learning and Inference for
Object Detection and Instance Segmentation,
Cyber(52), No. 8, August 2022, pp. 8574-8586.
IEEE DOI
2208
Object detection, Training, Graphics processing units,
Real-time systems, Detectors, Testing, Performance gain, object detection
BibRef
Kim, N.[Namyup],
Hwang, S.[Sehyun],
Kwak, S.[Suha],
Learning to Detect Semantic Boundaries with Image-Level Class Labels,
IJCV(130), No. 9, September 2022, pp. 2131-2148.
Springer DOI
2208
BibRef
Ahn, J.[Jiwoon],
Cho, S.[Sunghyun],
Kwak, S.[Suha],
Weakly Supervised Learning of Instance Segmentation With Inter-Pixel
Relations,
CVPR19(2204-2213).
IEEE DOI
2002
BibRef
Earlier: A1, A3, Only:
Learning Pixel-Level Semantic Affinity with Image-Level Supervision
for Weakly Supervised Semantic Segmentation,
CVPR18(4981-4990)
IEEE DOI
1812
Image segmentation, Semantics, Training, Shape, Visualization,
Pipelines, Motion segmentation
BibRef
Fan, H.[Hehe],
Liu, P.[Ping],
Xu, M.L.[Ming-Liang],
Yang, Y.[Yi],
Unsupervised Visual Representation Learning via Dual-Level
Progressive Similar Instance Selection,
Cyber(52), No. 9, September 2022, pp. 8851-8861.
IEEE DOI
2208
Visualization, Training, Task analysis, Reliability, Neural networks,
Fans, Correlation, Deep learning, fine-grained categorization,
unsupervised learning
BibRef
Wu, J.L.[Jia-Lian],
Song, L.C.[Liang-Chen],
Zhang, Q.[Qian],
Yang, M.[Ming],
Yuan, J.S.[Jun-Song],
ForestDet: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation,
MultMed(24), 2022, pp. 3693-3705.
IEEE DOI
2208
Vegetation, Forestry, Noise measurement,
Toy manufacturing industry, Proposals,
long-tailed data distribution
BibRef
Rossi, L.[Leonardo],
Karimi, A.[Akbar],
Prati, A.[Andrea],
Self-Balanced R-CNN for instance segmentation,
JVCIR(87), 2022, pp. 103595.
Elsevier DOI
2208
Object detection, Instance segmentation,
Imbalance in R-CNN networks, Two-stage deep learning architectures
BibRef
Ahmed, I.[Imran],
Ahmad, M.[Misbah],
Chehri, A.[Abdellah],
Hassan, M.M.[Mohammad Mehedi],
Jeon, G.G.[Gwang-Gil],
IoT Enabled Deep Learning Based Framework for Multiple Object
Detection in Remote Sensing Images,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Qi, L.[Lu],
Wang, Y.[Yi],
Chen, Y.[Yukang],
Chen, Y.C.[Ying-Cong],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Jia, J.Y.[Jia-Ya],
PointINS: Point-Based Instance Segmentation,
PAMI(44), No. 10, October 2022, pp. 6377-6392.
IEEE DOI
2209
Feature extraction, Detectors, Convolution, Image segmentation,
Semantics, Training, Object detection, Instance segmentation,
single-point feature
BibRef
Wang, X.L.[Xin-Long],
Liu, S.[Shu],
Shen, X.Y.[Xiao-Yong],
Shen, C.H.[Chun-Hua],
Jia, J.Y.[Jia-Ya],
Associatively Segmenting Instances and Semantics in Point Clouds,
CVPR19(4091-4100).
IEEE DOI
2002
BibRef
Jiang, L.[Li],
Zhao, H.S.[Heng-Shuang],
Shi, S.S.[Shao-Shuai],
Liu, S.[Shu],
Fu, C.W.[Chi-Wing],
Jia, J.Y.[Jia-Ya],
PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation,
CVPR20(4866-4875)
IEEE DOI
2008
Semantics, Feature extraction,
Task analysis, Space exploration, Proposals
BibRef
Yin, C.X.[Cheng-Xiang],
Tang, J.[Jian],
Yuan, T.T.[Tong-Tong],
Xu, Z.Y.[Zhi-Yuan],
Wang, Y.Z.[Yan-Zhi],
Bridging the Gap Between Semantic Segmentation and Instance
Segmentation,
MultMed(24), 2022, pp. 4183-4196.
IEEE DOI
2209
Semantics, Image segmentation, Real-time systems, Training,
Task analysis, Neurons, Head, Semantic segmentation, sem2Ins
BibRef
Zhao, B.[Bowen],
Chen, C.[Chen],
Xiao, X.[Xi],
Xia, S.T.[Shu-Tao],
Towards a category-extended object detector with limited data,
PR(132), 2022, pp. 108943.
Elsevier DOI
2209
Object detector, Category-extended, Limited data, Multi-dataset
BibRef
Liang, P.X.[Pei-Xian],
Zhang, Y.Z.[Yi-Zhe],
Ding, Y.F.[Yi-Fan],
Chen, J.[Jianxu],
Madukoma, C.S.[Chinedu S.],
Weninger, T.[Tim],
Shrout, J.D.[Joshua D.],
Chen, D.Z.[Danny Z.],
H-EMD: A Hierarchical Earth Mover's Distance Method for Instance
Segmentation,
MedImg(41), No. 10, October 2022, pp. 2582-2597.
IEEE DOI
2210
Image segmentation, Semantics, Biomedical imaging, Videos, Earth,
Forestry, Instance segmentation, earth mover's distance, 3D images
BibRef
Guo, X.L.[Xiao-Long],
Lan, X.S.[Xiao-Song],
Wang, K.[Kunfeng],
Li, S.[Shuxiao],
Contour loss for instance segmentation via k-step distance
transformation image,
IET-CV(16), No. 8, 2022, pp. 683-693.
DOI Link
2210
BibRef
Wang, X.L.[Xin-Long],
Zhang, R.F.[Ru-Feng],
Shen, C.H.[Chun-Hua],
Kong, T.[Tao],
Li, L.[Lei],
SOLO: A Simple Framework for Instance Segmentation,
PAMI(44), No. 11, November 2022, pp. 8587-8601.
IEEE DOI
2210
Image segmentation, Semantics, Object detection, Task analysis,
Kernel, Training, Standards, Instance segmentation,
object detection, segmenting objects by locations
BibRef
Zhang, Q.L.[Qing-Long],
Yang, Y.B.[Yu-Bin],
A boundary-preserving conditional convolution network for instance
segmentation,
PRL(163), 2022, pp. 1-9.
Elsevier DOI
2212
Instance segmentation, Boundary-preserving,
Conditional convolution, Post-processing mechanism
BibRef
Zhao, X.Q.[Xin-Qiao],
Xiao, J.[Jimin],
Zhang, B.F.[Bing-Feng],
Zhang, Q.[Quan],
Waleed, A.N.[Al-Nuaimy],
Weight-Guided Loss for Long-Tailed Object Detection and Instance
Segmentation,
SP:IC(110), 2023, pp. 116874.
Elsevier DOI
2212
Long-tail, Object detection, Instance segmentation
BibRef
Ye, W.J.[Wu-Jian],
Liu, C.J.[Chao-Jie],
Chen, Y.H.[Yue-Hai],
Liu, Y.J.[Yi-Jun],
Liu, C.M.[Chen-Ming],
Zhou, H.H.[Hui-Hui],
Multi-style transfer and fusion of image's regions based on attention
mechanism and instance segmentation,
SP:IC(110), 2023, pp. 116871.
Elsevier DOI
2212
Multi-style transfer, Attention mechanism,
Regional stylization, Instance segmentation, Poisson fusion
BibRef
Zhang, Z.Y.[Zhong-Yan],
Wang, L.[Lei],
Wang, Y.[Yang],
Zhou, L.P.[Lu-Ping],
Zhang, J.[Jianjia],
Chen, F.[Fang],
Dataset-Driven Unsupervised Object Discovery for Region-Based
Instance Image Retrieval,
PAMI(45), No. 1, January 2023, pp. 247-263.
IEEE DOI
2212
Detectors, Image retrieval, Feature extraction, Object detection,
Task analysis, Reliability, Training, Instance image retrieval,
unsupervised learning
BibRef
Yang, L.R.[Long-Rong],
Li, H.L.[Hong-Liang],
Meng, F.[Fanman],
Wu, Q.B.[Qing-Bo],
Ngan, K.N.[King Ngi],
Task-Specific Loss for Robust Instance Segmentation With Noisy Class
Labels,
CirSysVideo(33), No. 1, January 2023, pp. 213-227.
IEEE DOI
2301
Noise measurement, Task analysis, Image segmentation, Entropy,
Proposals, Semantics, Annotations, Noisy class labels,
self-supervised learning
BibRef
Yang, L.R.[Long-Rong],
Meng, F.[Fanman],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Cheng, Q.S.[Qi-Shang],
Learning with Noisy Class Labels for Instance Segmentation,
ECCV20(XIV:38-53).
Springer DOI
2011
BibRef
Zhang, J.B.[Jia-Bin],
Su, H.[Hu],
He, Y.H.[Yong-Hao],
Zou, W.[Wei],
Weakly Supervised Instance Segmentation via Category-aware Centerness
Learning with Localization Supervision,
PR(136), 2023, pp. 109165.
Elsevier DOI
2301
Weakly supervised learning, Instance segmentation, Centerness,
Coarse localization annotation
BibRef
Cao, J.[Jiale],
Pang, Y.W.[Yan-Wei],
Anwer, R.M.[Rao Muhammad],
Cholakkal, H.[Hisham],
Khan, F.S.[Fahad Shahbaz],
Shao, L.[Ling],
SipMaskv2: Enhanced Fast Image and Video Instance Segmentation,
PAMI(45), No. 3, March 2023, pp. 3798-3812.
IEEE DOI
2302
BibRef
Earlier: A1, A3, A4, A5, A2, A6:
Sipmask: Spatial Information Preservation for Fast Image and Video
Instance Segmentation,
ECCV20(XIV:1-18).
Springer DOI
2011
Image segmentation, Training, Real-time systems, Proposals,
Feature extraction, Object detection, Task analysis,
spatial information preservation
BibRef
Zhang, K.[Ke],
Yuan, C.[Chun],
Zhu, Y.M.[Yi-Ming],
Jiang, Y.[Yong],
Luo, L.[Lishu],
Weakly Supervised Instance Segmentation by Exploring Entire Object
Regions,
MultMed(25), 2023, pp. 352-363.
IEEE DOI
2302
Image segmentation, Semantics, Task analysis, Streaming media,
Location awareness, Saliency detection, Training, integration module
BibRef
Zhou, J.H.[Jia-Huan],
Su, B.[Bing],
Wu, Y.[Ying],
Discriminative Self-Paced Group-Metric Adaptation for Online Visual
Identification,
PAMI(45), No. 4, April 2023, pp. 4368-4383.
IEEE DOI
2303
Visualization, Testing, Adaptation models, Measurement, Training,
Data models, Feature extraction, Learning from sharing, self-paced learning
BibRef
Koporec, G.[Gregor],
Perš, J.[Janez],
Human-centered deep compositional model for handling occlusions,
PR(138), 2023, pp. 109397.
Elsevier DOI
2303
Convolutional neural networks,
Hierarchical compositonal model, Instance segmentation, Domain knowledge
BibRef
Guan, L.[Licong],
Yuan, X.[Xue],
Instance Segmentation Model Evaluation and Rapid Deployment for
Autonomous Driving Using Domain Differences,
ITS(24), No. 4, April 2023, pp. 4050-4059.
IEEE DOI
2304
Autonomous vehicles, Image segmentation, Adaptation models,
Predictive models, Data models, Training, Task analysis,
domain difference
BibRef
Chen, W.[Wei],
Liu, Y.[Yu],
Wang, W.P.[Wei-Ping],
Bakker, E.M.[Erwin M.],
Georgiou, T.[Theodoros],
Fieguth, P.[Paul],
Liu, L.[Li],
Lew, M.S.[Michael S.],
Deep Learning for Instance Retrieval: A Survey,
PAMI(45), No. 6, June 2023, pp. 7270-7292.
IEEE DOI
2305
Feature extraction, Image retrieval, Deep learning, Task analysis,
Analytical models, Convolutional neural networks, Visualization,
literature survey
BibRef
Qi, L.[Lu],
Kuen, J.[Jason],
Wang, Y.[Yi],
Gu, J.X.[Jiu-Xiang],
Zhao, H.S.[Heng-Shuang],
Torr, P.H.S.[Philip H.S.],
Lin, Z.[Zhe],
Jia, J.Y.[Jia-Ya],
Open World Entity Segmentation,
PAMI(45), No. 7, July 2023, pp. 8743-8756.
IEEE DOI
2306
Image segmentation, Task analysis, Training, Object detection,
Visualization, Standards, Semantics, Image segmentation,
cross-dataset
BibRef
Huynh, D.[Dat],
Kuen, J.[Jason],
Lin, Z.[Zhe],
Gu, J.X.[Jiu-Xiang],
Elhamifar, E.[Ehsan],
Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling,
CVPR22(7010-7021)
IEEE DOI
2210
Training, Image segmentation, Visualization, Annotations, Semantics,
Pattern recognition, Transfer/low-shot/long-tail learning,
grouping and shape analysis
BibRef
Pei, J.L.[Jia-Lun],
Cheng, T.Y.[Tian-Yang],
Tang, H.[He],
Chen, C.B.[Chuan-Bo],
Transformer-Based Efficient Salient Instance Segmentation Networks
With Orientative Query,
MultMed(25), 2023, pp. 1964-1978.
IEEE DOI
2306
Transformers, Task analysis, Object detection, Image segmentation, Decoding,
Visualization, Training, Salient instance segmentation, attention model
BibRef
Zhang, X.Q.[Xiang-Qing],
Feng, Y.[Yan],
Zhang, S.[Shun],
Wang, N.[Nan],
Mei, S.H.[Shao-Hui],
He, M.Y.[Ming-Yi],
Semi-Supervised Person Detection in Aerial Images with Instance
Segmentation and Maximum Mean Discrepancy Distance,
RS(15), No. 11, 2023, pp. 2928.
DOI Link
2306
BibRef
Ke, L.[Lei],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Occlusion-Aware Instance Segmentation Via BiLayer Network
Architectures,
PAMI(45), No. 8, August 2023, pp. 10197-10211.
IEEE DOI
2307
BibRef
Earlier:
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers,
CVPR21(4018-4027)
IEEE DOI
2111
Transformers, Image segmentation, Decoding, Magnetic heads, Head,
Convolutional neural networks, Task analysis, BCNet,
occlusion-aware video instance segmen- tation.
Convolutional codes,
Computational modeling, Detectors, Performance gain
BibRef
Li, D.W.[Da-Wei],
Li, W.[Wenbo],
Jin, H.X.[Hong-Xia],
Foreground-specialized Model Imitation for Instance Segmentation,
ACCV22(VII:398-413).
Springer DOI
2307
BibRef
Chen, L.W.[Lin-Wei],
Fu, Y.[Ying],
Wei, K.X.[Kai-Xuan],
Zheng, D.Z.[De-Zhi],
Heide, F.[Felix],
Instance Segmentation in the Dark,
IJCV(131), No. 8, August 2023, pp. 2198-2218.
Springer DOI
2307
BibRef
Wang, Y.Q.[Yu-Qi],
Chen, Y.T.[Yun-Tao],
Zhang, Z.X.[Zhao-Xiang],
Object Affinity Learning: Towards Annotation-Free Instance
Segmentation,
PAMI(45), No. 11, November 2023, pp. 13959-13973.
IEEE DOI
2310
BibRef
Cheng, T.H.[Tian-Heng],
Wang, X.G.[Xing-Gang],
Chen, S.Y.[Shao-Yu],
Zhang, W.Q.[Wen-Qiang],
Zhang, Q.[Qian],
Huang, C.[Chang],
Zhang, Z.X.[Zhao-Xiang],
Liu, W.Y.[Wen-Yu],
Sparse Instance Activation for Real-Time Instance Segmentation,
CVPR22(4423-4432)
IEEE DOI
2210
Convolutional codes, Aggregates, Object detection,
Benchmark testing, Real-time systems, Pattern recognition,
retrieval
BibRef
Tao, M.[Manli],
Zhao, C.Y.[Chao-Yang],
Tang, M.[Ming],
Wang, J.Q.[Jin-Qiao],
Objformer: Boosting 3D object detection via instance-wise interaction,
PR(146), 2024, pp. 110061.
Elsevier DOI
2311
3D object detection, Point clouds, Incompletion and occlusion,
Instance-wise interaction
BibRef
Chu, K.C.[Kuan-Chao],
Nakayama, H.[Hideki],
Two-Path Object Knowledge Injection for Detecting Novel Objects with
Single-Stage Dense Detector,
IEICE(E106-D), No. 11, November 2023, pp. 1868-1880.
WWW Link.
2311
BibRef
Zhang, Y.[Yue],
Liang, C.[Chao],
Jiang, L.X.[Long-Xiang],
Confidence-Aware Active Feedback for Interactive Instance Search,
MultMed(25), 2023, pp. 7173-7184.
IEEE DOI Code:
WWW Link.
2311
BibRef
Song, M.S.[Min-Soo],
Um, G.M.[Gi-Mun],
Lee, H.K.[Hee Kyung],
Seo, J.[Jeongil],
Kim, W.J.[Won-Jun],
Dynamic Residual Filtering With Laplacian Pyramid for Instance
Segmentation,
MultMed(25), 2023, pp. 6892-6903.
IEEE DOI Code:
WWW Link.
2311
BibRef
Yang, L.[Longrong],
Li, H.L.[Hong-Liang],
Wu, Q.[Qingbo],
Meng, F.[Fanman],
Qiu, H.[Heqian],
Xu, L.F.[Lin-Feng],
Bias-Correction Feature Learner for Semi-Supervised Instance
Segmentation,
MultMed(25), 2023, pp. 5852-5863.
IEEE DOI
2311
BibRef
Yelleni, S.H.[Sai Harsha],
Kumari, D.[Deepshikha],
Srijith, P.K.,
Mohan, C.K.[C. Krishna],
Monte Carlo DropBlock for modeling uncertainty in object detection,
PR(146), 2024, pp. 110003.
Elsevier DOI
2311
Monte Carlo method, DropBlock, Object detection,
Bayesian deep learning, Uncertainty estimation, Instance segmentation
BibRef
Ye-Bin, M.[Moon],
Choi, D.[Dongmin],
Kwon, Y.J.[Yong-Jin],
Kim, J.[Junsik],
Oh, T.H.[Tae-Hyun],
ENInst: Enhancing weakly-supervised low-shot instance segmentation,
PR(145), 2024, pp. 109888.
Elsevier DOI
2311
Low-shot learning, Weakly-supervised learning,
Instance segmentation, Sub-task analysis, Enhancement methods
BibRef
Jena, R.[Rohit],
Zhornyak, L.[Lukas],
Doiphode, N.[Nehal],
Chaudhari, P.[Pratik],
Buch, V.[Vivek],
Gee, J.[James],
Shi, J.B.[Jian-Bo],
Beyond mAP: Towards Better Evaluation of Instance Segmentation,
CVPR23(11309-11318)
IEEE DOI
2309
BibRef
Li, R.H.[Rui-Huang],
He, C.H.[Chen-Hang],
Li, S.[Shuai],
Zhang, Y.[Yabin],
Zhang, L.[Lei],
DynaMask: Dynamic Mask Selection for Instance Segmentation,
CVPR23(11279-11288)
IEEE DOI
2309
BibRef
Shin, G.[Gyungin],
Xie, W.[Weidi],
Albanie, S.[Samuel],
NamedMask: Distilling Segmenters from Complementary Foundation Models,
L3D-IVU23(4961-4970)
IEEE DOI
2309
BibRef
Shin, G.[Gyungin],
Albanie, S.[Samuel],
Xie, W.[Weidi],
Zero-shot Unsupervised Transfer Instance Segmentation,
L3D-IVU23(4848-4858)
IEEE DOI
2309
BibRef
Su, J.M.[Jin-Ming],
Yin, R.[Ruihong],
Chen, X.Y.[Xing-Yue],
Luo, J.F.[Jun-Feng],
Perceive, Excavate and Purify: A Novel Object Mining Framework for
Instance Segmentation,
PVUW23(3581-3590)
IEEE DOI
2309
BibRef
Yoon, J.[Jihun],
Choi, M.K.[Min-Kook],
Exploring Video Frame Redundancies for Efficient Data Sampling and
Annotation in Instance Segmentation,
VDU23(3308-3317)
IEEE DOI
2309
BibRef
He, J.J.[Jun-Jie],
Li, P.Y.[Peng-Yu],
Geng, Y.F.[Yi-Feng],
Xie, X.[Xuansong],
FastInst: A Simple Query-Based Model for Real-Time Instance
Segmentation,
CVPR23(23663-23672)
IEEE DOI
2309
BibRef
Vibashan, V.S.,
Yu, N.[Ning],
Xing, C.[Chen],
Qin, C.[Can],
Gao, M.[Mingfei],
Niebles, J.C.[Juan Carlos],
Patel, V.M.[Vishal M.],
Xu, R.[Ran],
Mask-Free OVIS: Open-Vocabulary Instance Segmentation without Manual
Mask Annotations,
CVPR23(23539-23549)
IEEE DOI
2309
BibRef
Liao, M.X.[Ming-Xiang],
Guo, Z.[Zonghao],
Wang, Y.Z.[Yu-Ze],
Yuan, P.[Peng],
Feng, B.[Bailan],
Wan, F.[Fang],
AttentionShift: Iteratively Estimated Part-Based Attention Map for
Pointly Supervised Instance Segmentation,
CVPR23(19519-19528)
IEEE DOI
2309
BibRef
He, S.T.[Shu-Ting],
Ding, H.H.[Heng-Hui],
Jiang, W.[Wei],
Semantic-Promoted Debiasing and Background Disambiguation for
Zero-Shot Instance Segmentation,
CVPR23(19498-19507)
IEEE DOI
2309
BibRef
Ishtiak, T.[Taoseef],
En, Q.[Qing],
Guo, Y.H.[Yu-Hong],
Exemplar-FreeSOLO: Enhancing Unsupervised Instance Segmentation with
Exemplars,
CVPR23(15424-15433)
IEEE DOI
2309
BibRef
Yan, B.[Bin],
Jiang, Y.[Yi],
Wu, J.[Jiannan],
Wang, D.[Dong],
Luo, P.[Ping],
Yuan, Z.H.[Ze-Huan],
Lu, H.C.[Hu-Chuan],
Universal Instance Perception as Object Discovery and Retrieval,
CVPR23(15325-15336)
IEEE DOI
2309
BibRef
Li, R.H.[Rui-Huang],
He, C.[Chenhang],
Zhang, Y.[Yabin],
Li, S.[Shuai],
Chen, L.[Liyi],
Zhang, L.[Lei],
SIM: Semantic-aware Instance Mask Generation for Box-Supervised
Instance Segmentation,
CVPR23(7193-7203)
IEEE DOI
2309
BibRef
Cho, J.H.[Jang Hyun],
Krähenbühl, P.[Philipp],
Ramanathan, V.[Vignesh],
PartDistillation: Learning Parts from Instance Segmentation,
CVPR23(7152-7161)
IEEE DOI
2309
BibRef
Wang, X.D.[Xu-Dong],
Girdhar, R.[Rohit],
Yu, S.X.[Stella X.],
Misra, I.[Ishan],
Cut and Learn for Unsupervised Object Detection and Instance
Segmentation,
CVPR23(3124-3134)
IEEE DOI
2309
BibRef
Li, H.[Hao],
Zhang, D.W.[Ding-Wen],
Liu, N.[Nian],
Cheng, L.[Lechao],
Dai, Y.[Yalun],
Zhang, C.[Chao],
Wang, X.G.[Xing-Gang],
Han, J.W.[Jun-Wei],
Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt,
CVPR23(15485-15494)
IEEE DOI
2309
BibRef
Zhao, J.[Jing],
Wu, S.J.[Sheng-Jian],
Sun, L.[Li],
Li, Q.L.[Qing-Li],
IOU-enhanced Attention for End-to-end Task Specific Object Detection,
ACCV22(V:124-141).
Springer DOI
2307
BibRef
Tang, L.[Linghua],
Hui, L.[Le],
Xie, J.[Jin],
Learning Inter-superpoint Affinity for Weakly Supervised 3d Instance
Segmentation,
ACCV22(I:176-192).
Springer DOI
2307
BibRef
Hu, Z.Q.[Zhi-Qi],
Brilakis, I.[Ioannis],
PRISEG: IFC-supported Primitive Instance Geometry Segmentation with
Unsupervised Clustering,
CVCivil22(196-211).
Springer DOI
2304
BibRef
Kara, S.[Sandra],
Ammar, H.[Hejer],
Chabot, F.[Florian],
Pham, Q.C.[Quoc-Cuong],
Image Segmentation-based Unsupervised Multiple Objects Discovery,
WACV23(3276-3285)
IEEE DOI
2302
Learning systems, Image segmentation, Annotations, Semantics,
Object detection, Information filters
BibRef
Listed, N.A.[No Author],
Unsupervised Multi-Object Segmentation Using Attention and
Soft-Argmax,
WACV23(3266-3275)
IEEE DOI
2302
Algorithms: Image recognition and understanding, object detection
BibRef
Hsieh, H.Y.[He-Yen],
Chen, D.J.[Ding-Jie],
Chang, C.W.[Cheng-Wei],
Liu, T.L.[Tyng-Luh],
Aggregating Bilateral Attention for Few-Shot Instance Localization,
WACV23(6314-6323)
IEEE DOI
2302
Location awareness, Filtering, Computational modeling,
Neural networks, Focusing, Context awareness, Object detection
BibRef
Boyadzhiev, T.[Teodor],
Ivanova, K.[Krassimira],
Instance Segmentation with BoundaryNet,
IWCIA22(260-269).
Springer DOI
2301
BibRef
Lee, S.I.[Seung Il],
Kim, H.[Hyun],
GaussianMask: Uncertainty-aware Instance Segmentation based on
Gaussian Modeling,
ICPR22(3851-3857)
IEEE DOI
2212
Location awareness, Adaptation models,
Uncertainty, Computational modeling, Predictive models
BibRef
Uchinoura, S.[Shinji],
Kurita, T.[Takio],
Graph Laplacian Regularization based on the Differences of
Neighboring Pixels for Conditional Convolutions for Instance
Segmentation,
ICPR22(3611-3617)
IEEE DOI
2212
Laplace equations, Computational modeling,
Task analysis, Videos, Context modeling
BibRef
Sayez, N.[Niels],
Vleeschouwer, C.D.[Christophe De],
Accelerating the creation of instance segmentation training sets
through bounding box annotation,
ICPR22(252-258)
IEEE DOI
2212
Training, Image segmentation, Systematics, Annotations,
Image annotation, Manuals, Pattern recognition
BibRef
He, T.[Tong],
Yin, W.[Wei],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
PointInst3D: Segmenting 3D Instances by Points,
ECCV22(III:286-302).
Springer DOI
2211
BibRef
Theodoridis, J.[Johannes],
Hofmann, J.[Jessica],
Maucher, J.[Johannes],
Schilling, A.[Andreas],
Trapped in Texture Bias? A Large Scale Comparison of Deep Instance
Segmentation,
ECCV22(VIII:609-627).
Springer DOI
2211
BibRef
Zhang, C.[Cheng],
Pan, T.Y.[Tai-Yu],
Chen, T.[Tianle],
Zhong, J.[Jike],
Fu, W.J.[Wen-Jin],
Chao, W.L.[Wei-Lun],
Learning with Free Object Segments for Long-Tailed Instance
Segmentation,
ECCV22(X:655-672).
Springer DOI
2211
BibRef
Alexandridis, K.P.[Konstantinos Panagiotis],
Deng, J.K.[Jian-Kang],
Nguyen, A.[Anh],
Luo, S.[Shan],
Long-Tailed Instance Segmentation Using Gumbel Optimized Loss,
ECCV22(X:353-369).
Springer DOI
2211
BibRef
Chen, W.Y.[Wu-Yang],
Du, X.Z.[Xian-Zhi],
Yang, F.[Fan],
Beyer, L.[Lucas],
Zhai, X.H.[Xiao-Hua],
Lin, T.Y.[Tsung-Yi],
Chen, H.[Huizhong],
Li, J.[Jing],
Song, X.D.[Xiao-Dan],
Wang, Z.Y.[Zhang-Yang],
Zhou, D.[Denny],
A Simple Single-Scale Vision Transformer for Object Detection and
Instance Segmentation,
ECCV22(X:711-727).
Springer DOI
2211
BibRef
Li, W.T.[Wen-Tong],
Liu, W.Y.[Wen-Yu],
Zhu, J.[Jianke],
Cui, M.M.[Miao-Miao],
Hua, X.S.[Xian-Sheng],
Zhang, L.[Lei],
Box-Supervised Instance Segmentation with Level Set Evolution,
ECCV22(XXIX:1-18).
Springer DOI
2211
BibRef
Tang, C.F.[Chu-Feng],
Xie, L.X.[Ling-Xi],
Zhang, G.[Gang],
Zhang, X.P.[Xiao-Peng],
Tian, Q.[Qi],
Hu, X.L.[Xiao-Lin],
Active Pointly-Supervised Instance Segmentation,
ECCV22(XXVIII:606-623).
Springer DOI
2211
BibRef
Chibane, J.[Julian],
Engelmann, F.[Francis],
Tran, T.A.[Tuan Anh],
Pons-Moll, G.[Gerard],
Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation using
Bounding Boxes,
ECCV22(XXXI:681-699).
Springer DOI
2211
BibRef
Li, Z.X.[Zhi-Xuan],
Ye, W.N.[Wei-Ning],
Jiang, T.T.[Ting-Ting],
Huang, T.J.[Tie-Jun],
2D Amodal Instance Segmentation Guided by 3D Shape Prior,
ECCV22(XXIX:165-181).
Springer DOI
2211
BibRef
Zou, Y.L.[Yu-Liang],
Zhang, Z.[Zizhao],
Li, C.L.[Chun-Liang],
Zhang, H.[Han],
Pfister, T.[Tomas],
Huang, J.B.[Jia-Bin],
Learning Instance-Specific Adaptation for Cross-Domain Segmentation,
ECCV22(XXXIII:459-476).
Springer DOI
2211
BibRef
Yang, P.[Pengwan],
Asano, Y.M.[Yuki M.],
Mettes, P.[Pascal],
Snoek, C.G.M.[Cees G. M.],
Less Than Few: Self-shot Video Instance Segmentation,
ECCV22(XXXIV:449-466).
Springer DOI
2211
BibRef
Hu, Y.L.[Yun-Long],
Zhang, C.Y.[Chong-Yang],
Zhou, H.[Hao],
Qian, Z.F.[Ze-Feng],
Zhao, W.J.[Wei-Ji],
Boundary-Area Enhanced Module for Instance Segmentation,
ICIP22(1691-1695)
IEEE DOI
2211
Image segmentation, Fuses, Task analysis, instance segmentation,
boundary segmentation, object detection, attention-based, feature enhancement
BibRef
Du, K.[Kaiwen],
Wang, X.[Xiao],
Yan, Y.[Yan],
Lu, Y.[Yang],
Wang, H.Z.[Han-Zi],
Egnet: A Novel Edge Guided Network for Instance Segmentation,
ICIP22(3868-3872)
IEEE DOI
2211
Image segmentation, Fuses, Image edge detection, Semantics,
Feature extraction, Data mining, Instance segmentation, semantic enhancement
BibRef
Gruber, M.[Maximiliane],
Brand, F.[Fabian],
Mosebach, A.[Alina],
Seiler, J.[Jürgen],
Kaup, A.[André],
Domain Adaptation for Unknown Image Distortions in Instance
Segmentation,
ICIP22(1436-1440)
IEEE DOI
2211
Degradation, Training, Image segmentation, Visualization,
Image coding, Training data, Object segmentation, Autonomous Driving
BibRef
Wang, Z.Y.[Zhen-Yu],
Li, Y.[Yali],
Wang, S.J.[Sheng-Jin],
Noisy Boundaries: Lemon or Lemonade for Semi-supervised Instance
Segmentation?,
CVPR22(16805-16814)
IEEE DOI
2210
Training, Image segmentation, Head, Costs, Resists,
Pattern recognition, Scene analysis and understanding,
Self- semi- meta- unsupervised learning
BibRef
Zhou, T.F.[Tian-Fei],
Wang, W.G.[Wen-Guan],
Konukoglu, E.[Ender],
Van Gool, L.J.[Luc J.],
Rethinking Semantic Segmentation: A Prototype View,
CVPR22(2572-2583)
IEEE DOI
2210
Training, Image analysis, Shape, Computational modeling, Semantics,
Prototypes, grouping and shape analysis,
Segmentation
BibRef
Qiu, L.T.[Ling-Teng],
Xiong, Z.Y.[Zhang-Yang],
Wang, X.[Xuhao],
Liu, K.K.[Ken-Kun],
Li, Y.[Yihan],
Chen, G.Y.[Guan-Ying],
Han, X.G.[Xiao-Guang],
Cui, S.G.[Shu-Guang],
ETHSeg: An Amodel Instance Segmentation Network and a Real-world
Dataset for X-Ray Waste Inspection,
CVPR22(2273-2282)
IEEE DOI
2210
Image segmentation, Visualization, Annotations, Pipelines, Manuals,
Inspection, Benchmark testing, Vision applications and systems
BibRef
Cheng, B.[Bowen],
Parkhi, O.[Omkar],
Kirillov, A.[Alexander],
Pointly-Supervised Instance Segmentation,
CVPR22(2607-2616)
IEEE DOI
2210
Training, Annotations, Shape, Computer architecture,
Pattern recognition, Segmentation, grouping and shape analysis
BibRef
Lazarow, J.[Justin],
Xu, W.J.[Wei-Jian],
Tu, Z.W.[Zhuo-Wen],
Instance Segmentation with Mask-supervised Polygonal Boundary
Transformers,
CVPR22(4372-4381)
IEEE DOI
2210
Deep learning, Shape, Computational modeling, Semantics,
Computer architecture, Transformers, Segmentation,
Deep learning architectures and techniques
BibRef
Zhu, C.M.[Chen-Ming],
Zhang, X.Y.[Xuan-Ye],
Li, Y.[Yanran],
Qiu, L.[Liangdong],
Han, K.[Kai],
Han, X.G.[Xiao-Guang],
SharpContour: A Contour-based Boundary Refinement Approach for
Efficient and Accurate Instance Segmentation,
CVPR22(4382-4391)
IEEE DOI
2210
Analytical models, Costs, Shape, Computational modeling,
Benchmark testing, Pattern recognition, Segmentation,
grouping and shape analysis
BibRef
Wolny, A.[Adrian],
Yu, Q.[Qin],
Pape, C.[Constantin],
Kreshuk, A.[Anna],
Sparse Object-level Supervision for Instance Segmentation with Pixel
Embeddings,
CVPR22(4392-4401)
IEEE DOI
2210
Training, Image segmentation, Annotations, Transfer learning,
Semantics, Training data, Segmentation,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Ke, L.[Lei],
Danelljan, M.[Martin],
Ding, H.H.[Heng-Hui],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Yu, F.[Fisher],
Mask-Free Video Instance Segmentation,
CVPR23(22857-22866)
IEEE DOI
2309
BibRef
Earlier: A1, A3, A2, A4, A5, A6:
Video Mask Transfiner for High-Quality Video Instance Segmentation,
ECCV22(XXVIII:731-747).
Springer DOI
2211
BibRef
Ke, L.[Lei],
Danelljan, M.[Martin],
Li, X.[Xia],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Yu, F.[Fisher],
Mask Transfiner for High-Quality Instance Segmentation,
CVPR22(4402-4411)
IEEE DOI
2210
Training, Convolutional codes, Image segmentation, Tensors, Costs,
Shape, Segmentation, grouping and shape analysis
BibRef
Wang, W.Y.[Wei-Yao],
Feiszli, M.[Matt],
Wang, H.[Heng],
Malik, J.[Jitendra],
Tran, D.[Du],
Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From
Learned Pairwise Affinity,
CVPR22(4412-4422)
IEEE DOI
2210
Training, Shape, Semantics, Taxonomy, Benchmark testing, Data models,
Segmentation, grouping and shape analysis,
retrieval
BibRef
Zhang, T.[Tao],
Wei, S.Q.[Shi-Qing],
Ji, S.[Shunping],
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed
Instance Segmentation,
CVPR22(4433-4442)
IEEE DOI
2210
Image segmentation, Shape, Semantics, Graphics processing units,
Computer architecture, Detectors, Predictive models, Segmentation,
retrieval
BibRef
He, Y.Y.[Yin-Yin],
Zhang, P.Z.[Pei-Zhen],
Wei, X.S.[Xiu-Shen],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Relieving Long-tailed Instance Segmentation via Pairwise Class
Balance,
CVPR22(6990-6999)
IEEE DOI
2210
Training, Transmission line matrix methods, Codes,
Computational modeling, Computer architecture, retrieval
BibRef
Nguyen, K.[Khoi],
Todorovic, S.[Sinisa],
iFS-RCNN: An Incremental Few-shot Instance Segmenter,
CVPR22(7000-7009)
IEEE DOI
2210
Training, Measurement, Uncertainty, Shape, Performance gain,
Pattern recognition, Transfer/low-shot/long-tail learning,
grouping and shape analysis
BibRef
Bailoni, A.[Alberto],
Pape, C.[Constantin],
Hütsch, N.[Nathan],
Wolf, S.[Steffen],
Beier, T.[Thorsten],
Kreshuk, A.[Anna],
Hamprecht, F.A.[Fred A.],
GASP, a generalized framework for agglomerative clustering of signed
graphs and its application to Instance Segmentation,
CVPR22(11635-11645)
IEEE DOI
2210
Couplings, Systematics, Pipelines, Clustering algorithms,
Predictive models, Prediction algorithms, Robustness, Segmentation,
biological and cell microscopy
BibRef
Dufour, R.[Rémi],
Meurie, C.[Cyril],
Strauss, C.[Clément],
Lézoray, O.[Olivier],
Instance segmentation in fisheye images,
IPTA20(1-6)
IEEE DOI
2206
Image segmentation, Neural networks, Semantics, Transportation,
Tools, Cameras, Task analysis, fisheye images, instance segmentation,
data augmentation
BibRef
Arents, J.[Janis],
Lesser, B.[Bernd],
Bizuns, A.[Andis],
Kadikis, R.[Roberts],
Buls, E.[Elvijs],
Greitans, M.[Modris],
Synthetic Data of Randomly Piled, Similar Objects for Deep
Learning-Based Object Detection,
CIAP22(II:706-717).
Springer DOI
2205
BibRef
Wang, L.[Lihao],
Benmokhtar, R.[Rachid],
Perrotton, X.[Xavier],
Interactive Deep Annotation as DARos:
Object Detection Supervision for Efficient Instance Segmentation,
CIAP22(II:528-540).
Springer DOI
2205
BibRef
ul Moqeet Riaz, H.[Hamd],
Benbarka, N.[Nuri],
Hoefer, T.[Timon],
Zell, A.[Andreas],
FourierMask:
Instance Segmentation Using Fourier Mapping in Implicit Neural Networks,
CIAP22(II:587-598).
Springer DOI
2205
BibRef
Fang, Y.X.[Yu-Xin],
Yang, S.S.[Shu-Sheng],
Wang, X.G.[Xing-Gang],
Li, Y.[Yu],
Fang, C.[Chen],
Shan, Y.[Ying],
Feng, B.[Bin],
Liu, W.Y.[Wen-Yu],
Instances as Queries,
ICCV21(6890-6899)
IEEE DOI
2203
Convolutional codes, Object detection, Detectors,
Benchmark testing, Feature extraction, Task analysis, Segmentation,
BibRef
Tan, F.[Fuwen],
Yuan, J.B.[Jiang-Bo],
Ordonez, V.[Vicente],
Instance-level Image Retrieval using Reranking Transformers,
ICCV21(12085-12095)
IEEE DOI
2203
Codes, Databases, Image retrieval, Feature extraction, Transformers,
Search problems, Image and video retrieval, Recognition and classification
BibRef
Papadopoulos, D.P.[Dim P.],
Weber, E.[Ethan],
Torralba, A.B.[Antonio B.],
Scaling up instance annotation via label propagation,
ICCV21(15344-15353)
IEEE DOI
2203
Image segmentation, Costs, Annotations, Pipelines,
Object segmentation, Manuals, Scene analysis and understanding,
Recognition and classification
BibRef
Rumberger, J.L.[Josef Lorenz],
Yu, X.Y.[Xiao-Yan],
Hirsch, P.[Peter],
Dohmen, M.[Melanie],
Guarino, V.E.[Vanessa Emanuela],
Mokarian, A.[Ashkan],
Mais, L.[Lisa],
Funke, J.[Jan],
Kainmueller, D.[Dagmar],
How Shift Equivariance Impacts Metric Learning for Instance
Segmentation,
ICCV21(7108-7116)
IEEE DOI
2203
Measurement, Training, Crops, Task analysis, Standards, Faces,
Segmentation, grouping and shape, Medical, biological,
Representation learning
BibRef
Huang, J.W.[Jing-Wei],
Zhang, Y.F.[Yan-Feng],
Sun, M.W.[Ming-Wei],
PrimitiveNet: Primitive Instance Segmentation with Local Primitive
Embedding under Adversarial Metric,
ICCV21(15323-15333)
IEEE DOI
2203
Point cloud compression, Geometry, Training, Measurement,
Solid modeling, Scene analysis and understanding, Segmentation,
grouping and shape
BibRef
Lan, S.Y.[Shi-Yi],
Yu, Z.D.[Zhi-Ding],
Choy, C.[Christopher],
Radhakrishnan, S.[Subhashree],
Liu, G.L.[Gui-Lin],
Zhu, Y.K.[Yu-Ke],
Davis, L.S.[Larry S.],
Anandkumar, A.[Anima],
DiscoBox: Weakly Supervised Instance Segmentation and Semantic
Correspondence from Box Supervision,
ICCV21(3386-3396)
IEEE DOI
2203
Symbiosis, Measurement, Semantics, Benchmark testing,
Real-time systems, Detection and localization in 2D and 3D,
grouping and shape
BibRef
Zang, Y.H.[Yu-Hang],
Huang, C.[Chen],
Loy, C.C.[Chen Change],
FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed
Instance Segmentation,
ICCV21(3437-3446)
IEEE DOI
2203
Training, Radio frequency, Schedules, Image segmentation, Costs,
Transfer learning, Training data,
BibRef
Biertimpel, D.[David],
Shkodrani, S.[Sindi],
Baslamisli, A.S.[Anil S.],
Baka, N.[Nóra],
Prior to Segment: Foreground Cues for Weakly Annotated Classes in
Partially Supervised Instance Segmentation,
ICCV21(2804-2813)
IEEE DOI
2203
Training, Head, Computer architecture, Cams,
Detection and localization in 2D and 3D, Scene analysis and understanding
BibRef
Liang, Z.H.[Zhi-Hao],
Li, Z.H.[Zhi-Hao],
Xu, S.[Songcen],
Tan, M.K.[Ming-Kui],
Jia, K.[Kui],
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree
Networks,
ICCV21(2763-2772)
IEEE DOI
2203
Representation learning, Uncertainty, Codes, Semantics, Pipelines,
Detection and localization in 2D and 3D, Segmentation, grouping and shape
BibRef
Cheng, Y.[Yuan],
Lin, R.[Rui],
Zhen, P.[Peining],
Hou, T.[Tianshu],
Ng, C.W.[Chiu Wa],
Chen, H.B.[Hai-Bao],
Yu, H.[Hao],
Wong, N.[Ngai],
FASSST: Fast Attention Based Single-Stage Segmentation Net for
Real-Time Instance Segmentation,
WACV22(2714-2722)
IEEE DOI
2202
Aggregates, Graphics processing units,
Real-time systems, Artificial intelligence, Grouping and Shape
BibRef
Yang, Y.Y.[Yu-Yuan],
Hou, Y.L.[Ya-Li],
Hou, Z.J.[Zhi-Jiang],
Hao, X.L.[Xiao-Li],
Shen, Y.[Yan],
Image-Level Supervised Instance Segmentation Using Instance-Wise
Boundary,
ICIP21(1069-1073)
IEEE DOI
2201
Image segmentation, Annotations, Cams, Data mining,
Instance segmentation, Weakly supervised, Image-level supervision
BibRef
Rodríguez, M.,
Morel, J.M.,
Delon, J.,
Automatic Detection of Repeated Objects in Images,
ICIP21(2194-2198)
IEEE DOI
2201
Atomic measurements, Geometry, Image processing, Pipelines,
Coherence, Filtering algorithms, image comparison, SIFT,
NFA
BibRef
Cerpa, A.[Alonso],
Meza-Lovon, G.[Graciela],
Fernández, M.E.L.[Manuel E. Loaiza],
Ensemble Learning to Perform Instance Segmentation over Synthetic Data,
ISVC21(II:313-324).
Springer DOI
2112
BibRef
Rossi, L.[Leonardo],
Karimi, A.[Akbar],
Prati, A.[Andrea],
Recursively Refined R-CNN:
Instance Segmentation with Self-RoI Rebalancing,
CAIP21(I:476-486).
Springer DOI
2112
BibRef
Velesaca, H.O.[Henry O.],
Suárez, P.L.[Patricia L.],
Carpio, D.[Dario],
Sappa, A.D.[Angel D.],
Synthesized Image Datasets: Towards an Annotation-Free Instance
Segmentation Strategy,
ISVC21(I:131-143).
Springer DOI
2112
BibRef
Perreault, H.[Hughes],
Bilodeau, G.A.[Guillaume-Alexandre],
Saunier, N.[Nicolas],
Héritier, M.[Maguelonne],
CenterPoly: real-time instance segmentation using bounding polygons,
AVVision21(2982-2991)
IEEE DOI
2112
Training, Codes, Annotations, Roads, Urban areas
BibRef
Lyssenko, M.[Maria],
Gladisch, C.[Christoph],
Heinzemann, C.[Christian],
Woehrle, M.[Matthias],
Triebel, R.[Rudolph],
Instance Segmentation in CARLA: Methodology and Analysis for
Pedestrian-oriented Synthetic Data Generation in Crowded Scenes,
ERCVAD21(988-996)
IEEE DOI
2112
Measurement, Annotations, Pipelines, Safety
BibRef
Poucin, F.[Florentin],
Kraus, A.[Andrea],
Simon, M.[Martin],
Boosting Instance Segmentation with Synthetic Data: A study to
overcome the limits of real world data sets,
ERCVAD21(945-953)
IEEE DOI
2112
Training, Industries, Image segmentation,
Transfer learning, Neural networks
BibRef
Vaswani, A.[Ashish],
Ramachandran, P.[Prajit],
Srinivas, A.[Aravind],
Parmar, N.[Niki],
Hechtman, B.[Blake],
Shlens, J.[Jonathon],
Scaling Local Self-Attention for Parameter Efficient Visual Backbones,
CVPR21(12889-12899)
IEEE DOI
2111
Visualization, Image segmentation,
Computational modeling, Transfer learning, Memory management, Object detection
BibRef
Ghiasi, G.[Golnaz],
Cui, Y.[Yin],
Srinivas, A.[Aravind],
Qian, R.[Rui],
Lin, T.Y.[Tsung-Yi],
Cubuk, E.D.[Ekin D.],
Le, Q.V.[Quoc V.],
Zoph, B.[Barret],
Simple Copy-Paste is a Strong Data Augmentation Method for Instance
Segmentation,
CVPR21(2917-2927)
IEEE DOI
2111
Training, Image segmentation, Visualization,
Additives, Systematics, Computational modeling
BibRef
Shen, X.[Xing],
Yang, J.[Jirui],
Wei, C.[Chunbo],
Deng, B.[Bing],
Huang, J.Q.[Jian-Qiang],
Hua, X.S.[Xian-Sheng],
Cheng, X.L.[Xiao-Liang],
Liang, K.W.[Ke-Wei],
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance
Segmentation,
CVPR21(8716-8725)
IEEE DOI
2111
Training, Schedules, Annotations, Complexity theory,
Pattern recognition, Discrete cosine transforms
BibRef
Ding, H.[Hao],
Qiao, S.Y.[Si-Yuan],
Yuille, A.L.[Alan L.],
Shen, W.[Wei],
Deeply Shape-guided Cascade for Instance Segmentation,
CVPR21(8274-8284)
IEEE DOI
2111
Feedback loop, Codes, Shape, Bidirectional control,
Feature extraction, Pattern recognition
BibRef
Ganea, D.A.[Dan Andrei],
Boom, B.[Bas],
Poppe, R.[Ronald],
Incremental Few-Shot Instance Segmentation,
CVPR21(1185-1194)
IEEE DOI
2111
Location awareness, Training, Image segmentation,
Memory management, Training data, Transfer functions
BibRef
Zheng, Y.[Ye],
Wu, J.H.[Jia-Hong],
Qin, Y.Q.[Yong-Qiang],
Zhang, F.[Faen],
Cui, L.[Li],
Zero-Shot Instance Segmentation,
CVPR21(2593-2602)
IEEE DOI
2111
Training, Head, Protocols, Semantics, Detectors, Benchmark testing, Solids
BibRef
Weng, Z.Z.[Zhen-Zhen],
Ogut, M.G.[Mehmet Giray],
Limonchik, S.[Shai],
Yeung, S.[Serena],
Unsupervised Discovery of the Long-Tail in Instance Segmentation
Using Hierarchical Self-Supervision,
CVPR21(2603-2612)
IEEE DOI
2111
Image segmentation, Annotations,
Computational modeling, Supervised learning, Pattern recognition
BibRef
Tian, Z.[Zhi],
Shen, C.H.[Chun-Hua],
Wang, X.L.[Xin-Long],
Chen, H.[Hao],
BoxInst: High-Performance Instance Segmentation with Box Annotations,
CVPR21(5439-5448)
IEEE DOI
2111
Training, Schedules, Annotations, Color, Pattern recognition
BibRef
Zhang, G.[Gang],
Lu, X.[Xin],
Tan, J.[Jingru],
Li, J.M.[Jian-Min],
Zhang, Z.X.[Zhao-Xiang],
Li, Q.Q.[Quan-Quan],
Hu, X.L.[Xiao-Lin],
RefineMask: Towards High-Quality Instance Segmentation with
Fine-Grained Features,
CVPR21(6857-6865)
IEEE DOI
2111
Codes, Benchmark testing, Feature extraction,
Pattern recognition, Computational efficiency
BibRef
Wang, J.Q.[Jia-Qi],
Zhang, W.W.[Wen-Wei],
Zang, Y.H.[Yu-Hang],
Cao, Y.H.[Yu-Hang],
Pang, J.M.[Jiang-Miao],
Gong, T.[Tao],
Chen, K.[Kai],
Liu, Z.[Ziwei],
Loy, C.C.[Chen Change],
Lin, D.[Dahua],
Seesaw Loss for Long-Tailed Instance Segmentation,
CVPR21(9690-9699)
IEEE DOI
2111
Training, Codes, Pipelines, Benchmark testing, Pattern recognition
BibRef
Wang, X.G.[Xing-Gang],
Feng, J.[Jiapei],
Hu, B.[Bin],
Ding, Q.[Qi],
Ran, L.J.[Long-Jin],
Chen, X.X.[Xiao-Xin],
Liu, W.Y.[Wen-Yu],
Weakly-supervised Instance Segmentation via Class-agnostic Learning
with Salient Images,
CVPR21(10220-10230)
IEEE DOI
2111
Training, Location awareness, Learning systems, Image segmentation,
Codes, Merging
BibRef
Nguyen, K.[Khoi],
Todorovic, S.[Sinisa],
FAPIS: A Few-shot Anchor-free Part-based Instance Segmenter,
CVPR21(11094-11103)
IEEE DOI
2111
Training, Image segmentation,
Image color analysis, Shape, Prototypes, Detectors
BibRef
Sun, Y.H.[Yi-Hong],
Kortylewski, A.[Adam],
Yuille, A.L.[Alan L.],
Amodal Segmentation through Out-of-Task and Out-of-Distribution
Generalization with a Bayesian Model,
CVPR22(1205-1214)
IEEE DOI
2210
Training, Image segmentation, Visualization, Shape, Neural networks,
Predictive models, Segmentation, grouping and shape analysis,
Self- semi- meta- unsupervised learning
BibRef
Yuan, X.D.[Xiao-Ding],
Kortylewski, A.[Adam],
Sun, Y.H.[Yi-Hong],
Yuille, A.L.[Alan L.],
Robust Instance Segmentation through Reasoning about Multi-Object
Occlusion,
CVPR21(11136-11145)
IEEE DOI
2111
Deep learning, Image segmentation, Codes,
Computer architecture, Cognition, Robustness
BibRef
Hu, M.[Miao],
Li, Y.[Yali],
Fang, L.[Lu],
Wang, S.J.[Sheng-Jin],
A2-FPN: Attention Aggregation based Feature Pyramid Network for
Instance Segmentation,
CVPR21(15338-15347)
IEEE DOI
2111
Fuses, Aggregates, Semantics, Computer architecture,
Feature extraction, Data mining
BibRef
Tuan, T.A.[Tran Anh],
Khoa, N.T.[Nguyen Tuan],
Quan, T.M.[Tran Minh],
Jeong, W.K.[Won-Ki],
ColorRL: Reinforced Coloring for End-to-End Instance Segmentation,
CVPR21(16722-16731)
IEEE DOI
2111
Image segmentation,
Shape, Scalability, Reinforcement learning, Pattern recognition
BibRef
Tang, C.F.[Chu-Feng],
Chen, H.[Hang],
Li, X.[Xiao],
Li, J.M.[Jian-Min],
Zhang, Z.X.[Zhao-Xiang],
Hu, X.L.[Xiao-Lin],
Look Closer to Segment Better:
Boundary Patch Refinement for Instance Segmentation,
CVPR21(13921-13930)
IEEE DOI
2111
Measurement, Codes, Benchmark testing,
Business process re-engineering, Pattern recognition, Spatial resolution
BibRef
Hsu, J.[Joy],
Chiu, W.[Wah],
Yeung, S.[Serena],
DARCNN: Domain Adaptive Region-based Convolutional Neural Network for
Unsupervised Instance Segmentation in Biomedical Images,
CVPR21(1003-1012)
IEEE DOI
2111
Knowledge engineering, Image segmentation,
Adaptive systems, Annotations, Benchmark testing, Pattern recognition
BibRef
Lee, J.[Jungbeom],
Yi, J.[Jihun],
Shin, C.[Chaehun],
Yoon, S.[Sungroh],
BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and
Instance Segmentation,
CVPR21(2643-2651)
IEEE DOI
2111
Image segmentation, Annotations, Semantics,
Detectors, Benchmark testing, Generators
BibRef
Kim, M.[Myungchul],
Woo, S.[Sanghyun],
Kim, D.[Dahun],
Kweon, I.S.[In So],
The Devil is in the Boundary: Exploiting Boundary Representation for
Basis-based Instance Segmentation,
WACV21(928-937)
IEEE DOI
2106
Measurement, Image segmentation, Image resolution,
Shape, Predictive models
BibRef
Mercier, J.P.[Jean-Philippe],
Garon, M.[Mathieu],
Giguère, P.[Philippe],
Lalonde, J.F.[Jean-François],
Deep Template-based Object Instance Detection,
WACV21(1506-1515)
IEEE DOI
2106
Training, Matched filters, Service robots,
Toy manufacturing industry, Object detection
BibRef
Hwang, J.[Jaedong],
Kim, S.[Seohyun],
Son, J.[Jeany],
Han, B.H.[Bo-Hyung],
Weakly Supervised Instance Segmentation by Deep Community Learning,
WACV21(1019-1028)
IEEE DOI
2106
Training, Neural networks, Semantics, Object detection, Detectors,
Feature extraction, Proposals
BibRef
Goel, K.[Kratarth],
Srinivasan, P.[Praveen],
Tariq, S.[Sarah],
Philbin, J.[James],
QuadroNet: Multi-Task Learning for Real-Time Semantic Depth Aware
Instance Segmentation,
WACV21(315-324)
IEEE DOI
2106
Training, Image segmentation,
Laser radar, Semantics, Object detection, Network architecture
BibRef
Liu, Z.C.[Zi-Chen],
Liew, J.H.[Jun Hao],
Chen, X.Y.[Xiang-Yu],
Feng, J.S.[Jia-Shi],
DANCE: A Deep Attentive Contour Model for Efficient Instance
Segmentation,
WACV21(345-354)
IEEE DOI
2106
Deformable models, Training,
Computational modeling, Pipelines, Real-time systems
BibRef
Liu, X.L.[Xiao-Long],
Hou, Y.Q.[Yu-Qing],
Yao, A.[Anbang],
Chen, Y.R.[Yu-Rong],
Li, K.Q.[Ke-Qiang],
CASNet: Common Attribute Support Network for image instance and
panoptic segmentation,
ICPR21(8469-8475)
IEEE DOI
2105
Training, Bridges, Image segmentation, Semantics,
Clustering algorithms, Object detection, Prediction algorithms
BibRef
Rossi, L.[Leonardo],
Karimi, A.[Akbar],
Prati, A.[Andrea],
A Novel Region of Interest Extraction Layer for Instance Segmentation,
ICPR21(2203-2209)
IEEE DOI
2105
Architecture, Neural networks,
Computer architecture, Object detection, Feature extraction, Pattern recognition
BibRef
Li, X.R.[Xi-Rong],
Wan, W.C.[Wen-Cui],
Zhou, Y.[Yang],
Zhao, J.C.[Jian-Chun],
Wei, Q.J.[Qi-Jie],
Rong, J.[Junbo],
Zhou, P.Y.[Peng-Yi],
Xu, L.M.[Li-Min],
Lang, L.J.[Li-Juan],
Liu, Y.Y.[Yu-Ying],
Niu, C.Z.[Cheng-Zhi],
Ding, D.Y.[Da-Yong],
Jin, X.M.[Xue-Min],
Deep Multiple Instance Learning with Spatial Attention for ROP Case
Classification, Instance Selection and Abnormality Localization,
ICPR21(7293-7298)
IEEE DOI
2105
Location awareness, Visualization, Retinopathy,
Image color analysis, Retina, Pattern recognition, Task analysis,
abnormality localization
BibRef
Riaz, H.U.M.[Hamd Ul Moqeet],
Benbarka, N.[Nuri],
Zell, A.[Andreas],
FourierNet: Compact Mask Representation for Instance Segmentation
Using Differentiable Shape Decoders,
ICPR21(7833-7840)
IEEE DOI
2105
Training, Image resolution, Shape, Transforms, Detectors,
Real-time systems, Decoding, Instance segmentation, Fourier series,
differentiable algorithms
BibRef
Heidecker, F.[Florian],
Hannan, A.[Abdul],
Bieshaar, M.[Maarten],
Sick, B.[Bernhard],
Towards Corner Case Detection by Modeling the Uncertainty of Instance
Segmentation Networks,
HCAU20(361-374).
Springer DOI
2103
BibRef
Schneegans, J.[Jan],
Bieshaar, M.[Maarten],
Heidecker, F.[Florian],
Sick, B.[Bernhard],
Intelligent and Interactive Video Annotation for Instance Segmentation
Using Siamese Neural Networks,
HCAU20(375-389).
Springer DOI
2103
BibRef
Ito, S.[Satoshi],
Kubota, S.[Susumu],
Point Proposal Based Instance Segmentation with Rectangular Masks for
Robot Picking Task,
ACCV20(III:641-653).
Springer DOI
2103
BibRef
Yang, L.,
Li, H.,
Wu, Q.,
Meng, F.,
Ngi Ngan, K.,
Mono is Enough: Instance Segmentation from Single Annotated Sample,
VCIP20(120-123)
IEEE DOI
2102
Image segmentation, Distortion, Brightness, Data models, Annotations,
Training data, Task analysis, Instance Segmentation, Data Augmentation
BibRef
Wang, X.L.[Xin-Long],
Kong, T.[Tao],
Shen, C.H.[Chun-Hua],
Jiang, Y.N.[Yu-Ning],
Li, L.[Lei],
SOLO: Segmenting Objects by Locations,
ECCV20(XVIII:649-665).
Springer DOI
2012
Code, Segmentation.
WWW Link.
BibRef
Mais, L.[Lisa],
Hirsch, P.[Peter],
Kainmueller, D.[Dagmar],
PatchPerPix for Instance Segmentation,
ECCV20(XXV:288-304).
Springer DOI
2011
BibRef
Chen, X.[Xier],
Lian, Y.C.[Yan-Chao],
Jiao, L.C.[Li-Cheng],
Wang, H.R.[Hao-Ran],
Gao, Y.J.[Yan-Jie],
Shi, L.L.[Ling-Ling],
Supervised Edge Attention Network for Accurate Image Instance
Segmentation,
ECCV20(XXVII:617-631).
Springer DOI
2011
BibRef
Laradji, I.H.,
Rostamzadeh, N.,
Pinheiro, P.O.,
Vazquez, D.,
Schmidt, M.,
Proposal-Based Instance Segmentation With Point Supervision,
ICIP20(2126-2130)
IEEE DOI
2011
Proposals, Training, Image segmentation, Task analysis,
Predictive models, Automobiles, Autonomous vehicles,
weak supervision
BibRef
Cheng, T.H.[Tian-Heng],
Wang, X.G.[Xing-Gang],
Huang, L.C.[Li-Chao],
Liu, W.Y.[Wen-Yu],
Boundary-preserving Mask R-CNN,
ECCV20(XIV:660-676).
Springer DOI
2011
BibRef
Wang, T.[Tao],
Li, Y.[Yu],
Kang, B.Y.[Bing-Yi],
Li, J.[Junnan],
Liew, J.[Junhao],
Tang, S.[Sheng],
Feng, S.H.J.[Steven Hoi-Jiashi],
The Devil Is in Classification: A Simple Framework for Long-tail
Instance Segmentation,
ECCV20(XIV:728-744).
Springer DOI
2011
BibRef
Fan, Q.[Qi],
Ke, L.[Lei],
Pei, W.J.[Wen-Jie],
Tang, C.K.[Chi-Keung],
Tai, Y.W.[Yu-Wing],
Commonality-parsing Network Across Shape and Appearance for Partially
Supervised Instance Segmentation,
ECCV20(VIII:379-396).
Springer DOI
2011
BibRef
Wei, F.Y.[Fang-Yun],
Sun, X.[Xiao],
Li, H.Y.[Hong-Yang],
Wang, J.D.[Jing-Dong],
Lin, S.[Stephen],
Point-set Anchors for Object Detection, Instance Segmentation and Pose
Estimation,
ECCV20(X:527-544).
Springer DOI
2011
BibRef
Arun, A.[Aditya],
Jawahar, C.V.,
Kumar, M.P.[M. Pawan],
Weakly Supervised Instance Segmentation by Learning Annotation
Consistent Instances,
ECCV20(XXVIII:254-270).
Springer DOI
2011
BibRef
Homayounfar, N.[Namdar],
Xiong, Y.[Yuwen],
Liang, J.[Justin],
Ma, W.C.[Wei-Chiu],
Urtasun, R.[Raquel],
Levelset R-CNN: A Deep Variational Method for Instance Segmentation,
ECCV20(XXIII:555-571).
Springer DOI
2011
BibRef
Tian, Z.[Zhi],
Shen, C.H.[Chun-Hua],
Chen, H.[Hao],
Conditional Convolutions for Instance Segmentation,
ECCV20(I:282-298).
Springer DOI
2011
BibRef
Veksler, O.[Olga],
Regularized Loss for Weakly Supervised Single Class Semantic
Segmentation,
ECCV20(XXIX: 348-365).
Springer DOI
2010
BibRef
Zhou, Y.,
Wang, X.,
Jiao, J.,
Darrell, T.J.,
Yu, F.,
Learning Saliency Propagation for Semi-Supervised Instance
Segmentation,
CVPR20(10304-10313)
IEEE DOI
2008
Shape, Image segmentation, Head, Feature extraction, Task analysis,
Semantics, Message passing
BibRef
Cao, J.,
Cholakkal, H.,
Anwer, R.M.,
Khan, F.S.,
Pang, Y.,
Shao, L.,
D2Det: Towards High Quality Object Detection and Instance
Segmentation,
CVPR20(11482-11491)
IEEE DOI
2008
Proposals, Detectors, Object detection, Feature extraction,
Standards, Training, Benchmark testing
BibRef
Zeni, L.F.,
Jung, C.R.,
Distilling Knowledge from Refinement in Multiple Instance Detection
Networks,
DeepVision20(3324-3333)
IEEE DOI
2008
Proposals, Feature extraction, Training, Detectors, Object detection,
Knowledge engineering, Task analysis
BibRef
Peng, S.,
Jiang, W.,
Pi, H.,
Li, X.,
Bao, H.,
Zhou, X.,
Deep Snake for Real-Time Instance Segmentation,
CVPR20(8530-8539)
IEEE DOI
2008
Convolution, Image segmentation, Standards, Pipelines, Kernel, Strain,
Real-time systems
BibRef
Chen, H.,
Sun, K.,
Tian, Z.,
Shen, C.,
Huang, Y.,
Yan, Y.,
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation,
CVPR20(8570-8578)
IEEE DOI
2008
Agriculture, Shape, Convolution, Detectors, Proposals, Task analysis,
Computational complexity
BibRef
Liang, J.,
Homayounfar, N.,
Ma, W.,
Xiong, Y.,
Hu, R.,
Urtasun, R.,
PolyTransform: Deep Polygon Transformer for Instance Segmentation,
CVPR20(9128-9137)
IEEE DOI
2008
Feature extraction, Task analysis, Image segmentation, Proposals,
Semantics, Computational modeling, Measurement
BibRef
Fan, Z.,
Yu, J.,
Liang, Z.,
Ou, J.,
Gao, C.,
Xia, G.,
Li, Y.,
FGN: Fully Guided Network for Few-Shot Instance Segmentation,
CVPR20(9169-9178)
IEEE DOI
2008
Task analysis, Image segmentation, Semantics, Training, Detectors,
Proposals, Adaptation models
BibRef
Wang, Y.Q.[Yu-Qing],
Xu, Z.L.[Zhao-Liang],
Shen, H.[Hao],
Cheng, B.S.[Bao-Shan],
Yang, L.R.[Li-Rong],
CenterMask: Single Shot Instance Segmentation With Point
Representation,
CVPR20(9310-9318)
IEEE DOI
2008
Shape, Image segmentation, Head, Feature extraction, Detectors,
Visualization
BibRef
Zhang, R.,
Tian, Z.,
Shen, C.,
You, M.,
Yan, Y.,
Mask Encoding for Single Shot Instance Segmentation,
CVPR20(10223-10232)
IEEE DOI
2008
Encoding, Task analysis, Detectors, Feature extraction, Pipelines,
Principal component analysis, Training
BibRef
Jiang, H.,
Yan, F.,
Cai, J.,
Zheng, J.,
Xiao, J.,
End-to-End 3D Point Cloud Instance Segmentation Without Detection,
CVPR20(12793-12802)
IEEE DOI
2008
Semantics, Feature extraction,
Training, Task analysis, Clustering algorithms
BibRef
Lin, C.,
Hung, Y.,
Feris, R.,
He, L.,
Video Instance Segmentation Tracking With a Modified VAE Architecture,
CVPR20(13144-13154)
IEEE DOI
2008
Task analysis, Decoding, Proposals, Motion segmentation,
Object segmentation, Target tracking, Image segmentation
BibRef
Lee, Y.,
Park, J.,
CenterMask: Real-Time Anchor-Free Instance Segmentation,
CVPR20(13903-13912)
IEEE DOI
2008
Detectors, Feature extraction, Real-time systems, Head,
Object detection, Proposals, Computer architecture
BibRef
Zhou, D.,
Fang, J.,
Song, X.,
Liu, L.,
Yin, J.,
Dai, Y.,
Li, H.,
Yang, R.,
Joint 3D Instance Segmentation and Object Detection for Autonomous
Driving,
CVPR20(1836-1846)
IEEE DOI
2008
Object detection,
Proposals, Feature extraction, Shape, Semantics
BibRef
Han, L.,
Zheng, T.,
Xu, L.,
Fang, L.,
OccuSeg: Occupancy-Aware 3D Instance Segmentation,
CVPR20(2937-2946)
IEEE DOI
2008
Image segmentation, Feature extraction, Semantics, Proposals, Solid modeling
BibRef
Engelmann, F.,
Bokeloh, M.,
Fathi, A.,
Leibe, B.,
Nießner, M.,
3D-MPA: Multi-Proposal Aggregation for 3D Semantic Instance
Segmentation,
CVPR20(9028-9037)
IEEE DOI
2008
Proposals, Semantics, Object detection,
Geometry
BibRef
Chu, X.,
Zheng, A.,
Zhang, X.,
Sun, J.,
Detection in Crowded Scenes: One Proposal, Multiple Predictions,
CVPR20(12211-12220)
IEEE DOI
2008
Proposals, Detectors, Object detection, Color, Pipelines, Neural networks
BibRef
Wang, Q.[Qiong],
Zhang, L.[Lu],
Kpalma, K.[Kidiyo],
A Semantics-guided Warping for Semi-supervised Video Object Instance
Segmentation,
ICIAR20(I:186-195).
Springer DOI
2007
BibRef
Ma, J.[Jin],
Pang, S.M.[Shan-Min],
Yang, B.[Bo],
Zhu, J.H.[Ji-Hua],
Li, Y.C.[Yao-Chen],
Spatial-Content Image Search in Complex Scenes,
WACV20(2492-2500)
IEEE DOI
2006
Code, Image Search.
WWW Link. Visualization, Semantics, Image retrieval, Feature extraction,
Image representation, Object detection
BibRef
Sharma, K.,
Gold, M.,
Zurbruegg, C.,
Leal-Taixé, L.,
Wegner, J.D.,
HistoNet: Predicting size histograms of object instances,
WACV20(3626-3634)
IEEE DOI
2006
Histograms, Image segmentation, Task analysis, Estimation,
Computer architecture, Training, Cancer
BibRef
Royer, A.,
Lampert, C.H.,
Localizing Grouped Instances for Efficient Detection in Low-Resource
Scenarios,
WACV20(1716-1725)
IEEE DOI
2006
Detectors, Object detection, Image resolution, Task analysis,
Computer architecture, Pipelines, Training
BibRef
Xu, S.,
Lan, S.,
Zhu, Q.,
MaskPlus: Improving Mask Generation for Instance Segmentation,
WACV20(2019-2027)
IEEE DOI
2006
Image segmentation, Semantics, Training, Proposals,
Feature extraction, Task analysis, Object recognition
BibRef
Shashidhara, B.M.,
Scott, M.,
Marburg, A.,
Instance Segmentation of Benthic Scale Worms at a Hydrothermal Site,
WACV20(1303-1312)
IEEE DOI
2006
Grippers, Vents, Image segmentation, Pipelines, Training,
Training data, Cameras
BibRef
Wang, Y.,
Ramanan, D.,
Hebert, M.,
Meta-Learning to Detect Rare Objects,
ICCV19(9924-9933)
IEEE DOI
2004
convolutional neural nets, image classification,
learning (artificial intelligence), object detection, Training
BibRef
Hu, T.,
Mettes, P.S.,
Huang, J.,
Snoek, C.G.M.,
SILCO: Show a Few Images, Localize the Common Object,
ICCV19(5066-5075)
IEEE DOI
2004
convolutional neural nets, feature extraction, graph theory,
image classification, learning (artificial intelligence),
Machine learning
BibRef
Deng, Z.,
Kong, Q.,
Murakami, T.,
Towards Efficient Instance Segmentation with Hierarchical
Distillation,
TASKCV19(3243-3249)
IEEE DOI
2004
image segmentation, learning (artificial intelligence),
object detection, distills pair-wise quantized feature maps,
Knowledge distillation
BibRef
Fang, H.,
Sun, J.,
Wang, R.,
Gou, M.,
Li, Y.,
Lu, C.,
InstaBoost: Boosting Instance Segmentation via Probability Map Guided
Copy-Pasting,
ICCV19(682-691)
IEEE DOI
2004
Code, Segmentation.
WWW Link. convolutional neural nets, image annotation, image sampling,
image segmentation, object detection, probability,
Measurement
BibRef
Ge, W.,
Huang, W.,
Guo, S.,
Scott, M.,
Label-PEnet: Sequential Label Propagation and Enhancement Networks
for Weakly Supervised Instance Segmentation,
ICCV19(3344-3353)
IEEE DOI
2004
image classification, image representation, image segmentation,
learning (artificial intelligence), object detection, Task analysis
BibRef
Shaban, A.,
Rahimi, A.,
Bansal, S.,
Gould, S.,
Boots, B.,
Hartley, R.,
Learning to Find Common Objects Across Few Image Collections,
ICCV19(5116-5125)
IEEE DOI
2004
belief networks, greedy algorithms, inference mechanisms,
learning (artificial intelligence), minimisation,
Graphical models
BibRef
Fu, C.,
Berg, T.L.[Tamara L.],
Berg, A.C.[Alexander C.],
IMP: Instance Mask Projection for High Accuracy Semantic Segmentation
of Things,
ICCV19(5177-5186)
IEEE DOI
2004
backpropagation, image segmentation, object detection,
backpropagation, baseline semantic segmentation results,
Object detection
BibRef
Yang, L.,
Fan, Y.,
Xu, N.,
Video Instance Segmentation,
ICCV19(5187-5196)
IEEE DOI
2004
convolutional neural nets, image segmentation,
multimedia Web sites, object detection, object tracking,
Object segmentation
BibRef
Nassar, A.S.[Ahmed Samy],
d'Aronco, S.[Stefano],
Lefèvre, S.[Sébastien],
Wegner, J.D.[Jan D.],
Geograph: Graph-based Multi-view Object Detection with Geometric Cues
End-to-end,
ECCV20(VII:488-504).
Springer DOI
2011
BibRef
Earlier: A1, A3, A4, Only:
Simultaneous Multi-View Instance Detection With Learned Geometric
Soft-Constraints,
ICCV19(6558-6567)
IEEE DOI
2004
geometry, learning (artificial intelligence), object detection,
robust cross-view object detection, geometric soft constraints,
Pose estimation
BibRef
Sofiiuk, K.,
Sofiyuk, K.,
Barinova, O.,
Konushin, A.,
Barinova, O.,
AdaptIS: Adaptive Instance Selection Network,
ICCV19(7354-7362)
IEEE DOI
2004
Code, Segmentation.
WWW Link. image segmentation, object detection, AdaIN layers,
pixel-accurate object masks, semantic segmentation pipeline,
Aerospace electronics
BibRef
Lahoud, J.,
Ghanem, B.,
Oswald, M.R.,
Pollefeys, M.,
3D Instance Segmentation via Multi-Task Metric Learning,
ICCV19(9255-9265)
IEEE DOI
2004
image reconstruction, image representation, image segmentation,
learning (artificial intelligence), stereo image processing,
Measurement
BibRef
Xu, W.,
Wang, H.,
Qi, F.,
Lu, C.,
Explicit Shape Encoding for Real-Time Instance Segmentation,
ICCV19(5167-5176)
IEEE DOI
2004
image segmentation, object detection, polynomials, tensors,
object detection, explicit shape encoding, Training
BibRef
Fan, R.C.[Ruo-Chen],
Hou, Q.B.[Qi-Bin],
Cheng, M.M.[Ming-Ming],
Yu, G.[Gang],
Martin, R.R.[Ralph R.],
Hu, S.M.[Shi-Min],
Associating Inter-image Salient Instances for Weakly Supervised
Semantic Segmentation,
ECCV18(IX: 371-388).
Springer DOI
1810
BibRef
Luc, P.[Pauline],
Couprie, C.[Camille],
Le Cun, Y.[Yann],
Verbeek, J.[Jakob],
Predicting Future Instance Segmentation by Forecasting Convolutional
Features,
ECCV18(IX: 593-608).
Springer DOI
1810
BibRef
Luc, P.[Pauline],
Neverova, N.,
Couprie, C.[Camille],
Verbeek, J.[Jakob],
Le Cun, Y.[Yann],
Predicting Deeper into the Future of Semantic Segmentation,
ICCV17(648-657)
IEEE DOI
1802
feedforward neural nets, image colour analysis, image resolution,
image segmentation, image sequences,
Training
BibRef
Li, Y.,
Qi, H.,
Dai, J.,
Ji, X.,
Wei, Y.,
Fully Convolutional Instance-Aware Semantic Segmentation,
CVPR17(4438-4446)
IEEE DOI
1711
Convolution, Convolutional codes, Image segmentation,
Object segmentation, Proposals, Semantics
BibRef
Yao, J.[Jian],
Boben, M.[Marko],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Real-time coarse-to-fine topologically preserving segmentation,
CVPR15(2947-2955)
IEEE DOI
1510
BibRef
Gupta, A.[Agrim],
Dollar, P.[Piotr],
Girshick, R.[Ross],
LVIS: A Dataset for Large Vocabulary Instance Segmentation,
CVPR19(5351-5359).
IEEE DOI
2002
BibRef
Araslanov, N.[Nikita],
Rothkopf, C.A.[Constantin A.],
Roth, S.[Stefan],
Actor-Critic Instance Segmentation,
CVPR19(8229-8238).
IEEE DOI
2002
BibRef
Liu, S.,
Qi, L.,
Qin, H.,
Shi, J.,
Jia, J.,
Path Aggregation Network for Instance Segmentation,
CVPR18(8759-8768)
IEEE DOI
1812
Proposals, Feature extraction, Task analysis, Image segmentation,
Object detection, Training, Semantics
BibRef
Chen, L.,
Hermans, A.,
Papandreou, G.,
Schroff, F.,
Wang, P.,
Adam, H.,
MaskLab: Instance Segmentation by Refining Object Detection with
Semantic and Direction Features,
CVPR18(4013-4022)
IEEE DOI
1812
Semantics, Agriculture, Image segmentation, Object detection,
Convolution, Feature extraction, Encoding
BibRef
Neven, D.[Davy],
de Brabandere, B.[Bert],
Proesmans, M.[Marc],
Van Gool, L.J.[Luc J.],
Instance Segmentation by Jointly Optimizing Spatial Embeddings and
Clustering Bandwidth,
CVPR19(8829-8837).
IEEE DOI
2002
BibRef
Qi, L.[Lu],
Jiang, L.[Li],
Liu, S.[Shu],
Shen, X.Y.[Xiao-Yong],
Jia, J.Y.[Jia-Ya],
Amodal Instance Segmentation With KINS Dataset,
CVPR19(3009-3018).
IEEE DOI
2002
BibRef
Pham, Q.H.[Quang-Hieu],
Nguyen, T.[Thanh],
Hua, B.S.[Binh-Son],
Roig, G.[Gemma],
Yeung, S.K.[Sai-Kit],
JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds With
Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields,
CVPR19(8819-8828).
IEEE DOI
2002
BibRef
Chen, K.[Kai],
Pang, J.M.[Jiang-Miao],
Wang, J.Q.[Jia-Qi],
Xiong, Y.[Yu],
Li, X.X.[Xiao-Xiao],
Sun, S.Y.[Shu-Yang],
Feng, W.[Wansen],
Liu, Z.[Ziwei],
Shi, J.P.[Jian-Ping],
Ouyang, W.L.[Wan-Li],
Loy, C.C.[Chen Change],
Lin, D.[Dahua],
Hybrid Task Cascade for Instance Segmentation,
CVPR19(4969-4978).
IEEE DOI
2002
BibRef
Elich, C.[Cathrin],
Engelmann, F.[Francis],
Kontogianni, T.[Theodora],
Leibe, B.[Bastian],
3D Bird's-Eye-View Instance Segmentation,
GCPR19(48-61).
Springer DOI
1911
BibRef
Shang, C.,
Wu, Q.,
Meng, F.,
Xu, L.,
Instance Segmentation by Learning Deep Feature in Embedding Space,
ICIP19(2444-2448)
IEEE DOI
1910
Instance Segmentation, Instance Discrimination Network,
Embedding Space, Deep Feature
BibRef
Liu, Y.F.[Yan-Feng],
Psota, E.T.[Eric T.],
Pérez, L.C.[Lance C.],
Layered Embeddings for Amodal Instance Segmentation,
ICIAR19(I:102-111).
Springer DOI
1909
Code, Segmentation. Code available:
WWW Link.
BibRef
Couprie, C.[Camille],
Luc, P.[Pauline],
Verbeek, J.[Jakob],
Joint Future Semantic and Instance Segmentation Prediction,
AnticipateBeh18(III:154-168).
Springer DOI
1905
BibRef
Halupka, K.,
Garnavi, R.,
Moore, S.,
Deep Semantic Instance Segmentation of Tree-Like Structures Using
Synthetic Data,
WACV19(1713-1722)
IEEE DOI
1904
data analysis, feature extraction, image segmentation,
learning (artificial intelligence), neural nets,
Periodic structures
BibRef
Follmann, P.[Patrick],
Nig, R.K.[Rebecca Kö],
Rtinger, P.H.[Philipp Hä],
Klostermann, M.[Michael],
Ttger, T.B.[Tobias Bö],
Learning to See the Invisible: End-to-End Trainable Amodal Instance
Segmentation,
WACV19(1328-1336)
IEEE DOI
1904
image segmentation, learning (artificial intelligence),
object detection, COCOA cls, D2S amodal, COCO amodal dataset,
BibRef
Li, K.[Ke],
Malik, J.[Jitendra],
Amodal Instance Segmentation,
ECCV16(II: 677-693).
Springer DOI
1611
predict the region encompassing both visible and occluded parts of each object.
BibRef
Li, K.[Ke],
Hariharan, B.[Bharath],
Malik, J.[Jitendra],
Iterative Instance Segmentation,
CVPR16(3659-3667)
IEEE DOI
1612
BibRef
Li, Z.X.[Zuo-Xin],
Zhou, F.Q.[Fu-Qiang],
Yang, L.[Lu],
Fast Single Shot Instance Segmentation,
ACCV18(IV:257-272).
Springer DOI
1906
BibRef
Manohar, K.V.,
Niitani, Y.[Yusuke],
An End-to-End Tree Based Approach for Instance Segmentation,
POCV18(V:521-527).
Springer DOI
1905
BibRef
Liu, Y.,
Wang, R.,
Shan, S.,
Chen, X.,
Structure Inference Net: Object Detection Using Scene-Level Context
and Instance-Level Relationships,
CVPR18(6985-6994)
IEEE DOI
1812
Object detection, Feature extraction, Logic gates, Visualization,
Detectors, Context modeling, Image edge detection
BibRef
Zhou, Y.Z.[Yan-Zhao],
Zhu, Y.[Yi],
Ye, Q.X.[Qi-Xiang],
Qiu, Q.[Qiang],
Jiao, J.B.[Jian-Bin],
Weakly Supervised Instance Segmentation Using Class Peak Response,
CVPR18(3791-3800)
IEEE DOI
1812
Image segmentation, Visualization, Training, Semantics, Proposals,
Image color analysis, Kernel
BibRef
Liu, Y.D.[Yi-Ding],
Yang, S.[Siyu],
Li, B.[Bin],
Zhou, W.G.[Wen-Gang],
Xu, J.Z.[Ji-Zheng],
Li, H.Q.A.[Hou-Qi-Ang],
Lu, Y.[Yan],
Affinity Derivation and Graph Merge for Instance Segmentation,
ECCV18(III: 708-724).
Springer DOI
1810
BibRef
Novotny, D.[David],
Albanie, S.[Samuel],
Larlus, D.[Diane],
Vedaldi, A.[Andrea],
Semi-convolutional Operators for Instance Segmentation,
ECCV18(I: 89-105).
Springer DOI
1810
BibRef
Margffoy-Tuay, E.[Edgar],
Pérez, J.C.[Juan C.],
Botero, E.[Emilio],
Arbeláez, P.[Pablo],
Dynamic Multimodal Instance Segmentation Guided by Natural Language
Queries,
ECCV18(XI: 656-672).
Springer DOI
1810
BibRef
Xu, W.Q.[Wen-Qiang],
Li, Y.L.[Yong-Lu],
Lu, C.W.[Ce-Wu],
SRDA: Generating Instance Segmentation Annotation via Scanning,
Reasoning and Domain Adaptation,
ECCV18(XII: 124-140).
Springer DOI
1810
BibRef
Pham, T.[Trung],
Kumar, B.G.V.[B. G. Vijay],
Do, T.T.[Thanh-Toan],
Carneiro, G.[Gustavo],
Reid, I.D.[Ian D.],
Bayesian Semantic Instance Segmentation in Open Set World,
ECCV18(X: 3-18).
Springer DOI
1810
BibRef
Li, Y.[Yao],
Liu, L.Q.[Ling-Qiao],
Shen, C.H.[Chun-Hua],
van den Hengel, A.[Anton],
Image Co-Localization by Mimicking a Good Detector's Confidence Score
Distribution,
ECCV16(II: 19-34).
Springer DOI
1611
identify each instance in multiple images.
BibRef
Chen, Y.T.[Yi-Ting],
Liu, X.K.[Xiao-Kai],
Yang, M.H.[Ming-Hsuan],
Multi-instance object segmentation with occlusion handling,
CVPR15(3470-3478)
IEEE DOI
1510
BibRef
Liu, B.Y.[Bu-Yu],
He, X.M.[Xu-Ming],
Multiclass semantic video segmentation with object-level active
inference,
CVPR15(4286-4294)
IEEE DOI
1510
BibRef
Liu, B.Y.[Bu-Yu],
He, X.M.[Xu-Ming],
Gould, S.[Stephen],
Multi-class Semantic Video Segmentation with Exemplar-Based Object
Reasoning,
WACV15(1014-1021)
IEEE DOI
1503
Cognition
BibRef
Chang, F.J.[Feng-Ju],
Lin, Y.Y.[Yen-Yu],
Hsu, K.J.[Kuang-Jui],
Multiple Structured-Instance Learning for Semantic Segmentation with
Uncertain Training Data,
CVPR14(360-367)
IEEE DOI
1409
BibRef
He, X.M.[Xu-Ming],
Gould, S.[Stephen],
An Exemplar-Based CRF for Multi-instance Object Segmentation,
CVPR14(296-303)
IEEE DOI
1409
BibRef
Earlier:
Multi-instance Object Segmentation with Exemplars,
GMSU13(1-4)
IEEE DOI
1403
Markov processes
BibRef
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Associative Embeddings for Large-Scale Knowledge Transfer with
Self-Assessment,
CVPR14(1987-1994)
IEEE DOI
1409
ImageNet
BibRef
Vezhnevets, A.[Alexander],
Buhmann, J.M.[Joachim M.],
Ferrari, V.[Vittorio],
Active learning for semantic segmentation with expected change,
CVPR12(3162-3169).
IEEE DOI
1208
BibRef
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Buhmann, J.M.[Joachim M.],
Weakly supervised structured output learning for semantic segmentation,
CVPR12(845-852).
IEEE DOI
1208
BibRef
Earlier:
Weakly supervised semantic segmentation with a multi-image model,
ICCV11(643-650).
IEEE DOI
1201
BibRef
Vezhnevets, A.[Alexander],
Buhmann, J.M.[Joachim M.],
Towards weakly supervised semantic segmentation by means of multiple
instance and multitask learning,
CVPR10(3249-3256).
IEEE DOI
1006
See also Agnostic Domain Adaptation.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Counting Instances, Counting Objects .