Herman, G.T.[Gabor T.],
Rowland, S.W.[Stuart W.],
Three methods for reconstructing objects from x rays:
A comparative study,
CGIP(2), No. 2, October 1973, pp. 151-178.
Elsevier DOI
0501
BibRef
Herman, G.T.,
Lakshminarayanan, A.V.,
Rowland, S.W.,
The reconstruction of objects from shadowgraphs with high contrasts,
PR(7), No. 4, December 1975, pp. 157-165.
Elsevier DOI
0309
From X-Ray shadowgraphs. Reconstruction from a limited number.
BibRef
Krishnamurthy, E.V.,
Rao, T.M.[T. Mahadeva],
Subramanian, K.,
Prabhu, S.S.,
Reconstruction of objects from their projections using generalized
inverses,
CGIP(3), No. 4, December 1974, pp. 336-345.
Elsevier DOI
0501
BibRef
Wagner, W.,
Reconstruction of object layers from their X-ray projections:
A simulation study,
CGIP(5), No. 4, December 1976, pp. 470-483.
Elsevier DOI
0501
BibRef
Schreiner, S.,
Dawant, B.M.,
Paschal, C.B.,
Galloway, R.L.,
The importance of ray pathlengths when measuring objects in maximum
intensity projection images,
MedImg(15), No. 4, August 1996, pp. 568-579.
IEEE Top Reference.
0203
BibRef
Kamath, M.,
Chaudhuri, S.,
Desai, U.B.,
Direct Parametric Object Detection in Tomographic-Images,
IVC(16), No. 9-10, July 1998, pp. 669-676.
Elsevier DOI
9808
BibRef
Brodzik, A.K.[Andrzej K.],
Mooney, J.M.[Jonathan M.],
Convex Projections Algorithm for Restoration of Limited-Angle
Chromotomographic Images,
JOSA-A(16), No. 2, February 1999, pp. 246-257.
BibRef
9902
Feng, H.H.[Hai-Hua],
Karl, W.C.[William Clem],
Castanon, D.A.[David A.],
A curve evolution approach to object-based tomographic reconstruction,
IP(12), No. 1, January 2003, pp. 44-57.
IEEE DOI
0301
BibRef
Earlier: A1, A3, A2:
A Curve Evolution Approach for Image Segmentation Using Adaptive Flows,
ICCV01(II: 494-499).
IEEE DOI
0106
BibRef
And:
Object-based Reconstruction Using Coupled Tomographic Flows,
ICIP00(Vol II: 625-628).
IEEE DOI
0008
BibRef
And:
Tomographic Reconstruction using Curve Evolution,
CVPR00(I: 361-366).
IEEE DOI
0005
BibRef
Shi, Y.G.[Yong-Gang],
Karl, W.C.,
Castafion, D.A.,
Dynamic tomography using curve evolution with spatial-temporal
regularization,
ICIP02(II: 629-632).
IEEE DOI
0210
BibRef
Brankov, J.G.,
Yang, Y.Y.[Yong-Yi],
Wernick, M.N.,
Tomographic Image Reconstruction Based on a Content-Adaptive Mesh Model,
MedImg(23), No. 2, February 2004, pp. 202-212.
IEEE Abstract.
0403
BibRef
Earlier:
Content-adaptive 3D mesh modeling for representation of volumetric
images,
ICIP02(III: 849-852).
IEEE DOI
0210
BibRef
Earlier:
Tomographic Image Reconstruction Using Content-Adaptive Mesh Modeling,
ICIP01(I: 690-693).
IEEE DOI
0108
See also Fast Approach for Accurate Content-Adaptive Mesh Generation, A.
BibRef
Brankov, J.G.,
Yang, Y.Y.[Yong-Yi],
Galatsanos, N.P.,
Image restoration using content-adaptive mesh modeling,
ICIP03(II: 997-1000).
IEEE DOI
0312
BibRef
Yang, Y.Y.[Yong-Yi],
Brankov, J.G.,
Wernick, M.N.,
Content-adaptive mesh modeling for fully-3D tomographic image
reconstruction,
ICIP02(II: 621-624).
IEEE DOI
0210
BibRef
Brankov, J.G.[Jovan G.],
Djordjevic, J.[Jaksa],
Wernick, M.N.[Miles N.],
Galatsanos, N.P.[Nikolas P.],
Tomographic Image Reconstruction for Systems with Partially-Known Blur,
ICIP99(III:881-885).
IEEE DOI
BibRef
9900
Mesarovic, V.Z.,
Galatsanos, N.P.,
Wernick, M.N.,
Iterative maximum a posteriori (MAP) restoration from partially-known
blur for tomographic reconstruction,
ICIP95(II: 512-515).
IEEE DOI
9510
BibRef
Soussen, C.,
Mohammad-Djafari, A.,
Polygonal and Polyhedral Contour Reconstruction in Computed Tomography,
IP(13), No. 11, November 2004, pp. 1507-1523.
IEEE DOI
0411
BibRef
Earlier:
Closed Surface Reconstruction in X-ray Tomography,
ICIP01(I: 718-721).
IEEE DOI
0108
BibRef
Mouravliansky, N.,
Matsopoulos, G.K.,
Delibasis, K.,
Asvestas, P.,
Nikita, K.S.,
Combining a morphological interpolation approach with a surface
reconstruction method for the 3-D representation of tomographic data,
JVCIR(15), No. 4, December 2004, pp. 565-579.
Elsevier DOI
0711
Medical interpolation; Mathematical morphology; 3-D visualization;
Surface reconstruction; Marching Cubes Algorithm
BibRef
Sitek, A.,
Huesman, R.H.,
Gullberg, G.T.,
Tomographic reconstruction using an adaptive tetrahedral mesh defined
by a point cloud,
MedImg(25), No. 9, September 2006, pp. 1172-1179.
IEEE DOI
0609
BibRef
Murphy, R.J.,
Yan, S.,
O'Sullivan, J.A.,
Snyder, D.L.,
Whiting, B.R.,
Politte, D.G.,
Lasio, G.,
Williamson, J.F.,
Pose Estimation of Known Objects During Transmission Tomographic Image
Reconstruction,
MedImg(25), No. 10, October 2006, pp. 1392-1404.
IEEE DOI
0609
BibRef
Balazs, P.[Peter],
A decomposition technique for reconstructing discrete sets from four
projections,
IVC(25), No. 10, 1 October 2007, pp. 1609-1619.
Elsevier DOI
0709
Discrete tomography; Reconstruction algorithm; Decomposable discrete set;
Q-convexity; hv-Convexity
BibRef
Varga, L.G.[László G.],
Nyúl, L.G.[László G.],
Nagy, A.[Antal],
Balázs, P.[Péter],
Local and global uncertainty in binary tomographic reconstruction,
CVIU(129), No. 1, 2014, pp. 52-62.
Elsevier DOI
1411
Binary tomography
BibRef
Varga, L.G.[László G.],
Lékó, G.[Gábor],
Balázs, P.[Péter],
Grayscale Uncertainty of Projection Geometries and Projections Sets,
IWCIA20(123-138).
Springer DOI
2009
BibRef
Lékó, G.[Gábor],
Balázs, P.[Péter],
Varga, L.G.[László G.],
Projection Selection for Binary Tomographic Reconstruction Using Global
Uncertainty,
ICIAR18(3-10).
Springer DOI
1807
BibRef
Lékó, G.[Gábor],
Domány, S.[Szilveszter],
Balázs, P.[Péter],
Uncertainty Based Adaptive Projection Selection Strategy for Binary
Tomographic Reconstruction,
CAIP19(II:74-84).
Springer DOI
1909
BibRef
Balázs, P.[Péter],
Batenburg, K.J.[Kees Joost],
A Central Reconstruction Based Strategy for Selecting Projection Angles
in Binary Tomography,
ICIAR12(I: 382-391).
Springer DOI
1206
BibRef
Balázs, P.[Péter],
Reconstruction of Canonical hv-Convex Discrete Sets from Horizontal and
Vertical Projections,
IWCIA09(280-288).
Springer DOI
0911
BibRef
Earlier:
Reconstruction of Binary Images with Few Disjoint Components from Two
Projections,
ISVC08(II: 1147-1156).
Springer DOI
0812
BibRef
And:
On the Number of hv -Convex Discrete Sets,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Earlier:
Generation and Empirical Investigation of hv -Convex Discrete Sets,
SCIA07(344-353).
Springer DOI
0706
CT Reconstructions.
BibRef
Balázs, P.[Péter],
Gara, M.[Mihály],
An Evolutionary Approach for Object-Based Image Reconstruction Using
Learnt Priors,
SCIA09(520-529).
Springer DOI
0906
BibRef
Earlier:
Decision Trees in Binary Tomography for Supporting the Reconstruction
of hv-Convex Connected Images,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Saucan, E.[Emil],
Appleboim, E.[Eli],
Barak-Shimron, E.[Efrat],
Lev, R.[Ronen],
Zeevi, Y.Y.[Yehoshua Y.],
Local versus Global in Quasi-Conformal Mapping for Medical Imaging,
JMIV(32), No. 3, November 2008, pp. xx-yy.
Springer DOI
0810
BibRef
Saucan, E.[Emil],
Appleboim, E.[Eli],
Zeevi, Y.Y.[Yehoshua Y.],
Sampling and Reconstruction of Surfaces and Higher Dimensional
Manifolds,
JMIV(30), No. 1, January 2008, pp. 105-123.
Springer DOI
0801
BibRef
And:
JMIV(34), No. 3, July 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Earlier:
Geometric Sampling of Manifolds for Image Representation and Processing,
SSVM07(907-918).
Springer DOI
0705
Sampling theorem for embedding images in manifolds.
BibRef
Saucan, E.,
Wolansky, G.,
Appleboim, E.,
Zeevi, Y.Y.,
Combinatorial Ricci Curvature and Laplacians for Image Processing,
CISP09(1-6).
IEEE DOI
0910
BibRef
Appleboim, E.[Eli],
Saucan, E.[Emil],
Zeevi, Y.Y.[Yehoshua Y.],
Quasi-conformal Flat Representation of Triangulated Surfaces for
Computerized Tomography,
CVAMIA06(155-165).
Springer DOI
0605
BibRef
Appleboim, E.[Eli],
Saucan, E.[Emil],
Zeevi, Y.Y.[Yehoshua Y.],
Zeitoun, O.[Ofir],
Quasi-isometric and Quasi-conformal Development of Triangulated
Surfaces for Computerized Tomography,
IWCIA06(361-374).
Springer DOI
0606
BibRef
Saucan, E.[Emil],
Isometric Embeddings in Imaging and Vision: Facts and Fiction,
JMIV(43), No. 2, June 2012, pp. 143-155.
WWW Link.
1204
BibRef
Wang, H.K.[Hong-Kai],
Stout, D.B.,
Chatziioannou, A.F.,
Estimation of Mouse Organ Locations Through Registration of a
Statistical Mouse Atlas With Micro-CT Images,
MedImg(31), No. 1, January 2012, pp. 88-102.
IEEE DOI
1201
BibRef
Bagci, U.,
Chen, X.,
Udupa, J.K.,
Hierarchical Scale-Based Multiobject Recognition of 3-D Anatomical
Structures,
MedImg(31), No. 3, March 2012, pp. 777-789.
IEEE DOI
1203
BibRef
Dufour, P.A.,
Ceklic, L.,
Abdillahi, H.,
Schroder, S.,
de Dzanet, S.,
Wolf-Schnurrbusch, U.,
Kowal, J.,
Graph-Based Multi-Surface Segmentation of OCT Data Using Trained Hard
and Soft Constraints,
MedImg(32), No. 3, March 2013, pp. 531-543.
IEEE DOI
1303
OCT: Optical Coherence Tomography.
BibRef
Xu, X.[Xu],
Cui, Y.[Yi],
Guo, S.[Shuxu],
Statistical Edge Detection in CT Image by Kernel Density Estimation and
Mean Square Error Distance,
IEICE(E96-D), No. 5, May 2013, pp. 1162-1170.
WWW Link.
1305
BibRef
Mendonca, P.R.S.,
Lamb, P.,
Sahani, D.V.,
A Flexible Method for Multi-Material Decomposition of Dual-Energy CT
Images,
MedImg(33), No. 1, January 2014, pp. 99-116.
IEEE DOI
1402
computerised tomography
BibRef
Bajger, M.[Mariusz],
Lee, G.[Gobert],
Caon, M.[Martin],
3D Segmentation for Multi-Organs in CT Images,
ELCVIA(12), No. 2, 2013, pp. xx-yy.
DOI Link
1403
BibRef
Liu, H.[Hao],
Zhu, G.H.[Guan-Hua],
Zhao, J.N.[Jian-Ning],
Qian, H.B.[Hong-Bo],
Dai, N.[Ning],
Recognition of Occlusions in CT Images Using a Curve-Based
Parameterization Method,
IJIG(13), No. 04, 2013, pp. 1350018.
DOI Link
1404
BibRef
Sampedro, F.[Frederic],
Escalera, S.[Sergio],
Puig, A.[Anna],
Iterative multi-class multi-scale stacked sequential learning:
Definition and application to medical volume segmentation,
PRL(46), No. 1, 2014, pp. 1-10.
Elsevier DOI
1407
Machine learning
BibRef
Sampedro, F.[Frederic],
Escalera, S.[Sergio],
Spatial codification of label predictions in multi-scale stacked
sequential learning: a case study on multi-class medical volume
segmentation,
IET-CV(9), No. 3, 2015, pp. 439-446.
DOI Link
1507
image classification
BibRef
Kainz, B.,
Steinberger, M.,
Wein, W.,
Kuklisova-Murgasova, M.,
Malamateniou, C.,
Keraudren, K.,
Torsney-Weir, T.,
Rutherford, M.,
Aljabar, P.,
Hajnal, J.V.,
Rueckert, D.,
Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices,
MedImg(34), No. 9, September 2015, pp. 1901-1913.
IEEE DOI
1509
Approximation methods
BibRef
Martin, L.,
Tuysuzoglu, A.,
Karl, W.C.,
Ishwar, P.,
Learning-Based Object Identification and Segmentation Using
Dual-Energy CT Images for Security,
IP(24), No. 11, November 2015, pp. 4069-4081.
IEEE DOI
1509
computerised tomography
BibRef
Barquero, H.,
Brasse, D.,
Small Animal In Vivo X-Ray Tomosynthesis:
Anatomical Relevance of the Reconstructed Images,
MedImg(35), No. 2, February 2016, pp. 373-380.
IEEE DOI
1602
Animals
BibRef
Popuri, K.,
Cobzas, D.,
Esfandiari, N.,
Baracos, V.,
Jagersand, M.,
Body Composition Assessment in Axial CT Images Using FEM-Based
Automatic Segmentation of Skeletal Muscle,
MedImg(35), No. 2, February 2016, pp. 512-520.
IEEE DOI
1602
Computed tomography
BibRef
Filho, P.P.R.[Pedro P. Rebouças],
de Souza Rebouças, E.[Elizângela],
Marinho, L.B.[Leandro B.],
Sarmento, R.M.[Róger M.],
Tavares, J.M.R.S.[Joăo Manuel R.S.],
de Albuquerque, V.H.C.[Victor Hugo C.],
Analysis of human tissue densities:
A new approach to extract features from medical images,
PRL(94), No. 1, 2017, pp. 211-218.
Elsevier DOI
1708
Medical, imaging
BibRef
Bieth, M.,
Peter, L.,
Nekolla, S.G.,
Eiber, M.,
Langs, G.,
Schwaiger, M.,
Menze, B.H.,
Segmentation of Skeleton and Organs in Whole-Body CT Images via
Iterative Trilateration,
MedImg(36), No. 11, November 2017, pp. 2276-2286.
IEEE DOI
1711
Biomedical imaging, Bones, Computed tomography, Context,
Image segmentation, Radio frequency, Medical Imaging, Segmentation
BibRef
Mechlem, K.,
Ehn, S.,
Sellerer, T.,
Braig, E.,
Münzel, D.,
Pfeiffer, F.,
Noël, P.B.,
Joint Statistical Iterative Material Image Reconstruction for
Spectral Computed Tomography Using a Semi-Empirical Forward Model,
MedImg(37), No. 1, January 2018, pp. 68-80.
IEEE DOI
1801
calibration, computerised tomography, image reconstruction,
iterative methods, medical image processing, optimisation,
statistical iterative reconstruction
BibRef
Xu, J.Y.[Jing-Yan],
Noo, F.[Frederic],
Tsui, B.M.W.,
A Direct Algorithm for Optimization Problems With the Huber Penalty,
MedImg(37), No. 1, January 2018, pp. 162-172.
IEEE DOI
1801
biological tissues, computerised tomography, dynamic programming,
image denoising, image reconstruction, image restoration,
total variation
BibRef
Xu, J.Y.[Jing-Yan],
Noo, F.[Frederic],
Linearized Analysis of Noise and Resolution for DL-Based Image
Generation,
MedImg(42), No. 3, March 2023, pp. 647-660.
IEEE DOI
2303
Computed tomography, Image resolution, Task analysis,
Noise measurement, Image reconstruction, Covariance matrices, FBPConvNet
BibRef
Manivannan, S.,
Li, W.,
Zhang, J.,
Trucco, E.,
McKenna, S.J.,
Structure Prediction for Gland Segmentation With Hand-Crafted and
Deep Convolutional Features,
MedImg(37), No. 1, January 2018, pp. 210-221.
IEEE DOI
1801
image classification, image segmentation,
medical image processing, pattern clustering,
segmentation
BibRef
McKenna, S.J.[Stephen J.],
Amaral, T.[Telmo],
Plötz, T.[Thomas],
Kyriazakis, I.[Ilias],
Multi-part segmentation for porcine offal inspection with
auto-context and adaptive atlases,
PRL(112), 2018, pp. 290-296.
Elsevier DOI
1809
BibRef
Earlier: A2, A4, A1, A3:
Weighted atlas auto-context with application to multiple organ
segmentation,
WACV16(1-9)
IEEE DOI
1606
Multi-class segmentation, Auto-context,
Atlas-based segmentation, Automated inspection.
Computational modeling
BibRef
Ngom, N.F.[Ndeye Fatou],
Ndiaye, C.H.T.C.[Cheikh H. T. C.],
Niang, O.[Oumar],
Sidibe, S.[Samba],
Shape Descriptors for Porous Media Analysis Using Computed Tomography
Images,
IJIG(18), No. 02, 2018, pp. 1850011.
DOI Link
1804
BibRef
Novikov, A.A.,
Major, D.,
Wimmer, M.,
Lenis, D.,
Bühler, K.,
Deep Sequential Segmentation of Organs in Volumetric Medical Scans,
MedImg(38), No. 5, May 2019, pp. 1207-1215.
IEEE DOI
1905
Image segmentation,
Computer architecture, Shape, Training,
convolutional LSTM
BibRef
Xu, X.,
Zhou, F.,
Liu, B.,
Fu, D.,
Bai, X.,
Efficient Multiple Organ Localization in CT Image Using 3D Region
Proposal Network,
MedImg(38), No. 8, August 2019, pp. 1885-1898.
IEEE DOI
1908
Computed tomography, Biological systems, Object detection,
region proposal network
BibRef
Wu, X.D.[Xiao-Dan],
Li, H.B.[Hai-Bo],
Xu, X.H.[Xiao-Hui],
Wei, H.F.[Hua-Feng],
CT lesion recognition algorithm based on improved particle reseeding
method,
PRL(125), 2019, pp. 119-123.
Elsevier DOI
1909
CT lesion, Improved particle reseeding method, topography
BibRef
Zhou, S.,
Nie, D.,
Adeli, E.,
Yin, J.,
Lian, J.,
Shen, D.,
High-Resolution Encoder-Decoder Networks for Low-Contrast Medical
Image Segmentation,
IP(29), No. 1, 2020, pp. 461-475.
IEEE DOI
1910
Image segmentation, Semantics, Task analysis, Computed tomography,
Shape, Medical diagnostic imaging, Image segmentation,
high-resolution pathway
BibRef
Gu, Z.,
Cheng, J.,
Fu, H.,
Zhou, K.,
Hao, H.,
Zhao, Y.,
Zhang, T.,
Gao, S.,
Liu, J.,
CE-Net: Context Encoder Network for 2D Medical Image Segmentation,
MedImg(38), No. 10, October 2019, pp. 2281-2292.
IEEE DOI
1910
Image segmentation, Feature extraction, Convolution,
Biomedical optical imaging, Optical imaging, Computed tomography,
context encoder network
BibRef
Ji, X.W.[Xue-Wen],
Liu, H.Q.[Hui-Qiang],
Xing, Y.[Yan],
Xue, Y.L.[Yan-Ling],
Quantitative evaluation on 3D fetus morphology via X-ray grating
based imaging technique,
IJIST(29), No. 4, 2019, pp. 677-685.
DOI Link
1911
biomedical research, grating-based imaging, mouse fetus,
phase-sensitive micro-tomography, quantitative analysis
BibRef
Wachinger, C.,
Toews, M.,
Langs, G.,
Wells, W.M.,
Golland, P.,
Keypoint Transfer for Fast Whole-Body Segmentation,
MedImg(39), No. 2, February 2020, pp. 273-282.
IEEE DOI
2002
Training, Image segmentation, Biomedical imaging,
Computed tomography, Probabilistic logic, CT
BibRef
Al Zubi, S.[Shadi],
Shehab, M.[Mohammed],
Al-Ayyoub, M.[Mahmoud],
Jararweh, Y.[Yaser],
Gupta, B.[Brij],
Parallel implementation for 3D medical volume fuzzy segmentation,
PRL(130), 2020, pp. 312-318.
Elsevier DOI
2002
Fuzzy C-means, 3D segmentation, GPU,
Medical imaging, 3D visualization, Image processing
BibRef
Hiasa, Y.[Yuta],
Otake, Y.[Yoshito],
Takao, M.[Masaki],
Ogawa, T.[Takeshi],
Sugan, N.[Nobuhiko],
Automated Muscle Segmentation from Clinical CT Using Bayesian U-Net
for Personalized Musculoskeletal Modeling,
MedImg(39), No. 4, April 2020, pp. 1030-1040.
IEEE DOI
2004
Muscles, Uncertainty, Image segmentation, Computed tomography,
Measurement, Computational modeling, Bayes methods,
musculoskeletal model
BibRef
Yan, Z.,
Yang, X.,
Cheng, K.,
Enabling a Single Deep Learning Model for Accurate Gland Instance
Segmentation: A Shape-Aware Adversarial Learning Framework,
MedImg(39), No. 6, June 2020, pp. 2176-2189.
IEEE DOI
2006
Gland instance segmentation,
segment-level shape similarity measure, adversarial learning, feature alignment
BibRef
Chen, F.[Feng],
Muhammad, K.[Khan],
Wang, S.H.[Shui-Hua],
Three-dimensional reconstruction of CT image features based on
multi-threaded deep learning calculation,
PRL(136), 2020, pp. 309-315.
Elsevier DOI
2008
Fuzzy clustering, CT image, Feature region, Deep learning,
Multithreading, 3D reconstruction
BibRef
Liang, S.,
Thung, K.,
Nie, D.,
Zhang, Y.,
Shen, D.,
Multi-View Spatial Aggregation Framework for Joint Localization and
Segmentation of Organs at Risk in Head and Neck CT Images,
MedImg(39), No. 9, September 2020, pp. 2794-2805.
IEEE DOI
2009
Image segmentation, Computed tomography, Cancer,
Optical imaging, Task analysis,
head and neck cancer
BibRef
Zhang, L.[Liang],
Zhang, J.M.[Jia-Ming],
Shen, P.Y.[Pei-Yi],
Zhu, G.M.[Guang-Ming],
Li, P.[Ping],
Lu, X.Y.[Xiao-Yuan],
Zhang, H.[Huan],
Shah, S.A.[Syed Afaq],
Bennamoun, M.[Mohammed],
Block Level Skip Connections Across Cascaded V-Net for Multi-Organ
Segmentation,
MedImg(39), No. 9, September 2020, pp. 2782-2793.
IEEE DOI
2009
Image segmentation, Kernel, Convolution, Labeling, Cranial,
Computed tomography, Task analysis, Multi-organ segmentation,
hard-to-segment
BibRef
Pourahmadian, F.[Fatemeh],
Haddar, H.[Houssem],
Differential Tomography of Micromechanical Evolution in Elastic
Materials of Unknown Micro/Macrostructure,
SIIMS(13), No. 3, 2020, pp. 1302-1330.
DOI Link
2010
BibRef
Hammami, M.[Maryam],
Friboulet, D.[Denis],
Kechichian, R.[Razmig],
Data augmentation for multi-organ detection in medical images,
IPTA20(1-6)
IEEE DOI
2206
BibRef
And:
Cycle GAN-Based Data Augmentation For Multi-Organ Detection In CT
Images Via Yolo,
ICIP20(390-393)
IEEE DOI
2011
Computed tomography, Magnetic resonance imaging,
Supervised learning, Object detection, Tools, Biomedical imaging,
medical imaging.
Detectors.
BibRef
Geng, M.,
Tian, Z.,
Jiang, Z.,
You, Y.,
Feng, X.,
Xia, Y.,
Yang, K.,
Ren, Q.,
Meng, X.,
Maier, A.,
Lu, Y.,
PMS-GAN: Parallel Multi-Stream Generative Adversarial Network for
Multi-Material Decomposition in Spectral Computed Tomography,
MedImg(40), No. 2, February 2021, pp. 571-584.
IEEE DOI
2102
Generators, Computed tomography, Generative adversarial networks,
Roads, X-ray imaging, Deep learning, Bones, Differential map,
spectral X-ray imaging
BibRef
Zhang, J.,
Xie, Y.,
Wang, Y.,
Xia, Y.,
Inter-Slice Context Residual Learning for 3D Medical Image
Segmentation,
MedImg(40), No. 2, February 2021, pp. 661-672.
IEEE DOI
2102
Image segmentation, Decoding,
Biomedical imaging, Tumors, Task analysis, Solid modeling,
3D medical image segmentation
BibRef
Lung, K.Y.[Kuan-Yu],
Chang, C.R.[Chi-Rung],
Weng, S.E.[Shao-En],
Lin, H.S.[Hao-Siang],
Shuai, H.H.[Hong-Han],
Cheng, W.H.[Wen-Huang],
ROSNet: Robust one-stage network for CT lesion detection,
PRL(144), 2021, pp. 82-88.
Elsevier DOI
2103
Deep learning, Lesion detection, Computed tomography scan,
Multi-level feature pyramid, Class-balanced loss
BibRef
Xue, Y.[Yi],
Qin, W.J.[Wen-Jian],
Luo, C.[Chen],
Yang, P.F.[Peng-Fei],
Jiang, Y.K.[Yang-Kang],
Tsui, T.[Tiffany],
He, H.J.[Hong-Jian],
Wang, L.[Li],
Qin, J.L.[Jia-Le],
Xie, Y.Q.[Yao-Qin],
Niu, T.Y.[Tian-Ye],
Multi-Material Decomposition for Single Energy CT Using Material
Sparsity Constraint,
MedImg(40), No. 5, May 2021, pp. 1303-1318.
IEEE DOI
2105
Computed tomography, Attenuation, Phantoms, Matrix decomposition,
Hospitals, STEM, Linear programming, Multi-material decomposition,
two-material assumption
BibRef
Tang, Y.C.[Yu-Cheng],
Gao, R.Q.[Ri-Qiang],
Han, S.Z.[Shi-Zhong],
Chen, Y.Q.[Yun-Qiang],
Gao, D.S.[Da-Shan],
Nath, V.[Vishwesh],
Bermudez, C.[Camilo],
Savona, M.R.[Michael R.],
Bao, S.[Shunxing],
Lyu, I.[Ilwoo],
Huo, Y.[Yuankai],
Landman, B.A.[Bennett A.],
Body Part Regression With Self-Supervision,
MedImg(40), No. 5, May 2021, pp. 1499-1507.
IEEE DOI
2105
Computed tomography, Manuals, Unsupervised learning, Training,
Navigation, Task analysis,
multi-organ segmentation
BibRef
Aganj, I.[Iman],
Fischl, B.[Bruce],
Multi-Atlas Image Soft Segmentation via Computation of the Expected
Label Value,
MedImg(40), No. 6, June 2021, pp. 1702-1710.
IEEE DOI
2106
Image segmentation, Strain, Convolution, Biomedical imaging,
Computational efficiency, Training data, Training, CT
BibRef
Bateson, M.,
Dolz, J.,
Kervadec, H.,
Lombaert, H.,
Ben Ayed, I.[Ismail],
Constrained Domain Adaptation for Image Segmentation,
MedImg(40), No. 7, July 2021, pp. 1875-1887.
IEEE DOI
2107
Image segmentation, Task analysis, Training, Biomedical imaging,
Magnetic resonance imaging, Computed tomography, Annotations, CNN,
segmentation
BibRef
Perelli, A.[Alessandro],
Andersen, M.S.[Martin S.],
Regularization by denoising sub-sampled Newton method for spectral CT
multi-material decomposition,
Royal(A: 379), No. 2200, June 2021, pp. 20200191.
DOI Link
2107
BibRef
Lo, H.J.[Hsien-Jen],
Wu, C.H.[Chih-Hung],
Local binary pattern encoding schemes for computed tomography image
segmentation: An experimental and comparative study,
IJIST(31), No. 3, 2021, pp. 1300-1316.
DOI Link
2108
clustering, CT images, Euclidean distance, fuzzy C-means,
image segmentation, local binary pattern
BibRef
Yan, K.[Ke],
Cai, J.Z.[Jin-Zheng],
Zheng, Y.J.[You-Jing],
Harrison, A.P.[Adam P.],
Jin, D.[Dakai],
Tang, Y.B.[You-Bao],
Tang, Y.X.[Yu-Xing],
Huang, L.Y.[Ling-Yun],
Xiao, J.[Jing],
Lu, L.[Le],
Learning From Multiple Datasets With Heterogeneous and Partial Labels
for Universal Lesion Detection in CT,
MedImg(40), No. 10, October 2021, pp. 2759-2770.
IEEE DOI
2110
Lesions, Annotations, Training, Lenses, Proposals, Computed tomography,
Task analysis, Lesion detection, multi-dataset learning,
multi-task learning
BibRef
Han, X.T.[Xiao-Ting],
Qi, L.[Lei],
Yu, Q.[Qian],
Zhou, Z.Q.[Zi-Qi],
Zheng, Y.F.[Ye-Feng],
Shi, Y.H.[Ying-Huan],
Gao, Y.[Yang],
Deep Symmetric Adaptation Network for Cross-Modality Medical Image
Segmentation,
MedImg(41), No. 1, January 2022, pp. 121-132.
IEEE DOI
2201
Image segmentation, Computed tomography, Decoding,
Biomedical imaging, Semantics, Magnetic resonance imaging,
deep symmetric architecture
BibRef
Yu, Q.[Qian],
Qi, L.[Lei],
Gao, Y.[Yang],
Wang, W.Z.[Wu-Zhang],
Shi, Y.H.[Ying-Huan],
Crosslink-Net: Double-Branch Encoder Network via Fusing Vertical and
Horizontal Convolutions for Medical Image Segmentation,
IP(31), 2022, pp. 5893-5908.
IEEE DOI
2209
Kernel, Image segmentation, Biomedical imaging, Shape, Decoding,
Context modeling, Computer architecture, Double-branch encoder, segmentation
BibRef
Huang, B.[Bin],
Ye, Y.F.[Yu-Feng],
Xu, Z.Y.[Zi-Yue],
Cai, Z.Y.[Zong-You],
He, Y.[Yan],
Zhong, Z.N.[Zhang-Nan],
Liu, L.X.[Ling-Xiang],
Chen, X.[Xin],
Chen, H.W.[Han-Wei],
Huang, B.S.[Bing-Sheng],
3D Lightweight Network for Simultaneous Registration and Segmentation
of Organs-at-Risk in CT Images of Head and Neck Cancer,
MedImg(41), No. 4, April 2022, pp. 951-964.
IEEE DOI
2204
Image segmentation, Computed tomography, Cancer, Pipelines, Shape,
Neck, Segmentation, registration, computed tomography, organ-at-risk,
lightweight network
BibRef
Zhou, Y.Y.[Yu-Yin],
Dreizin, D.[David],
Wang, Y.[Yan],
Liu, F.Z.[Feng-Ze],
Shen, W.[Wei],
Yuille, A.L.[Alan L.],
External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation With Limited Data,
MedImg(41), No. 6, June 2022, pp. 1346-1357.
IEEE DOI
2206
Injuries, Image segmentation, Training, Computed tomography,
Annotations, Imaging, Data mining,
attention
BibRef
Francis, S.[Seenia],
Pooloth, G.[Goutham],
Singam, S.B.S.[Sai Bala Subrahmanyam],
Puzhakkal, N.[Niyas],
Narayanan, P.P.[Pournami Pulinthanathu],
Balakrishnan, J.P.[Jayaraj Pottekkattuvalappil],
SABOS-Net: Self-supervised attention based network for automatic
organ segmentation of head and neck CT images,
IJIST(33), No. 1, 2023, pp. 175-191.
DOI Link
2301
auto-contouring, deep learning, head and neck CT,
organs at risk(OAR), radiation therapy, residual U-net, self supervision
BibRef
Zhong, Z.Q.[Zhi-Qiang],
He, L.[Lian],
Chen, C.X.[Chang-Xiu],
Yang, X.[Xingli],
Lin, L.[Li],
Yan, Z.[Ziye],
Tian, M.Q.[Meng-Qiu],
Sun, Y.[Ying],
Zhan, Y.W.[Yin-Wei],
Full-scale attention network for automated organ segmentation on head
and neck CT and MR images,
IET-IPR(17), No. 3, 2023, pp. 660-673.
DOI Link
2303
BibRef
Yan, Q.S.[Qing-Sen],
Liu, S.Q.[Sheng-Qiang],
Xu, S.H.[Song-Hua],
Dong, C.X.[Cai-Xia],
Li, Z.F.[Zong-Fang],
Shi, J.Q.F.[Javen Qin-Feng],
Zhang, Y.N.[Yan-Ning],
Dai, D.[Duwei],
3D Medical image segmentation using parallel transformers,
PR(138), 2023, pp. 109432.
Elsevier DOI
2303
WWW Link. 3D Medical image segmentation, Deep learning, Transformers,
Attention, Fusion, High-resolution representations,
Low-resolution representations
BibRef
Chen, M.J.[Mei-Juan],
Zhuo, L.[Li],
Zhu, Z.[Ziyao],
Yin, H.X.[Hong-Xia],
Li, X.G.[Xiao-Guang],
Wang, Z.C.[Zhen-Chang],
Deeply supervised vestibule segmentation network for CT images with
global context-aware pyramid feature extraction,
IET-IPR(17), No. 4, 2023, pp. 1267-1279.
DOI Link
2303
active contour with elastic (ACE) loss, deep supervision,
global context-aware pyramid feature extraction, vestibule segmentation
BibRef
Wang, S.F.[Shao-Fan],
Liu, Y.K.[Yu-Kun],
Sun, Y.F.[Yan-Feng],
Yin, B.C.[Bao-Cai],
SACNet: Shuffling atrous convolutional U-Net for medical image
segmentation,
IET-IPR(17), No. 4, 2023, pp. 1236-1252.
DOI Link
2303
convolutional neural nets, medical image processing
BibRef
Wang, P.[Ping],
Peng, J.Z.[Ji-Zong],
Pedersoli, M.[Marco],
Zhou, Y.F.[Yuan-Feng],
Zhang, C.M.[Cai-Ming],
Desrosiers, C.[Christian],
CAT: Constrained Adversarial Training for Anatomically-Plausible
Semi-Supervised Segmentation,
MedImg(42), No. 8, August 2023, pp. 2146-2161.
IEEE DOI
2308
Image segmentation, Training, Shape, Software, Task analysis, Deep learning,
Biomedical imaging, Medical image segmentation, reinforcement learning
BibRef
Yuan, F.N.[Fei-Niu],
Tang, Z.D.[Zhao-Da],
Wang, C.M.[Chun-Mei],
Huang, Q.H.[Qing-Hua],
Shi, J.T.[Jin-Ting],
A multiple gated boosting network for multi-organ medical image
segmentation,
IET-IPR(17), No. 10, 2023, pp. 3028-3039.
DOI Link
2308
medical image processing, transforms
BibRef
Zhao, Q.F.[Qian-Fei],
Zhong, L.F.[Lan-Feng],
Xiao, J.H.[Jiang-Hong],
Zhang, J.B.[Jing-Bo],
Chen, Y.[Yinan],
Liao, W.J.[Wen-Jun],
Zhang, S.T.[Shao-Ting],
Wang, G.[Guotai],
Efficient Multi-Organ Segmentation From 3D Abdominal CT Images With
Lightweight Network and Knowledge Distillation,
MedImg(42), No. 9, September 2023, pp. 2513-2523.
IEEE DOI
2310
BibRef
Pandey, P.[Prashant],
Chasmai, M.[Mustafa],
Sur, T.[Tanuj],
Lall, B.[Brejesh],
Robust Prototypical Few-Shot Organ Segmentation With Regularized
Neural-ODEs,
MedImg(42), No. 9, September 2023, pp. 2490-2501.
IEEE DOI
2310
BibRef
Xu, X.[Xuanang],
Deng, H.H.[Hannah H.],
Gateno, J.[Jamie],
Yan, P.K.[Ping-Kun],
Federated Multi-Organ Segmentation With Inconsistent Labels,
MedImg(42), No. 10, October 2023, pp. 2948-2960.
IEEE DOI
2310
BibRef
Francis, S.[Seenia],
Jayaraj, P.B.,
Pournami, P.N.,
Puzhakkal, N.[Niyas],
ContourGAN: Auto-contouring of organs at risk in abdomen computed
tomography images using generative adversarial network,
IJIST(33), No. 5, 2023, pp. 1494-1504.
DOI Link
2310
abdomen CT, auto-contouring, deep learning, generative models,
OAR segmentation, radiation therapy, UNet
BibRef
Liu, H.[Han],
Xu, Z.B.[Zhou-Bing],
Gao, R.Q.[Ri-Qiang],
Li, H.[Hao],
Wang, J.N.[Jia-Ning],
Chabin, G.[Guillaume],
Oguz, I.[Ipek],
Grbic, S.[Sasa],
COSST: Multi-Organ Segmentation With Partially Labeled Datasets Using
Comprehensive Supervisions and Self-Training,
MedImg(43), No. 5, May 2024, pp. 1995-2009.
IEEE DOI
2405
Task analysis, Training, Image segmentation, Biological systems, Annotations,
Computed tomography, Biomedical imaging, pseudo label
BibRef
Song, H.F.[Hao-Fei],
Mao, X.T.[Xin-Tian],
Yu, J.[Jing],
Li, Q.L.[Qing-Li],
Wang, Y.[Yan],
IłNet: Inter-Intra-Slice Interpolation Network for Medical Slice
Synthesis,
MedImg(43), No. 9, September 2024, pp. 3306-3318.
IEEE DOI Code:
WWW Link.
2409
Interpolation, Superresolution, Task analysis,
Frequency-domain analysis, Computed tomography,
slice-wise interpolation
BibRef
Chen, Y.X.[Yi-Xin],
Gao, Y.[Yajuan],
Zhu, L.[Lei],
Shao, W.R.[Wen-Rui],
Lu, Y.[Yanye],
Han, H.B.[Hong-Bin],
Xie, Z.H.[Zhao-Heng],
PCNet: Prior Category Network for CT Universal Segmentation Model,
MedImg(43), No. 9, September 2024, pp. 3319-3330.
IEEE DOI Code:
WWW Link.
2409
Image segmentation, Biomedical imaging, Task analysis,
Computational modeling, Computed tomography, prompt
BibRef
Shaker, A.[Abdelrahman],
Maaz, M.[Muhammad],
Rasheed, H.[Hanoona],
Khan, S.[Salman],
Yang, M.H.[Ming-Hsuan],
Khan, F.S.[Fahad Shahbaz],
UNETR++: Delving Into Efficient and Accurate 3D Medical Image
Segmentation,
MedImg(43), No. 9, September 2024, pp. 3377-3390.
IEEE DOI Code:
WWW Link.
2409
Image segmentation, Transformers,
Biomedical imaging, Complexity theory, Graphics processing units,
medical image segmentation
BibRef
Geng, H.X.[Hai-Xiao],
Fan, J.F.[Jing-Fan],
Yang, S.[Shuo],
Chen, S.[Sigeng],
Xiao, D.Q.[De-Qiang],
Ai, D.[Danni],
Fu, T.Y.[Tian-Yu],
Song, H.[Hong],
Yuan, K.[Kai],
Duan, F.[Feng],
Wang, Y.T.[Yong-Tian],
Yang, J.[Jian],
DSC-Recon: Dual-Stage Complementary 4-D Organ Reconstruction From
X-Ray Image Sequence for Intraoperative Fusion,
MedImg(43), No. 11, November 2024, pp. 3909-3923.
IEEE DOI
2411
X-ray imaging, Shape, Image reconstruction, Computed tomography,
Interpolation, Deformation, Organ reconstruction,
X-ray image sequence
BibRef
Xu, Y.[Yanwu],
Sun, L.[Li],
Peng, W.[Wei],
Jia, S.[Shuyue],
Morrison, K.[Katelyn],
Perer, A.[Adam],
Zandifar, A.[Afrooz],
Visweswaran, S.[Shyam],
Eslami, M.[Motahhare],
Batmanghelich, K.[Kayhan],
MedSyn: Text-Guided Anatomy-Aware Synthesis of High-Fidelity 3-D CT
Images,
MedImg(43), No. 10, October 2024, pp. 3648-3660.
IEEE DOI
2411
Biomedical imaging, Radiology, Computed tomography, Image synthesis,
Atmospheric modeling, Lung, Diffusion model, controllable synthesis
BibRef
Liu, T.[Tao],
Zhang, X.[Xukun],
Yang, Z.[Zhongwei],
Han, M.H.[Ming-Hao],
Kuang, H.[Haopeng],
Ma, S.W.[Shu-Wei],
Wang, L.[Le],
Wang, X.Y.[Xiao-Ying],
Zhang, L.H.[Li-Hua],
Dual knowledge-guided two-stage model for precise small organ
segmentation in abdominal CT images,
IET-IPR(18), No. 13, 2024, pp. 3935-3949.
DOI Link
2411
computerised tomography, learning (artificial intelligence),
medical image processing
BibRef
Ye, Y.W.[Yi-Wen],
Zhang, J.P.[Jian-Peng],
Chen, Z.Y.[Zi-Yang],
Xia, Y.[Yong],
CADS: A Self-Supervised Learner via Cross-Modal Alignment and Deep
Self-Distillation for CT Volume Segmentation,
MedImg(44), No. 1, January 2025, pp. 118-129.
IEEE DOI Code:
WWW Link.
2501
Computed tomography, Task analysis, X-ray imaging, Image segmentation,
Contrastive learning, Solid modeling, CT volume segmentation
BibRef
Xie, W.Y.[Wei-Yi],
Willems, N.[Nathalie],
Patil, S.[Shubham],
Li, Y.[Yang],
Kumar, M.[Mayank],
SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images,
WACV24(3241-3249)
IEEE DOI
2404
Training, Image segmentation, Decoding, Labeling, Task analysis,
Biomedical imaging, Algorithms, 3D Applications,
Biomedical / healthcare / medicine
BibRef
Bhattacharya, S.[Samayan],
Bhattacharya, A.[Avigyan],
Shahnawaz, S.[Sk],
Generating Synthetic Computed Tomography (CT) Images to Improve the
Performance of Machine Learning Model for Pediatric Abdominal Anomaly
Detection,
BioIm23(3867-3875)
IEEE DOI
2401
BibRef
Li, Z.L.[Zi-Long],
Ma, C.L.[Cheng-Long],
Chen, J.[Jie],
Zhang, J.P.[Jun-Ping],
Shan, H.M.[Hong-Ming],
Learning to Distill Global Representation for Sparse-View CT,
ICCV23(21139-21150)
IEEE DOI Code:
WWW Link.
2401
BibRef
Ji, Z.H.X.[Zhang-He-Xuan],
Guo, D.[Dazhou],
Wang, P.[Puyang],
Yan, K.[Ke],
Lu, L.[Le],
Xu, M.F.[Min-Feng],
Wang, Q.F.[Qi-Feng],
Ge, J.[Jia],
Gao, M.C.[Ming-Chen],
Ye, X.H.[Xiang-Hua],
Jin, D.[Dakai],
Continual Segment: Towards a Single, Unified and Non-forgetting
Continual Segmentation Model of 143 Whole-body Organs in CT Scans,
ICCV23(21083-21094)
IEEE DOI
2401
BibRef
Wang, S.Q.[Si-Qi],
Yatagawa, T.[Tatsuya],
Ohtake, Y.[Yutaka],
Aoki, T.[Toru],
Hotta, J.[Jun],
End-to-End Deep Learning for Reconstructing Segmented 3D CT Image
from Multi-Energy X-ray Projections,
CVAMD23(2566-2574)
IEEE DOI
2401
BibRef
El Jurdi, R.[Rosana],
Dargent, T.[Thomas],
Petitjean, C.[Caroline],
Honeine, P.[Paul],
Abdallah, F.[Fahed],
Investigating CoordConv for Fully and Weakly Supervised Medical Image
Segmentation,
IPTA20(1-5)
IEEE DOI
2206
Image segmentation, Convolution, Computed tomography, Tools,
Convolutional neural networks, Task analysis, Biomedical imaging, CT
BibRef
Renders, J.[Jens],
de Beenhouwer, J.[Jan],
Sijbers, J.[Jan],
Mesh-Based Reconstruction of Dynamic Foam Images Using X-Ray CT,
3DV21(1312-1320)
IEEE DOI
2201
Visualization, Solid modeling, Computed tomography, Synchrotrons,
Memory management, Reconstruction algorithms, 4D CT, Tomography, Foam
BibRef
Tekawade, A.[Aniket],
Liu, Z.C.[Zheng-Chun],
Kenesei, P.[Peter],
Bicer, T.[Tekin],
de Carlo, F.[Francesco],
Kettimuthu, R.[Rajkumar],
Foster, I.[Ian],
3d Autoencoders for Feature Extraction In X-Ray Tomography,
ICIP21(3477-3481)
IEEE DOI
2201
Image segmentation, Absorption, Volume measurement,
X-ray tomography, Tomography, Feature extraction, porosity
BibRef
Yang, A.[Anqi],
Pan, F.[Feng],
Saragadam, V.[Vishwanath],
Dao, D.[Duy],
Hui, Z.[Zhuo],
Chang, J.H.R.[Jen-Hao Rick],
Sankaranarayanan, A.C.[Aswin C.],
SliceNets: A Scalable Approach for Object Detection in 3D CT Scans,
WACV21(335-344)
IEEE DOI
2106
Training, Image segmentation, Solid modeling,
Computed tomography, Weapons, Neural networks
BibRef
Tang, H.[Hao],
Liu, X.W.[Xing-Wei],
Han, K.[Kun],
Xie, X.H.[Xiao-Hui],
Chen, X.M.[Xu-Ming],
Qian, H.[Huang],
Liu, Y.[Yong],
Sun, S.[Shanlin],
Bai, N.[Narisu],
Spatial Context-Aware Self-Attention Model For Multi-Organ
Segmentation,
WACV21(938-948)
IEEE DOI
2106
Image segmentation, Solid modeling,
Image analysis, Computed tomography, Magnetic resonance imaging,
Information filters
BibRef
Hati, A.[Avik],
Bustreo, M.[Matteo],
Sona, D.[Diego],
Murino, V.[Vittorio],
del Bue, A.[Alessio],
Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans,
ICPR21(5565-5572)
IEEE DOI
2105
Computed tomography, Semantics,
Pipelines, Metals, Transforms
BibRef
Lauze, F.[François],
Quéau, Y.[Yvain],
Plenge, E.[Esben],
Simultaneous Reconstruction and Segmentation of CT Scans with Shadowed
Data,
SSVM17(308-319).
Springer DOI
1706
BibRef
Liu, F.Z.[Feng-Ze],
Xia, Y.D.[Ying-Da],
Yang, D.[Dong],
Yuille, A.L.[Alan L.],
Xu, D.G.[Da-Guang],
An Alarm System for Segmentation Algorithm Based on Shape Model,
ICCV19(10651-10660)
IEEE DOI
2004
alarm systems, computerised tomography, feature extraction,
image classification, image segmentation, Quality assessment
BibRef
Zhou, Y.Y.[Yu-Yin],
Li, Z.[Zhe],
Bai, S.[Song],
Chen, X.L.[Xin-Lei],
Han, M.[Mei],
Wang, C.[Chong],
Fishman, E.[Elliot],
Yuille, A.L.[Alan L.],
Prior-Aware Neural Network for Partially-Supervised Multi-Organ
Segmentation,
ICCV19(10671-10680)
IEEE DOI
2004
biological organs, computerised tomography, gradient methods,
image segmentation, medical image processing, neural nets,
Neural networks
BibRef
Hassan, S.I.,
Stommel, M.,
Lowe, A.,
Zhang, Q.,
Xu, W.,
Semantic Segmentation of Sheep Organs by Convolutional Neural
Networks,
IVCNZ19(1-5)
IEEE DOI
2004
biological organs, biology computing,
convolutional neural nets, image segmentation, zoology,
Deep convolutional neural networks
BibRef
Danilov, V.V.,
Skirnevskiy, I.P.,
Manakov, R.A.,
Kolpashchikov, D.Y.,
Gerget, O.M.,
Frangi, A.F.,
Ray-based Segmentation Algorithm for Medical Imaging,
PTVSBB19(37-45).
DOI Link
1912
BibRef
Javaid, U.[Umair],
Dasnoy, D.[Damien],
Lee, J.A.[John A.],
Multi-organ Segmentation of Chest CT Images in Radiation Oncology:
Comparison of Standard and Dilated UNet,
ACIVS18(188-199).
Springer DOI
1810
BibRef
Léger, J.[Jean],
Brion, E.[Eliott],
Javaid, U.[Umair],
Lee, J.[John],
de Vleeschouwer, C.[Christophe],
Macq, B.[Benoit],
Contour Propagation in CT Scans with Convolutional Neural Networks,
ACIVS18(380-391).
Springer DOI
1810
BibRef
Valindria, V.V.,
Pawlowski, N.,
Rajchl, M.,
Lavdas, I.,
Aboagye, E.O.,
Rockall, A.G.,
Rueckert, D.,
Glocker, B.,
Multi-modal Learning from Unpaired Images:
Application to Multi-organ Segmentation in CT and MRI,
WACV18(547-556)
IEEE DOI
1806
biological organs, biomedical MRI, computerised tomography,
image segmentation, learning (artificial intelligence),
Training
BibRef
Zhao, M.,
Hamarneh, G.,
Bifurcation Localization in 3D Images via Evolutionary Geometric
Deformable Templates,
CRV17(124-130)
IEEE DOI
1804
bifurcation, computerised tomography, genetic algorithms,
medical image processing, 3D anatomical trees, 3D medical images,
tribes niching
BibRef
Zhao, M.,
Miles, B.,
Hamarneh, G.,
Leveraging Tree Statistics for Extracting Anatomical Trees from 3D
Medical Images,
CRV17(131-138)
IEEE DOI
1804
Bayes methods, blood vessels, computerised tomography,
feature extraction, image segmentation, medical image processing,
tree structure
BibRef
Kadu, A.[Ajinkya],
van Leeuwen, T.[Tristan],
Batenburg, K.J.[K. Joost],
A Parametric Level-Set Method for Partially Discrete Tomography,
DGCI17(122-134).
Springer DOI
1711
BibRef
Alvén, J.[Jennifer],
Kahl, F.[Fredrik],
Landgren, M.[Matilda],
Larsson, V.[Viktor],
Ulén, J.[Johannes],
Shape-aware multi-atlas segmentation,
ICPR16(1101-1106)
IEEE DOI
1705
Image segmentation, Imaging, Robustness, Shape,
Standards, Training
BibRef
Wang, L.[Li],
Gao, Y.Z.[Yao-Zong],
Shi, F.[Feng],
Li, G.[Gang],
Chen, K.C.[Ken-Chung],
Tang, Z.[Zhen],
Xia, J.J.[James J.],
Shen, D.G.[Ding-Gang],
Automated Segmentation of CBCT Image with Prior-Guided Sequential
Random Forest,
MCV15(72-82).
Springer DOI
1608
BibRef
Yamada, M.[Mitsunori],
Hontani, H.[Hidekata],
Matsuzoe, H.[Hiroshi],
A Study on Model Selection from the q-Exponential Distribution for
Constructing an Organ Point Distribution Model,
MCBMIIA15(258-269).
Springer DOI
1603
BibRef
Kim, H.,
Thiagarajan, J.J.,
Bremer, P.T.,
A Randomized Ensemble Approach to Industrial CT Segmentation,
ICCV15(1707-1715)
IEEE DOI
1602
Computed tomography
BibRef
Okagawa, A.[Asuka],
Oyamada, Y.J.[Yu-Ji],
Mochizuki, Y.[Yoshihiko],
Ishikawa, H.[Hiroshi],
Multi-organ segmentation by minimization of higher-order energy for
CT boundary,
MVA15(547-550)
IEEE DOI
1507
Biomedical imaging
BibRef
Takaoka, T.,
Mochizuki, Y.[Yoshihiko],
Ishikawa, H.[Hiroshi],
Multiple-organ segmentation by graph cuts with supervoxel nodes,
MVA17(424-427)
DOI Link
1708
Biomedical imaging, Computed tomography, Image segmentation,
Labeling, Minimization, Object segmentation, Three-dimensional, displays
BibRef
Morita, M.[Minato],
Okagawa, A.[Asuka],
Oyamada, Y.J.[Yu-Ji],
Mochizuki, Y.[Yoshihiko],
Ishikawa, H.[Hiroshi],
Multiple-organ segmentation based on spatially-divided neighboring
data energy,
MVA15(158-161)
IEEE DOI
1507
Biomedical imaging
BibRef
Keatmanee, C.[Chadaporn],
Makhanov, S.S.[Stanislav S.],
Kotani, K.[Kazunori],
Kondo, T.[Toshiaki],
Thongvigitmanee, S.S.[Saowapak S.],
Inferior alveolar canal segmentation in cone beam computed tomography
images using an adaptive diffusion flow active contour model,
MVA15(57-60)
IEEE DOI
1507
Active contours
BibRef
Boulemnadjel, A.,
Hachouf, F.[Fella],
A new method for finding clusters embedded in subspaces applied to
medical tomography scan image,
IPTA12(383-390)
IEEE DOI
1503
computerised tomography
BibRef
Wang, C.L.[Chun-Liang],
Smedby, O.[Orjan],
Automatic Multi-organ Segmentation in Non-enhanced CT Datasets Using
Hierarchical Shape Priors,
ICPR14(3327-3332)
IEEE DOI
1412
Biomedical imaging
BibRef
Kamencay, P.,
Zachariasova, M.,
Hudec, R.,
Benco, M.,
Radil, R.,
3D image reconstruction from 2D CT slices,
3DTV-CON14(1-4)
IEEE DOI
1409
computerised tomography
BibRef
Bateman, C.J.,
McMahon, J.,
Malpas, A.,
de Ruiter, N.,
Bell, S.,
Butler, A.P.,
Butler, P.H.,
Renaud, P.F.,
Segmentation enhances material analysis in multi-energy CT:
A simulation study,
IVCNZ13(190-195)
IEEE DOI
1402
computerised tomography
BibRef
Chen, J.,
Millane, R.,
Diffraction by small crystals with incomplete unit cells,
IVCNZ13(65-69)
IEEE DOI
1402
X-ray crystallography
BibRef
Li, S.[Shuai],
Zhao, Q.P.[Qin-Ping],
Wang, S.F.[Sheng-Fa],
Hao, A.[Aimin],
Qin, H.[Hong],
Multi-scale, multi-level, heterogeneous features extraction and
classification of volumetric medical images,
ICIP13(1418-1422)
IEEE DOI
1402
CUDA
BibRef
Dang, K.[Kang],
Yuan, J.S.[Jun-Song],
Tiong, H.Y.[Ho Yee],
Voxel labelling in CT images with data-driven contextual features,
ICIP13(680-684)
IEEE DOI
1402
Biomedical imaging
BibRef
Weinlich, A.[Andreas],
Amon, P.[Peter],
Hutter, A.[Andreas],
Kaup, A.[Andre],
Edge modeling prediction for computed tomography images,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Vantaram, S.R.[Sreenath Rao],
Saber, E.[Eli],
Dianat, S.A.[Sohail A.],
Hu, Y.[Yang],
Abhyankar, V.[Vishwas],
Semi-automatic 3-D segmentation of Computed Tomographic imagery by
iterative gradient-driven volume growing,
ICIP11(2857-2860).
IEEE DOI
1201
BibRef
Yang, W.[Wei],
Wang, X.L.[Xiao-Long],
Lin, L.[Liang],
Gao, C.Y.[Cheng-Ying],
Interactive CT image segmentation with online discriminative learning,
ICIP11(425-428).
IEEE DOI
1201
BibRef
Bhole, C.[Chetan],
Morsillo, N.[Nicholas],
Pal, C.[Christopher],
3D Segmentation in CT Imagery with Conditional Random Fields and
Histograms of Oriented Gradients,
MLMI11(326-334).
Springer DOI
1109
BibRef
Guedon, J.P.[Jean-Pierre],
Liu, C.L.[Chuan-Lin],
The 2 and 3 materials scene reconstructed from some line Mojette
projections,
IPTA10(189-194).
IEEE DOI
1007
Mojette projection for more images in tomography reconstruction.
BibRef
Ouzounis, G.K.[Georgios K.],
Giannakopoulos, S.[Stilianos],
Simopoulos, C.E.[Constantinos E.],
Wilkinson, M.H.F.[Michael H.F.],
Robust extraction of urinary stones from CT data using attribute
filters,
ICIP09(2629-2632).
IEEE DOI
0911
BibRef
Gaullier, G.[Gil],
Charbonnier, P.[Pierre],
Heitz, F.[Fabrice],
Introducing shape priors in object-based tomographic reconstruction,
ICIP09(1077-1080).
IEEE DOI
0911
BibRef
Yang, H.F.[Huei-Fang],
Choe, Y.S.[Yoon-Suck],
3D volume extraction of densely packed cells in EM data stack by
forward and backward graph cuts,
CIMSVP09(47-52).
IEEE DOI
0903
BibRef
Shinohara, T.,
Segmentation of Intertwining Stringlike Objects in Three Dimensional CT
Image Based on Positional Information,
IMVIP09(30-35).
IEEE DOI
0909
BibRef
Lagrange, J.,
Dauty, I., and
Azencott, R.,
Tomographic Reconstruction of Axisymmetrical Objects From One
View by Model Approximation,
ICIP97(I: 492-495).
IEEE DOI
BibRef
9700
Hohne, K.H.,
Bomans, M.,
Pommert, A.,
Riemer, M.,
Tiede, U.,
3D-segmentation and display of tomographic imagery,
ICPR88(II: 1271-1276).
IEEE DOI
8811
BibRef
Magnusson, M.,
Lenz, R.,
Danielsson, P.E.,
Evaluation of methods for shaded surface display of CT-volumes,
ICPR88(II: 1287-1294).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Abdominal Seqmentation, Multi-Organ Segmentation .