Prince, J.L.,
Tomographic reconstruction of 3-D vector fields using inner product
probes,
IP(3), No. 2, March 1994, pp. 216-219.
IEEE DOI
0402
BibRef
Prince, J.L.,
Convolution Backprojection Formulas for 3-D Vector Tomography
with Application to MRI,
IP(5), No. 10, October 1996, pp. 1462-1472.
IEEE DOI
9610
BibRef
Earlier:
A convolution backprojection formula for three-dimensional vector
tomography,
ICIP94(II: 820-824).
IEEE DOI
9411
BibRef
Prince, J.L.,
Willsky, A.S.,
Hierarchical reconstruction using geometry and sinogram restoration,
IP(2), No. 3, July 1993, pp. 401-416.
IEEE DOI
0402
BibRef
Zeng, G.L.,
Bai, C.Y.[Chuan-Yong],
Gullberg, G.T.,
A projector/backprojector with slice-to-slice blurring for efficient
three-dimensional scatter modeling,
MedImg(18), No. 8, August 1999, pp. 722-732.
IEEE Top Reference.
0110
BibRef
Basu, S.,
Bresler, Y.,
O(N^2/log2 N) Filtered Backprojection Reconstruction Algorithm for
Tomography,
IP(9), No. 10, October 2000, pp. 1760-1773.
IEEE DOI
0010
BibRef
Basu, S.,
Bresler, Y.,
O(N^3/log N) backprojection algorithm for the 3-D radon
transform,
MedImg(21), No. 2, February 2002, pp. 76-88.
IEEE Top Reference.
0204
BibRef
Basu, S.,
Bresler, Y.,
Error analysis and performance optimization of fast hierarchical
backprojection algorithms,
IP(10), No. 7, July 2001, pp. 1103-1117.
IEEE DOI
0108
BibRef
Willis, P.N.,
Bresler, Y.,
Optimal scan for time-varying tomography:
I. Theoretical analysis and fundamental limitations,
IP(4), No. 5, May 1995, pp. 642-653.
IEEE DOI
0402
BibRef
And:
Optimal scan for time-varying tomography:
II. Efficient design and experimental validation,
IP(4), No. 5, May 1995, pp. 654-666.
IEEE DOI
0402
BibRef
Feng, J.,
Bao, S.L.,
Reconstruction of smooth distributions within unsmooth circumferences
from limited views using filtered-backprojection algorithm,
IJIST(12), No. 3, 2002, pp. 93-96.
0210
BibRef
Noo, F.,
Defrise, M.,
Kudo, H.,
General Reconstruction Theory for Multislice X-ray Computed Tomography
With a Gantry Tilt,
MedImg(23), No. 9, September 2004, pp. 1109-1116.
IEEE Abstract.
0409
BibRef
Wunderlich, A.,
Noo, F.,
Band-Restricted Estimation of Noise Variance in Filtered Backprojection
Reconstructions Using Repeated Scans,
MedImg(29), No. 5, May 2010, pp. 1097-1113.
IEEE DOI
1006
BibRef
Wei, Y.,
Wang, G.,
Hsieh, J.,
Relation Between the Filtered Backprojection Algorithm and the
Backprojection Algorithm in CT,
SPLetters(12), No. 9, September 2005, pp. 633-636.
IEEE DOI
0508
BibRef
Thomas, G.[Gylson],
Govindan, V.K.,
Computationally efficient filtered-backprojection algorithm for
tomographic image reconstruction using Walsh transform,
JVCIR(17), No. 3, June 2006, pp. 581-588.
Elsevier DOI
0711
Tomography; Walsh transform; Fast algorithm; Filtered-backprojection algorithm
BibRef
Pfitzenreiter, T.[Tim],
Schuster, T.[Thomas],
Tomographic Reconstruction of the Curl and Divergence of 2D Vector
Fields Taking Refractions into Account,
SIIMS(4), No. 1, 2011, pp. 40-56.
DOI Link index of refraction; longitudinal and transversal ray transform;
vector field; Riemannian metric; filtered backprojection
BibRef
1100
Myagotin, A.,
Voropaev, A.,
Helfen, L.,
Hanschke, D.,
Baumbach, T.,
Efficient Volume Reconstruction for Parallel-Beam Computed
Laminography by Filtered Backprojection on Multi-Core Clusters,
IP(22), No. 12, 2013, pp. 5348-5361.
IEEE DOI
1312
computerised tomography
BibRef
Pelt, D.M.,
Batenburg, K.J.,
Improving Filtered Backprojection Reconstruction by Data-Dependent
Filtering,
IP(23), No. 11, November 2014, pp. 4750-4762.
IEEE DOI
1410
Approximation methods
BibRef
Ganguly, P.S.[Poulami Somanya],
Lucka, F.[Felix],
Hupkes, H.J.[Hermen Jan],
Batenburg, K.J.[Kees Joost],
Atomic Super-resolution Tomography,
IWCIA20(45-61).
Springer DOI
2009
BibRef
Blumensath, T.[Thomas],
Backprojection inverse filtration for laminographic reconstruction,
IET-IPR(12), No. 9, September 2018, pp. 1541-1549.
DOI Link
1809
BibRef
Migueles, E.X.[Eduardo X.],
Koshev, N.,
Helou, E.S.[Elias S.],
A Backprojection Slice Theorem for Tomographic Reconstruction,
IP(27), No. 2, February 2018, pp. 894-906.
IEEE DOI
1712
Image reconstruction, Radon, Reconstruction algorithms,
Synchrotrons, Transforms, X-rays, Imaging, reconstruction algorithms,
tomography
BibRef
Mu, C.[Chen],
Park, C.[Chiwoo],
Sparse filtered SIRT for electron tomography,
PR(102), 2020, pp. 107253.
Elsevier DOI
2003
SIRT: simultaneous iterative reconstruction technique.
Tomographic reconstruction, Filtered backprojection,
Filter optimization, Filtered backprojection within SIRT
BibRef
Dong, C.D.[Cheng-Dong],
Jin, Y.W.[Yuan-Wei],
Lu, E.[Enyue],
Time domain electromagnetic tomography using propagation and
backpropagation method,
ICIP12(2081-2084).
IEEE DOI
1302
BibRef
Kazantsev, I.G.[Ivan G.],
Tomographic artefacts suppression via backprojection operator
optimization,
ICIP96(I: 749-751).
IEEE DOI
9610
BibRef
Kazantsev, I.G.[Ivan G.],
The weighted backprojection techniques of image reconstruction,
CAIP95(521-525).
Springer DOI
9509
BibRef
Shapiro, V.A.,
A fast indirect backprojection algorithm,
ICIP94(II: 158-162).
IEEE DOI
9411
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Image Reconstruction, Random Projections, Unknown Projections .