12.1.9.1 Point Based Pose Estimation and Recognition

Chapter Contents (Back)
Matching, Points. Pose Estimation, Points.
See also 6D Object Pose Estimation.

Birk, J.R.,
A Computation for Robots to Orient and Position Hand Held Workpieces,
SMC(6), No. 10, October 1976, pp. 665-671. BibRef 7610

Kelley, R.B.[Robert B.], Birk, J.R.[John R.], Chen, N.Y.[Nai-Yung],
Estimating Workpiece Pose Using the Feature Points Method,
US_Patent4,402,053, Aug 30, 1983
WWW Link. BibRef 8308
And: A3, A2, A1: DraftManuscript dated Nov 1, 1978 and a revision. BibRef
And: A2, A1, A3:
Visually Estimating Workpiece Pose in a Robot Hand Using the Feature Points Method,
Draft Camera Calibration. Point Matching. No notes on publishing. Match extracted points with feature points (corners and small holes) in the model. Technique involves rotating the object in the robot hand after locating it. BibRef

Birk, J.R., and Kelley, R.B., Chen, N.Y., Wilson, L.,
Image Feature Extraction Using Diameter Limited Gradient Direction Histograms,
PAMI(1), No. 2, April 1979, pp. 228-235. BibRef 7904
Earlier: PRAI-78(xx). (Wrong page numbers.) Extract objects using histograms of edge directions. Find the pose of the objects. BibRef

Tella, R., Birk, J.R., and Kelley, R.B.,
General Purpose Hands for Bin-Picking Robots,
SMC(12), 1982, pp. 828-837. BibRef 8200

Dessimoz, J.D., Birk, J.R., Kelley, R.B., Martins, H.A.S., and I, C.L.[Chi Lin],
Matched Filters for Bin Picking,
PAMI(6), No. 6, November 1984, pp. 686-697. BibRef 8411

Kelley, R.B., Birk, J.R., Martins, H.A.S., Tella, R.,
A Robot System Which Acquires Cylindrical Workpieces from Bins,
SMC(12), 1982, pp. 204-213. BibRef 8200

Kelley, R.B., Martins, H.A.S., Birk, J.R., Dessimoz, J.D.,
Three Vision Algorithms for Acquiring Workpieces from Bins,
PIEEE(71), 1983, pp. 803-820. BibRef 8300

Birk, J.R., and Kelley, R.B., Badami, V.V.,
Workpiece Orientation Correction with a Robot Arm Using Visual Information,
IJCAI77(758). BibRef 7700

Augusteijn, M.F.[Marijke F.], Dyer, C.R.[Charles R.],
Recognition and Recovery of the Three-Dimensional Orientation of Planar Point Patterns,
CVGIP(36), No. 1, October 1986, pp. 76-99.
Elsevier DOI BibRef 8610
Earlier:
Model-based Shape from Contour and Point Patterns,
CVPR85(100-105). (Univ. of Colorado at Colorado Springs and Univ. of Wisconsin) Recognition, Using Shape. Given a known pattern or shape, compute the surface orientation using an iterative method and no prior correspondence. BibRef

Horn, B.K.P.,
Closed Form Solutions of Absolute Orientation Using Orthonormal Matrices,
JOSA-A(5), No. 7, 1987, pp. 1127-1135.
See also Relative Orientation. BibRef 8700

Horn, B.K.P.,
Closed Form Solutions of Absolute Orientation Using Unit Quaternions,
JOSA-A(4), No. 4, April 1987, pp. 629-642. BibRef 8704

Linnainmaa, S.[Seppo], Harwood, D.A.[David], Davis, L.S.,
Pose Determination of a Three-Dimensional Object Using Triangle Pairs,
PAMI(10), No. 5, September 1988, pp. 634-647.
IEEE DOI BibRef 8809
Earlier:
Triangle-Based Pose Determination of 3-D Objects,
ICPR86(116-118). Hough. Pose estimation of a three dimensional object, by a Hough approach using all 6 parameters of the position. Uses triples of points on the object matched to triples of points on the image. Initial experiments on simple objects. BibRef

Pehkonen, K., Harwood, D., Davis, L.S.,
Parallel Calculation of 3-D Pose of a Known Object in a Single View,
PRL(12), 1991, pp. 353-361. BibRef 9100

Walker, M.W.[Michael W.], Shao, L.J.[Le-Jun], Volz, R.A.[Richard A.],
Estimating 3-D Location Parameters Using Dual Number Quaternions,
CVGIP(54), No. 3, November 1991, pp. 358-367.
Elsevier DOI BibRef 9111

Haralick, R.M., Joo, H., Lee, C.N., Zhuang, X., Vaidya, V.G., and Kim, M.B.,
Pose Estimation from Corresponding Point Data,
SMC(19), No. 6, November/December 1989, pp. 1426-1446. BibRef 8911
Earlier: A1, A3, A4, A5, A6 Only: CVWS87(258-263). Pose Estimation, Evaluation. Closed form solutions for 2-D to 2-D and 3-D to 3-D pose estimations. For perspective 2-D to 3-D, a convergent iterative solution is given, for 2-D perspective to 2-D perspective, a linear solution is given. This is also an argument for error analysis and error propagation analysis. BibRef

Haralick, R.M., Joo, H.,
2D-3D Pose Estimation,
ICPR88(I: 385-391).
IEEE DOI BibRef 8800

Umeyama, S.,
Least-Squares Estimation of Transformation Parameters Between Two Point Patterns,
PAMI(13), No. 4, April 1991, pp. 376-380.
IEEE DOI Follows from Arun and Horn work. Parameterized transformations following from:
See also Eigen Decomposition Approach to Weighted Graph Matching Problems, An. BibRef 9104

Umeyama, S.,
Parameterized Point Pattern Matching and Its Application to Recognition of Object Families,
PAMI(15), No. 2, February 1993, pp. 136-144.
IEEE DOI The point positions may be parameterized to allow for some articulation of the parts.
See also Eigen Decomposition Approach to Weighted Graph Matching Problems, An. BibRef 9302

Yang, M.C.K., Lee, J.S.,
Object Identification From Multiple Images Based on Point Matching Under A General Transformation,
PAMI(16), No. 7, July 1994, pp. 751-756.
IEEE DOI SAR Imagery. Points are 3-D locations from SAR data. BibRef 9407

Gee, A.[Andrew], Cipolla, R.[Roberto],
Determining the Gaze of Faces in Images,
IVC(12), No. 10, December 1994, pp. 639-647.
Elsevier DOI Application, Faces. Bayes Nets.
PS File. BibRef 9412
And:
Estimating Gaze from a Single View of a Face,
ICPR94(A:758-760).
IEEE DOI Track features to estimate the pose of the face. BibRef

Gee, A.[Andrew], Cipolla, R.[Roberto],
Fast Visual Tracking by Temporal Consensus,
IVC(14), No. 2, March 1996, pp. 105-114.
Elsevier DOI 9607
BibRef
Earlier: Cambridge UniversityTechnical Report CUED/F-INFENG/TR 207.
PS File. BibRef

Arun, K.S., Huang, T.S., and Blostein, S.D.,
Least-Squares Fitting of Two 3-D Point Sets,
PAMI(9), No. 5, September 1987, pp. 698-700. This is not strictly motion, but is deriving R and T when given a pair of matching 3-D points. BibRef 8709

DeMenthon, D.F., and Davis, L.S.,
Exact and Approximate Solutions of the Perspective-Three-Point Problem,
PAMI(14), No. 11, November 1992, pp. 1100-1105.
IEEE DOI Match image and model triangles to get pose. BibRef 9211

Oberkampf, D., DeMenthon, D.F., and Davis, L.S.,
Iterative Pose Estimation Using Coplanar Feature Points,
CVIU(63), No. 3, May 1996, pp. 495-511.
DOI Link 9606
BibRef
Earlier:
Iterative Pose Estimation Using Coplanar Points,
CVPR93(626-627).
IEEE DOI POSIT BibRef

DeMenthon, D.F.[Daniel F.],
Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object,
US_Patent5,227,985, Jul 13, 1993
WWW Link. BibRef 9307

DeMenthon, D.F., and Davis, L.S.,
Model-Based Object Pose in 25 Lines of Code,
IJCV(15), No. 1-2, June 1995, pp. 123-141.
Springer DOI BibRef 9506
Earlier: ECCV92(335-343).
Springer DOI BibRef
And: DARPA92(753-761). Of course it is Mathematica code. BibRef

Krishnan, R.[Radha], Sommer, III, H.J., Spidaliere, P.D.[Peter D.],
Monocular Pose of a Rigid Body Using Point Landmarks,
CVGIP(55), No. 3, May 1992, pp. 307-316.
Elsevier DOI Analysis of the problem and how it is done. BibRef 9205

Chen, S.W.[Sei-Wang], Jain, A.K.[Anil K.],
Strategies of Multi-View and Multi-Matching for 3D Object Recognition,
CVGIP(57), No. 1, January 1993, pp. 121-130.
DOI Link BibRef 9301

Chen, S.W.[Sei-Wang], Stockman, G.C.[George C.], and Shrikhande, N.[Neelima],
Computing a Pose Hypothesis from a Small Set of 3-D Object Features,
MSU-ENGR-87-001, Department of Computer Science, Michigan State University, 1987. BibRef 8700

Haralick, R.M., Lee, C.N.[Chung-Nan], Ottenberg, K.[Karsten], Nölle, M.[Michael],
Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem,
IJCV(13), No. 3, December 1994, pp. 331-356.
Springer DOI BibRef 9412
Earlier:
Analysis and Solutions of the Three Point Perspective Pose Estimation Problem,
CVPR91(592-598).
IEEE DOI BibRef

Wlczek, P., Maccato, A., de Figueiredo, R.J.P.,
Pose Estimation Of 3-Dimensional Objects From Single Camera Images,
DSP(5), No. 3, July 1995, pp. 176-183. BibRef 9507

Wirtz, B., and Maggioni, C.,
3-D Pose Estimation by an Improved Kohonen-Net,
VF91(593-602). A Neural-net apporach for self-organizing feature maps. BibRef 9100

Alter, T.D.,
3-D Pose From 3 Points Using Weak-Perspective,
PAMI(16), No. 8, August 1994, pp. 802-808.
IEEE DOI BibRef 9408
Earlier:
3D Pose from Three Corresponding Points Under Weak-Perspective Projection,
MIT AI Memo-1378, July 1992.
WWW Link. One feasible solution plus reflection. BibRef

Huang, T.S.[Thomas S.], Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.],
Uniqueness of 3D Pose under Weak Perspective: A Geometrical Proof,
PAMI(17), No. 12, December 1995, pp. 1220-1221.
IEEE DOI Geometric proof of the one feasible solution plus reflection conclusion of
See also 3-D Pose From 3 Points Using Weak-Perspective. and
See also Recognizing Solid Objects by Alignment with an Image. BibRef 9512

Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Huang, T.S.[Thomas S.], Netravali, A.N.[Arun N.],
Optimum Fiducials Under Weak Perspective Projection,
IJCV(35), No. 3, December 1999, pp. 223-244.
DOI Link BibRef 9912
Earlier: ICCV99(67-72).
IEEE DOI BibRef

Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.],
Iterative algorithm for optimal fiducials under weak perspective projection,
IJIST(19), No. 1, March 2009, pp. 27-36.
DOI Link 0902
BibRef

Horaud, R.[Radu], Dornaika, F.[Fadi], Lamiroy, B.[Bart], Christy, S.[Stephane],
Object Pose: The Link Between Weak Perspective, Paraperspective, and Full Perspective,
IJCV(22), No. 2, March 1997, pp. 173-189.
DOI Link 9706
BibRef
Earlier: A1, A4, A2 only: TRINRIA, September 1994. BibRef

Horaud, R.[Radu], Christy, S.[Stephane], Dornaika, F.[Fadi], Lamiroy, B.[Bart],
Object Pose: Links Between Paraperspective and Perspective,
ICCV95(426-433).
IEEE DOI BibRef 9500

Dornaika, F.[Fadi], Garcia, C.[Christophe],
Pose Estimation using Point and Line Correspondences,
RealTimeImg(5), No. 3, June 1999, pp. 215-230. BibRef 9906
Earlier:
Object pose by affine iterations,
CIAP97(I: 478-485).
Springer DOI 9709
BibRef

Golda, S.[Steven], Rangarajana, A.[Anand], Lua, C.P.[Chien-Ping], Pappua, S.[Suguna], Mjolsnessa, E.[Eric],
New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence,
PR(31), No. 8, August 1998, pp. 1019-1031.
Elsevier DOI 9807
SoftAssign BibRef

Liu, Y.H.[Yong-Huai], Rodrigues, M.A.[Marcos A.],
Statistical image analysis for pose estimation without point correspondences,
PRL(22), No. 11, September 2001, pp. 1191-1206.
Elsevier DOI 0108
BibRef
Earlier:
Correspondenceless Motion Estimation from Range Images,
ICCV99(654-659).
IEEE DOI BibRef
And:
Using Rigid Constraints to Analyse Motion Parameters from Two Sets of 3D Corresponding Point Pattern,
CAIP99(321-328).
Springer DOI 9909
BibRef

Rodrigues, M.A.[Marcos A.], Liu, Y.H.[Yong-Huai],
Distance Constraint Based Iterative Structure and Pose Estimation from a Single Image,
ICIP00(Vol I: 501-504).
IEEE DOI 0008
BibRef
Earlier:
Motion Parameter Constraints Analysis From a Single Image,
ICIP99(III:704-708).
IEEE DOI BibRef

David, P.[Philip], DeMenthon, D.F.[Daniel F.], Duraiswami, R.[Ramani], Samet, H.[Hanan],
SoftPOSIT: Simultaneous Pose and Correspondence Determination,
IJCV(59), No. 3, September-October 2004, pp. 259-284.
DOI Link 0405
BibRef
Earlier: ECCV02(III: 698 ff.).
Springer DOI 0205
BibRef
And:
Simultaneous pose and correspondence determination using line features,
CVPR03(II: 424-431).
IEEE DOI 0307
Combine Gold SoftAssign(
See also New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence. ) and DeMenthon POSIT (
See also Iterative Pose Estimation Using Coplanar Feature Points. ). BibRef

David, P.[Philip], DeMenthon, D.F.[Daniel F.], Duraiswami, R.[Ramani], Samet, H.[Hanan],
Evaluation of the Softposit Model-to-image Registration Algorithm,
UMD-- TR4340, July 2002.
WWW Link. BibRef 0207

Kanatani, K.[Kenichi], Kanazawa, Y.S.[Yasu-Shi],
Automatic Thresholding For Correspondence Detection,
IJIG(4), No. 1, January 2004, pp. 21-33. 0401
BibRef

Lin, L.H.[Li-Heng], Lawrence, P.D.[Peter D.], Hall, R.[Robert],
Robust outdoor stereo vision SLAM for heavy machine rotation sensing,
MVA(24), No. 1, January 2013, pp. 205-226.
WWW Link. 1301
Camera pose using sun angle and shadows. Measure mining rope rotation about vertical axix. BibRef

Collins, T.[Toby], Bartoli, A.E.[Adrien E.],
Infinitesimal Plane-Based Pose Estimation,
IJCV(109), No. 3, September 2014, pp. 252-286.
Springer DOI 1408
Pose of a plane given set of corresponding points. BibRef

Zhou, H.Y.[Hao-Yin], Zhang, T.[Tao], Lu, W.N.[Wei-Ning],
Vision-Based Pose Estimation From Points With Unknown Correspondences,
IP(23), No. 8, August 2014, pp. 3468-3477.
IEEE DOI 1408
computer vision BibRef

Bratanic, B.[Blaž], Pernuš, F.[Franjo], Likar, B.[Boštjan], Tomaževic, D.[Dejan],
Real-time pose estimation of rigid objects in heavily cluttered environments,
CVIU(141), No. 1, 2015, pp. 38-51.
Elsevier DOI 1512
object pose estimation BibRef

Hossein-Nejad, Z.[Zahra], Nasri, M.[Mehdi],
RKEM: Redundant Keypoint Elimination Method in Image Registration,
IET-IPR(11), No. 5, April 2017, pp. 273-284.
DOI Link 1706
BibRef

Wu, P.C.[Po-Chen], Tseng, H.Y.[Hung-Yu], Yang, M.H.[Ming-Hsuan], Chien, S.Y.[Shao-Yi],
Direct pose estimation for planar objects,
CVIU(172), 2018, pp. 50-66.
Elsevier DOI 1812
BibRef
Earlier: A2, A1, A3, A4:
Direct 3D pose estimation of a planar target,
WACV16(1-9)
IEEE DOI 1606
Pose estimation, Pose tracking, Augmented reality. Cameras. 3D pose from 2D. First a template match, then refinement. BibRef

Bazargani, H.[Hamid], Bilaniuk, O.[Olexa], Laganičre, R.[Robert],
A fast and robust homography scheme for real-time planar target detection,
RealTimeIP(15), No. 4, December 2018, pp. 739-758.
Springer DOI 1812
Pose for planar targets. BibRef

Liu, H.S.[Hong-Sen], Cong, Y.[Yang], Yang, C.G.[Chen-Guang], Tang, Y.D.[Yan-Dong],
Efficient 3D object recognition via geometric information preservation,
PR(92), 2019, pp. 135-145.
Elsevier DOI 1905
Stacked 3D feature encoder, 3D object recognition, 6-DOF pose estimation, Geometric information preservation BibRef

Liu, H.S.[Hong-Sen], Cong, Y.[Yang], Sun, G.[Gan], Tang, Y.D.[Yan-Dong],
Robust 3-D Object Recognition via View-Specific Constraint,
SMCS(51), No. 11, November 2021, pp. 7109-7119.
IEEE DOI 2110
Feature extraction, Object recognition, Databases, Annotations, Surface texture, Robots, Surface treatment, voting strategy BibRef

Liu, Y.P.[Yuan-Peng], Zhou, L.S.[Lai-Shui], Zong, H.[Hua], Gong, X.X.[Xiao-Xi], Wu, Q.Y.[Qiao-Yun], Liang, Q.X.[Qing-Xiao], Wang, J.[Jun],
Regression-Based Three-Dimensional Pose Estimation for Texture-Less Objects,
MultMed(21), No. 11, November 2019, pp. 2776-2789.
IEEE DOI 1911
CNN to get features, regression to match. Pose estimation, Feature extraction, Training, Image edge detection, Correlation, Cost function, pose regression BibRef

Cui, Z.C.[Zhi-Chao], Chen, Z.[Zeqi], Zhang, C.[Chi], Meng, G.F.[Gao-Feng], Liu, Y.H.[Yue-Hu], Zhao, X.[Xiangmo],
DDGPnP: Differential degree graph based PnP solution to handle outliers,
CVIU(248), 2024, pp. 104130.
Elsevier DOI 2409
Outlier removal, Perspective-n-point, Pose estimation, Differential degree graph, Maximum clique BibRef

Cheng, W.T.[Wen-Tao], Luo, M.[Minxing],
MVP: One-Shot Object Pose Estimation by Matching With Visible Points,
SPLetters(31), 2024, pp. 2760-2764.
IEEE DOI 2410
Point cloud compression, Feature extraction, Pose estimation, Image reconstruction, Solid modeling, Vectors, Transformers, Indexes, feature matching BibRef


Wang, T.F.[Tian-Fu], Hu, G.S.[Guo-Sheng], Wang, H.G.[Hong-Guang],
Object Pose Estimation via the Aggregation of Diffusion Features,
CVPR24(10238-10247)
IEEE DOI Code:
WWW Link. 2410
Codes, Aggregates, Pose estimation, Computer architecture, Benchmark testing BibRef

Nguyen, V.N.[Van Nguyen], Groueix, T.[Thibault], Salzmann, M.[Mathieu], Lepetit, V.[Vincent],
GigaPose: Fast and Robust Novel Object Pose Estimation via One Correspondence,
CVPR24(9903-9913)
IEEE DOI Code:
WWW Link. 2410
Solid modeling, Accuracy, Source coding, Impedance matching, Pose estimation, Predictive models, object pose estimation BibRef

Chen, Y.[Yamei], Di, Y.[Yan], Zhai, G.Y.[Guang-Yao], Manhardt, F.[Fabian], Zhang, C.Y.G.[Chen-Yang-Guang], Zhang, R.[Ruida], Tombari, F.[Federico], Navab, N.[Nassir], Busam, B.[Benjamin],
SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation,
CVPR24(9959-9969)
IEEE DOI 2410
Shape, Pose estimation, Semantics, Feature extraction, Cameras BibRef

Nguyen, V.N.[Van Nguyen], Groueix, T.[Thibault], Ponimatkin, G.[Georgy], Hu, Y.L.[Yin-Lin], Marlet, R.[Renaud], Salzmann, M.[Mathieu], Lepetit, V.[Vincent],
NOPE: Novel Object Pose Estimation from a Single Image,
CVPR24(17923-17932)
IEEE DOI 2410
Training, Solid modeling, Visualization, Accuracy, Computational modeling, Pose estimation, object pose estimation BibRef

Zheng, L.F.[Lin-Fang], Tse, T.H.E.[Tze Ho Elden], Wang, C.[Chen], Sun, Y.[Yinghan], Chen, H.[Hua], Leonardis, A.[Ales], Zhang, W.[Wei], Chang, H.J.[Hyung Jin],
GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement,
CVPR24(10693-10703)
IEEE DOI Code:
WWW Link. 2410
Point cloud compression, Shape, Soft sensors, Pose estimation, Computer architecture, Predictive models BibRef

Ventura, J.[Jonathan], Kukelova, Z.[Zuzana], Sattler, T.[Torsten], Baráth, D.[Dániel],
Absolute Pose from One or Two Scaled and Oriented Features,
CVPR24(20870-20880)
IEEE DOI Code:
WWW Link. 2410
Location awareness, Accuracy, Simultaneous localization and mapping, Measurement units, image-based localization BibRef

Tirado-Garín, J.[Javier], Civera, J.[Javier],
From Correspondences to Pose: Non-Minimal Certifiably Optimal Relative Pose Without Disambiguation,
CVPR24(403-412)
IEEE DOI Code:
WWW Link. 2410
Geometry, Codes, Accuracy, Pose estimation, Buildings, relative pose, non-minimal solver, semidefinite programming, epipolar geometry BibRef

Edstedt, J.[Johan], Bökman, G.[Georg], Zhao, Z.J.[Zhen-Jun],
DeDoDe v2: Analyzing and Improving the DeDoDe Keypoint Detector,
IMW24(4245-4253)
IEEE DOI 2410
Training, Schedules, Codes, Pose estimation, Detectors, image matching, keypoint detection, structure-from-motion, two-view geometry, local feature matching BibRef

Nguyen, K.D.[Khoi Duc], Li, C.[Chen], Lee, G.H.[Gim Hee],
ESCAPE: Encoding Super-keypoints for Category-Agnostic Pose Estimation,
CVPR24(23491-23500)
IEEE DOI Code:
WWW Link. 2410
Sensitivity, Computer network reliability, Computational modeling, Pose estimation, Encoding, Bayes methods, 2d pose estimation BibRef

Zhao, C.[Chen], Hu, Y.L.[Yin-Lin], Salzmann, M.[Mathieu],
LocPoseNet: Robust Location Prior for Unseen Object Pose Estimation,
3DV24(1072-1081)
IEEE DOI Code:
HTML Version. 2408
Location awareness, Correlation, Pose estimation, Noise, Pipelines, Robustness BibRef

Lin, C.[Chen], Hanson, A.J.[Andrew J.], Hanson, S.M.[Sonya M.],
Algebraically rigorous quaternion framework for the neural network pose estimation problem,
ICCV23(14051-14060)
IEEE DOI 2401
BibRef

Legrand, A.[Antoine], Detry, R.[Renaud], de Vleeschouwer, C.[Christophe],
End-to-end Neural Estimation of Spacecraft Pose with Intermediate Detection of Keypoints,
AI4Space22(154-169).
Springer DOI 2304
BibRef

Ventura, J.[Jonathan], Kukelova, Z.[Zuzana], Sattler, T.[Torsten], Baráth, D.[Dániel],
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence,
ICCV23(19694-19704)
IEEE DOI Code:
WWW Link. 2401
BibRef

Bhayani, S.[Snehal], Sattler, T.[Torsten], Larsson, V.[Viktor], Heikkilä, J.[Janne], Kukelova, Z.[Zuzana],
Partially calibrated semi-generalized pose from hybrid point correspondences,
WACV23(2881-2890)
IEEE DOI 2302
Estimation, Cameras, Testing, Algorithms: 3D computer vision, Computational photography, image and video synthesis, visual reasoning BibRef

Höfer, T.[Timon], Kiefer, B.[Benjamin], Messmer, M.[Martin], Zell, A.[Andreas],
HyperPosePDF Hypernetworks Predicting the Probability Distribution on SO(3),
WACV23(2368-2378)
IEEE DOI 2302
Manifolds, Uncertainty, Shape, Pose estimation, Robot vision systems, Probability density function BibRef

Wei, W.[Wei], Hu, J.F.[Jian-Fei], Li, H.X.[Han-Xi], Zuo, J.L.[Jia-Li],
Revisiting Point Matching Methods for Object Pose Estimation,
ICIVC22(325-328)
IEEE DOI 2301
Deep learning, Pose estimation, Lighting, Benchmark testing, Task analysis, Standards, object 6DoF pose estimation, point prediction BibRef

Huang, L.[Lin], Hodan, T.[Tomas], Ma, L.[Lingni], Zhang, L.[Linguang], Tran, L.[Luan], Twigg, C.[Christopher], Wu, P.C.[Po-Chen], Yuan, J.S.[Jun-Song], Keskin, C.[Cem], Wang, R.[Robert],
Neural Correspondence Field for Object Pose Estimation,
ECCV22(X:585-603).
Springer DOI 2211
BibRef

Haugaard, R.L.[Rasmus Laurvig], Buch, A.G.[Anders Glent],
SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings,
CVPR22(6739-6748)
IEEE DOI 2210
Visualization, Computational modeling, Pose estimation, Color, Pattern recognition, Pose estimation and tracking, Representation learning BibRef

Ahmad, N.[Niaz], Yoon, J.W.[Jong-Won],
StrongPose: Bottom-up and Strong Keypoint Heat Map Based Pose Estimation,
ICPR21(8608-8615)
IEEE DOI 2105
Heating systems, Training, Location awareness, Runtime, Pose estimation, Neural networks, Predictive models, Body heat map, Strong key-point heat map BibRef

Fragoso, V.[Victor], Sinha, S.N.[Sudipta N.],
Generalized Pose-and-Scale Estimation using 4-Point Congruence Constraints,
3DV20(1117-1126)
IEEE DOI 2102
Cameras, Pose estimation, Task analysis, Quaternions, minimal solvers in computer vision BibRef

Zhang, S., Jiang, H., Gu, H., Chen, X., Liu, S.,
Remote Attitude Sensing Based on High-speed Mueller Matrix Ellipsometry,
ISPRS20(B1:607-614).
DOI Link 2012
BibRef

Blanton, H.[Hunter], Greenwell, C.[Connor], Workman, S.[Scott], Jacobs, N.[Nathan],
Extending Absolute Pose Regression to Multiple Scenes,
VisualSLAM20(170-178)
IEEE DOI 2008
Cameras, Training, Feature extraction, Databases, Standards, Robot vision systems BibRef

Zhao, W.[Wang], Liu, S.H.[Shao-Hui], Shu, Y.Z.[Ye-Zhi], Liu, Y.J.[Yong-Jin],
Towards Better Generalization: Joint Depth-Pose Learning Without PoseNet,
CVPR20(9148-9158)
IEEE DOI 2008
Recover scale, then pose. Optical imaging, Estimation, Adaptive optics, Cameras, Optical variables control, Training BibRef

Snower, M., Kadav, A., Lai, F., Graf, H.P.,
15 Keypoints Is All You Need,
CVPR20(6737-6747)
IEEE DOI 2008
Pose estimation, Tracking, Spatial resolution, Visualization, Task analysis, Neural networks BibRef

Kundu, J.N.[Jogendra Nath], Rahul, M.V., Ganeshan, A.[Aditya], Babu, R.V.[R. Venkatesh],
Object Pose Estimation from Monocular Image Using Multi-view Keypoint Correspondence,
DeepLearn-G18(III:298-313).
Springer DOI 1905
BibRef

Li, M., Hashimoto, K.,
Fast and Robust Pose Estimation Algorithm for Bin Picking Using Point Pair Feature,
ICPR18(1604-1609)
IEEE DOI 1812
Mathematical model, Computational modeling, Clustering algorithms, Robot sensing systems BibRef

Song, J.,
Sliding window filter based unknown object pose estimation,
ICIP17(2642-2646)
IEEE DOI 1803
Cameras, Feature extraction, Pose estimation, Smoothing methods, Trajectory, Sliding-Window Filter BibRef

Kim, S.A., Yoon, K.J.,
Point density-invariant 3D object detection and pose estimation,
ICIP17(2647-2651)
IEEE DOI 1803
Density measurement, Feature extraction, Histograms, Indexes, Object detection, Pose estimation, 3D object detection and pose estimation BibRef

Larsson, V.[Viktor], Kukelova, Z.[Zuzana], Zheng, Y.Q.[Yin-Qiang],
Making Minimal Solvers for Absolute Pose Estimation Compact and Robust,
ICCV17(2335-2343)
IEEE DOI 1802
P4Pfr problem. artificial intelligence, distance measurement, geometry, image reconstruction, pose estimation, stereo image processing, Transmission line matrix methods BibRef

Rad, M., Lepetit, V.,
BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth,
ICCV17(3848-3856)
IEEE DOI 1802
feedforward neural nets, image classification, image colour analysis, image segmentation, object detection, BibRef

Lourakis, M.[Manolis],
An efficient solution to absolute orientation,
ICPR16(3816-3819)
IEEE DOI 1705
Cameras, Covariance matrices, Estimation, Position measurement, Robots, Transmission, line, matrix, methods BibRef

Campbell, J.[Jordan], Mills, S.[Steven], Paulin, M.[Mike],
Mutual information of image intensity and gradient flux for markerless pose estimation,
ICVNZ15(1-6)
IEEE DOI 1701
particle swarm optimisation. Pose of articulated object. BibRef

Poirson, P.[Patrick], Ammirato, P.[Phil], Fu, C.Y.[Cheng-Yang], Liu, W.[Wei], Kosecka, J.[Jana], Berg, A.C.[Alexander C.],
Fast Single Shot Detection and Pose Estimation,
3DV16(676-684)
IEEE DOI 1701
Computational modeling BibRef

Jaspers, H., Mueller, G.R., Wuensche, H.J.[Hans-Joachim],
High accuracy model-based object pose estimation for autonomous recharging applications,
WACV16(1-7)
IEEE DOI 1606
Cameras BibRef

Tulsiani, S.[Shubham], Malik, J.[Jitendra],
Viewpoints and keypoints,
CVPR15(1510-1519)
IEEE DOI 1510
BibRef

Iversen, T.M.[Thorbjřrn Mosekjćr], Buch, A.G.[Anders Glent], Krüger, N.[Norbert], Kraft, D.[Dirk],
Shape Dependency of ICP Pose Uncertainties in the Context of Pose Estimation Systems,
CVS15(303-315).
Springer DOI 1507
BibRef

Bratanic, B.[Blaz], Likar, B.[Bostjan], Pernus, F.[Franjo], Tomazevic, D.[Dejan],
Pose estimation of textureless objects in cluttered environments,
MVA15(134-137)
IEEE DOI 1507
Computer vision BibRef

Tron, R.[Roberto], Daniilidis, K.[Kostas],
Statistical Pose Averaging with Non-isotropic and Incomplete Relative Measurements,
ECCV14(V: 804-819).
Springer DOI 1408
BibRef

Kneip, L.[Laurent], Li, H.D.[Hong-Dong], Seo, Y.D.[Yong-Duek],
UPnP: An Optimal O(n) Solution to the Absolute Pose Problem with Universal Applicability,
ECCV14(I: 127-142).
Springer DOI 1408
BibRef

Sweeney, C.[Chris], Flynn, J.[John], Turk, M.[Matthew],
Solving for Relative Pose with a Partially Known Rotation is a Quadratic Eigenvalue Problem,
3DV14(483-490)
IEEE DOI 1503
Cameras BibRef

Sweeney, C.[Chris], Fragoso, V.[Victor], Höllerer, T.[Tobias], Turk, M.[Matthew],
Large Scale SfM with the Distributed Camera Model,
3DV16(230-238)
IEEE DOI 1701
BibRef
Earlier:
gDLS: A Scalable Solution to the Generalized Pose and Scale Problem,
ECCV14(IV: 16-31).
Springer DOI 1408
BibRef

Kobayashi, T., Kato, H., Yanagihara, H.,
Novel Keypoint Registration for Fast and Robust Pose Detection on Mobile Phones,
ACPR13(266-271)
IEEE DOI 1408
augmented reality BibRef

Xiao, Y.[Yi], Lu, H.C.[Hu-Chuan], Li, S.F.[Shi-Feng],
Posterior constraints for double-counting problem in clustered pose estimation,
ICIP12(5-8).
IEEE DOI 1302
BibRef

Dondera, R.[Radu], Davis, L.S.[Larry S.],
Kernel PLS regression for robust monocular pose estimation,
MLVMA11(24-30).
IEEE DOI 1106
Evaluate five regression techniques for monocular 3D pose estimation. BibRef

Xu, W.[Wei], Mulligan, J.[Jane],
Robust relative pose estimation with integrated cheirality constraint,
ICPR08(1-4).
IEEE DOI 0812
RANSAC based pose BibRef

Alhwarin, F.[Faraj], Ristic-Durrant, D.[Danijela], Gräser, A.[Axel],
VF-SIFT: Very Fast SIFT Feature Matching,
DAGM10(222-231).
Springer DOI 1009
BibRef

Vuppala, S.K.[Sai Krishna], Gräser, A.[Axel],
An Approach for Tracking the 3D Object Pose Using Two Object Points,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Yang, M.[Ming], Yu, Q.[Qian], Wang, H.[Hong], Zhang, B.[Bo],
Vision based real-time pose estimation for intelligent vehicles,
IVS04(262-267).
IEEE DOI 0411
Ground plane assumption. Gradient Angle Histogram. BibRef

Yang, M.[Ming], Dong, B.[Bin], Wang, H.[Hong], Zhang, B.[Bo],
Real-time pose estimation for outdoor, mobile robots using range data,
ICPR02(II: 593-596).
IEEE DOI 0211
BibRef

Ude, A.[Ales],
Nonlinear Least Squares Optimisation of Unit Quaternion Functions for Pose Estimation from Corresponding Features,
ICPR98(Vol I: 425-427).
IEEE DOI 9808
BibRef

Jacobs, D.W.,
Optimal Matching of Planar Models in 3D Scenes,
CVPR91(269-274).
IEEE DOI Point features on a flat object to point features in 3-D in an arbitrary pose. Newer: oriented points require more space in the indexing scheme. BibRef 9100

Hel-Or, Y., and Werman, M.,
Absolute Orientation from Uncertain Point Data: A Unified Approach,
CVPR92(77-82).
IEEE DOI Pose using a model, predicted 3-D from 2-D BibRef 9200

Wang, Z., Jepson, A.D.,
A New Closed-Form Solution for Absolute Orientation,
CVPR94(129-134).
IEEE DOI BibRef 9400

Lu, L.[Liu], Luo, F.[Fang], Mulder, N.J.,
Recognition of 2-D Objects by Optimal Matching,
BMVC94(xx-yy).
PDF File. 9409
BibRef

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Point Pattern Invariants .


Last update:Nov 26, 2024 at 16:40:19