Slagle, J.R.,
Lee, R.C.T.,
Applications of Game Tree Searching Techniques to
Sequential Pattern Recognition,
CACM(14), 1971, pp. 103-110.
BibRef
7100
Haralick, R.M., and
Shapiro, L.G.,
The Consistent Labeling Problem: Part I,
PAMI(1), No. 2, April 1979, pp. 173-184.
BibRef
7904
And:
The Consistent Labeling Problem: Part II,
PAMI(2), No. 3, May 1980, pp. 193-203.
BibRef
Earlier:
The Consistent Labeling Problem and Some Applications to
Scene Analysis,
ICPR78(616-619).
BibRef
And:
The Consistent Labeling Problem,
PRAI-78(173-178).
Explore how the problem is done and various operators that
can make it faster.
BibRef
Shapiro, L.G., and
Haralick, R.M.,
Structural Descriptions and Inexact Matching,
PAMI(3), No. 5, September 1981, pp. 504-519.
BibRef
8109
Earlier:
Algorithms for Inexact Matching,
ICPR80(202-207).
Relaxation, Evaluation. Use of Null nodes.
This paper discusses structural description
methods (using parts and interrelationships of the parts), and
matching techniques based on tree searching (backtrack alone,
forwardchecking, and looking ahead). Two kind of matching are
described: exact where every relation matches and inexact that is
not perfect, only good enough (a mapping such that the weighted sum
of the corresponding relations is greater than some given threshold,
and the weighted sum of non-matching elements is less than a
threshold). Finding the best match is more complex: how do you
compare 2 matches when there are good and bad points to each?
Searching eliminates impossible (unlikely) paths by considering not
only the error in the matches found so far but the minimum error
that can occur in the future assignments as constrained by the past
labels. Forward checking looks at all future labels, looking ahead
only considers the next set of assignments. A look ahead by two
assignments is the same as discrete relaxation. The forward checking
produces the best results mostly because of the extra computation of
the lookahead operations. When more errors are introduced the
problem becomes much harder. A major conclusion of the paper is that
the inexact matching (consistent labeling) problem is much harder
than the exact matching problem.
BibRef
Shapiro, L.G.,
Inexact Matching in ESP3,
ICPR76(759-763).
BibRef
7600
Haralick, R.M.,
Ullmann, J.R., and
Shapiro, L.G.,
Computer Architecture for Solving Consistent Labeling Problems,
Computer Journal(28), No. 2, 1985, pp. 105-111.
BibRef
8500
Haralick, R.M.[Robert M.], and
Elliott, G.L.[Gordon L.],
Increasing Tree Search Efficiency for Constraint Satisfaction Problems,
AI(14), No. 3, October 1980, pp. 263-313.
Elsevier DOI
BibRef
8010
Earlier:
IJCAI79(356-364).
BibRef
Rubin, S.[Steve],
Natural Scene Recognition Using Locus Search,
CGIP(13), No. 4, August 1980, pp. 298-333.
Elsevier DOI
BibRef
8008
Rubin, S., and
Reddy, R.,
The Locus Model of Search and its Use in Image Interpretation,
IJCAI77(590-595).
BibRef
7700
And:
DARPA77(12-14).
Locus, or beam search applied to vision.
BibRef
Rubin, S.[Steve],
The ARGOS Image Understanding System,
Ph.D.Thesis (CS), 1978.
BibRef
7800
CMU-CS-TR-Report, CMU CS Dept.
BibRef
Earlier:
DARPAN78(159-162).
Pose Estimation.
Color.
Viewpoint Constraint. The matching method used in HARPY speech program applied to vision,
recognition at the basic region level. It requires a detailed model
to specify what is possible.
BibRef
Boyer, K.L.,
Vayda, A.J., and
Kak, A.C.,
Robotic Manipulation Experiments Using Structural Stereopsis
for 3D Vision,
IEEE_EXPERT(1), Fall 1986, pp. 73-94.
This reports on results of the work that is
covered in the next paper, but is a less technical vision article.
BibRef
8600
Boyer, K.L., and
Kak, A.C.,
Structural Stereo for 3-D Vision,
PAMI(10), No. 2, March 1988, pp. 144-166.
IEEE DOI
BibRef
8803
Earlier:
Symbolic Stereo from Structural Descriptions,
CAIA85(82-87).
There is a lot in the paper, primarily it is a matching method. The
comparison technique is described in information theoretic terms,
but is basically standard, the difference is a triangle function
with a peak for no difference between the two and a limit on where
zero is reached. The search method is standard tree search, start
with the ones that have the fewest options (get the set of best
matches and take them only if they are good enough), also there is
a nice NIL mapping technique -- NIL is the match of last resort (i.e. at
the end of every path in the search tree) but is added to the possible
matches only if no other match is good enough. The system uses an
information theoretic distance measure (essentially the probaability that
two corresponding elements will have the given difference).
BibRef
Vayda, A.J., and
Kak, A.C.,
A Robot Vision System for Recognition of Generic Shaped Objects,
CVGIP(54), No. 1, July 1991, pp. 1-46.
Elsevier DOI
BibRef
9107
Earlier:
INGEN: A Robot Vision System for Generic Object Recognition,
CADBV91(166-175).
A generic object (parallelepipeds and cylinders) recognition system,
that extracts object hypotheses, geometric reasoning to find size
and detect geometric inconsistencies and recognition to reject
hypotheses which have little support. Uses range data.
BibRef
van der Helm, P.A.,
Leeuwenberg, E.L.J.,
Avoiding explosive search in automatic selection of simplest pattern
codes,
PR(19), No. 2, 1986, pp. 181-191.
Elsevier DOI
0309
BibRef
Newborn, M.,
Unsynchronized iteratively deepening parallel alpha-beta search,
PAMI(10), No. 5, September 1988, pp. 687-694.
IEEE DOI
0401
BibRef
Schaeffer, J.,
The history heuristic and alpha-beta search enhancements in practice,
PAMI(11), No. 11, November 1989, pp. 1203-1212.
IEEE DOI
0401
BibRef
Powley, C.,
Korf, R.E.,
Single-agent parallel window search,
PAMI(13), No. 5, May 1991, pp. 466-477.
IEEE DOI
0401
BibRef
Kaindl, H.,
Shams, R.,
Horacek, H.,
Minimax search algorithms with and without aspiration windows,
PAMI(13), No. 12, December 1991, pp. 1225-1235.
IEEE DOI
0401
BibRef
Yang, G.Z.[Guang-Zheng],
The search algorithms stimulated by premise set in the syntactic
knowledge system,
PR(26), No. 1, January 1993, pp. 17-22.
Elsevier DOI
0401
BibRef
Paglieroni, D.W.,
Ford, G.E.,
Tsujimoto, E.M.,
The Position-Orientation Masking Approach To Parametric
Search For Template Matching,
PAMI(16), No. 7, July 1994, pp. 740-747.
IEEE DOI
BibRef
9407
Reinefeld, A.,
Marsland, T.A.,
Enhanced Iterative-Deepening Search,
PAMI(16), No. 7, July 1994, pp. 701-710.
IEEE DOI
BibRef
9407
Ben-Arie, J., and
Meiri, A.Z.,
3D Objects Recognition by Optimal Matching Search
of Multinary Relations Graphs,
CVGIP(37), No. 3, March 1987, pp. 345-361.
Elsevier DOI
Recognize Three-Dimensional Objects.
BibRef
8703
Earlier:
3-D Objects Recognition by State Space Search:
Optimal Geometric Matching,
CVPR86(456-461).
BibRef
And:
Optimal Recognition of 3-D Objects By Search: Generic Models,
ICPR86(100-103).
3D shape matching, using heuristics to limit the cost of the search.
(Ignore the grammar problems in the title.)
BibRef
Ben-Arie, J., and
Meiri, A.Z.,
Three-Dimensional Object Recognition by Two-Dimensional Inclined
Shapes Matching with Area Ratios Method,
Draftfall 1984. (Technion - Israel) The
interesting thing is the ratio of the area of the lobe to the
whole area. This is the feature used in the comparison.
Everything else is straightforward.
BibRef
8400
Kuno, Y.,
Okamoto, Y.,
Okada, S.,
Robot vision using a feature search strategy generated from a 3D object
model,
PAMI(13), No. 10, October 1991, pp. 1085-1097.
IEEE DOI
0401
BibRef
Earlier:
Object Recognition Using a Feature Search Strategy Generated
from a 3-D Model,
ICCV90(626-635).
IEEE DOI
BibRef
Spirkovska, L.,
Three-Dimensional Object Recognition Using Similar Triangles
and Decision Trees,
PR(26), No. 5, May 1993, pp. 727-732.
Elsevier DOI
BibRef
9305
Ishida, T.,
Real-Time Bidirectional Search:
Coordinated Problem-Solving in Uncertain Situations,
PAMI(18), No. 6, June 1996, pp. 617-628.
IEEE DOI
9607
Search.
BibRef
Chaudhury, S.,
Acharyya, A.,
Subramanian, S.,
Parthasarathy, G.,
Recognition of Occluded Objects with Heuristic Search,
PR(23), No. 6, 1990, pp. 617-635.
Elsevier DOI
BibRef
9000
Chaudhury, S.,
Subramanian, S.,
Parthasarathy, G.,
Recognition of Partial Planar Shapes in Limited Memory Environments,
PRAI(4), 1990, pp. 603-628.
BibRef
9000
Ishida, T.,
Korf, R.E.,
Moving-Target Search: A Real-Time Search for Changing Goals,
PAMI(17), No. 6, June 1995, pp. 609-619.
IEEE DOI
BibRef
9506
Cho, C.J.,
Kim, J.H.,
Recognizing 3-D Objects by Forward Checking Constrained Tree Search,
PRL(13), 1992, pp. 587-597.
BibRef
9200
Stewart, B.S.,
Liaw, C.F.,
White, III, C.C.,
A Bibliography of Heuristic Search Research Through 1992,
SMC(24), 1994, pp. 268-293.
BibRef
9400
Chung, K.L.,
Wu, J.G.,
Lan, J.K.,
Efficient Search Algorithm on Compact S-Trees,
PRL(18), No. 14, December 1997, pp. 1427-1434.
9806
BibRef
Cantoni, V.,
Cinque, L.,
Guerra, C.,
Levialdi, S.,
Lombardi, L.,
2-D Object Recognition by Multiscale Tree Matching,
PR(31), No. 10, October 1998, pp. 1443-1454.
Elsevier DOI
9808
BibRef
Raman, A.[Anand],
Andreae, P.[Peter],
Patrick, J.[Jon],
A Beam Search Algorithm for PFSA Inference,
PAA(1), No. 2, 1998, pp. 121-129.
BibRef
9800
Joseph, S.H.,
Analysing and reducing the cost of exhaustive correspondence search,
IVC(17), No. 11, September 1999, pp. 815-830.
Elsevier DOI
BibRef
9909
Pridmort, T.P.,
Joseph, S.H.,
Integrating visual search with visual memory in a knowledge directed
image interpretation system,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Silvela, J.,
Portillo, J.,
Breadth-first search and its application image processing problems,
IP(10), No. 8, August 2001, pp. 1194-1199.
IEEE DOI
0108
BibRef
Wang, J.K.[Jian-Kang],
Li, X.B.[Xiao-Bo],
Controlled accurate searches with balloons,
PR(36), No. 3, March 2003, pp. 827-843.
Elsevier DOI
0301
BibRef
Breuel, T.M.,
On the use of interval arithmetic in geometric branch and bound
algorithms,
PRL(24), No. 9-10, June 2003, pp. 1375-1384.
Elsevier DOI
0304
BibRef
Breuel, T.M.[Thomas M.],
A Comparison of Search Strategies for Geometric Branch and Bound
Algorithms,
ECCV02(III: 837 ff.).
Springer DOI
0205
BibRef
Breuel, T.M.[Thomas M.],
Implementation techniques for geometric branch-and-bound matching
methods,
CVIU(90), No. 3, June 2003, pp. 258-294.
Elsevier DOI
0307
BibRef
Sun, C.M.[Chang-Ming],
Pallottino, S.[Stefano],
Circular shortest path in images,
PR(36), No. 3, March 2003, pp. 709-719.
Elsevier DOI
0301
BibRef
Earlier:
Circular Shortest Path on Regular Grids,
ACCV02(852-857).
BibRef
Appleton, B.[Ben],
Sun, C.M.[Chang-Ming],
Circular shortest paths by branch and bound,
PR(36), No. 11, November 2003, pp. 2513-2520.
Elsevier DOI
0309
BibRef
Sun, C.M.[Chang-Ming],
Appleton, B.[Ben],
Multiple Paths Extraction in Images Using a Constrained Expanded
Trellis,
PAMI(27), No. 12, December 2005, pp. 1923-1933.
IEEE DOI
0512
Extract multiple paths, rather than a single optimal path.
(
See also Finding the Best Set of K Paths through a Trellis with Application to Multitarget Tracking. )
BibRef
Undeger, C.,
Polat, F.,
Real-Time Edge Follow: A Real-Time Path Search Approach,
SMC-C(37), No. 5, September 2007, pp. 860-872.
IEEE DOI
0710
Real-time path searching. Compared to real-time A*.
BibRef
Undeger, C.,
Polat, F.,
Real-Time Moving Target Evaluation Search,
SMC-C(39), No. 3, May 2009, pp. 366-372.
IEEE DOI
0904
BibRef
Ris, M.[Marcelo],
Barrera, J.[Junior],
Martins, Jr., D.C.[David C.],
U-curve: A branch-and-bound optimization algorithm for U-shaped cost
functions on Boolean lattices applied to the feature selection problem,
PR(43), No. 3, March 2010, pp. 557-568.
Elsevier DOI
1001
Boolean lattice; Branch-and-bound algorithm; U-shaped curve; Feature
selection; Subset search; Optimal search
BibRef
Reis, M.S.[Marcelo S.],
Barrera, J.[Junior],
Solving Problems in Mathematical Morphology through Reductions to the
U-Curve Problem,
ISMM13(49-60).
Springer DOI
1305
BibRef
Tsapanos, N.[Nikolaos],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Online shape learning using binary search trees,
IVC(28), No. 7, July 2010, pp. 1146-1154.
Elsevier DOI
1006
Incremental learning techniques; Online pattern recognition; Binary
search trees
Binary tree for storage and matching of templates.
BibRef
Liu, G.C.[Guang-Can],
Lin, Z.C.[Zhou-Chen],
Yan, S.C.[Shui-Cheng],
Sun, J.[Ju],
Yu, Y.[Yong],
Ma, Y.[Yi],
Robust Recovery of Subspace Structures by Low-Rank Representation,
PAMI(35), No. 1, January 2013, pp. 171-184.
IEEE DOI
1212
Subspace clustering.
BibRef
Liu, G.C.[Guang-Can],
Xu, H.,
Tang, J.,
Liu, Q.,
Yan, S.C.[Shui-Cheng],
A Deterministic Analysis for LRR,
PAMI(38), No. 3, March 2016, pp. 417-430.
IEEE DOI
1602
Low-Rank Representation.
Coherence. Motion segmentation, saliency, face recognition.
BibRef
Zheng, Y.Q.[Yin-Qiang],
Liu, G.C.[Guang-Can],
Sugimoto, S.[Shigeki],
Yan, S.C.[Shui-Cheng],
Okutomi, M.[Masatoshi],
Practical low-rank matrix approximation under robust L1-norm,
CVPR12(1410-1417).
IEEE DOI
1208
BibRef
Zheng, Y.Q.[Yin-Qiang],
Sugimoto, S.[Shigeki],
Okutomi, M.[Masatoshi],
Deterministically maximizing feasible subsystem for robust model
fitting with unit norm constraint,
CVPR11(1825-1832).
IEEE DOI
1106
BibRef
Htoo, H.[Htoo],
Ohsawa, Y.[Yutaka],
Sonehara, N.[Noboru],
Sakauchi, M.[Masao],
Incremental Single-Source Multi-Target A* Algorithm for LBS Based on
Road Network Distance,
IEICE(E96-D), No. 5, May 2013, pp. 1043-1052.
WWW Link.
1305
Shortest path in road network.
BibRef
Perakis, P.,
Passalis, G.,
Theoharis, T.,
Kakadiaris, I.A.,
3D Facial Landmark Detection under Large Yaw and Expression Variations,
PAMI(35), No. 7, 2013, pp. 1552-1564.
IEEE DOI face recognition; 3D facial landmark detection;
principal curvature value; spin images;
Eigenvalues and eigenfunctions
1307
BibRef
Bazin, J.C.,
Li, H.D.[Hong-Dong],
Kweon, I.S.[In So],
Demonceaux, C.,
Vasseur, P.,
Ikeuchi, K.,
A Branch-and-Bound Approach to Correspondence and Grouping Problems,
PAMI(35), No. 7, 2013, pp. 1565-1576.
IEEE DOI
1307
object recognition; tree searching
BibRef
Antikainen, H.[Harri],
Using the Hierarchical Pathfinding A* Algorithm in GIS to Find Paths
through Rasters with Nonuniform Traversal Cost,
IJGI(2), No. 4, 2013, pp. 996-1014.
DOI Link
1310
BibRef
Chen, B.Y.,
Lam, W.H.K.,
Li, Q.,
Sumalee, A.,
Yan, K.,
Shortest Path Finding Problem in Stochastic Time-Dependent Road
Networks With Stochastic First-In-First-Out Property,
ITS(14), No. 4, 2013, pp. 1907-1917.
IEEE DOI
1312
Algorithm design and analysis
BibRef
Yoon, S.,
Shim, D.H.,
SLPA*: Shape-Aware Lifelong Planning A* for Differential
Wheeled Vehicles,
ITS(16), No. 2, April 2015, pp. 730-740.
IEEE DOI
1504
Heuristic algorithms
BibRef
Wu, F.[Fan],
Fu, K.[Kun],
Wang, Y.[Yang],
Xiao, Z.B.[Zhi-Bin],
A Graph-Based Min-# and Error-Optimal Trajectory Simplification
Algorithm and Its Extension towards Online Services,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Pal, P.S.,
Kar, R.,
Mandal, D.,
Ghoshal, S.P.,
A hybrid backtracking search algorithm with wavelet mutation-based
nonlinear system identification of Hammerstein models,
SIViP(11), No. 5, July 2017, pp. 921-928.
WWW Link.
1706
BibRef
Pinheiro, M.A.[Miguel Amavel],
Kybic, J.[Jan],
Fua, P.[Pascal],
Geometric Graph Matching Using Monte Carlo Tree Search,
PAMI(39), No. 11, November 2017, pp. 2171-2185.
IEEE DOI
1710
BibRef
Earlier: A1, A2, Only:
Geometrical graph matching using Monte Carlo tree search,
ICIP15(3145-3149)
IEEE DOI
1512
Biomedical imaging, Computational modeling,
Image edge detection, Monte Carlo methods, Roads,
Geometric graph matching,
Monte Carlo tree search, curve descriptor, image registration
BibRef
Ait Bouziaren, S.,
Aghezzaf, B.,
An Improved Augmented epsilon-Constraint and Branch-and-Cut Method to
Solve the TSP With Profits,
ITS(20), No. 1, January 2019, pp. 195-204.
IEEE DOI
1901
Optimization, Traveling salesman problems,
Approximation algorithms, Intelligent transportation systems,
e-constraint
BibRef
Khoa, N.L.D.[Nguyen Lu Dang],
Wang, Y.[Yang],
Chawla, S.[Sanjay],
Incremental commute time and its online applications,
PR(88), 2019, pp. 101-112.
Elsevier DOI
1901
Commute time, Random walks, Online learning, Anomaly detection,
Manifold learning
BibRef
Seo, K.[Kwangwon],
Ahn, J.H.[Jin-Hyun],
Im, D.H.[Dong-Hyuk],
Optimization of Shortest-Path Search on RDBMS-Based Graphs,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Dimitrov, M.[Miroslav],
Baitcheva, T.[Tsonka],
Nikolov, N.[Nikolay],
Efficient Generation of Low Autocorrelation Binary Sequences,
SPLetters(27), 2020, pp. 341-345.
IEEE DOI
2003
Aperiodic autocorrelation function, binary sequences,
peak sidelobe level (psl), shotgun hill climbing
BibRef
Silva-Gálvez, A.,
Lara-Cárdenas, E.,
Amaya, I.,
Cruz-Duarte, J.M.,
Ortiz-Bayliss, J.C.,
A Preliminary Study on Score-based Hyper-heuristics for Solving the Bin
Packing Problem,
MCPR20(318-327).
Springer DOI
2007
BibRef
Zhang, J.L.[Ji-Lian],
Wei, K.M.[Kai-Min],
Deng, X.L.[Xue-Lian],
Heuristic algorithms for diversity-aware balanced multi-way number
partitioning,
PRL(136), 2020, pp. 56-62.
Elsevier DOI
2008
Artificial intelligence, Number partitioning,
Heuristic algorithms, Balanced multi-way number partitioning
BibRef
Liu, X.C.[Xing-Chi],
Derakhshani, M.[Mahsa],
Lambotharan, S.[Sangarapillai],
van der Schaar, M.[Mihaela],
Risk-Aware Multi-Armed Bandits With Refined Upper Confidence Bounds,
SPLetters(28), 2021, pp. 269-273.
IEEE DOI
2102
Signal processing algorithms, Indexes, Gaussian distribution,
Uncertainty, Random variables, Standards, Measurement uncertainty,
exploration and exploitation
BibRef
Xu, X.P.[Xiang-Ping],
Li, J.[Jun],
Zhou, M.C.[Meng-Chu],
Bi-Objective Colored Traveling Salesman Problems,
ITS(23), No. 7, July 2022, pp. 6326-6336.
IEEE DOI
2207
Color, Urban areas, Traveling salesman problems, Search problems,
Optimization, Statistics, Sorting,
variable neighborhood search
BibRef
Wang, H.Y.[Huan-Yu],
Qin, Z.Q.[Ze-Qun],
Li, S.Y.[Song-Yuan],
Li, X.[Xi],
CoDiNet: Path Distribution Modeling With Consistency and Diversity
for Dynamic Routing,
PAMI(44), No. 10, October 2022, pp. 6011-6023.
IEEE DOI
2209
Path through network.
Routing, Computational modeling, Computational efficiency,
Training, Image color analysis, Recurrent neural networks, dynamic routing
BibRef
Meng, X.H.[Xiang-Hu],
Li, J.[Jun],
Dai, X.Z.[Xian-Zhong],
Dou, J.P.[Jian-Ping],
Variable Neighborhood Search for a Colored Traveling Salesman Problem,
ITS(19), No. 4, April 2018, pp. 1018-1026.
IEEE DOI
1804
Biological cells, Color, Encoding, Genetic algorithms, Optimization,
Traveling salesman problems, Urban areas,
variable neighborhood search
BibRef
Xu, X.P.[Xiang-Ping],
Li, J.[Jun],
Zhou, M.C.[Meng-Chu],
Delaunay-Triangulation-Based Variable Neighborhood Search to Solve
Large-Scale General Colored Traveling Salesman Problems,
ITS(22), No. 3, March 2021, pp. 1583-1593.
IEEE DOI
2103
Urban areas, Traveling salesman problems, Image color analysis,
Color, Intelligent transportation systems, Search problems,
intelligent optimization
BibRef
Zhou, Y.M.[Yang-Ming],
Xu, W.Q.[Wen-Qiang],
Fu, Z.H.[Zhang-Hua],
Zhou, M.C.[Meng-Chu],
Multi-Neighborhood Simulated Annealing-Based Iterated Local Search
for Colored Traveling Salesman Problems,
ITS(23), No. 9, September 2022, pp. 16072-16082.
IEEE DOI
2209
Urban areas, Color, Traveling salesman problems,
Simulated annealing, Biological cells, Upper bound, Robots,
colored traveling salesman problem
BibRef
Fan, H.M.[Hou-Ming],
Peng, W.H.[Wen-Hao],
Ma, M.Z.[Meng-Zhi],
Yue, L.J.[Li-Jun],
Storage Space Allocation and Twin Automated Stacking Cranes
Scheduling in Automated Container Terminals,
ITS(23), No. 9, September 2022, pp. 14336-14348.
IEEE DOI
2209
Containers, Resource management, Cranes, Loading, Optimization, Safety,
Stacking, Automated container terminal, handshake area,
variable neighborhood search based hybrid genetic algorithm
BibRef
Fan, A.X.[Ao-Xiang],
Ma, J.Y.[Jia-Yi],
Jiang, X.Y.[Xing-Yu],
Ling, H.B.[Hai-Bin],
Efficient Deterministic Search With Robust Loss Functions for
Geometric Model Fitting,
PAMI(44), No. 11, November 2022, pp. 8212-8229.
IEEE DOI
2210
Estimation, Computational modeling, Benchmark testing,
Search problems, Approximation algorithms, Analytical models, image matching
BibRef
Wang, X.[Xiao],
Chen, Z.[Zhe],
Jiang, B.[Bo],
Tang, J.[Jin],
Luo, B.[Bin],
Tao, D.C.[Da-Cheng],
Beyond Greedy Search: Tracking by Multi-Agent Reinforcement
Learning-Based Beam Search,
IP(31), 2022, pp. 6239-6254.
IEEE DOI
2210
Target tracking, Tracking, Visualization, Search problems,
Reinforcement learning, Trajectory, Decision making, greedy search
BibRef
Zhang, R.K.[Rong-Kai],
Zhang, C.[Cong],
Cao, Z.G.[Zhi-Guang],
Song, W.[Wen],
Tan, P.S.[Puay Siew],
Zhang, J.[Jie],
Wen, B.[Bihan],
Dauwels, J.[Justin],
Learning to Solve Multiple-TSP With Time Window and Rejections via
Deep Reinforcement Learning,
ITS(24), No. 1, January 2023, pp. 1325-1336.
IEEE DOI
2301
Task analysis, Costs, Routing, Reinforcement learning, Time factors,
Training data, Market research, Travelling salesman problem,
deep reinforcement learning
BibRef
Wang, K.[Ke],
Feng, B.R.[Bao-Rui],
Ma, Y.[Ying],
Lin, W.L.[Wen-Liang],
Zhao, J.G.[Jin-Gui],
List Encoding of Vector Perturbation Precoding,
SPLetters(30), 2023, pp. 478-482.
IEEE DOI
2305
Perturbation methods, Precoding, Optimization,
Signal processing algorithms, Search problems, VP
BibRef
Ling, Z.X.[Zheng-Xuan],
Zhang, Y.[Yu],
Chen, X.[Xi],
A Deep Reinforcement Learning Based Real-Time Solution Policy for the
Traveling Salesman Problem,
ITS(24), No. 6, June 2023, pp. 5871-5882.
IEEE DOI
2306
Urban areas, Real-time systems, Heuristic algorithms,
Reinforcement learning, Neural networks, Training,
traveling salesman
BibRef
Chole, V.[Vikrant],
Gadicha, V.[Vijay],
Locust Mayfly Optimization-Tuned Neural Network for AI-Based Pruning in
Chess Game,
IJIG(23), No. 4 2023, pp. 2350028.
DOI Link
2308
BibRef
Kim, G.[Geunu],
Jin, H.W.[Hyun-Woo],
Kim, M.[Mingi],
Jang, K.[Kitae],
Jang, I.G.[In Gwun],
Loop-Wise Route Representation and Its Optimization Formulation for
Symmetric Traveling Salesman Problems,
ITS(24), No. 9, September 2023, pp. 9490-9500.
IEEE DOI
2310
BibRef
Lee, J.[Jiho],
Kim, E.[Eunwoo],
Mitigating Search Interference With Task-Aware Nested Search,
IP(33), 2024, pp. 3102-3114.
IEEE DOI
2405
Task analysis, Interference, Search problems,
Computer architecture, Multitasking, Costs, Generators,
search interference
BibRef
Gutiérrez, O.[Omar],
Zamora, E.[Erik],
Menchaca, R.[Ricardo],
Graph Representation for Learning the Traveling Salesman Problem,
MCPR21(153-162).
Springer DOI
2108
BibRef
Cai, Z.P.[Zhi-Peng],
Chin, T.,
Koltun, V.,
Consensus Maximization Tree Search Revisited,
ICCV19(1637-1645)
IEEE DOI
2004
Code, Search.
WWW Link. computational complexity, optimisation,
tree searching, consensus maximization tree structure,
Computational modeling
BibRef
Bauer, D.[Dominik],
Patten, T.[Timothy],
Vincze, M.[Markus],
SporeAgent: Reinforced Scene-level Plausibility for Object Pose
Refinement,
WACV22(196-204)
IEEE DOI
2202
BibRef
Earlier:
Monte Carlo Tree Search on Directed Acyclic Graphs for Object Pose
Verification,
CVS19(386-396).
Springer DOI
1912
Visualization, Codes, Reinforcement learning,
Robustness, Iterative methods,
Vision for Robotics
BibRef
Behzadi, S.,
Kolbadinejad, M.,
Introducing a Novel Method to Solve Shortest Path Problems Based On
Structure of Network Using Genetic Algorithm,
SMPR19(201-203).
DOI Link
1912
BibRef
Osmanlioglu, Y.[Yusuf],
Shokoufandeh, A.[Ali],
Multi-layer Tree Matching Using HSTs,
GbRPR15(198-207).
Springer DOI
1511
BibRef
Lam, M.[Michael],
Doppa, J.R.[Janardhan Rao],
Todorovic, S.[Sinisa],
Dietterich, T.G.[Thomas G.],
HC-search for structured prediction in computer vision,
CVPR15(4923-4932)
IEEE DOI
1510
works for language, try for vision.
BibRef
Roy, A.[Anirban],
Todorovic, S.[Sinisa],
Scene Labeling Using Beam Search under Mutex Constraints,
CVPR14(1178-1185)
IEEE DOI
1409
Beam Search; Mutex Constraints; Scene Labeling
BibRef
Sun, M.[Min],
Huang, W.[Wan],
Savarese, S.[Silvio],
Find the Best Path:
An Efficient and Accurate Classifier for Image Hierarchies,
ICCV13(265-272)
IEEE DOI
1403
branch-and-bound
BibRef
Mudaliar, D.N.[Devasenathipathi N.],
Modi, N.K.[Nilesh K.],
Unraveling Travelling Salesman Problem by genetic algorithm using
m-crossover operator,
ICSIPR13(127-130).
IEEE DOI
1304
BibRef
Nguyen, H.T.[Hoang Thanh],
Bhanu, B.[Bir],
Zombie Survival Optimization: A swarm intelligence algorithm inspired
by zombie foraging,
ICPR12(987-990).
WWW Link.
1302
Search optimization
BibRef
Kappes, J.H.[Jörg Hendrik],
Beier, T.[Thorsten],
Schnörr, C.[Christoph],
MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by
Fusion Moves,
GMCV14(469-484).
Springer DOI
1504
BibRef
Andres, B.[Bjoern],
Kappes, J.H.[Jörg H.],
Beier, T.[Thorsten],
Köthe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete
Graphical Models,
ECCV12(VII: 154-166).
Springer DOI
1210
BibRef
Zielinski, B.[Bartlomiej],
Iwanowski, M.[Marcin],
Comparing Image Objects Using Tree-Based Approach,
ICCVG12(702-709).
Springer DOI
1210
BibRef
Vallotton, P.,
Lovell, D.,
Newman, J.,
An Observation about Circular Shortest Paths:
Dealing with Additional Constraints Using Branch and Bound,
DICTA11(513-517).
IEEE DOI
1205
BibRef
Chakrabarti, P.P.[Partha Pratim],
Aine, S.[Sandip],
New Approaches to Design and Control of Time Limited Search Algorithms,
PReMI09(1-6).
Springer DOI
0912
BibRef
Zhu, W.X.[Wei-Xing],
Chen, X.Y.[Xian-Yong],
Li, X.C.[Xin-Cheng],
A New Search Algorithm Based on Muti-Octagon-Grid,
CISP09(1-5).
IEEE DOI
0910
BibRef
Dwyer, T.[Tim],
Hurst, N.[Nathan],
Merrick, D.[Damian],
A Fast and Simple Heuristic for Metro Map Path Simplification,
ISVC08(II: 22-30).
Springer DOI
0812
Shortest path.
BibRef
Boffy, A.,
Tsin, Y.,
Genc, Y.,
Real-Time Feature Matching using Adaptive and Spatially Distributed
Classification Trees,
BMVC06(II:529).
PDF File.
0609
BibRef
Serratosa, F.[Francesc],
Sanromā, G.[Gerard],
Sanfeliu, A.[Alberto],
A New Algorithm to Compute the Distance Between Multi-dimensional
Histograms,
CIARP07(115-123).
Springer DOI
0711
BibRef
Serratosa, F.[Francesc],
Sanromā, G.[Gerard],
An Efficient Distance Between Multi-dimensional Histograms for
Comparing Images,
SSPR06(412-421).
Springer DOI
0608
BibRef
Serratosa, F.[Francesc],
Sanfeliu, A.[Alberto],
Vision-Based Robot Positioning by an Exact Distance Between Histograms,
ICPR06(II: 849-852).
IEEE DOI
0609
BibRef
And:
A Fast and Exact Modulo-Distance Between Histograms,
SSPR06(394-402).
Springer DOI
0608
To determine if the image is familiar.
BibRef
Serratosa, F.[Francesc],
Sanfeliu, A.[Alberto],
Matching Attributed Graphs:
2nd-Order Probabilities for Pruning the Search Tree,
IbPRIA05(II:131).
Springer DOI
0509
BibRef
Wahl, E.[Eric],
Hirzinger, G.[Gerd],
A Method for Fast Search of Variable Regions on Dynamic 3D Point Clouds,
DAGM05(208).
Springer DOI
0509
BibRef
Thayananthan, A.,
Stenger, B.,
Torr, P.H.S.,
Cipolla, R.,
Learning a Kinematic Prior for Tree-Based Filtering,
BMVC03(xx-yy).
HTML Version.
0409
Tree based evaluation for tracking.
BibRef
Stenger, B.,
Thayananthan, A.,
Torr, P.H.S.,
Cipolla, R.,
Filtering using a tree-based estimator,
ICCV03(1063-1070).
IEEE DOI
0311
BibRef
Huber, D.F.[Daniel F.],
Hebert, M.[Martial],
3D Modeling Using a Statistical Sensor Model and Stochastic Search,
CVPR03(I: 858-865).
IEEE DOI
HTML Version.
0307
BibRef
And:
CREST03(125-126).
0309
BibRef
Kovtun, I.[Ivan],
Partial Optimal Labeling Search for a NP-Hard Subclass of (max,+)
Problems,
DAGM03(402-409).
Springer DOI
0310
Award, GCPR, HM.
BibRef
Hao, H.W.[Hong-Wei],
Liu, C.L.[Cheng-Lin],
Sako, H.,
Comparison of genetic algorithm and sequential search methods for
classifier subset selection,
ICDAR03(765-769).
IEEE DOI
0311
BibRef
Tabibi, O.D.[Omid David],
Netanyahu, N.S.[Nathan S.],
Verified Null-move Pruning,
UMD-- TR4406, October 2002.
WWW Link.
WWW Link.
BibRef
0210
Jepson, A.D.[Allan D.],
Mann, R.[Richard],
Qualitative Probabilities for Image Interpretation,
ICCV99(1123-1130).
IEEE DOI Probabilistic pruning of search tree.
BibRef
9900
Greenspan, M.A.[Michael A.],
The Sample Tree:
A Sequential Hypothesis Testing Approach to 3D Object Recognition,
CVPR98(772-779).
IEEE DOI
BibRef
9800
Chung, H.Y.,
Cheung, P.Y.S.,
Yung, N.H.C.,
Adaptive search center non-linear three step search,
ICIP98(II: 191-194).
IEEE DOI
9810
BibRef
Commike, A.Y.,
Hull, J.J.,
Syntactic pattern classification by branch and bound search,
CVPR91(432-437).
IEEE DOI
0403
BibRef
Tanimoto, S.L.,
Machine Vision as State-Space Search,
MVAAS88(XX-YY).
Search Techniques. Model vision as a search. Describe search techniques.
BibRef
8800
Breuel, T.M.[Thomas M.],
Geometric Aspects of Visual Object Recognition,
MIT AI-TR-1374, May 1992.
BibRef
9205
Ph.D.thesis, MIT, 1992.
WWW Link.
BibRef
Breuel, T.M.,
Higher-Order Statistics in Object Recognition,
CVPR93(707-708).
IEEE DOI
BibRef
9300
Breuel, T.M.,
Fast Recognition Using Adaptive Subdivisions of Transformation Space,
CVPR92(445-451).
IEEE DOI This algorithm is faster than the alignment and Hough methods.
BibRef
9200
Breuel, T.M.,
Model Based Recognition Using Pruned Correspondence Search,
CVPR91(257-262).
IEEE DOI Reduce potentially exponential time algorithms to polynomial time by
requiring the matching of features to convex regions.
BibRef
9100
Breuel, T.M.[Thomas M.],
An Efficient Correspondence Based Algorithm for 2D and 3D
Model Based Recognition,
MIT AI Memo-1259, October 1990.
BibRef
9010
Breuel, T.M.[Thomas M.],
Indexing for Visual Recognition from a Large Model Base,
MIT AI Memo-1108, August 1990.
WWW Link.
BibRef
9008
Breuel, T.M.,
Adaptive Model Base Indexing,
DARPA89(805-814).
BibRef
8900
Blostein, S.D.,
Huang, T.S.,
A Tree Search Algorithm for Target Detection in Image Sequences,
CVPR88(690-695).
IEEE DOI
BibRef
8800
Brailovsky, V.L.,
A probabilistic estimate of clustering,
ICPR90(I: 953-956).
IEEE DOI
9006
BibRef
Earlier:
On use of predictive probabilistic estimates for selecting best
decision rules in the course of a search,
CVPR88(469-475).
IEEE DOI
0403
BibRef
Gennery, D.B.,
A Feature-Based Scene Matcher,
IJCAI81(667-673), (JPL).
Match 2 scene descriptions - set of feature vectors, differ by
unknown transformation. Method: search by sequentially matching
features of one scene to those of the other scene. Computer
transformations and probability of match - use these to prune tree.
Search: choose of possible match for one element (try all), choose
a consistent match for the next element, etc. Standard search
problems. Examples are on small numbers.
BibRef
8100
Smith, D.R.[David R.],
Search Strategies for the ARGOS Image Understanding System,
DARPAN79(42-46).
Extension of the ARGOS system.
BibRef
7900
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Tabu Search .