12.1.3.1 Image Registration -- Overview, Survey, Review, Evaluation, Comparison

Chapter Contents (Back)
Survey, Registration. Image Registration. Evaluation, Registration.

PhotoTourism, Matching Challenge Dataset,
2020. Dataset, Matching.
WWW Link. PhotoTourism dataset. Large baseline matching.

Brown, L.G.[Lisa G.],
A Survey of Image Registration Techniques,
Surveys(24), No. 4, December 1992, pp. 325-376. Survey, Registration. Large set of references on registration. Correlation, Fourier, point mapping, elastic models. BibRef 9212

McGillem, C.D., Svedlow, M.,
Image Registration Error Variance as a Measure of Overlay Quality,
GeoEl(14), No. 1, January 1976, pp. 44-49. BibRef 7601

Svedlow, M., McGillem, C.D., and Anuta, P.E.,
Image Registration: Simlarity Measure and Processing Method Comparisons,
AeroSys(14), No. 1, 1978, pp. 141-149. BibRef 7800

Dewdney, A.K.,
Analysis of a steepest-descent image-matching algorithm,
PR(10), No. 1, 1978, pp. 31-39.
Elsevier DOI 0309
stepest descent for best local match, and select starting points. BibRef

Wong, R.Y., and Hall, E.L.,
Performance Comparison of Scene Matching Techniques,
PAMI(1), No. 3, July 1979, pp. 325-330. BibRef 7907
Earlier: PRAI-78(22-24; 25-27). Matching, Evaluation. BibRef

Sadjadi, F.A.,
Performance Evaluations of Correlations of Digital Images Using Different Separability Measures,
PAMI(4), No. 4, July 1982, pp. 436-441. BibRef 8207
And: PESIPS93(XX-YY). BibRef

Sadjadi, F.A.,
Comparative Image Fusion Analysais,
OTCBVS05(III: 8-8).
IEEE DOI 0507
BibRef

Dvornychenko, V.N.,
Bounds on (Deterministic) Correlation Functions with Applications to Registration,
PAMI(5), No. 2, March 1983, pp. 206-213. BibRef 8303

Gülch, E.,
Results of Test on Image Matching of ISPRS WG III/4,
IAPRS(27), No 3, 1988, pp. 254-271. BibRef 8800

Ranganath, H.S.,
Analysis of Bilevel Quantizers Used in Binary Image Correlators,
IVC(6), No. 3, August 1988, pp. 193-197.
Elsevier DOI BibRef 8808

Hashlamoun, W.A., Varshney, P.K., Samarasooriya, V.N.S.,
A tight upper bound on the Bayesian probability of error,
PAMI(16), No. 2, February 1994, pp. 220-224.
IEEE DOI 0401
BibRef

Stevens, M.R.[Mark R.],
Evaluating 2D Image Comparison Metrics for 3D Scene Interpretation,
CVIU(84), No. 1, October 2001, pp. 179-197.
DOI Link 0203
BibRef

Stevens, M.R.[Mark R.], Beveridge, J.R.[J. Ross],
Image Comparison Techniques in the Context of Scene Refinement,
ICPR00(Vol I: 685-688).
IEEE DOI 0009
BibRef

Chen, H.M.[Hua-Mei], Varshney, P.K.[Pramod K.], Arora, M.K.[Manoj K.],
Performance of mutual information similarity measure for registration of multitemporal remote sensing images,
GeoRS(41), No. 11, November 2003, pp. 2445-2454.
IEEE Abstract. 0311
BibRef

Guindon, B.,
Performance Evaluation of Real-Simulated Image Matching Techniques in the Acquisition of Ground Control for ERS-1 Image Geocoding,
PandRS(50), No. 1, February 1995, pp. 2-11. BibRef 9502

Cook, A.E., Pinder, J.E.,
Relative Accuracy of Rectifications Using Coordinates Determined from Maps and the Global Positioning System,
PhEngRS(62), No. 1, January 1996, pp. 73-77. BibRef 9601

Heipke, C.,
Special Issue: Automatic Image Orientation - Preface,
PandRS(52), No. 3, June 1997, pp. 101-102. 9708
BibRef

Buiten, H.J., Vanputten, B.,
Quality Assessment of Remote-Sensing Image Registration: Analysis and Testing of Control Point Residuals,
PandRS(52), No. 2, April 1997, pp. 57-73. 9705
Evaluation, Registration. BibRef

Lester, H.[Hava], Arridge, S.R.[Simon R.],
A survey of hierarchical non-linear medical image registration,
PR(32), No. 1, January 1999, pp. 129-149.
Elsevier DOI Survey, Registration. 3 types of hierarchical non-linear registration. BibRef 9901

Pluim, J.P.W.[Josien P. W.], Maintz, J.B.A.[J. B. Antoine], Viergever, M.A.[Max A.],
Interpolation Artifacts in Mutual Information-Based Image Registration,
CVIU(77), No. 2, February 2000, pp. 211-232.
DOI Link 0003
BibRef

Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.,
Image registration by maximization of combined mutual information and gradient information,
MedImg(19), No. 8, August 2000, pp. 809-814.
IEEE Top Reference. 0110
BibRef

Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.,
Mutual-information-based registration of medical images: a survey,
MedImg(22), No. 8, August 2003, pp. 986-1004.
IEEE Abstract. 0308
Survey, Registration. BibRef

Maintz, J.B.A., Viergever, M.A.,
A Survey of Medical Image Registration,
MIA(2), No. 1, 1998, pp. 1-16. Survey, Registration. BibRef 9800

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.,
elastix: A Toolbox for Intensity-Based Medical Image Registration,
MedImg(29), No. 1, January 2010, pp. 196-205.
IEEE DOI 1001
Code, Registration. BibRef

Berendsen, F.F., Marstal, K., Klein, S., Staring, M.,
The Design of SuperElastix: A Unifying Framework for a Wide Range of Image Registration Methodologies,
WBIR16(498-506)
IEEE DOI 1612
BibRef

Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.,
Mutual information matching in multiresolution contexts,
IVC(19), No. 1-2, January 2001, pp. 45-52.
Elsevier DOI 0101
BibRef

Klein, S.[Stefan], Pluim, J.P.W.[Josien P. W.], Staring, M.[Marius], Viergever, M.A.[Max A.],
Adaptive Stochastic Gradient Descent Optimisation for Image Registration,
IJCV(81), No. 3, March 2009, pp. xx-yy.
Springer DOI 0902
Graidient Descent>. klein-pluim-staring-viergever-registeration.
See also Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines. BibRef

Qiao, Y., van Lew, B., Lelieveldt, B.P.F., Staring, M.,
Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration,
MedImg(35), No. 2, February 2016, pp. 391-403.
IEEE DOI 1602
Graidient Descent. Accuracy BibRef

Qiao, Y., Lelieveldt, B.P.F., Staring, M.,
An Efficient Preconditioner for Stochastic Gradient Descent Optimization of Image Registration,
MedImg(38), No. 10, October 2019, pp. 2314-2325.
IEEE DOI 1910
BibRef
And: Corrections: GeoRS(57), No. 11, November 2019, pp. 9512-9512.
IEEE DOI 1911
Convergence, Stochastic processes, Cost function, Image registration, Jacobian matrices, Mathematical model, image registration BibRef

Pluim, J.P.W., Fitzpatrick, J.M.,
Image registration,
MedImg(22), No. 11, November 2003, pp. 1341-1343.
IEEE Abstract. 0311
BibRef

Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.,
f-information measures in medical image registration,
MedImg(23), No. 12, December 2004, pp. 1508-1516.
IEEE Abstract. 0412
BibRef

Jokinen, O.[Olli], Haggren, H.[Henrik],
Statistical analysis of two 3-D registration and modeling strategies,
PandRS(53), No. 6, December 1998, pp. 320-341. BibRef 9812

Pernu, F.[Franjo], Srtiehl, H.S.[H. Siegfried], Viergever, M.A.[Max A.],
Biomedical Image Registration,
IVC(19), No. 1-2, January 2001, pp. 1-2.
Elsevier DOI 0101
Special Issue introduction. BibRef

Fitzpatrick, J.M.[J. Michael], and West, J.B.[Jay B.],
The distribution of target registration error in rigid-body point-based registration,
MedImg(20), No. 9, September 2001, pp. 917-927.
IEEE Top Reference. 0110
BibRef
And:
A Blinded Evaluation and Comparison of Image Registration Methods,
EEMTV98(xx) BibRef

Danilchenko, A., Fitzpatrick, J.M.,
General Approach to First-Order Error Prediction in Rigid Point Registration,
MedImg(30), No. 3, March 2011, pp. 679-693.
IEEE DOI 1103
BibRef
And: Erratum: MedImg(30), No. 11, November 2011, pp. 2012.
IEEE DOI 1111
BibRef

Muller, J.P., Mandanayake, A., Moroney, C., Davies, R., Diner, D.J., Paradise, S.,
MISR stereoscopic image matchers: techniques and results,
GeoRS(40), No. 7, July 2002, pp. 1547-1559.
IEEE Top Reference. 0210
BibRef

Zitova, B.[Barbara], Flusser, J.[Jan],
Image Registration Methods: A Survey,
IVC(21), No. 11, October 2003, pp. 977-1000.
Elsevier DOI 0310
Survey, Registration. Setps: feature detection, feature matching, mapping function, image transformation. BibRef

Pang, S.N., Kim, H.C., Kim, D., Bang, S.Y.,
Prediction of the suitability for image-matching based on self-similarity of vision contents,
IVC(22), No. 5, 1 May 2004, pp. 355-365.
Elsevier DOI 0403
From stabiility delineate the area that is difficult to match. BibRef

Robinson, D.[Dirk], Milanfar, P.[Peyman],
Fundamental Performance Limits in Image Registration,
IP(13), No. 9, September 2004, pp. 1185-1199.
IEEE DOI 0409
BibRef
Earlier: ICIP03(II: 323-326).
IEEE DOI 0312
BibRef

Vande Kraats, E.B., Penney, G.P., Tomazevic, D., van Walsum, T., Niessen, W.J.,
Standardized Evaluation Methodology for 2-D--3-D Registration,
MedImg(24), No. 9, September 2005, pp. 1177-1189.
IEEE DOI 0509
BibRef

Zagorchev, L., Goshtasby, A.A.,
A Comparative Study of Transformation Functions for Nonrigid Image Registration,
IP(15), No. 3, March 2006, pp. 529-538.
IEEE DOI 0604
BibRef
Earlier:
A mechanism for range image integration without image registration,
3DIM05(126-133).
IEEE DOI 0508
BibRef

CVonline: Recognition and Registration Methods,
CV-OnlineJuly 2001.
HTML Version. Survey, Registration. Survey, Recognition. BibRef 0107

Ericsson, A.[Anders], Karlsson, J.[Johan],
Measures for Benchmarking of Automatic Correspondence Algorithms,
JMIV(28), No. 3, July 2007, pp. 225-241.
Springer DOI 0709
Survey, Matching. BibRef
Earlier: A2, A1:
A Ground Truth Correspondence Measure for Benchmarking,
ICPR06(III: 568-573).
IEEE DOI 0609
BibRef
And: A1, A2:
Benchmarking of algorithms for automatic correspondence localisation,
BMVC06(II:759).
PDF File. 0609
BibRef

Goshtasby, A.A.[A. Ardeshir],
2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications,
WileyMarch 2005. ISBN: 978-0-471-64954-0. Buy this book: 2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications 0905
BibRef

Shams, R., Sadeghi, P., Kennedy, R.A., Hartley, R.I.,
A Survey of Medical Image Registration on Multicore and the GPU,
SPMag(27), No. 2, 2010, pp. 50-60.
IEEE DOI 1003
Survey, Registration. BibRef

Caputo, B.[Barbara], Jie, L.[Luo],
In Defense of Exact Matching for Object Recognition,
ELCVIA(8), No. 3, November 2009, pp. xx-yy.
DOI Link 1004
Evaluation of matching performance. Exact (vs. pyramid, approximate approach) works best. BibRef

Mégret, R.[Rémi], Authesserre, J.B.[Jean-Baptiste], Berthoumieu, Y.[Yannick],
Bidirectional Composition on Lie Groups for Gradient-Based Image Alignment,
IP(19), No. 9, September 2010, pp. 2369-2381.
IEEE DOI 1008
BibRef
Earlier:
The Bi-directional Framework for Unifying Parametric Image Alignment Approaches,
ECCV08(III: 400-411).
Springer DOI 0810
BibRef

Authesserre, J.B.[Jean-Baptiste], Megret, R.[Remi], Berthoumieu, Y.[Yannick],
Automatic estimation of asymmetry for gradient-based alignment of noisy images on Lie group,
PRL(32), No. 10, 15 July 2011, pp. 1480-1492.
Elsevier DOI 1106
Asymmetric image alignment; Noisy images; Parametric motion estimation; Gradient methods; Lie groups BibRef

Goshtasby, A.A.[A. Ardeshir],
Image Registration: Principles, Tools and Methods,
Springer2012. ISBN 978-1-4471-2457-3
WWW Link. Survey, Registration. 1203
Buy this book: Image Registration: Principles, Tools and Methods (Advances in Computer Vision and Pattern Recognition)
See also 2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications. BibRef

Saleem, S.[Sajid], Sablatnig, R.[Robert],
A Robust SIFT Descriptor for Multispectral Images,
SPLetters(21), No. 4, April 2014, pp. 400-403.
IEEE DOI 1403
BibRef
Earlier:
A Modified SIFT Descriptor for Image Matching under Spectral Variations,
CIAP13(I:652-661).
Springer DOI 1311
Laplace transforms BibRef

Saleem, S.[Sajid], Bais, A.[Abdul], Sablatnig, R.[Robert],
A Performance Evaluation of SIFT and SURF for Multispectral Image Matching,
ICIAR12(I: 166-173).
Springer DOI 1206
BibRef

Uss, M.L., Vozel, B., Dushepa, V.A., Komjak, V.A., Chehdi, K.,
A Precise Lower Bound on Image Subpixel Registration Accuracy,
GeoRS(52), No. 6, June 2014, pp. 3333-3345.
IEEE DOI 1403
Accuracy BibRef

Uss, M.L., Vozel, B., Lukin, V.V., Chehdi, K.,
Multimodal Remote Sensing Image Registration With Accuracy Estimation at Local and Global Scales,
GeoRS(54), No. 11, November 2016, pp. 6587-6605.
IEEE DOI 1610
Adaptive optics BibRef

Fedorov, A., Wells, W.M., Kikinis, R., Tempany, C.M., Vangel, M.G.,
Application of Tolerance Limits to the Characterization of Image Registration Performance,
MedImg(33), No. 7, July 2014, pp. 1541-1550.
IEEE DOI 1407
Algorithm design and analysis BibRef

Tagare, H.D.[Hemant D.], Rao, M.,
Why Does Mutual-Information Work for Image Registration? A Deterministic Explanation,
PAMI(37), No. 6, June 2015, pp. 1286-1296.
IEEE DOI 1506
Biomedical measurement BibRef

Le Folgoc, L., Delingette, H.[Hervé], Criminisi, A.[Antonio], Ayache, N.J.[Nicholas J.],
Quantifying Registration Uncertainty With Sparse Bayesian Modelling,
MedImg(36), No. 2, February 2017, pp. 607-617.
IEEE DOI 1702
Adaptation models BibRef

Ketcha, M.D., de Silva, T., Han, R., Uneri, A., Goerres, J., Jacobson, M.W., Vogt, S., Kleinszig, G., Siewerdsen, J.H.,
Effects of Image Quality on the Fundamental Limits of Image Registration Accuracy,
MedImg(36), No. 10, October 2017, pp. 1997-2009.
IEEE DOI 1710
computerised tomography, diagnostic radiography, image filtering, image registration, image resolution, mean square error methods, medical CRLB, Cramer-Rao lower bound, BibRef

Ramos, J.S.[Jonathan S.], Watanabe, C.Y.V.[Carolina Y.V.], Traina, C.[Caetano], Traina, A.J.M.[Agma J.M.],
How to speed up outliers removal in image matching,
PRL(114), 2018, pp. 31-40.
Elsevier DOI 1811
Feature point matching, Outliers removal, Filtering, Graph-based representation BibRef

Rengarajan, R.[Rajagopalan], Schott, J.R.[John R.],
Evaluation of Sensor and Environmental Factors Impacting the Use of Multiple Sensor Data for Time-Series Applications,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Hogland, J.[John], Affleck, D.L.R.[David L.R.],
Mitigating the Impact of Field and Image Registration Errors through Spatial Aggregation,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Talker, L.[Lior], Moses, Y.[Yael], Shimshoni, I.[Ilan],
Estimating the Number of Correct Matches Using Only Spatial Order,
PAMI(41), No. 12, December 2019, pp. 2846-2860.
IEEE DOI 1911
Analyze the set of matches using the spatial order of the features. Pipelines, Estimation, Pattern matching, Measurement, Geometry, correct matches BibRef

Chin, T.J.[Tat-Jun], Cai, Z.P.[Zhi-Peng], Neumann, F.[Frank],
Robust Fitting in Computer Vision: Easy or Hard?,
IJCV(128), No. 3, March 2020, pp. 575-587.
Springer DOI 2003
BibRef
Earlier: ECCV18(XII: 715-730).
Springer DOI 1810
BibRef

Chen, B.[Bo], Chin, T.J.[Tat-Jun], Klimavicius, M.[Marius],
Occlusion-Robust Object Pose Estimation with Holistic Representation,
WACV22(2223-2233)
IEEE DOI 2202
Representation learning, Measurement, Technological innovation, Codes, Computational modeling, Pose estimation, Deep Learning object pose estimation BibRef

Peng, J.C.[Jun-Cai], Shao, Y.J.[Yuan-Jie], Sang, N.[Nong], Gao, C.X.[Chang-Xin],
Joint image deblurring and matching with feature-based sparse representation prior,
PR(103), 2020, pp. 107300.
Elsevier DOI 2005
Blurred image matching, Joint image deblurring and matching, Sparse representation priorsparse, (2)PCA feature BibRef

Shao, Y.J.[Yuan-Jie], Sang, N.[Nong], Li, Y.C.[Ya-Cheng], Li, W.H.[Wen-Hao], Gao, C.X.[Chang-Xin],
Joint image restoration and matching method based on distance-weighted sparse representation prior,
PRL(135), 2020, pp. 160-166.
Elsevier DOI 2006
Image matching, Image restoration, Joint blurred image restoration and matching, Coarse-to-fine matching BibRef

Li, W.H.[Wen-Hao], Sang, N.[Nong], Gao, C.X.[Chang-Xin], Shao, Y.J.[Yuan-Jie],
Joint Image Restoration and Matching Based on Hierarchical Sparse Representation,
ICIP19(4494-4498)
IEEE DOI 1910
hierarchical sparse representation, image matching, image restoration, cluster analysis, PCA BibRef

Shao, Y.J.[Yuan-Jie], Sang, N.[Nong], Gao, C.X.[Chang-Xin], Lin, W.[Wei],
Joint Image Restoration and Matching Based on Distance-Weighted Sparse Representation,
ICPR18(2498-2503)
IEEE DOI 1812
Image restoration, Dictionaries, Image matching, Feature extraction, Correlation, Task analysis, Kernel BibRef

Ma, J.Y.[Jia-Yi], Jiang, X.Y.[Xing-Yu], Fan, A.X.[Ao-Xiang], Jiang, J.J.[Jun-Jun], Yan, J.C.[Jun-Chi],
Image Matching from Handcrafted to Deep Features: A Survey,
IJCV(129), No. 1, January 2021, pp. 23-79.
Springer DOI 2101
BibRef

Fernández, C.I.[Claudio Ignacio], Haddadi, A.[Ata], Leblon, B.[Brigitte], Wang, J.F.[Jin-Fei], Wang, K.[Keri],
Comparison between Three Registration Methods in the Case of Non-Georeferenced Close Range of Multispectral Images,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Bruno, N.[Nazarena], Roncella, R.[Riccardo], Diotri, F.[Fabrizio], Thoeni, K.[Klaus], Giacomini, A.[Anna],
Influence of Block Geometry Configuration on Multi-Image Dense Matching,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Shen, L.[Liang], Xu, Z.[Zhou], Zhu, J.H.[Jia-Hua], Huang, X.T.[Xiao-Tao], Jin, T.[Tian],
A frame-based probabilistic local verification method for robust correspondence,
PandRS(192), 2022, pp. 232-243.
Elsevier DOI 2209
Locality Preservation Matching, Robust feature correspondence, Outlier rejection, Mismatch removal, UAV localization, Feature matching BibRef

Li, H.J.[Hong-Jie], Dong, M.Y.[Ming-Yue], Zheng, X.W.[Xian-Wei], Xu, X.[Xiong], Xie, X.[Xiao], Xiong, H.J.[Han-Jiang],
Context-enhanced motion coherence modeling for global outlier rejection,
PandRS(202), 2023, pp. 69-86.
Elsevier DOI 2308

WWW Link. Motion outliers are scattered, true motion matches are clustered.o Outlier rejection, Motion coherence, Enhanced-context, Motion descriptor, Deformable affine transformation BibRef

Huang, Q.[Qian], Guo, X.T.[Xiao-Tong], Wang, Y.M.[Yi-Ming], Sun, H.[Huashan], Yang, L.J.[Li-Jie],
A survey of feature matching methods,
IET-IPR(18), No. 6, 2024, pp. 1385-1410.
DOI Link 2405
feature extraction, image processing, learning (artificial intelligence) BibRef

Fogliato, R.[Riccardo], Patil, P.[Pratik], Perona, P.[Pietro],
Confidence Intervals for Error Rates in 1:1 Matching Tasks: Critical Statistical Analysis and Recommendations,
IJCV(132), No. 11, November 2024, pp. 5346-5371.
Springer DOI 2411
Evaluation is important. BibRef


Muhle, D.[Dominik], Koestler, L.[Lukas], Jatavallabhula, K.M.[Krishna Murthy], Cremers, D.[Daniel],
Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares,
CVPR23(13102-13112)
IEEE DOI 2309
BibRef

Su, S.[Shuai], Zhao, Z.K.[Zhong-Kai], Fei, Y.X.[Yi-Xin], Li, S.[Shuda], Chen, Q.J.[Qi-Jun], Fan, R.[Rui],
Sim2e: Benchmarking the Group Equivariant Capability of Correspondence Matching Algorithms,
AVVision22(743-759).
Springer DOI 2304
BibRef

Bökman, G.[Georg], Kahl, F.[Fredrik],
A case for using rotation invariant features in state of the art feature matchers,
IMW22(5106-5115)
IEEE DOI 2210
Lighting, Pattern matching BibRef

Mikhailova, A.[Anastasiia], Santos-Victor, J.[José], Coco, M.I.[Moreno I.],
Contribution of Low, Mid and High-Level Image Features of Indoor Scenes in Predicting Human Similarity Judgements,
IbPRIA22(505-514).
Springer DOI 2205
BibRef

Bellavia, F., Colombo, C., Morelli, L., Remondino, F.,
Challenges in Image Matching for Cultural Heritage: An Overview and Perspective,
FAPER22(210-222).
Springer DOI 2208
BibRef

Remondino, F., Menna, F., Morelli, L.,
Evaluating Hand-crafted and Learning-based Features for Photogrammetric Applications,
ISPRS21(B2-2021: 549-556).
DOI Link 2201
BibRef

Braeger, S.[Sarah], Foroosh, H.[Hassan],
Improving Image Matching with Varied Illumination,
ICPR21(5230-5237)
IEEE DOI 2105
Training, Geometry, Image matching, Lighting, Feature extraction, Convolutional neural networks, Optimization BibRef

Xia, Y., d'Angelo, P., Tian, J., Reinartz, P.,
Dense Matching Comparison Between Classical and Deep Learning Based Algorithms for Remote Sensing Data,
ISPRS20(B2:521-525).
DOI Link 2012
BibRef

Becker, A.K.[Ann-Katrin], Vornberger, O.[Oliver],
Evaluation of Feature Detectors, Descriptors and Match Filtering Approaches for Historic Repeat Photography,
SCIA19(374-386).
Springer DOI 1906
BibRef

Wujanz, D., Barazzetti, L., Previtali, M., Scaioni, M.,
A Comparative Study Among Three Registration Algorithms: Performance, Quality Assurance and Accuracy,
3DARCH19(779-786).
DOI Link 1904
BibRef

Du, W.L., Tian, X.L.,
An automatic image registration evaluation model on dense feature points by pinhole camera simulation,
ICIP17(2259-2263)
IEEE DOI 1803
Cameras, Geometry, Image registration, Lenses, Nonlinear distortion, pinhole camera simulation BibRef

MacTavish, K.[Kirk], Barfoot, T.D.[Timothy D.],
At all Costs: A Comparison of Robust Cost Functions for Camera Correspondence Outliers,
CRV15(62-69)
IEEE DOI 1507
Cameras BibRef

Watanabe, T.[Takanori], Scott, C.[Clayton],
Spatial Confidence Regions for Quantifying and Visualizing Registration Uncertainty,
WBIR12(120-130).
Springer DOI 1208
BibRef

Selby, B.P.[Boris Peter], Sakas, G.[Georgios], Groch, W.D.[Wolfgang-Dieter], Stilla, U.[Uwe],
Absolute Orientation of Stereoscopic Cameras by Aligning Contours in Pairs of Images and Reference Images,
PIA11(25-36).
Springer DOI 1110
BibRef

Selby, B.P.[Boris Peter], Sakas, G.[Georgios], Walter, S.[Stefan], Groch, W.D.[Wolf-Dieter], Stilla, U.[Uwe],
The Effects of Radiometry on the Accuracy of Intensity Based Registration,
ICPR10(4528-4531).
IEEE DOI 1008
BibRef

Song, J.H.[Joo Hyun], Christensen, G.E.[Gary E.], Hawley, J.A.[Jeffrey A.], Wei, Y.[Ying], Kuhl, J.G.[Jon G.],
Evaluating Image Registration Using NIREP,
WBIR10(140-150).
Springer DOI 1007
NIREP: Non-rigid Image Registration Evaluation Program
WWW Link. BibRef

Dawn, S.[Suma], Saxena, V.[Vikas], Sharma, B.[Bhudev],
Remote Sensing Image Registration Techniques: A Survey,
ICISP10(103-112).
Springer DOI 1006
Survey, Registration. BibRef

Haeusler, R., Jiang, R.[Ruyi], Morales, S., Klette, R.,
Options in using graphics for evaluating correspondence algorithms,
IVCNZ09(448-453).
IEEE DOI 0911
BibRef

Lewis, D., Bergeron, S., Kim, M., Doucette, P.,
Automated Registration Evaluation System (ARES),
AIPR07(51-56).
IEEE DOI 0710
BibRef

Oldridge, S.[Steve], Miller, G.[Gregor], Fels, S.S.[Sidney S.],
Mapping the Problem Space of Image Registration,
CRV11(309-315).
IEEE DOI 1105
BibRef
Earlier:
Automatic Classification of Image Registration Problems,
CVS09(215-224).
Springer DOI 0910
BibRef
And: A1, A3, A2:
Classification of image registration problems using support vector machines,
WACV11(360-366).
IEEE DOI 1101
BibRef

Janssens, G., de Xivry, J.O.[J. Orban], Aerts, H.J.W.L., Bosmans, G., Dekker, A.L.A.J., Macq, B.,
Improving physical behavior in image registration,
ICIP08(2952-2955).
IEEE DOI 0810
BibRef

Glatard, T.[Tristan], Montagnat, J.[Johan], Pennec, X.[Xavier],
A framework for evaluating the impact of compression on registration algorithms without gold standard,
ICIP08(2912-2915).
IEEE DOI 0810
BibRef

Eastman, R.D.[Roger D.], Le Moigne, J.[Jacqueline], Netanyahu, N.S.[Nathan S.],
Research issues in image registration for remote sensing,
Fusion07(1-8).
IEEE DOI 0706
BibRef

Avants, B.B.[Brian B.], Grossman, M.[Murray], Gee, J.C.[James C.],
Symmetric Diffeomorphic Image Registration: Evaluating Automated Labeling of Elderly and Neurodegenerative Cortex and Frontal Lobe,
WBIR06(50-57).
Springer DOI 0607
BibRef

Stolkin, R.[Rustam], Greig, A.[Alistair], Gilby, J.[John],
Measuring Complete Ground-Truth Data and Error Estimates for Real Video Sequences, for Performance Evaluation of Tracking, Camera Pose and Motion Estimation Algorithms,
BenCOS05(xx-yy).
PDF File. 0510
BibRef
And:
Video with Ground-Truth for Validation of Visual Registration, Tracking and Navigation Algorithms,
CRV05(210-217).
IEEE DOI 0505
BibRef

Negahdaripour, S., Prados, R., Garcia, R.,
Planar Homography: Accuracy Analysis and Applications,
ICIP05(I: 1089-1092).
IEEE DOI 0512
Projective homography for image registration. BibRef

Yang, Q.X.[Qing-Xiong], Steele, R.M.[R. Matt], Nistér, D.[David], Jaynes, C.[Christopher],
Learning the Probability of Correspondences without Ground Truth,
ICCV05(II: 1140-1147).
IEEE DOI 0510
Based on geometric coherence. BibRef

Owczarczyk, J., Welsh, W.J., and Searby, S.,
Performance Analysis of Image Registration Techniques,
ICIPA89(10-13). BibRef 8900

Ishikawa, T., Matthews, I., Baker, S.,
Efficient Image Alignment with Outlier Rejection,
CMU-RI-TR-02-27, October, 2002.
WWW Link. 0211
BibRef

Baker, S.[Simon], Matthews, I.[Iain],
Equivalence and Efficiency of Image Alignment Algorithms,
CVPR01(I:1090-1097).
IEEE DOI 0110
The first estimates an additive incre-ment to the parameters (the additive approach), the second an incremental warp (the compositional approach). Show that these are equivalent.
See also Improvements of the Inverse Compositional Algorithm for Parametric Motion Estimation. BibRef

Marti, R., Zwiggelaar, R., Rubin, C.,
A Novel Similarity Measure to Evaluate Image Correspondence,
ICPR00(Vol III: 167-170).
IEEE DOI 0009
BibRef

Shekhar, C.[Chandra], Boucand, C.[Cedric],
Empirical Evaluation of Two Criteria for Pattern Comparison and Alignment,
UMD--TR4166, July 2000. Pattern Alignment. Phase Correlation.
WWW Link. BibRef 0007

Shekhar, C.[Chandra], Chellappa, R.[Rama],
Experimental Evaluation of Two Criteria for Pattern Comparison and Alignment,
ICPR98(Vol I: 146-153).
IEEE DOI 9808
BibRef

Maeder, A.J.[Anthony J.],
Lossy Compression Effects on Digital Image Matching,
ICPR98(Vol II: 1626-1629).
IEEE DOI 9808
Registration BibRef

Gramkow, C., and Bro-Nielsen, M.,
Comparison of Three Filters in the Solution of the Navier-Stokes Equation in Registration,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Image Registration -- The Match Technique, Match Measures, Cost Function .


Last update:Nov 26, 2024 at 16:40:19