Verrelst, J.,
Rivera, J.P.,
Leonenko, G.,
Alonso, L.,
Moreno, J.,
Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop
Biophysical Parameters from Sentinel-2 and -3 Data:
Role of Cost Functions,
GeoRS(52), No. 1, January 2014, pp. 257-269.
IEEE DOI
1402
remote sensing
BibRef
Verrelst, J.[Jochem],
Rivera, J.P.[Juan Pablo],
Veroustraete, F.[Frank],
Muńoz-Marí, J.[Jordi],
Clevers, J.G.P.W.[Jan G.P.W.],
Camps-Valls, G.[Gustau],
Moreno, J.[José],
Experimental Sentinel-2 LAI estimation using parametric,
non-parametric and physical retrieval methods: A comparison,
PandRS(108), No. 1, 2015, pp. 260-272.
Elsevier DOI
1511
Biophysical variables
BibRef
Xiong, J.[Jun],
Thenkabail, P.S.[Prasad S.],
Tilton, J.C.[James C.],
Gumma, M.K.[Murali K.],
Teluguntla, P.[Pardhasaradhi],
Oliphant, A.[Adam],
Congalton, R.G.[Russell G.],
Yadav, K.[Kamini],
Gorelick, N.[Noel],
Nominal 30-m Cropland Extent Map of Continental Africa by Integrating
Pixel-Based and Object-Based Algorithms Using Sentinel-2 and
Landsat-8 Data on Google Earth Engine,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Zheng, H.R.[Hong-Rui],
Du, P.J.[Pei-Jun],
Chen, J.[Jike],
Xia, J.S.[Jun-Shi],
Li, E.[Erzhu],
Xu, Z.G.[Zhi-Gang],
Li, X.J.[Xiao-Juan],
Yokoya, N.[Naoto],
Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use
and Land Cover Classification by Spectral-Spatial Features,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Kanjir, U.[Urka],
Đuric, N.[Nataa],
Veljanovski, T.[Tatjana],
Sentinel-2 Based Temporal Detection of Agricultural Land Use
Anomalies in Support of Common Agricultural Policy Monitoring,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Vreugdenhil, M.[Mariette],
Wagner, W.[Wolfgang],
Bauer-Marschallinger, B.[Bernhard],
Pfeil, I.[Isabella],
Teubner, I.[Irene],
Rüdiger, C.[Christoph],
Strauss, P.[Peter],
Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics:
An Austrian Case Study,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Sitokonstantinou, V.[Vasileios],
Papoutsis, I.[Ioannis],
Kontoes, C.[Charalampos],
Arnal, A.L.[Alberto Lafarga],
Andrés, A.P.A.[Ana Pilar Armesto],
Zurbano, J.A.G.[José Angel Garraza],
Scalable Parcel-Based Crop Identification Scheme Using Sentinel-2
Data Time-Series for the Monitoring of the Common Agricultural Policy,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Scarpa, G.[Giuseppe],
Gargiulo, M.[Massimiliano],
Mazza, A.[Antonio],
Gaetano, R.[Raffaele],
A CNN-Based Fusion Method for Feature Extraction from Sentinel Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
SAR data.
BibRef
van Tricht, K.[Kristof],
Gobin, A.[Anne],
Gilliams, S.[Sven],
Piccard, I.[Isabelle],
Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery
for Crop Mapping: A Case Study for Belgium,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Denize, J.[Julien],
Hubert-Moy, L.[Laurence],
Betbeder, J.[Julie],
Corgne, S.[Samuel],
Baudry, J.[Jacques],
Pottier, E.[Eric],
Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter
Land Use in Agricultural Landscapes,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Xu, L.[Lu],
Zhang, H.[Hong],
Wang, C.[Chao],
Zhang, B.[Bo],
Liu, M.[Meng],
Crop Classification Based on Temporal Information Using Sentinel-1
SAR Time-Series Data,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Harfenmeister, K.[Katharina],
Spengler, D.[Daniel],
Weltzien, C.[Cornelia],
Analyzing Temporal and Spatial Characteristics of Crop Parameters
Using Sentinel-1 Backscatter Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Djamai, N.[Najib],
Zhong, D.[Detang],
Fernandes, R.[Richard],
Zhou, F.[Fuqun],
Evaluation of Vegetation Biophysical Variables Time Series Derived
from Synthetic Sentinel-2 Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Khabbazan, S.[Saeed],
Vermunt, P.[Paul],
Steele-Dunne, S.[Susan],
Arntz, L.R.[Lexy Ratering],
Marinetti, C.[Caterina],
van der Valk, D.[Dirk],
Iannini, L.[Lorenzo],
Molijn, R.[Ramses],
Westerdijk, K.[Kees],
van der Sande, C.[Corné],
Crop Monitoring Using Sentinel-1 Data: A Case Study from The
Netherlands,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Sonobe, R.[Rei],
Combining ASNARO-2 XSAR HH and Sentinel-1 C-SAR VH/VV Polarization
Data for Improved Crop Mapping,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Kavats, O.[Olena],
Khramov, D.[Dmitriy],
Sergieieva, K.[Kateryna],
Vasyliev, V.[Volodymyr],
Monitoring Harvesting by Time Series of Sentinel-1 SAR Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhao, L.C.[Li-Cheng],
Shi, Y.[Yun],
Liu, B.[Bin],
Hovis, C.[Ciara],
Duan, Y.L.[Yu-Lin],
Shi, Z.C.[Zhong-Chao],
Finer Classification of Crops by Fusing UAV Images and Sentinel-2A
Data,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Brinkhoff, J.[James],
Vardanega, J.[Justin],
Robson, A.J.[Andrew J.],
Land Cover Classification of Nine Perennial Crops Using Sentinel-1
and -2 Data,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Csillik, O.[Ovidiu],
Belgiu, M.[Mariana],
Asner, G.P.[Gregory P.],
Kelly, M.[Maggi],
Object-Based Time-Constrained Dynamic Time Warping Classification of
Crops Using Sentinel-2,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Shendryk, Y.[Yuri],
Rist, Y.[Yannik],
Ticehurst, C.[Catherine],
Thorburn, P.[Peter],
Deep learning for multi-modal classification of cloud, shadow and
land cover scenes in PlanetScope and Sentinel-2 imagery,
PandRS(157), 2019, pp. 124-136.
Elsevier DOI
1911
Deep learning, CNN, Multi-label, Multi-modal, Indexing,
Scene classification, PlanetScope, Sentinel-2, Remote sensing, MACCS
BibRef
Wakulinska, M.[Martyna],
Marcinkowska-Ochtyra, A.[Adriana],
Multi-Temporal Sentinel-2 Data in Classification of Mountain
Vegetation,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Akbari, E.[Elahe],
Boloorani, A.D.[Ali Darvishi],
Samany, N.N.[Najmeh Neysani],
Hamzeh, S.[Saeid],
Soufizadeh, S.[Saeid],
Pignatti, S.[Stefano],
Crop Mapping Using Random Forest and Particle Swarm Optimization
Based on Multi-Temporal Sentinel-2,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Chakhar, A.[Amal],
Ortega-Terol, D.[Damián],
Hernández-López, D.[David],
Ballesteros, R.[Rocío],
Ortega, J.F.[José F.],
Moreno, M.A.[Miguel A.],
Assessing the Accuracy of Multiple Classification Algorithms for Crop
Classification Using Landsat-8 and Sentinel-2 Data,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Silva-Perez, C.[Cristian],
Marino, A.[Armando],
Cameron, I.[Iain],
Monitoring Agricultural Fields Using Sentinel-1 and Temperature Data
in Peru: Case Study of Asparagus (Asparagus officinalis L.),
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Rezník, T.[Tomá],
Pavelka, T.[Tomá],
Herman, L.[Luká],
Lukas, V.[Vojtech],
irucek, P.[Petr],
Leitgeb, .[imon],
Leitner, F.[Filip],
Prediction of Yield Productivity Zones from Landsat 8 and
Sentinel-2A/B and Their Evaluation Using Farm Machinery Measurements,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Vreugdenhil, M.[Mariette],
Navacchi, C.[Claudio],
Bauer-Marschallinger, B.[Bernhard],
Hahn, S.[Sebastian],
Steele-Dunne, S.[Susan],
Pfeil, I.[Isabella],
Dorigo, W.[Wouter],
Wagner, W.[Wolfgang],
Sentinel-1 Cross Ratio and Vegetation Optical Depth:
A Comparison over Europe,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Sun, L.[Luyi],
Chen, J.S.[Jin-Song],
Guo, S.X.[Shan-Xin],
Deng, X.P.[Xin-Ping],
Han, Y.[Yu],
Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop
Type Mapping over Oasis Agricultural Areas,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Stromann, O.[Oliver],
Nascetti, A.[Andrea],
Yousif, O.[Osama],
Ban, Y.F.[Yi-Fang],
Dimensionality Reduction and Feature Selection for Object-Based Land
Cover Classification based on Sentinel-1 and Sentinel-2 Time Series
Using Google Earth Engine,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Ma, L.[Lei],
Schmitt, M.[Michael],
Zhu, X.X.[Xiao-Xiang],
Uncertainty Analysis of Object-Based Land-Cover Classification Using
Sentinel-2 Time-Series Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Malinowski, R.[Radek],
Lewinski, S.[Stanislaw],
Rybicki, M.[Marcin],
Gromny, E.[Ewa],
Jenerowicz, M.[Malgorzata],
Krupinski, M.[Michal],
Nowakowski, A.[Artur],
Wojtkowski, C.[Cezary],
Krupinski, M.[Marcin],
Krätzschmar, E.[Elke],
Schauer, P.[Peter],
Automated Production of a Land Cover/Use Map of Europe Based on
Sentinel-2 Imagery,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Rumora, L.[Luka],
Miler, M.[Mario],
Medak, D.[Damir],
Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover
Classification Accuracy Using Machine Learning Classifiers,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Nguyen, H.T.T.[Huong Thi Thanh],
Doan, T.M.[Trung Minh],
Tomppo, E.[Erkki],
McRoberts, R.E.[Ronald E.],
Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery
and Four Classification Methods: A Case Study from Dak Nong, Vietnam,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Vasilakos, C.[Christos],
Kavroudakis, D.[Dimitris],
Georganta, A.[Aikaterini],
Machine Learning Classification Ensemble of Multitemporal Sentinel-2
Images: The Case of a Mixed Mediterranean Ecosystem,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Phiri, D.[Darius],
Simwanda, M.[Matamyo],
Salekin, S.[Serajis],
Nyirenda, V.R.[Vincent R.],
Murayama, Y.J.[Yu-Ji],
Ranagalage, M.[Manjula],
Sentinel-2 Data for Land Cover/Use Mapping: A Review,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Qu, Y.[Yang],
Zhao, W.Z.[Wen-Zhi],
Yuan, Z.L.[Zhan-Liang],
Chen, J.G.[Jia-Ge],
Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep
Neural Network,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Holtgrave, A.K.[Ann-Kathrin],
Röder, N.[Norbert],
Ackermann, A.[Andrea],
Erasmi, S.[Stefan],
Kleinschmit, B.[Birgit],
Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land
Use Monitoring,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Yi, Z.W.[Zhi-Wei],
Jia, L.[Li],
Chen, Q.T.[Qi-Ting],
Crop Classification Using Multi-Temporal Sentinel-2 Data in the
Shiyang River Basin of China,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chakhar, A.[Amal],
Hernández-López, D.[David],
Ballesteros, R.[Rocío],
Moreno, M.A.[Miguel A.],
Improving the Accuracy of Multiple Algorithms for Crop Classification
by Integrating Sentinel-1 Observations with Sentinel-2 Data,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Luo, X.,
Tong, X.,
Pan, H.,
Integrating Multiresolution and Multitemporal Sentinel-2 Imagery for
Land-Cover Mapping in the Xiongan New Area, China,
GeoRS(59), No. 2, February 2021, pp. 1029-1040.
IEEE DOI
2101
Spatial resolution, Image segmentation, Feature extraction,
Monitoring, Economics, Vegetation mapping,
temporal features
BibRef
Debella-Gilo, M.[Misganu],
Gjertsen, A.K.[Arnt Kristian],
Mapping Seasonal Agricultural Land Use Types Using Deep Learning on
Sentinel-2 Image Time Series,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Raiyani, K.[Kashyap],
Gonçalves, T.[Teresa],
Rato, L.[Luís],
Salgueiro, P.[Pedro],
Marques da Silva, J.R.[José R.],
Sentinel-2 Image Scene Classification:
A Comparison between Sen2Cor and a Machine Learning Approach,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Smith, D.[David],
Hunt, S.E.[Samuel E.],
Etxaluze, M.[Mireya],
Peters, D.[Dan],
Nightingale, T.[Tim],
Mittaz, J.P.D.[Jonathan P.D.],
Woolliams, E.R.[Emma R.],
Polehampton, E.[Edward],
Traceability of the Sentinel-3 SLSTR Level-1 Infrared Radiometric
Processing,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
He, L.M.[Li-Ming],
Wang, R.[Rong],
Mostovoy, G.[Georgy],
Liu, J.[Jane],
Chen, J.M.[Jing M.],
Shang, J.L.[Jia-Li],
Liu, J.G.[Jian-Gui],
McNairn, H.[Heather],
Powers, J.[Jarrett],
Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale
Using High Resolution Sentinel-2 Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Kpienbaareh, D.[Daniel],
Sun, X.X.[Xiao-Xuan],
Wang, J.F.[Jin-Fei],
Luginaah, I.[Isaac],
Kerr, R.B.[Rachel Bezner],
Lupafya, E.[Esther],
Dakishoni, L.[Laifolo],
Crop Type and Land Cover Mapping in Northern Malawi Using the
Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wang, M.Q.[Meng-Qiu],
Hu, C.M.[Chuan-Min],
Automatic Extraction of Sargassum Features From Sentinel-2 MSI Images,
GeoRS(59), No. 3, March 2021, pp. 2579-2597.
IEEE DOI
2103
Feature extraction, Image resolution, Instruments, Earth, Clouds,
Indexes, Artificial satellites, Denoising, feature extraction,
Sargassum
BibRef
Harfenmeister, K.[Katharina],
Itzerott, S.[Sibylle],
Weltzien, C.[Cornelia],
Spengler, D.[Daniel],
Agricultural Monitoring Using Polarimetric Decomposition Parameters
of Sentinel-1 Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Amies, A.C.[Alexander C.],
Dymond, J.R.[John R.],
Shepherd, J.D.[James D.],
Pairman, D.[David],
Hoogendoorn, C.[Coby],
Sabetizade, M.[Marmar],
Belliss, S.E.[Stella E.],
National Mapping of New Zealand Pasture Productivity Using Temporal
Sentinel-2 Data,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Muthoka, J.M.[James M.],
Salakpi, E.E.[Edward E.],
Ouko, E.[Edward],
Yi, Z.F.[Zhuang-Fang],
Antonarakis, A.S.[Alexander S.],
Rowhani, P.[Pedram],
Mapping Opuntia stricta in the Arid and Semi-Arid Environment of
Kenya Using Sentinel-2 Imagery and Ensemble Machine Learning
Classifiers,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Hernández-López, D.[David],
Piedelobo, L.[Laura],
Moreno, M.A.[Miguel A.],
Chakhar, A.[Amal],
Ortega-Terol, D.[Damián],
González-Aguilera, D.[Diego],
Design of a Local Nested Grid for the Optimal Combined Use of Landsat
8 and Sentinel 2 Data,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Guo, Z.K.[Zeng-Kun],
Kurban, A.[Alishir],
Ablekim, A.[Abdimijit],
Wu, S.[Shupu],
van de Voorde, T.[Tim],
Azadi, H.[Hossein],
de Maeyer, P.[Philippe],
Umwall, E.D.[Edovia Dufatanye],
Estimation of Photosynthetic and Non-Photosynthetic Vegetation
Coverage in the Lower Reaches of Tarim River Based on Sentinel-2A
Data,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Adrian, J.[Jarrett],
Sagan, V.[Vasit],
Maimaitijiang, M.[Maitiniyazi],
Sentinel SAR-optical fusion for crop type mapping using deep learning
and Google Earth Engine,
PandRS(175), 2021, pp. 215-235.
Elsevier DOI
2105
3D U-Net, Denoising neural networks, Sentinel-1, Sentinel-2, Data fusion
BibRef
Dodin, M.[Maxence],
Smith, H.D.[Hunter D.],
Levavasseur, F.[Florent],
Hadjar, D.[Dalila],
Houot, S.[Sabine],
Vaudour, E.[Emmanuelle],
Potential of Sentinel-2 Satellite Images for Monitoring Green Waste
Compost and Manure Amendments in Temperate Cropland,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Hussain, E.[Ekbal],
Novellino, A.[Alessandro],
Jordan, C.[Colm],
Bateson, L.[Luke],
Offline-Online Change Detection for Sentinel-1 InSAR Time Series,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Dobrinic, D.[Dino],
Gaparovic, M.[Mateo],
Medak, D.[Damir],
Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random
Forest Classification: A Case Study of Northern Croatia,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Pan, L.[Li],
Xia, H.M.[Hao-Ming],
Zhao, X.Y.[Xiao-Yang],
Guo, Y.[Yan],
Qin, Y.C.[Yao-Chen],
Mapping Winter Crops Using a Phenology Algorithm, Time-Series
Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Martini, M.[Mauro],
Mazzia, V.[Vittorio],
Khaliq, A.[Aleem],
Chiaberge, M.[Marcello],
Domain-Adversarial Training of Self-Attention-Based Networks for Land
Cover Classification Using Multi-Temporal Sentinel-2 Satellite
Imagery,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Beriaux, E.[Emilie],
Jago, A.[Alban],
Lucau-Danila, C.[Cozmin],
Planchon, V.[Viviane],
Defourny, P.[Pierre],
Sentinel-1 Time Series for Crop Identification in the Framework of
the Future CAP Monitoring,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Gallo, I.[Ignazio],
La Grassa, R.[Riccardo],
Landro, N.[Nicola],
Boschetti, M.[Mirco],
Sentinel 2 Time Series Analysis with 3D Feature Pyramid Network and
Time Domain Class Activation Intervals for Crop Mapping,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Schulz, D.[Dario],
Yin, H.[He],
Tischbein, B.[Bernhard],
Verleysdonk, S.[Sarah],
Adamou, R.[Rabani],
Kumar, N.[Navneet],
Land use mapping using Sentinel-1 and Sentinel-2 time series in a
heterogeneous landscape in Niger, Sahel,
PandRS(178), 2021, pp. 97-111.
Elsevier DOI
2108
Classifier ensemble, Land cover, Feature selection, West Africa, Seasonal change
BibRef
Bhogapurapu, N.[Narayanarao],
Dey, S.[Subhadip],
Bhattacharya, A.[Avik],
Mandal, D.[Dipankar],
Lopez-Sanchez, J.M.[Juan M.],
McNairn, H.[Heather],
López-Martínez, C.[Carlos],
Rao, Y.S.,
Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop
growth assessment,
PandRS(178), 2021, pp. 20-35.
Elsevier DOI
2108
GRD SAR, Dual-pol, Phenology, Unsupervised clustering, GEE, Sentinel-1
BibRef
Verma, A.[Abhinav],
Bhattacharya, A.[Avik],
Dey, S.[Subhadip],
López-Martínez, C.[Carlos],
Gamba, P.[Paolo],
Scattering power components from dual-pol Sentinel-1 SLC and GRD SAR
data,
PandRS(212), 2024, pp. 289-305.
Elsevier DOI
2406
Dual-polarized SAR, Sentinel-1 SLC & GRD, NISAR,
Scattering powers, Land cover characterization, Crop monitoring
BibRef
Luo, J.S.[Jian-Song],
Ma, X.W.[Xin-Wen],
Chu, Q.F.[Qi-Feng],
Xie, M.[Min],
Cao, Y.J.[Yu-Jia],
Characterizing the Up-To-Date Land-Use and Land-Cover Change in
Xiong'an New Area from 2017 to 2020 Using the Multi-Temporal
Sentinel-2 Images on Google Earth Engine,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Löw, J.[Johannes],
Ullmann, T.[Tobias],
Conrad, C.[Christopher],
The Impact of Phenological Developments on Interferometric and
Polarimetric Crop Signatures Derived from Sentinel-1: Examples from
the DEMMIN Study Site (Germany),
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Kim, J.[Joon],
Lim, C.H.[Chul-Hee],
Jo, H.W.[Hyun-Woo],
Lee, W.K.[Woo-Kyun],
Phenological Classification Using Deep Learning and the Sentinel-2
Satellite to Identify Priority Afforestation Sites in North Korea,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Hu, B.[Bin],
Xu, Y.Y.[Yong-Yang],
Huang, X.[Xiao],
Cheng, Q.M.[Qi-Min],
Ding, Q.[Qing],
Bai, L.[Linze],
Li, Y.[Yan],
Improving Urban Land Cover Classification with Combined Use of
Sentinel-2 and Sentinel-1 Imagery,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Hejmanowska, B.[Beata],
Kramarczyk, P.[Piotr],
Glowienka, E.[Ewa],
Mikrut, S.[Slawomir],
Reliable Crops Classification Using Limited Number of Sentinel-2 and
Sentinel-1 Images,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Amazirh, A.[Abdelhakim],
Bouras, E.[El_Houssaine],
Olivera-Guerra, L.E.[Luis Enrique],
Er-Raki, S.[Salah],
Chehbouni, A.[Abdelghani],
Retrieving Crop Albedo Based on Radar Sentinel-1 and Random Forest
Approach,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Nikaein, T.[Tina],
Iannini, L.[Lorenzo],
Molijn, R.A.[Ramses A.],
Lopez-Dekker, P.[Paco],
On the Value of Sentinel-1 InSAR Coherence Time-Series for Vegetation
Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Urban, M.[Marcel],
Schellenberg, K.[Konstantin],
Morgenthal, T.[Theunis],
Dubois, C.[Clémence],
Hirner, A.[Andreas],
Gessner, U.[Ursula],
Mogonong, B.[Buster],
Zhang, Z.Y.[Zhen-Yu],
Baade, J.[Jussi],
Collett, A.[Anneliza],
Schmullius, C.[Christiane],
Using Sentinel-1 and Sentinel-2 Time Series for Slangbos Mapping in
the Free State Province, South Africa,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Saulquin, B.[Bertrand],
BRDF Estimations and Normalizations of Sentinel 2 Level 2 Data Using
a Kalman-Filtering Approach and Comparisons with RadCalNet
Measurements,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Goldberg, K.[Keren],
Herrmann, I.[Ittai],
Hochberg, U.[Uri],
Rozenstein, O.[Offer],
Generating Up-to-Date Crop Maps Optimized for Sentinel-2 Imagery in
Israel,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Ibrahim, E.S.[Esther Shupel],
Rufin, P.[Philippe],
Nill, L.[Leon],
Kamali, B.[Bahareh],
Nendel, C.[Claas],
Hostert, P.[Patrick],
Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2
Imagery,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Siesto, G.[Guillermo],
Fernández-Sellers, M.[Marcos],
Lozano-Tello, A.[Adolfo],
Crop Classification of Satellite Imagery Using Synthetic
Multitemporal and Multispectral Images in Convolutional Neural
Networks,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
Training from all other available data.
BibRef
Guo, Y.[Yan],
Xia, H.M.[Hao-Ming],
Pan, L.[Li],
Zhao, X.Y.[Xiao-Yang],
Li, R.M.[Ru-Meng],
Bian, X.Q.[Xi-Qing],
Wang, R.M.[Rui-Meng],
Yu, C.[Chong],
Development of a New Phenology Algorithm for Fine Mapping of Cropping
Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth
Engine,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tomícek, J.[Jirí],
Miurec, J.[Jan],
Luke, P.[Petr],
Prototyping a Generic Algorithm for Crop Parameter Retrieval across
the Season Using Radiative Transfer Model Inversion and Sentinel-2
Satellite Observations,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Solórzano, J.V.[Jonathan V.],
Mas, J.F.[Jean François],
Gao, Y.[Yan],
Gallardo-Cruz, J.A.[José Alberto],
Land Use Land Cover Classification with U-Net: Advantages of
Combining Sentinel-1 and Sentinel-2 Imagery,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tian, H.F.[Hai-Feng],
Wang, Y.J.[Yong-Jiu],
Chen, T.[Ting],
Zhang, L.J.[Li-Jun],
Qin, Y.[Yaochen],
Early-Season Mapping of Winter Crops Using Sentinel-2 Optical Imagery,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Busquier, M.[Mario],
Valcarce-Dińeiro, R.[Rubén],
Lopez-Sanchez, J.M.[Juan M.],
Plaza, J.[Javier],
Sánchez, N.[Nilda],
Arias-Pérez, B.[Benjamín],
Fusion of Multi-Temporal PAZ and Sentinel-1 Data for Crop
Classification,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Bonfil, D.J.[David J.],
Michael, Y.[Yaron],
Shiff, S.[Shilo],
Lensky, I.M.[Itamar M.],
Optimizing Top Dressing Nitrogen Fertilization Using VENľS and
Sentinel-2 L1 Data,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Abadal, S.[Saüc],
Salgueiro, L.[Luis],
Marcello, J.[Javier],
Vilaplana, V.[Verónica],
A Dual Network for Super-Resolution and Semantic Segmentation of
Sentinel-2 Imagery,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Dlamini, M.[Mandla],
Chirima, G.[George],
Sibanda, M.[Mbulisi],
Adam, E.[Elhadi],
Dube, T.[Timothy],
Characterizing Leaf Nutrients of Wetland Plants and Agricultural
Crops with Nonparametric Approach Using Sentinel-2 Imagery Data,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wagner, W.[Wolfgang],
Bauer-Marschallinger, B.[Bernhard],
Navacchi, C.[Claudio],
Reuß, F.[Felix],
Cao, S.M.[Sen-Mao],
Reimer, C.[Christoph],
Schramm, M.[Matthias],
Briese, C.[Christian],
A Sentinel-1 Backscatter Datacube for Global Land Monitoring
Applications,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Dey, S.[Subhadip],
Bhogapurapu, N.[Narayanarao],
Homayouni, S.[Saeid],
Bhattacharya, A.[Avik],
McNairn, H.[Heather],
Unsupervised Classification of Crop Growth Stages with Scattering
Parameters from Dual-Pol Sentinel-1 SAR Data,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Karim, Z.[Zainoolabadien],
van Zyl, T.L.[Terence L.],
Deep/Transfer Learning with Feature Space Ensemble Networks
(FeatSpaceEnsNets) and Average Ensemble Networks (AvgEnsNets) for
Change Detection Using DInSAR Sentinel-1 and Optical Sentinel-2
Satellite Data Fusion,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kganyago, M.[Mahlatse],
Mhangara, P.[Paidamwoyo],
Adjorlolo, C.[Clement],
Estimating Crop Biophysical Parameters Using Machine Learning
Algorithms and Sentinel-2 Imagery,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Valero, S.[Silvia],
Arnaud, L.[Ludovic],
Planells, M.[Milena],
Ceschia, E.[Eric],
Synergy of Sentinel-1 and Sentinel-2 Imagery for Early Seasonal
Agricultural Crop Mapping,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sobe, C.[Carina],
Hirschmugl, M.[Manuela],
Wimmer, A.[Andreas],
Sentinel-2 Time Series Analysis for Identification of Underutilized
Land in Europe,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Sun, Y.[Yuanheng],
Qin, Q.M.[Qi-Ming],
Ren, H.Z.[Hua-Zhong],
Zhang, Y.[Yao],
Decameter Cropland LAI/FPAR Estimation From Sentinel-2 Imagery Using
Google Earth Engine,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Spatial resolution, MODIS, Monitoring, Land surface, Training,
Satellites, Remote sensing, Cropland, Sentinel-2
BibRef
Ji, F.J.[Fu-Jiang],
Meng, J.[Jihua],
Cheng, Z.Q.[Zhi-Qiang],
Fang, H.T.[Hui-Ting],
Wang, Y.[Yanan],
Crop Yield Estimation at Field Scales by Assimilating Time Series of
Sentinel-2 Data Into a Modified CASA-WOFOST Coupled Model,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Agriculture, Biological system modeling, Data models, Soil,
Yield estimation, Atmospheric modeling, Biomass,
yield estimation
BibRef
Kacic, P.[Patrick],
Hirner, A.[Andreas],
da Ponte, E.[Emmanuel],
Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure
Characteristics in GEE for the Paraguayan Chaco,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Reuß, F.[Felix],
Greimeister-Pfeil, I.[Isabella],
Vreugdenhil, M.[Mariette],
Wagner, W.[Wolfgang],
Comparison of Long Short-Term Memory Networks and Random Forest for
Sentinel-1 Time Series Based Large Scale Crop Classification,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Li, M.[Miao],
Zhang, T.[Tao],
Tu, Y.[Ying],
Ren, Z.H.[Zhe-Hao],
Xu, B.[Bing],
Monitoring Post-Flood Recovery of Croplands Using the Integrated
Sentinel-1/2 Imagery in the Yangtze-Huai River Basin,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Seydi, S.T.[Seyd Teymoor],
Amani, M.[Meisam],
Ghorbanian, A.[Arsalan],
A Dual Attention Convolutional Neural Network for Crop Classification
Using Time-Series Sentinel-2 Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ghassemi, B.[Babak],
Dujakovic, A.[Aleksandar],
Zóltak, M.[Mateusz],
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Vuolo, F.[Francesco],
Designing a European-Wide Crop Type Mapping Approach Based on Machine
Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Yang, Q.[Qichi],
Wang, L.H.[Li-Hui],
Huang, J.L.[Jin-Liang],
Lu, L.J.[Li-Jie],
Li, Y.[Yang],
Du, Y.[Yun],
Ling, F.[Feng],
Mapping Plant Diversity Based on Combined SENTINEL-1/2 Data:
Opportunities for Subtropical Mountainous Forests,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wasniewski, A.[Adam],
Hoscilo, A.[Agata],
Chmielewska, M.[Milena],
Can a Hierarchical Classification of Sentinel-2 Data Improve Land
Cover Mapping?,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Snevajs, H.[Herman],
Charvat, K.[Karel],
Onckelet, V.[Vincent],
Kvapil, J.[Jiri],
Zadrazil, F.[Frantisek],
Kubickova, H.[Hana],
Seidlova, J.[Jana],
Batrlova, I.[Iva],
Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and
Existing Land Parcel Information Systems,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Upadhyay, P.[Priti],
Czerkawski, M.[Mikolaj],
Davison, C.[Christopher],
Cardona, J.[Javier],
Macdonald, M.[Malcolm],
Andonovic, I.[Ivan],
Michie, C.[Craig],
Atkinson, R.[Robert],
Papadopoulou, N.[Nikela],
Nikas, K.[Konstantinos],
Tachtatzis, C.[Christos],
A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1
and Sentinel-2 Analysis Ready Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Kluczek, M.[Marcin],
Zagajewski, B.[Bogdan],
Kycko, M.[Marlena],
Airborne HySpex Hyperspectral Versus Multitemporal Sentinel-2 Images
for Mountain Plant Communities Mapping,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Guo, Z.W.[Zheng-Wei],
Qi, W.W.[Wen-Wen],
Huang, Y.[Yabo],
Zhao, J.H.[Jian-Hui],
Yang, H.J.[Hui-Jin],
Koo, V.C.[Voon-Chet],
Li, N.[Ning],
Identification of Crop Type Based on C-AENN Using Time Series
Sentinel-1A SAR Data,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Orynbaikyzy, A.[Aiym],
Gessner, U.[Ursula],
Conrad, C.[Christopher],
Spatial Transferability of Random Forest Models for Crop Type
Classification Using Sentinel-1 and Sentinel-2,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Camalan, S.[Seda],
Cui, K.[Kangning],
Pauca, V.P.[Victor Paul],
Alqahtani, S.[Sarra],
Silman, M.[Miles],
Chan, R.[Raymond],
Plemmons, R.J.[Robert Jame],
Dethier, E.N.[Evan Nylen],
Fernandez, L.E.[Luis E.],
Lutz, D.A.[David A.],
Change Detection of Amazonian Alluvial Gold Mining Using Deep
Learning and Sentinel-2 Imagery,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Wei, M.F.[Meng-Fan],
Wang, H.Y.[Hong-Yan],
Zhang, Y.[Yuan],
Li, Q.Z.[Qiang-Zi],
Du, X.[Xin],
Shi, G.W.[Guan-Wei],
Ren, Y.T.[Yi-Ting],
Investigating the Potential of Sentinel-2 MSI in Early Crop
Identification in Northeast China,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Costa, H.[Hugo],
Benevides, P.[Pedro],
Moreira, F.D.[Francisco D.],
Moraes, D.[Daniel],
Caetano, M.[Mário],
Spatially Stratified and Multi-Stage Approach for National Land Cover
Mapping Based on Sentinel-2 Data and Expert Knowledge,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Tuvdendorj, B.[Battsetseg],
Zeng, H.W.[Hong-Wei],
Wu, B.F.[Bing-Fang],
Elnashar, A.[Abdelrazek],
Zhang, M.[Miao],
Tian, F.[Fuyou],
Nabil, M.[Mohsen],
Nanzad, L.[Lkhagvadorj],
Bulkhbai, A.[Amanjol],
Natsagdorj, N.[Natsagsuren],
Performance and the Optimal Integration of Sentinel-1/2 Time-Series
Features for Crop Classification in Northern Mongolia,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Amin, E.[Eatidal],
Belda, S.[Santiago],
Pipia, L.[Luca],
Szantoi, Z.[Zoltan],
Baroudy, A.E.[Ahmed El],
Moreno, J.[José],
Verrelst, J.[Jochem],
Multi-Season Phenology Mapping of Nile Delta Croplands Using Time
Series of Sentinel-2 and Landsat 8 Green LAI,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Marshall, M.[Michael],
Belgiu, M.[Mariana],
Boschetti, M.[Mirco],
Pepe, M.[Monica],
Stein, A.[Alfred],
Nelson, A.[Andy],
Field-level crop yield estimation with PRISMA and Sentinel-2,
PandRS(187), 2022, pp. 191-210.
Elsevier DOI
2205
Agriculture, Imaging spectroscopy, Hyperspectral,
Remote sensing, Machine learning, Random forest
BibRef
Sainte Fare Garnot, V.[Vivien],
Landrieu, L.[Loic],
Chehata, N.[Nesrine],
Multi-modal temporal attention models for crop mapping from satellite
time series,
PandRS(187), 2022, pp. 294-305.
Elsevier DOI
2205
Deep learning, Temporal attention, Multi-temporal fusion,
Data fusion, SAR, Sentinel satellite
BibRef
Li, X.Y.[Xin-Yi],
Sun, C.[Chen],
Meng, H.M.[Hui-Min],
Ma, X.[Xin],
Huang, G.H.[Guan-Hua],
Xu, X.[Xu],
A Novel Efficient Method for Land Cover Classification in Fragmented
Agricultural Landscapes Using Sentinel Satellite Imagery,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Inglada, J.[Jordi],
Michel, J.[Julien],
Hagolle, O.[Olivier],
Assessment of the Usefulness of Spectral Bands for the Next
Generation of Sentinel-2 Satellites by Reconstruction of Missing
Bands,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zou, X.C.[Xiao-Chen],
Zhu, S.[Sunan],
Mőttus, M.[Matti],
Estimation of Canopy Structure of Field Crops Using Sentinel-2 Bands
with Vegetation Indices and Machine Learning Algorithms,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Combs, T.P.[Truman P.],
Didan, K.[Kamel],
Dierig, D.[David],
Jarchow, C.J.[Christopher J.],
Barreto-Muńoz, A.[Armando],
Estimating Productivity Measures in Guayule Using UAS Imagery and
Sentinel-2 Satellite Data,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Layegh, N.F.[Nasir Farsad],
Darvishzadeh, R.[Roshanak],
Skidmore, A.K.[Andrew K.],
Persello, C.[Claudio],
Krüger, N.[Nina],
Integrating Semi-Supervised Learning with an Expert System for
Vegetation Cover Classification Using Sentinel-2 and RapidEye Data,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Gimenez, R.[Rollin],
Lassalle, G.[Guillaume],
Elger, A.[Arnaud],
Dubucq, D.[Dominique],
Credoz, A.[Anthony],
Fabre, S.[Sophie],
Mapping Plant Species in a Former Industrial Site Using Airborne
Hyperspectral and Time Series of Sentinel-2 Data Sets,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Henits, L.[László],
Szerletics, Á.[Ákos],
Szokol, D.[Dávid],
Szlovák, G.[Gergely],
Gojdár, E.[Emese],
Zlinszky, A.[András],
Sentinel-2 Enables Nationwide Monitoring of Single Area Payment
Scheme and Greening Agricultural Subsidies in Hungary,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Kganyago, M.[Mahlatse],
Adjorlolo, C.[Clement],
Mhangara, P.[Paidamwoyo],
Exploring Transferable Techniques to Retrieve Crop Biophysical and
Biochemical Variables Using Sentinel-2 Data,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yli-Heikkila, M.[Maria],
Wittke, S.[Samantha],
Luotamo, M.[Markku],
Puttonen, E.[Eetu],
Sulkava, M.[Mika],
Pellikka, P.[Petri],
Heiskanen, J.[Janne],
Klami, A.[Arto],
Scalable Crop Yield Prediction with Sentinel-2 Time Series and
Temporal Convolutional Network,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Psiroukis, V.[Vasilis],
Darra, N.[Nicoleta],
Kasimati, A.[Aikaterini],
Trojacek, P.[Pavel],
Hasanli, G.[Gunay],
Fountas, S.[Spyros],
Development of a Multi-Scale Tomato Yield Prediction Model in
Azerbaijan Using Spectral Indices from Sentinel-2 Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, M.[Minhui],
Shamshiri, R.R.[Redmond R.],
Weltzien, C.[Cornelia],
Schirrmann, M.[Michael],
Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A
Comparison Case Study in Northeastern Germany,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xie, G.Y.[Guan-Yao],
Niculescu, S.[Simona],
Mapping Crop Types Using Sentinel-2 Data Machine Learning and
Monitoring Crop Phenology with Sentinel-1 Backscatter Time Series in
Pays de Brest, Brittany, France,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Mohammadpour, P.[Pegah],
Viegas, D.X.[Domingos Xavier],
Viegas, C.[Carlos],
Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM
Texture Feature: A Case Study for Lousa Region, Portugal,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Wang, Z.Q.[Zi-Qiao],
Zhang, H.Y.[Hong-Yan],
He, W.[Wei],
Zhang, L.P.[Liang-Pei],
Cross-phenological-region crop mapping framework using Sentinel-2
time series Imagery: A new perspective for winter crops in China,
PandRS(193), 2022, pp. 200-215.
Elsevier DOI
2210
Crop mapping, Sentinel-2 time series, Winter crops, Cross-phenological-region
BibRef
Cherif, E.[Eya],
Hell, M.[Maximilian],
Brandmeier, M.[Melanie],
DeepForest: Novel Deep Learning Models for Land Use and Land Cover
Classification Using Multi-Temporal and -Modal Sentinel Data of the
Amazon Basin,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Liu, Y.[Yage],
Li, H.D.[Hui-Dong],
Wu, M.C.[Min-Chao],
Wang, A.Z.[An-Zhi],
Wu, J.B.[Jia-Bing],
Guan, D.X.[De-Xin],
Estimating the Legacy Effect of Post-Cutting Shelterbelt on Crop
Yield Using Google Earth and Sentinel-2 Data,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Magalhăes, I.A.L.[Ivo Augusto Lopes],
de Carvalho Júnior, O.A.[Osmar Abílio],
de Carvalho, O.L.F.[Osmar Luiz Ferreira],
de Albuquerque, A.O.[Anesmar Olino],
Hermuche, P.M.[Potira Meirelles],
Merino, É.R.[Éder Renato],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
Guimarăes, R.F.[Renato Fontes],
Comparing Machine and Deep Learning Methods for the Phenology-Based
Classification of Land Cover Types in the Amazon Biome Using
Sentinel-1 Time Series,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zhou, X.[Xin],
Wang, J.F.[Jin-Fei],
He, Y.J.[Yong-Jun],
Shan, B.[Bo],
Crop Classification and Representative Crop Rotation Identifying
Using Statistical Features of Time-Series Sentinel-1 GRD Data,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Sánchez, A.M.S.[Alejandro-Martín Simón],
González-Piqueras, J.[José],
de la Ossa, L.[Luis],
Calera, A.[Alfonso],
Convolutional Neural Networks for Agricultural Land Use
Classification from Sentinel-2 Image Time Series,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yi, Z.W.[Zhi-Wei],
Jia, L.[Li],
Chen, Q.T.[Qi-Ting],
Jiang, M.[Min],
Zhou, D.W.[Ding-Wang],
Zeng, Y.L.[Ye-Long],
Early-Season Crop Identification in the Shiyang River Basin Using a
Deep Learning Algorithm and Time-Series Sentinel-2 Data,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Sousa, D.[Daniel],
Small, C.[Christopher],
Joint Characterization of Sentinel-2 Reflectance:
Insights from Manifold Learning,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ioannidou, M.[Maria],
Koukos, A.[Alkiviadis],
Sitokonstantinou, V.[Vasileios],
Papoutsis, I.[Ioannis],
Kontoes, C.[Charalampos],
Assessing the Added Value of Sentinel-1 PolSAR Data for Crop
Classification,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Small, C.[Christopher],
Sousa, D.[Daniel],
The Sentinel 2 MSI Spectral Mixing Space,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Thapa, A.[Aakash],
Horanont, T.[Teerayut],
Neupane, B.[Bipul],
Parcel-Level Flood and Drought Detection for Insurance Using
Sentinel-2A, Sentinel-1 SAR GRD and Mobile Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
di Martino, T.[Thomas],
Guinvarch, R.[Régis],
Thirion-Lefevre, L.[Laetitia],
Colin, E.[Elise],
FARMSAR: Fixing AgRicultural Mislabels Using Sentinel-1 Time Series
and AutoencodeRs,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Dahhani, S.[Sara],
Raji, M.[Mohamed],
Hakdaoui, M.[Mustapha],
Lhissou, R.[Rachid],
Land Cover Mapping Using Sentinel-1 Time-Series Data and
Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Orusa, T.[Tommaso],
Cammareri, D.[Duke],
Mondino, E.B.[Enrico Borgogno],
A Possible Land Cover EAGLE Approach to Overcome Remote Sensing
Limitations in the Alps Based on Sentinel-1 and Sentinel-2: The Case
of Aosta Valley (NW Italy),
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Gallo, I.[Ignazio],
Ranghetti, L.[Luigi],
Landro, N.[Nicola],
Grassa, R.L.[Riccardo La],
Boschetti, M.[Mirco],
In-season and dynamic crop mapping using 3D convolution neural
networks and sentinel-2 time series,
PandRS(195), 2023, pp. 335-352.
Elsevier DOI
2301
Short and long-term crop mapping, 3D fully convolutive CNN,
Crop mapping, Sentinel-2 time series
BibRef
Valdivieso-Ros, C.[Carmen],
Alonso-Sarria, F.[Francisco],
Gomariz-Castillo, F.[Francisco],
Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and
Derived Data in Land Cover Classification of a Semiarid Mediterranean
Area Using Machine Learning Algorithms,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Xiao, X.Y.[Xing-Yuan],
Jiang, L.[Linlong],
Liu, Y.[Yaqun],
Ren, G.Z.[Guo-Zhen],
Limited-Samples-Based Crop Classification Using a Time-Weighted
Dynamic Time Warping Method, Sentinel-1 Imagery, and Google Earth
Engine,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Venter, Z.S.[Zander S.],
Roos, R.E.[Ruben E.],
Nowell, M.S.[Megan S.],
Rusch, G.M.[Graciela M.],
Kvifte, G.M.[Gunnar M.],
Sydenham, M.A.K.[Markus A. K.],
Comparing Global Sentinel-2 Land Cover Maps for Regional Species
Distribution Modeling,
RS(15), No. 7, 2023, pp. 1749.
DOI Link
2304
BibRef
Ma, T.Y.[Tai-Yong],
Hu, Y.[Yang],
Wang, J.[Jie],
Beckline, M.[Mukete],
Pang, D.[Danbo],
Chen, L.[Lin],
Ni, X.[Xilu],
Li, X.B.[Xue-Bin],
A Novel Vegetation Index Approach Using Sentinel-2 Data and Random
Forest Algorithm for Estimating Forest Stock Volume in the Helan
Mountains, Ningxia, China,
RS(15), No. 7, 2023, pp. 1853.
DOI Link
2304
BibRef
Tian, X.Y.[Xiang-Yu],
Bai, Y.Q.[Yong-Qing],
Li, G.Q.[Guo-Qing],
Yang, X.[Xuan],
Huang, J.X.[Jian-Xi],
Chen, Z.C.[Zheng-Chao],
An Adaptive Feature Fusion Network with Superpixel Optimization for
Crop Classification Using Sentinel-2 Imagery,
RS(15), No. 8, 2023, pp. 1990.
DOI Link
2305
BibRef
Tzepkenlis, A.[Anastasios],
Marthoglou, K.[Konstantinos],
Grammalidis, N.[Nikos],
Efficient Deep Semantic Segmentation for Land Cover Classification
Using Sentinel Imagery,
RS(15), No. 8, 2023, pp. 2027.
DOI Link
2305
BibRef
Arrechea-Castillo, D.A.[Darwin Alexis],
Solano-Correa, Y.T.[Yady Tatiana],
Muńoz-Ordóńez, J.F.[Julián Fernando],
Pencue-Fierro, E.L.[Edgar Leonairo],
Figueroa-Casas, A.[Apolinar],
Multiclass Land Use and Land Cover Classification of Andean
Sub-Basins in Colombia with Sentinel-2 and Deep Learning,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Zhao, L.L.[Ling-Li],
Wang, S.[Shuang],
Xu, Y.[Yubin],
Sun, W.D.[Wei-Dong],
Shi, L.[Lei],
Yang, J.[Jie],
Dash, J.[Jadunandan],
Evaluating the Capability of Sentinel-1 Data in the Classification of
Canola and Wheat at Different Growth Stages and in Different Years,
RS(15), No. 11, 2023, pp. 2731.
DOI Link
2306
BibRef
Zhang, K.X.[Kai-Xin],
Yuan, D.[Da],
Yang, H.J.[Hui-Jin],
Zhao, J.H.[Jian-Hui],
Li, N.[Ning],
Synergy of Sentinel-1 and Sentinel-2 Imagery for Crop Classification
Based on DC-CNN,
RS(15), No. 11, 2023, pp. 2727.
DOI Link
2306
BibRef
Wang, Z.H.[Zi-Hao],
Song, D.X.[Dan-Xia],
He, T.[Tao],
Lu, J.[Jun],
Wang, C.[Caiqun],
Zhong, D.[Dantong],
Developing Spatial and Temporal Continuous Fractional Vegetation
Cover Based on Landsat and Sentinel-2 Data with a Deep Learning
Approach,
RS(15), No. 11, 2023, pp. 2948.
DOI Link
2306
BibRef
Zhang, H.Y.[Hai-Yang],
Zhang, Y.[Yao],
Gao, T.[Tingyao],
Lan, S.[Shu],
Tong, F.H.[Fang-Hui],
Li, M.[Minzan],
Landsat 8 and Sentinel-2 Fused Dataset for High Spatial-Temporal
Resolution Monitoring of Farmland in China's Diverse Latitudes,
RS(15), No. 11, 2023, pp. 2951.
DOI Link
2306
BibRef
Jiang, J.L.[Jing-Ling],
Zhang, H.[Hong],
Ge, J.[Ji],
Sun, C.L.[Chun-Ling],
Xu, L.[Lu],
Wang, C.[Chao],
Cropland Data Extraction in Mekong Delta Based on Time Series
Sentinel-1 Dual-Polarized Data,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Selea, T.[Teodora],
AgriSen-COG, a Multicountry, Multitemporal Large-Scale Sentinel-2
Benchmark Dataset for Crop Mapping Using Deep Learning,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Kovács, D.D.[Dávid D.],
Reyes-Muńoz, P.[Pablo],
Salinero-Delgado, M.[Matías],
Mészáros, V.I.[Viktor Ixion],
Berger, K.[Katja],
Verrelst, J.[Jochem],
Cloud-Free Global Maps of Essential Vegetation Traits Processed from
the TOA Sentinel-3 Catalogue in Google Earth Engine,
RS(15), No. 13, 2023, pp. 3404.
DOI Link
2307
BibRef
Liu, Y.Y.[Yu-Ying],
Pu, X.[Xuecong],
Shen, Z.Q.[Zhang-Quan],
Crop Type Mapping Based on Polarization Information of Time Series
Sentinel-1 Images Using Patch-Based Neural Network,
RS(15), No. 13, 2023, pp. 3384.
DOI Link
2307
BibRef
Vishnu, P.S.[Perumthuruthil Suseelan],
Costa, M.[Maycira],
Evaluating the Performance of Sentinel-3A OLCI Products in the
Subarctic Northeast Pacific,
RS(15), No. 13, 2023, pp. 3244.
DOI Link
2307
BibRef
Wei, P.[Peng],
Ye, H.C.[Hui-Chun],
Qiao, S.T.[Shu-Ting],
Liu, R.H.[Rong-Hao],
Nie, C.J.[Chao-Jia],
Zhang, B.R.[Bing-Rui],
Song, L.J.[Li-Juan],
Huang, S.Y.[Shan-Yu],
Early Crop Mapping Based on Sentinel-2 Time-Series Data and the
Random Forest Algorithm,
RS(15), No. 13, 2023, pp. 3212.
DOI Link
2307
BibRef
Rusnák, T.[Tomá],
Kasanický, T.[Tomá],
Malík, P.[Peter],
Moji, J.[Ján],
Zelenka, J.[Ján],
Svicek, M.[Michal],
Abrahám, D.[Dominik],
Halabuk, A.[Andrej],
Crop Mapping without Labels: Investigating Temporal and Spatial
Transferability of Crop Classification Models Using a 5-Year
Sentinel-2 Series and Machine Learning,
RS(15), No. 13, 2023, pp. 3414.
DOI Link
2307
BibRef
Song, W.C.[Wei-Cheng],
Feng, A.Q.[Ai-Qing],
Wang, G.J.[Guo-Jie],
Zhang, Q.X.[Qi-Xia],
Dai, W.[Wen],
Wei, X.[Xikun],
Hu, Y.F.[Yi-Fan],
Amankwah, S.O.Y.[Solomon Obiri Yeboah],
Zhou, F.H.[Fei-Hong],
Liu, Y.[Yi],
Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple
Deep Learning Networks,
RS(15), No. 13, 2023, pp. 3417.
DOI Link
2307
BibRef
Chen, R.Q.[Ri-Qiang],
Yang, H.[Hao],
Yang, G.J.[Gui-Jun],
Liu, Y.[Yang],
Zhang, C.J.[Cheng-Jian],
Long, H.L.[Hui-Ling],
Xu, H.F.[Hai-Feng],
Meng, Y.[Yang],
Feng, H.K.[Hai-Kuan],
Land-Use Mapping with Multi-Temporal Sentinel Images Based on Google
Earth Engine in Southern Xinjiang Uygur Autonomous Region, China,
RS(15), No. 16, 2023, pp. 3958.
DOI Link
2309
BibRef
Bao, X.[Xin],
Zhang, R.[Rui],
Lv, J.C.[Ji-Chao],
Wu, R.Z.[Ren-Zhe],
Zhang, H.S.[Hong-Sheng],
Chen, J.[Jie],
Zhang, B.[Bo],
Ouyang, X.Y.[Xiao-Ying],
Liu, G.X.[Guo-Xiang],
Vegetation descriptors from Sentinel-1 SAR data for crop growth
monitoring,
PandRS(203), 2023, pp. 86-114.
Elsevier DOI
2310
Sentinel-1, Vegetation descriptors, Dual-polarization,
Unsupervised classification, Crop growth
BibRef
Deng, R.X.[Rong-Xin],
Xu, Z.R.[Zheng-Ran],
Li, Y.[Ying],
Zhang, X.[Xing],
Li, C.J.[Chun-Jing],
Zhang, L.[Lu],
Farmland Shelterbelt Age Mapping Using Landsat Time Series Images,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Zhou, Y.[Ya'nan],
Wang, Y.[Yan],
Yan, N.[Na'na],
Feng, L.[Li],
Chen, Y.H.[Yue-Hong],
Wu, T.J.[Tian-Jun],
Gao, J.W.[Jian-Wei],
Zhang, X.[Xiwang],
Zhu, W.W.[Wei-Wei],
Contrastive-Learning-Based Time-Series Feature Representation for
Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences,
RS(15), No. 20, 2023, pp. 5009.
DOI Link
2310
BibRef
Torralbo, P.[Pedro],
Pimentel, R.[Rafael],
Polo, M.J.[Maria José],
Notarnicola, C.[Claudia],
Characterizing Snow Dynamics in Semi-Arid Mountain Regions with
Multitemporal Sentinel-1 Imagery: A Case Study in the Sierra Nevada,
Spain,
RS(15), No. 22, 2023, pp. 5365.
DOI Link
2311
BibRef
Notarnicola, C.,
Asam, S.,
Jacob, A.,
Marin, C.,
Rossi, M.,
Stendardi, L.,
Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2
imagery,
MultiTemp17(1-4)
IEEE DOI
1712
crops, remote sensing by radar, synthetic aperture radar,
Sentinel-2 imagery, Sentinel-2 images, crop phenology,
time series
BibRef
Zhen, Z.J.[Zhi-Jun],
Chen, S.[Shengbo],
Yin, T.G.[Tian-Gang],
Gastellu-Etchegorry, J.P.[Jean-Philippe],
Globally quantitative analysis of the impact of atmosphere and
spectral response function on 2-band enhanced vegetation index (EVI2)
over Sentinel-2 and Landsat-8,
PandRS(205), 2023, pp. 206-226.
Elsevier DOI
2311
2-Band enhanced vegetation index (EVI2), Atmosphere effects,
Band correlation, Cross-sensor, Google Earth Engine (GEE), Snow and ice
BibRef
Ramírez-Juidias, E.[Emilio],
Amaro-Mellado, J.L.[José-Lázaro],
Antón, D.[Daniel],
Wavelet Analysis of a Sentinel-2 Time Series to Detect Land Use
Changes in Agriculture in the Vega Alta of the Guadalquivir River:
Cantillana Case Study (Seville),
RS(15), No. 21, 2023, pp. 5225.
DOI Link
2311
BibRef
Abdali, E.[Esmaeil],
Zoej, M.J.V.[Mohammad Javad Valadan],
Dehkordi, A.T.[Alireza Taheri],
Ghaderpour, E.[Ebrahim],
A Parallel-Cascaded Ensemble of Machine Learning Models for Crop Type
Classification in Google Earth Engine Using Multi-Temporal
Sentinel-1/2 and Landsat-8/9 Remote Sensing Data,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Xu, Y.J.[Yi-Jia],
Ma, Y.[Yuchi],
Zhang, Z.[Zhou],
Self-supervised pre-training for large-scale crop mapping using
Sentinel-2 time series,
PandRS(207), 2024, pp. 312-325.
Elsevier DOI Code:
WWW Link.
2401
Crop mapping, Remote sensing, Transformer,
Self-supervised learning, Contrastive learning
BibRef
Zhang, W.[Wenge],
Yang, X.[Xuan],
Yuan, Z.[Zhanliang],
Chen, Z.C.[Zheng-Chao],
Xu, Y.[Yue],
A Framework for Fine-Grained Land-Cover Classification Using 10 m
Sentinel-2 Images,
RS(16), No. 2, 2024, pp. 390.
DOI Link
2402
BibRef
Clabaut, É.[Étienne],
Foucher, S.[Samuel],
Bouroubi, Y.[Yacine],
Germain, M.[Mickaël],
Synthetic Data for Sentinel-2 Semantic Segmentation,
RS(16), No. 5, 2024, pp. 818.
DOI Link
2403
BibRef
Tompoulidou, M.[Maria],
Karadimou, E.[Elpida],
Apostolakis, A.[Antonis],
Tsiaoussi, V.[Vasiliki],
A Geographic Object-Based Image Approach Based on the Sentinel-2
Multispectral Instrument for Lake Aquatic Vegetation Mapping:
A Complementary Tool to In Situ Monitoring,
RS(16), No. 5, 2024, pp. 916.
DOI Link
2403
BibRef
Gao, H.[Hangyu],
Li, R.[Ruren],
Shen, Q.[Qian],
Yao, Y.[Yue],
Shao, Y.F.[Yi-Fan],
Zhou, Y.T.[Yu-Ting],
Li, W.X.[Wen-Xin],
Li, J.Z.[Jin-Zhi],
Zhang, Y.T.[Yu-Ting],
Liu, M.X.[Ming-Xia],
Deep-Learning-Based Automatic Extraction of Aquatic Vegetation from
Sentinel-2 Images: A Case Study of Lake Honghu,
RS(16), No. 5, 2024, pp. 867.
DOI Link
2403
BibRef
Eisfelder, C.[Christina],
Boemke, B.[Bruno],
Gessner, U.[Ursula],
Sogno, P.[Patrick],
Alemu, G.[Genanaw],
Hailu, R.[Rahel],
Mesmer, C.[Christian],
Huth, J.[Juliane],
Cropland and Crop Type Classification with Sentinel-1 and Sentinel-2
Time Series Using Google Earth Engine for Agricultural Monitoring in
Ethiopia,
RS(16), No. 5, 2024, pp. 866.
DOI Link
2403
BibRef
Burger, R.[Rogier],
Aouizerats, B.[Benjamin],
den Besten, N.[Nadja],
Guillevic, P.[Pierre],
Catarino, F.[Filipe],
van der Horst, T.[Teije],
Jackson, D.[Daniel],
Koopmans, R.[Regan],
Ridderikhoff, M.[Margot],
Robson, G.[Greg],
Zajdband, A.[Ariel],
de Jeu, R.[Richard],
The Biomass Proxy: Unlocking Global Agricultural Monitoring through
Fusion of Sentinel-1 and Sentinel-2,
RS(16), No. 5, 2024, pp. 835.
DOI Link
2403
BibRef
do Nascimento-Bendini, H.[Hugo],
Fieuzal, R.[Rémy],
Carrere, P.[Pierre],
Clenet, H.[Harold],
Galvani, A.[Aurelie],
Allies, A.[Aubin],
Ceschia, É.[Éric],
Estimating Winter Cover Crop Biomass in France Using Optical
Sentinel-2 Dense Image Time Series and Machine Learning,
RS(16), No. 5, 2024, pp. 834.
DOI Link
2403
BibRef
Pascual-Venteo, A.B.[Ana B.],
Garcia, J.L.[Jose L.],
Berger, K.[Katja],
EstŠvez, J.[JosŠ],
Vicent, J.[Jorge],
PŠrez-Suay, A.[AdriĄn],
van Wittenberghe, S.[Shari],
Verrelst, J.[Jochem],
Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere
Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery,
RS(16), No. 7, 2024, pp. 1211.
DOI Link
2404
BibRef
Werner, J.P.S.[Joăo P. S.],
Belgiu, M.[Mariana],
Bueno, I.T.[Inacio T.],
Reis, A.A.D.[Aliny A. Dos],
Toro, A.P.S.G.D.[Ana P. S. G. D.],
Antunes, J.F.G.[Joăo F. G.],
Stein, A.[Alfred],
Lamparelli, R.A.C.[Rubens A. C.],
Magalhăes, P.S.G.[Paulo S. G.],
Coutinho, A.C.[Alexandre C.],
Esquerdo, J.C.D.M.[Júlio C. D. M.],
Figueiredo, G.K.D.A.[Gleyce K. D. A.],
Mapping Integrated Crop-Livestock Systems Using Fused Sentinel-2 and
PlanetScope Time Series and Deep Learning,
RS(16), No. 8, 2024, pp. 1421.
DOI Link
2405
BibRef
Prodromou, M.[Maria],
Theocharidis, C.[Christos],
Gitas, I.Z.[Ioannis Z.],
Eliades, F.[Filippos],
Themistocleous, K.[Kyriacos],
Papasavvas, K.[Konstantinos],
Dimitrakopoulos, C.[Constantinos],
Danezis, C.[Chris],
Hadjimitsis, D.[Diofantos],
Forest Habitat Mapping in Natura2000 Regions in Cyprus Using
Sentinel-1, Sentinel-2 and Topographical Features,
RS(16), No. 8, 2024, pp. 1373.
DOI Link
2405
BibRef
Zhou, X.[Xin],
Wang, J.F.[Jin-Fei],
Shan, B.[Bo],
He, Y.J.[Yong-Jun],
Early-Season Crop Classification Based on Local Window Attention
Transformer with Time-Series RCM and Sentinel-1,
RS(16), No. 8, 2024, pp. 1376.
DOI Link
2405
BibRef
Kakoullis, D.[Dimitris],
Fotiou, K.[Kyriaki],
Subiza, N.I.[Nerea Ibarrola],
Brcic, R.[Ramon],
Eineder, M.[Michael],
Danezis, C.[Chris],
An Advanced Quality Assessment and Monitoring of ESA Sentinel-1 SAR
Products via the CyCLOPS Infrastructure in the Southeastern
Mediterranean Region,
RS(16), No. 10, 2024, pp. 1696.
DOI Link
2405
BibRef
Duan, K.[Keke],
Vrieling, A.[Anton],
Schlund, M.[Michael],
Bhaskar-Nidumolu, U.[Uday],
Ratcliff, C.[Christina],
Collings, S.[Simon],
Nelson, A.[Andrew],
Detection and attribution of cereal yield losses using Sentinel-2 and
weather data: A case study in South Australia,
PandRS(213), 2024, pp. 33-52.
Elsevier DOI
2406
Satellite image, Growing degree days, Extreme weather,
Yield reduction, Crop phenology, Machine learning
BibRef
Senty, P.[Paul],
Guzinski, R.[Radoslaw],
Grogan, K.[Kenneth],
Buitenwerf, R.[Robert],
Ardö, J.[Jonas],
Eklundh, L.[Lars],
Koukos, A.[Alkiviadis],
Tagesson, T.[Torbern],
Munk, M.[Michael],
Fast Fusion of Sentinel-2 and Sentinel-3 Time Series over Rangelands,
RS(16), No. 11, 2024, pp. 1833.
DOI Link
2406
BibRef
Anconitano, G.[Giovanni],
Kim, S.B.[Seung-Bum],
Chapman, B.[Bruce],
Martinez, J.[Jessica],
Siqueira, P.[Paul],
Pierdicca, N.[Nazzareno],
Classification of Crop Area Using PALSAR, Sentinel-1, and Planet Data
for the NISAR Mission,
RS(16), No. 11, 2024, pp. 1975.
DOI Link
2406
BibRef
Oluwadare, T.S.[Temitope Seun],
Chen, D.M.[Dong-Mei],
Oluwafemi, O.[Olawale],
Babadi, M.[Masoud],
Hossain, M.[Mohammad],
Ibukun, O.[Oluwaseun],
Reconstructing Snow-Free Sentinel-2 Satellite Imagery:
A Generative Adversarial Network (GAN) Approach,
RS(16), No. 13, 2024, pp. 2352.
DOI Link
2407
BibRef
Subedi, M.R.[Mukti Ram],
Portillo-Quintero, C.[Carlos],
McIntyre, N.E.[Nancy E.],
Kahl, S.S.[Samantha S.],
Cox, R.D.[Robert D.],
Perry, G.[Gad],
Song, X.P.[Xiao-Peng],
Ensemble Machine Learning on the Fusion of Sentinel Time Series
Imagery with High-Resolution Orthoimagery for Improved Land Use/Land
Cover Mapping,
RS(16), No. 15, 2024, pp. 2778.
DOI Link
2408
BibRef
Cristille, P.L.[Pierre-Laurent],
Bernhard, E.[Emmanuel],
Cox, N.L.J.[Nick L. J.],
Bernard-Salas, J.[Jeronimo],
Mangin, A.[Antoine],
Earth Observation Multi-Spectral Image Fusion with Transformers for
Sentinel-2 and Sentinel-3 Using Synthetic Training Data,
RS(16), No. 16, 2024, pp. 3107.
DOI Link
2408
BibRef
Huang, K.H.[Kai-Hong],
Sun, Z.L.[Zhang-Li],
Xiong, Y.[Yi],
Tu, L.[Lin],
Yang, C.X.[Chen-Xi],
Wang, H.T.[Hang-Tong],
Exploring Factors Affecting the Performance of Neural Network
Algorithm for Detecting Clouds, Snow, and Lakes in Sentinel-2 Images,
RS(16), No. 17, 2024, pp. 3162.
DOI Link
2409
BibRef
Selvaraj, S.[Shanmugapriya],
Bargiel, D.[Damian],
Htitiou, A.[Abdelaziz],
Gerighausen, H.[Heike],
Analyzing Temporal Characteristics of Winter Catch Crops Using
Sentinel-1 Time Series,
RS(16), No. 19, 2024, pp. 3737.
DOI Link
2410
BibRef
Mantsis, D.F.[Damianos F.],
Moumtzidou, A.[Anastasia],
Lioumbas, I.[Ioannis],
Gialampoukidis, I.[Ilias],
Christodoulou, A.[Aikaterini],
Mentes, A.[Alexandros],
Vrochidis, S.[Stefanos],
Kompatsiaris, I.[Ioannis],
Detection of Complex Formations in an Inland Lake from Sentinel-2
Images Using Atmospheric Corrections and a Fully Connected Deep
Neural Network,
RS(16), No. 20, 2024, pp. 3913.
DOI Link
2411
BibRef
Toté, C.[Carolien],
Swinnen, E.[Else],
Henocq, C.[Claire],
An Evaluation of Sentinel-3 SYN VGT Products in Comparison to the
SPOT/VEGETATION and PROBA-V Archives,
RS(16), No. 20, 2024, pp. 3822.
DOI Link
2411
BibRef
Vanpoucke, K.[Kato],
Heremans, S.[Stien],
Buls, E.[Emily],
Somers, B.[Ben],
Field-Level Classification of Winter Catch Crops Using Sentinel-2
Time Series: Model Comparison and Transferability,
RS(16), No. 24, 2024, pp. 4620.
DOI Link
2501
BibRef
Maleki, S.[Saeideh],
Baghdadi, N.[Nicolas],
Bazzi, H.[Hassan],
Dantas, C.F.[Cassio Fraga],
Ienco, D.[Dino],
Nasrallah, Y.[Yasser],
Najem, S.[Sami],
Machine Learning-Based Summer Crops Mapping Using Sentinel-1 and
Sentinel-2 Images,
RS(16), No. 23, 2024, pp. 4548.
DOI Link
2501
BibRef
Tong, X.Y.[Xin-Yi],
Dong, R.M.[Run-Min],
Zhu, X.X.[Xiao Xiang],
Global high categorical resolution land cover mapping via weak
supervision,
PandRS(220), 2025, pp. 535-549.
Elsevier DOI Code:
HTML Version.
2502
Land cover mapping, Classification, Deep learning,
Transfer learning, Weakly supervised learning, Sentinel-2
BibRef
Raiyani, K.[Kashyap],
Gonçalves, T.[Teresa],
Rato, L.[Luís],
Abbreviating Labelling Cost for Sentinel-2 Image Scene Classification
Through Active Learning,
IbPRIA22(295-308).
Springer DOI
2205
BibRef
Michel, J.,
Inglada, J.,
Learning Harmonised Pleiades and Sentinel-2 Surface Reflectances,
ISPRS21(B3-2021: 265-272).
DOI Link
2201
BibRef
Tuzcu Kokal, A.,
Sunar, A.F.,
Dervisoglu, A.,
Berberoglu, S.,
The Use of Spectral and Textural Features in Crop Type Mapping Using
Sentinel-2a Images: a Case Study, Çukurova Region, Turkey,
ISPRS21(B3-2021: 117-122).
DOI Link
2201
BibRef
Naali, F.,
Alipour-Fard, T.,
Arefi, H.,
Spatial Reslution Sensitivity Analysis of Classifciation of Sentinel-2
Images By Pre-trained Deep Models From Big Earth Net Database,
ISPRS21(B3-2021: 87-92).
DOI Link
2201
BibRef
Çolak, E.,
Chandra, M.,
Sunar, F.,
The Use of Sentinel 1/2 Vegetation Indexes with Gee Time Series Data In
Detecting Land Cover Changes in the Sinop Nuclear Power Plant
Construction Site,
ISPRS21(B3-2021: 701-706).
DOI Link
2201
BibRef
Karakizi, C.,
Kandylakis, Z.,
Vaiopoulos, A.D.,
Karantzalos, K.,
Joint Land Cover and Crop Type Mapping Using Multi-temporal Sentinel-2
Data From Various Environmental Zones in Greece,
ISPRS21(B3-2021: 319-326).
DOI Link
2201
BibRef
Zaabar, N.,
Niculescu, S.,
Mihoubi, M.K.,
Assessment of Combining Convolutional Neural Networks and Object Based
Image Analysis to Land Cover Classification Using Sentinel 2 Satellite
Imagery (tenes Region, Algeria),
ISPRS21(B3-2021: 383-389).
DOI Link
2201
BibRef
Mueller, M.M.,
Dubois, C.,
Jagdhuber, T.,
Pathe, C.,
Schmullius, C.,
Investigation of Sentinel-1 Time Series for Sensitivity to Fern
Vegetation in An European Temperate Forest,
ISPRS21(B3-2021: 127-134).
DOI Link
2201
BibRef
Narin, O.G.,
Abdikan, S.,
Bayik, C.,
Sekertekin, A.,
Delen, A.,
Balik Sanli, F.,
Coherence and Backscatter Based Cropland Mapping Using Multi-temporal
Sentinel-1 with Dynamic Time Warping,
ISPRS21(B5-2021: 37-41).
DOI Link
2201
BibRef
Gialampoukidis, I.[Ilias],
Moumtzidou, A.[Anastasia],
Bakratsas, M.[Marios],
Vrochidis, S.[Stefanos],
Kompatsiaris, I.[Ioannis],
A Multimodal Tensor-based Late Fusion Approach for Satellite Image
Search in Sentinel 2 Images,
MMMod21(II:294-306).
Springer DOI
2106
BibRef
Leenstra, M.[Marrit],
Marcos, D.[Diego],
Bovolo, F.[Francesca],
Tuia, D.[Devis],
Self-supervised Pre-training Enhances Change Detection in Sentinel-2
Imagery,
PRRS20 (578-590).
Springer DOI
2103
BibRef
Oldoni, L.V.,
Prudente, V.H.R.,
Diniz, J.M.F.S.,
Wiederkehr, N.C.,
Sanches, I.D.,
Gama, F.F.,
Polarimetric SAR Data From Sentinel-1a Applied to Early Crop
Classification,
ISPRS20(B3:1039-1046).
DOI Link
2012
BibRef
Racic, M.,
Otir, K.,
Peressutti, D.,
Zupanc, A.,
Zajc, L.C.[L. Cehovin],
Application of Temporal Convolutional Neural Network for The
Classification of Crops on Sentinel-2 Time Series,
ISPRS20(B2:1337-1342).
DOI Link
2012
BibRef
Hu, J.,
Mou, L.,
Zhu, X.X.,
Unsupervised Domain Adaptation Using A Teacher-student Network For
Cross-city Classification of Sentinel-2 Images,
ISPRS20(B2:1569-1574).
DOI Link
2012
BibRef
Chauhan, S.,
Darvishzadeh, R.,
Boschetti, M.,
Nelson, A.,
Understanding of Crop Lodging Induced Changes In Scattering Mechanisms
Using Radarsat-2 and Sentinel-1 Derived Metrics,
ISPRS20(B3:267-274).
DOI Link
2012
BibRef
Voelsen, M.,
Bostelmann, J.,
Maas, A.,
Rottensteiner, F.,
Heipke, C.,
Automatically Generated Training Data for Land Cover Classification
With CNNs Using Sentinel-2 Images,
ISPRS20(B3:767-774).
DOI Link
2012
BibRef
Belcore, E.,
Piras, M.,
Wozniak, E.,
Specific Alpine Environment Land Cover Classification Methodology:
Google Earth Engine Processing for Sentinel-2 Data,
ISPRS20(B3:663-670).
DOI Link
2012
BibRef
Hernandez, I.,
Benevides, P.,
Costa, H.,
Caetano, M.,
Exploring Sentinel-2 for Land Cover and Crop Mapping In Portugal,
ISPRS20(B3:83-89).
DOI Link
2012
BibRef
Ghasemian-Sorboni, N.,
Pahlavani, P.,
Bigdeli, B.,
Vegetation Mapping of Sentinel-1 and 2 Satellite Images Using
Convolutional Neural Network and Random Forest With The Aid Of
Dual-polarized and Optical Vegetation Indexes,
SMPR19(435-440).
DOI Link
1912
BibRef
Sekertekin, A.,
Marangoz, A.M.,
Akcin, H.,
Pixel-based Classification Analysis of Land Use Land Cover Using
Sentinel-2 And Landsat-8 Data,
GeoAdvances17(91-93).
DOI Link
1805
BibRef
Abdikan, S.,
Bayik, C.,
Assessment of ALOS PALSAR 25-m mosaic data for land cover mapping,
MultiTemp17(1-4)
IEEE DOI
1712
land cover, synthetic aperture radar, vegetation mapping,
AD 2010 to 2015, GlobeLand30 global data product, Istanbul, JAXA,
land cover
BibRef
Abdikan, S.,
Sanli, F.B.,
Ustuner, M.,
Calň, F.,
Land Cover Mapping Using Sentinel-1 Sar Data,
ISPRS16(B7: 757-761).
DOI Link
1610
BibRef
Topaloglu, R.H.[Raziye Hale],
Sertel, E.[Elif],
Musaoglu, N.[Nebiye],
Assessment Of Classification Accuracies Of Sentinel-2 And Landsat-8
Data For Land Cover / Use Mapping,
ISPRS16(B8: 1055-1059).
DOI Link
1610
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Land Cover, Land Use Change Analysis for Radar and SAR .